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Abstract 

The interaction between a pair of millimeter-sized nanoparticle-stabilized n-dodecane droplets was 

analyzed by high-speed video camera. The droplets were grown in the presence of either 

poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (PGMA-PBzMA) diblock copolymer 

spheres or poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl 

methacrylate) (PGMA-PHPMA-PBzMA) triblock copolymer worms prepared by polymerization-

induced self-assembly (PISA). The effect of nanoparticle morphology on droplet coalescence was 

analyzed by comparing 22 nm spheres to highly anisotropic worms with a mean worm width of 26 

nm and comparable particle contact angle. Both morphologies lowered the interfacial tension, 

providing direct evidence for nanoparticle adsorption at the oil-water interface. At 0.03 % w/v 

copolymer, at least 90 seconds was required to stabilize the n-dodecane droplets in the presence of 

the worms, whereas no ageing was required to produce stable droplets when using the spheres, 

suggesting faster diffusion of the latter to the surface of the droplets. The enhanced stability of the 

sphere-coated droplets is consistent with the higher capillary pressure in this system as the almost 

planar interfaces approach. However, the more strongly adsorbing worms ultimately also confer 

stability. At lower copolymer concentrations (≤ 0.01% w/v) worm adsorption promoted droplet 

stability, whereas the spheres were unable to stabilize droplets even after longer ageing times. The 

effect of mean sphere diameter on droplet stability was also assessed while maintaining an 

approximately constant particle contact angle. Small spheres of either 22 nm or 41 nm stabilized n-

dodecane droplets, whereas larger spheres of either 60 or 91 nm were unable to prevent 

coalescence when the two droplets were brought into contact. These observations are consistent 

with the greater capillary pressure stabilizing the oil-water interfaces coated with the smaller 

spheres. Addition of an oil-soluble polymeric diisocyanate cross-linker to either the 60 nm or the 91 

nm spheres produced highly stable colloidosomes, thus confirming adsorption of these 

nanoparticles.   
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Introduction 

Although their existence has been known for more than a century, particle-stabilized (or Pickering) 

emulsions have enjoyed something of a renaissance over the past sixteen years. This belated activity 

has been inspired by fundamental studies by Binks,
1-6

 as well as many other workers.
7-12

 Many types 

of particles can be used to prepare Pickering emulsions, with the emulsion type being dictated 

primarily by the surface wettability rather than the specific surface chemistry. Literature examples of 

Pickering emulsifiers include silica,
6,10

 various latexes,
8,11,13,14

 proteins,
15

 clay platelets,
16,17

 gold sols,
12

 

quantum dots,
18

 carbon black
19

 and graphene.
7,20

 Compared to surfactant-stabilized emulsions, 

Pickering emulsions offer reduced foaming, minimal skin irritation and more reproducible 

formulations.2
 These advantages have led to renewed commercial interest in such systems for 

industrial sectors such as pharmaceutics,
21,22

 cosmetics
23-25

 and agrochemicals.
26,27

 Moreover, a 

better fundamental understanding of Pickering emulsions is critical for the development of more 

effective methods to destabilize petroleum emulsions.28,29  

In principle, millimeter-sized pendent oil droplets coated in adsorbed particles offer a useful model 

system for understanding the behavior of conventional Pickering emulsions.
30

 Firstly, monitoring the 

dynamic interfacial tension of a single pendent droplet can be used to infer the particle adsorption 

kinetics and hence establish the minimum equilibration times required for droplet coalescence 

studies.
31

 Investigation of the interaction and stability against coalescence of a pair of droplets when 

brought into close contact permits characterization of the intervening thin film stability.
32

 Upon 

droplet approach, the effectively irreversibly adsorbed particles2,33 inhibit thin film drainage.34 

However, using smaller particles or particles with higher contact angles yield thinner films upon 

close approach of droplet pairs and thus a reduced steric barrier towards coalescence. A second 

potential contributor to film stability, albeit with an opposing geometric component is the capillary 

pressure, which serves to stabilize the interfaces on close approach. Here, as the particle radius is 

reduced, the radius of curvature of the adjacent liquid-liquid interface is reduced proportionally, and 

the capillary pressure is thus increased. As summarized by Kaptay,
35

 an unstable film is the result of a 

‘tipping point’ mechanism when the film thins beyond the point where the capillary force is 

maximized (see Figure S1 in the Supporting Information). Collapse then occurs on a timeframe 

determined by hydrodynamics. For a fixed particle contact angle of 60 to 90°, using smaller particles 

creates a greater capillary barrier to film collapse. This will tend to allow more stable particle-

stabilized thin films (or droplets) to be prepared for a given film thickness. As thus envisioned, the 

stability of particle-stabilized thin films is a delicate balance between the adsorption energy of the 

particles which increases with particle size, and the capillary pressure afforded by the adsorbed 

particles which is inversely proportional to particle size.  

If the particle-stabilized thin film is unstable, the mechanism of droplet coalescence in a Pickering 

emulsion is via particle bridging between the two droplet interfaces.
36,37

 Such coalescence events 

can be prevented by either the formation of a close-packed monolayer or bilayer contact between 

approaching droplets.35 These alternative particle organizations during thin film drainage were 

inferred by studying the stability of n-dodecane or sunflower oil droplets stabilized by poly(glycerol 

monomethacrylate) (PGMA) stabilized polystyrene (PS) latexes of either 135 or 902 nm diameter.
38

 

In this study, all pairs of Pickering droplets proved to be unstable with respect to coalescence on 

close approach, which was attributed to their relatively low radii of curvature. Notably, droplet 

coalescence could be prevented by covalently cross-linking the latex particles via their steric 
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stabilizer chains using an oil-soluble polymeric diisocyanate. Giant Pickering droplets coated with 

260 nm poly(tert-(butylamino)ethyl methacrylate) (PTBAEMA) latexes also coalesced on close 

contact.31 From these prior studies of millimeter-sized Pickering droplets, it is unclear whether the 

droplet (in)stability stems principally from the aqueous film thickness formed upon contact, the size 

of the adsorbed particles or the droplet surface coverage.  

Over the last decade, polymerization-induced self-assembly (PISA) has become widely recognized as 

a versatile, efficient and robust technique for the rational synthesis of block copolymer 

nanoparticles.
39-42

 Aqueous PISA formulations are particularly attractive, with many reports 

describing the use of reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion 

polymerization.43-55 Such protocols enable the production of sterically-stabilized spherical 

nanoparticles at relatively high solids (up to 50% w/w copolymer). Of particular relevance to the 

present work, a PGMA chain transfer agent (CTA) can be chain-extended using benzyl methacrylate 

(BzMA) to produce a range of PGMA-PBzMA diblock copolymer spheres of 28 to 230 nm diameter.56 

These model nanoparticles can be used to prepare Pickering emulsions with mean droplet diameters 

of up to 1000 µm via high shear homogenization using oils such as n-dodecane or sunflower oil. In 

related work, Mable and co-workers recently reported the chain extension of a water-soluble 

poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock 

copolymer precursor with BzMA to produce well-defined PGMA-PHPMA-PBzMA triblock copolymer 

worms.
57

 Such worms were reported by Thompson et al. to be more effective Pickering emulsifiers 

compared to their spherical counterparts.58 For a fixed copolymer concentration of 0.06% w/v, the 

PGMA-PHPMA-PBzMA triblock copolymer worms yielded significantly smaller (~ 200 µm) oil-in-

water Pickering emulsion droplets compared to PGMA-PBzMA spheres (~ 400 µm droplets).  The 

greater droplet diameter obtained for the sphere-stabilized Pickering emulsions is consistent with 

the higher capillary pressure present in this system; this parameter scales with the nanoparticle 

curvature and is therefore halved in the case of the adsorbed worms. 

In the present work, we examine a series of four PGMA-PBzMA spheres ranging in mean diameter 

from 22 to 91 nm and also the above PGMA-PHPMA-PBzMA worms as putative emulsifiers for the 

Pickering stabilization of isolated millimeter-sized n-dodecane droplets. This enabled the effect of 

both particle size and morphology on droplet stability to be assessed at a fixed contact angle for the 

first time using high-speed video imaging and dynamic interfacial tensiometry. 

Experimental 

Synthesis of PGMA37-PHPMA60-PBzMA30 Worms 

The PGMA37-PHPMA60-PBzMA30  triblock copolymer worms were prepared via RAFT seeded emulsion 

polymerization. Full details of this PISA synthesis have been reported previously.57,58 More than 99% 

monomer conversion was achieved for the synthesis of both the diblock copolymer precursor and 

the triblock copolymer worms as judged by 
1
H NMR spectroscopy. The PGMA37 macro-CTA, PGMA37-

PHPMA60 diblock copolymer precursor and the PGMA37-PHPMA60-PBzMA30 triblock copolymer were 

analyzed by DMF GPC analysis, see Figure S2a. A mean worm core width of 26 nm was determined 

by TEM by measuring at least 30 nanoparticles using ImageJ software.  
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Synthesis of PGMA39-PBzMAx spherical nanoparticles 

PGMA39-PBzMAx diblock copolymer nanoparticles were prepared via RAFT emulsion polymerization 

of BzMA at 70 °C and 10% w/w solids utilizing a PGMA39 macro-CTA which had been previously 

purified by precipitation in dichloromethane. The target degree of polymerization of the 

hydrophobic PBzMA block was varied from 60 to 300. Full details of this synthesis protocol have 

been reported previously.56 A summary of the characterization details for the various diblock 

copolymer nanoparticles used in this study is given in Table 1. High conversions (> 99%) were 

achieved for all syntheses. The PGMA39 macro-CTA and the four corresponding diblocks were 

analyzed by DMF gel permeation chromatography (GPC) analysis using a series of near-

monodisperse poly(methyl methacrylate) (PMMA) calibration standards, see Figure S2b. The 

hydrodynamic number-average diameter determined by DLS is utilized throughout as this is the 

most relevant parameter for interfacial packing at the oil droplet surface. TEM studies were 

performed using a Philips CM100 instrument operating at 100 kV and equipped with a Gatan 1 k CCD 

camera. Aqueous nanoparticle dispersions (0.20% w/w) were adsorbed onto carbon-coated TEM 

grids for 60 s and then stained with uranyl formate (0.75% w/w) for 20 s prior to imaging. A 

comparison between the DLS and TEM diameters for the various copolymer nanoparticles is 

provided in Figure S3.   

Sample preparation 

The nanoparticle dispersions used in this work were required to be of sufficiently low turbidity to 

ensure capture of high-quality video images. For example, to prepare a 0.03 % w/v dispersion of 22 

nm PGMA39-PBzMA60 nanoparticles, 156 µL of the original 9.61 % w/w copolymer dispersion was 

added to a beaker containing Milli-Q water (50 mL). This was stirred for 20 min prior to droplet 

growth. Concentrations of 0.06 % w/v, 0.09 % w/v and 0.13 % w/v were used for the 41, 60 and 91 

nm spheres, respectively. These three concentrations ensure the same interfacial coating ability for 

each dispersion, that is, an equivalent total projected interfacial area to that of the 0.03 % w/v 22 

nm sphere dispersion (see Table 1). A concentration of 0.03 % w/v was also used for the 

experiments conducted using the PGMA37-PHPMA60-PBzMA30 worms. 

Droplet Coalescence Apparatus 

A schematic representation of the apparatus used in this work is shown in Figure S4 and was 

reported previously for studying the coalescence of pairs of air bubbles32,59 or oil droplets.31,38,60 Two 

stainless steel capillaries (1.05 mm outer diameter) were inserted into a glass beaker containing 50 

mL of an aqueous nanoparticle dispersion and a magnetic stirrer bar. The capillary tips were visually 

aligned in x, y and z directions in order to minimize any prospect of lateral shear-induced 

coalescence when the droplets approach.61,62 Two microsyringe pumps (Sarasota, FL) were used to 

produce two identical n-dodecane droplets from the tips of the capillaries. Between experiments, all 

glassware, syringes, capillaries and the stirrer bar were thoroughly cleaned using 2-propanol and 

ethanol to remove any oily residues and then rinsed with Millipore Milli-Q water at least ten times to 

remove residual contaminants. Coalescence data were recorded using a high-speed video camera 

(Phantom 5, Vision Research, USA) at a rate of 1800 frames·s−1. Images were collected using 

Phantom 6.30 (Nikon) software at 512 × 256 resolution. 
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Droplet Coalescence Protocol and Data Analysis 

n-Dodecane was held in both syringes and then connected to the capillaries. All air bubbles were 

expelled from the capillaries prior to their addition to the aqueous phase. The beaker containing the 

aqueous dispersion and a magnetic stirrer (or in the absence of any nanoparticles for the bare oil 

droplet experiments) was placed inside a rectangular Perspex vessel containing water to prevent 

optical distortion arising from the cylindrical surface of the beaker. The beaker was then placed on a 

magnetic stirrer mounted on a lab jack beneath the capillaries. 2.0 mL of n-dodecane was added to 

the top of the water surface. This was required to maintain a constant surface area of the oil 

throughout the experiment. Oil droplets of approximately 2.0 mm diameter were then grown from 

the capillaries. During droplet ageing, the aqueous phase was stirred magnetically. One of the 

capillaries was then moved using a linear actuator at 0.238 cm s
−1

 until the two droplets were just 

touching (no visible intervening aqueous film). The droplet coalescence time was measured from the 

point of initial droplet contact until coalescence as analyzed from the video footage. Each 

coalescence experiment was conducted at least three times (except when 20 min ageing was 

required; in this case only two experiments were performed) and the mean and standard deviation 

for the coalescence time was recorded. The projected droplet surface area before and after 

coalescence was measured as a function of time. The droplet area in each frame was analyzed using 

ImageJ software and the results were plotted as the change in projected area relative to the initial 

droplet area prior to coalescence.  

Cross-linking experiments 

For the cross-linking experiments, the same protocol was followed as described above, except that 

the pure n-dodecane in the syringes was replaced with a solution containing 0.10 mg/mL 2,4-

diisocyanate-terminated poly(propylene glycol) (PPG-TDI, Sigma Aldrich) cross-linker dissolved in n-

dodecane.  

Pendent Drop Tensiometry 

Interfacial tensions were measured for single pendant 10 µL n-dodecane droplets suspended in Milli-

Q water and also aqueous dispersions of either spherical or worm-like nanoparticles using a PAT-1 

tensiometer (SINTERFACE Technologies, Berlin, Germany). A nanoparticle concentration of 0.03 % 

w/v was used to compare the 22 nm PGMA39-PBzMA60 spheres with the PGMA37-PHPMA60-PBzMA30 

worms. Concentrations of 0.01 % w/v, 0.02 % w/v, 0.03 % w/v and 0.04 % w/v were used for the 22, 

41, 60 and 91 nm spheres, respectively (these conditions were selected to maintain an equivalent 

projected surface area while ensuring each dispersion was used at sufficiently low turbidity). The 

data presented are the mean and standard deviation from three experiments. The density of these 

dilute aqueous nanoparticle dispersions was assumed to be that of pure water (1.00 g·cm-3) and the 

density of n-dodecane was taken to be 0.75 g·cm-3 (Sigma Aldrich).     
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Results and Discussion 

Effect of adsorbed particle morphology 

The synthesis of amphiphilic diblock copolymers via PISA has enabled the rational design of a wide 

range of bespoke nanoparticles, including both spherical and worm-like micelles.
39-42

 In this study, 

RAFT emulsion polymerization was utilized to prepare PGMA37-PHPMA60-PBzMA30 triblock 

copolymer worms using a water-soluble PGMA37-PHPMA60 diblock copolymer precursor (Table 1) 

and PGMA39-PBzMA60 spheres using a water-soluble PGMA39 macro-CTA (Table 1). The PGMA macro-

CTAs were purified via precipitation to remove small molecule contaminants. Syntheses of the 

diblock and triblock copolymers each proceeded to high conversions (> 99%) as judged by 1H NMR 

spectroscopy, while GPC analysis (Figure S2) indicated low dispersity polymers with high blocking 

efficiencies relative to the PGMA macro-CTA. TEM studies confirmed that the worms are well-

defined in terms of their mean width, which is comparable to the mean diameter of the PGMA39-

PBzMA60 spheres. However, the worms are relatively polydisperse in terms of their length, see 

Figure 1, because 1D sphere-sphere fusion during PISA is the mechanism by which spheres form 

worms.
41

 Previously, Thompson et al. reported that both PGMA-PBzMA spheres and PGMA-PHPMA-

PBzMA triblock copolymer worms can stabilize oil-in-water Pickering emulsions, where n-dodecane 

was used as the model oil.58 The worms proved to be more effective Pickering emulsifiers than the 

spheres since finer oil droplets were obtained when using the same mass of copolymer. This was 

attributed to the worms being much more strongly adsorbed at the oil-water interface than the 

spheres as a result of the far greater energy of attachment in the former case.   

Table 1. DLS, conversions, solids content, concentration used for coalescence experiments and TEM 

analysis of PGMA39-PBzMAx diblock copolymer spheres and a PGMA37-PHPMA60-PBzMA30 triblock 

copolymer worm.  

 � Block 

composition�

Conv. �

(d
7
-DMF)�

Solids content
a

� DLS� TEM� Concentration�

(% w/v)�Num. Av.� PDI� Diameter� Morphology�

1� G
37

-H
60

-B
30
� >99%� 13.0 %� 78 nm

b

� 0.19� 26 nm� Worms� 0.005 - 0.03�

2� G
39

-B
60
� >99%� 9.6%� 22 nm� 0.07� 25 nm� Spheres� 0.01 –  0.05�

3� G
39

-B
125
� >99%� 9.5%� 41 nm� 0.02� 42 nm� Spheres� 0.06�

4� G
39

-B
200
� >99%� 9.8%� 60 nm� 0.05� 60 nm� Spheres� 0.09�

5� G
39

-B
300
� >99%� 9.8%� 91 nm� 0.05� 83 nm� Spheres� 0.13�

a. solids content determined by moisture analysis, b. z-average particle diameter. 
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Figure 1. Transmission electron microscopy images for either PGMA37-PHPMA60-PBzMA30 worms or 

PGMA39-PBzMAx spheres (where x = 60, 125, 200 and 300). 

In the present study, a copolymer concentration of 0.03 % w/v was initially selected to ensure that 

the bulk concentration remained essentially constant after nanoparticle adsorption at the oil-water 

interfaces (droplets plus top coating of aqueous dispersion). Moreover, this copolymer 

concentration was sufficiently low to minimize turbidity and hence enable visual examination of 

droplet stability with respect to coalescence. The oil selected for the current giant Pickering 

emulsion study was n-dodecane to enable direct comparison with earlier work by both Thompson et 

al.
58

 and Cunningham et al.,
56

 who prepared conventional Pickering emulsions with similar 

nanoparticles. The spheres and worms comprise either a PGMA37 or a PGMA39 stabilizer block. Thus 

these two types of nanoparticles should, to a good first approximation, exhibit essentially the same 

contact angle at the n-dodecane-water interface, enabling the effect of copolymer morphology to be 

assessed. The stability of millimeter-sized oil-in-water Pickering emulsion droplets has been 

previously investigated by Thompson et al.38 and Morse et al.,31 but neither a worm-like morphology 

nor particles of less than 100 nm diameter has been studied to date.  

Dynamic interfacial tension is a convenient technique to assess the kinetics of particle adsorption at 

the oil-water interface prior to studying the coalescence behavior of giant Pickering droplets. 

Initially, the interfacial tension of a bare n-dodecane droplet in water was measured for 10 min (see 

Figure 2). An equilibrium interfacial tension of 44.8 ± 1.9 mN·m-1 was established within 10 min, 

which is comparable to that reported by Thompson et al. (47.2 ± 2.9 mN·m
-1

).
38

 The interfacial 

tension of n-dodecane droplets grown in the presence of 0.03 % w/v nanoparticle dispersions of 

either the 22 nm PGMA39-PBzMA60 spheres or the PGMA37-PHPMA60-PBzMA30 worms were also 

recorded over a 10 min period. Both spheres and worms exhibited a rapid initial reduction in 

interfacial tension within the first 20 s, with a more gradual but still significant reduction thereafter. 

In principle, such a reduction might indicate the presence of low molecular weight surface-active 

species. However, in practice assessment of the supernatants of dialyzed nanoparticles indicated 

limited evidence for this problem, as shown in Figure 2 for the 22 nm spheres. Therefore, these 

observations confirm nanoparticle adsorption at the oil-water interface,
63

 and perhaps suggest some 

degree of post-adsorption reorganization. Interestingly, the worms lower the interfacial tension 

significantly more than the spheres; the former produce a final interfacial tension of 21.7 ± 0.3 

mN·m
-1

 compared to a limiting value of 27.7 ± 0.4 mN·m
-1

 for the latter. This suggests that the 

worms have a stronger affinity for the n-dodecane-water interface than the spheres.  
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Figure 2. Interfacial tension profiles obtained for n-dodecane droplets grown in unstirred 0.03% w/v 

aqueous dispersions of either 22 nm PGMA39-PBzMA60 spheres or PGMA37-PHPMA60-PBzMA30 worms 

of comparable mean width and aged for 10 min. Also shown is a reference for n-dodecane in water 

in the absence of any nanoparticles, together with the interfacial tensions determined for the 

dialysate after dialyzing a dispersion of the 22 nm spheres for either 5 h or 3 days. 

These 22 nm spheres and highly anisotropic worms were subsequently used to prepare giant-

Pickering emulsions, see Scheme 1. The stability of two millimeter-sized n-dodecane droplets 

towards coalescence was examined by studying droplet coalescence as a function of droplet ageing 

time. First, bare n-dodecane droplets were studied: a pair of n-dodecane droplets were grown in 

MilliQ water and brought into contact. Instantaneous coalescence occurred, as expected for a clean 

non-stabilized system. The coalescence times observed for the 0.03% w/v aqueous dispersions of 

either PGMA39-PBzMA60 spheres or PGMA37-PHPMA60-PBzMA30worms were determined for various 

ageing times (Figure 3). The ageing time is defined as the time between growing the droplets and 

bringing them into contact, whereas the coalescence time is the time between initial contact of the 

two droplets and the onset of coalescence. Thus an ageing time of zero seconds indicates that the 

droplets are grown and immediately brought into contact. For the current set-up, this typically takes 

10 – 15 s and applies to all ageing times presented herein.   
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Scheme 1. Reaction scheme for the formation of giant Pickering emulsion droplets: (a) using 

PGMA37-PHPMA60-PBzMA30 triblock copolymer worms and (b) using PGMA39-PBzMAx diblock 

copolymer spheres. With sufficient ageing prior to direct contact, the worms are able to stabilize the 

emulsion droplets. Stability could be induced with minimal ageing in dispersions of spheres of either 

22 nm or 41 nm diameter, whereas n-dodecane droplets exposed to 60 nm or 91 nm diameter 

spheres always coalesced on contact, regardless of the ageing time. Addition of an oil-soluble cross-

linker, poly(propylene glycol) tolyl diisocyanate (PPG-TDI), to the droplet phase produces robust 

colloidosomes that resist coalescence.  

 

Using the 22 nm PGMA39-PBzMA60 spheres at 0.03% w/v led to a measurable degree of droplet 

stability within ageing times of 0 - 30 s. This suggests that a sufficient number of spheres adsorb 

onto the pair of n-dodecane droplets during their growth, i.e. with minimal interfacial ageing, to 

produce enhanced stability towards coalescence. These observations were not expected, because 

Thompson et al. reported that significantly larger PGMA-stabilized polystyrene latexes of either 135 

nm or 902 nm were unable to stabilize equivalent millimeter-sized n-dodecane droplets even after 

droplet ageing times of up to 2 min.38 In contrast, the PGMA39-PBzMA60 spheres can rapidly stabilize 

at least some pairs of droplets. This suggests relatively fast diffusion and attachment to the 

expanding oil-water interface, which is consistent with the rapid initial reduction in interfacial 

tension shown in Figure 2. If the particle contact angle at the n-dodecane-water interface is 

comparable for the nanoparticles and the latexes, then the enhanced droplet stability can be 

explained by the larger capillary pressure (∝ 1/R) sustained by the smaller nanoparticles.35 The 

unexpected ability of 22 nm PGMA39-PBzMA60 spheres to stabilize millimeter-sized Pickering droplets 

is consistent with previous work by Cunningham et al., who utilized 41 nm PGMA51-PBzMA100 

spheres to prepare unusually large Pickering emulsions (up to 1 mm diameter) using high-shear 

homogenization.56  
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Figure 3. Coalescence time for two n-dodecane droplets recorded after various ageing times for (a) 

worms and (b) 22 nm spheres at differing copolymer concentrations. Open symbols indicate 

conditions for which some droplets remained stable for at least 30 min in contact while coalescence 

occurred for other droplets; the error bars indicate variability in the data for repeat measurements.
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In contrast, using the worms at 0.03% w/v produced inferior droplet stability in the absence of 

ageing, followed by a significant increase in droplet coalescence time with ageing time (Figure 3). 

This is consistent with longer ageing times facilitating higher levels of nanoparticle adsorption at the 

surface of each droplet (Figure 2). Initially, the aqueous thin film between the two droplets is less 

stable as the capillary pressure is approximately half that present with the adsorbed spherical 

nanoparticles (which have double the mean curvature compared to the worms). After 90 s ageing 

(with stirring), the worm-coated droplets became stable towards coalescence. This indicates that the 

larger worms require longer to coat the droplet surface than the relatively small, faster diffusing 

spheres. Moreover, after initial contact with the oil-water interface, the worms should adsorb 

conformally so as to maximize their contact area and hence minimize the surface area of the new 

interface. This may lead to defects in the adsorbed layer. The 22 nm PGMA39-PBzMA60 spheres are 

sufficiently small that their energy of detachment will be relatively low, which may enable these 

nanoparticles to rapidly rearrange (or perhaps even desorb and readsorb) at the droplet surface. 

This dynamic situation ultimately produces a hexagonal close-packed layer, minimizes surface 

defects and results in stable droplets being produced more quickly than for the worms. A 

conventional Pickering emulsion droplet prepared by homogenization of n-dodecane with a 0.50% 

w/v dispersion of the 22 nm spheres was imaged by TEM (see Figure S5). Inspection of the flattened 

dried droplet indicates areas of hexagonally close-packed spheres that suggest efficient nanoparticle 

packing at the n-dodecane-water interface prior to drying. However, the high shear homogenization 

technique used to prepare bulk emulsions facilitates faster delivery of the nanoparticles to the 

interface compared to the approximately diffusion-controlled conditions present in the coalescence 

rig (which only utilizes gentle stirring). 

The droplet coalescence behavior in the 0.03% w/v aqueous dispersions was captured using a high-

speed video camera recording 1800 frames per second. Figure 4a and 4b show every fifth frame 

from the onset of coalescence for both the spheres and the worms after an ageing time of 30 s in 

each case. Initially, the aqueous thin film between the two contacting droplets ruptures to form a 

thick neck, see image 2 (t = 1.1 ms). The resulting oil droplet then continues to expand horizontally, 

leading to a larger relative projected surface area for the coalescing droplets (Figure 4c). The droplet 

then contracts horizontally and its vertical height increases. This oscillatory motion repeats with a 

reduction in expansion in both planes being observed over time as a result of energy dissipation in 

the system. Finally, the larger droplet reaches equilibrium. The presence of either spheres or worms 

induces a time lag compared to the behavior of bare n-dodecane droplets in water. The coalescence 

dynamics of worm-stabilized n-dodecane droplets are noticeably slower compared to those of the 

sphere-stabilized droplets. This phase lag is evident in the images shown in Figure 4a and 4b, where 

image 4 recorded for the spheres after 8.3 ms has the same droplet shape as that of image 5 

(recorded after 11.1 ms) for the worm-stabilized droplets. Any overlap of the adsorbed worms would 

be likely to hinder the change in surface area associated with the coalescing droplet and result in the 

slower dynamics shown in Figure 4c. The differing dynamics shown in Figure 4c were assessed using 

a simple harmonic oscillator model to monitor the change in projected area over time to determine 

a damping coefficient.
64

 A damping coefficient of 0.024 ms
-1

 was recorded for bare n-dodecane 

droplets in water after 30 s ageing. Both the sphere-coated and worm-coated droplets exhibited 

equivalent damping coefficients with 0.025 ms-1 being determined for the former system and 0.024 

ms
-1

 for the latter. Usually, a higher damping coefficient implies greater rigidity and robustness for 

the Pickering droplets.
64

 However, the adsorbed nanoparticles only seem to affect the phase lag.   
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Figure 4. Sequence of images recorded for a pair of coalescing n-dodecane droplets grown in a 

0.03% w/v aqueous dispersion after 30 s ageing: (a) 22 nm PGMA39-PBzMA60 spheres and (b) 

PGMA37-PHPMA60-PBzMA30 worms. (c) Coalescence dynamics observed for bare n-dodecane 

droplets (no particles, black trace), 22 nm diameter PGMA39-PBzMA60 spheres (blue trace) and 

PGMA37-PHPMA60-PBzMA30 worms (red trace).  In each case the outer diameter of each capillary was 

1.05 mm. 
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The effect of copolymer concentration on the coalescence behavior was studied for both the worms 

and 22 nm spheres, see Figure 3. As the worms produced stable droplets after 90 s ageing at a 

copolymer concentration of 0.03% w/v, two lower concentrations (0.005% w/v and 0.01% w/v) were 

also examined, Figure 3a. An increase in coalescence time with ageing time was observed in both 

cases. Partial stability occurred after ageing for 4 min, with complete stability being obtained after 5 

min ageing. This is physically reasonable: lower copolymer concentrations should require longer 

ageing times to allow more worms to adsorb at and/or rearrange on the droplet surface. Similarly, 

the 22 nm spheres were studied at varying concentrations, Figure 3b. In this case, only partial 

stability was observed at 0.03% w/v. Hence, a higher concentration (0.05% w/v) and a lower 

concentration (0.01% w/v) were selected for further study. The latter condition produced a longer 

coalescence time with increasing ageing time, but these droplets never became fully stable towards 

coalescence. This result was somewhat unexpected, because using worms at the same copolymer 

concentration produces stable droplets despite a thirty-fold reduction in the number of 

nanoparticles present in solution. In contrast, using 0.05% w/v spheres yielded longer coalescence 

times with increasing ageing time, with indefinitely stable droplets being formed after 90 s ageing. 

For both nanoparticle morphologies, higher copolymer concentrations prevent coalescence. 

Furthermore, comparing the coalescence data shown in Figure 3, both the 0.05% w/v spheres and 

0.03% w/v worms require an ageing time of 90 s to produce stable droplets under otherwise 

identical conditions. This suggests that the worms have a greater affinity for the droplet surface, 

enabling stability to be achieved at a lower concentration than that required for the 22 nm spheres.  

Thompson et al. reported that PGMA37-PHPMA60-PBzMA30 worms were more strongly adsorbed at 

the oil droplet surface than PGMA39-PBzMA60 spheres in Pickering emulsions. The former 

nanoparticles also produced smaller oil droplets when employed at the same copolymer 

concentration. These observations suggest that worms are more effective Pickering emulsifiers than 

the near-equivalent spheres.
58

  Hence the present study focused on whether worms also offer 

significant advantages over spheres for the preparation of giant (~ 2 mm diameter) Pickering 

emulsions at various copolymer concentrations. On a relatively short timescale, spheres diffuse 

faster and hence adsorb more quickly at the droplet surface than the larger worms. This is supported 

by interfacial tension studies (unstirred) as well as droplet stability measurements (stirred) and can 

be explained by the very high capillary pressure present in the aqueous thin film stabilized by these 

adsorbed spherical nanoparticles. Furthermore, worms lead to greater droplet stability if longer 

ageing times are utilized, suggesting that these nanoparticles require longer to fully coat and 

stabilize the oil droplets. Compared to spheres with a mean diameter comparable to that of the 

mean worm width, it is estimated that the energy of detachment for highly anisotropic worms is 

approximately 30-50 times greater.58 One likely consequence is that the dynamics of adsorbed 

worms may be significantly slower than that of spheres, thus the former system requires longer time 

scales to produce the dense, uniform surface layer required to prevent droplet coalescence. In 

summary, both spheres and worms can stabilize giant Pickering droplets, but the former stabilize 

interfaces with lower curvature (i.e. larger droplets) more quickly than the latter.58  
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Effect of sphere diameter  

Our previous studies suggested that adsorbed latex particles required chemical cross-linking in order 

to produce millimeter-sized Pickering emulsion droplets capable of resisting coalescence when 

brought into close contact.
31,38

 However, the 22 nm PGMA39-PBzMA60 spheres confer droplet 

stability without any interparticle crosslinking (see Figure 3), while closely-related  41 nm PGMA51-

PBzMA100 spheres can stabilize droplets with mean diameters as large as 1 mm for conventional 

emulsions prepared via high-shear homogenization.
56

 The key parameter for such droplet stability 

appears to be the thin film maximum capillary pressure (see Figure S1). Moreover, both Thompson 

et al.38 and Morse et al.31 utilized substantially larger latexes and found the analogous giant Pickering 

droplets to be unstable towards coalescence, despite the thicker aqueous thin films between the 

contacting droplets. The PGMA-PS latexes examined by Thompson et al. had mean diameters of 135 

nm and 902 nm, whereas a 260 nm diameter PTBAEMA latex was used by Morse et al. Thus a series 

of PGMA-PBzMA spheres were targeted in which the mean degree of polymerization of the core-

forming PBzMA block was systematically varied from 60 to 300 (Table 1). High conversions were 

achieved in each case, resulting in 41 nm, 60 nm and 91 nm spheres in addition to the 22 nm spheres 

described above (see Figure 1 for representative TEM images of these spheres). These nanoparticles 

cover the desired intermediate range of mean curvature.   

In order to facilitate comparison between the interfacial stabilizing ability of the four different 

diameter spheres, some important assumptions and considerations are noteworthy. Firstly, the 

same PGMA39 macro-CTA stabilizer was employed for each sphere synthesis, so these nanoparticles 

should exhibit approximately the same three-phase contact angle at the oil-water interface. 

Secondly, the increase in mean sphere diameter inevitably leads to greater turbidity in aqueous 

dispersions: this point must be considered when selecting suitable copolymer concentrations for 

visual analysis using the high-speed video camera. Indeed, this prevents any meaningful comparison 

at the same copolymer concentration based on the number of nanoparticles. Instead, the relative 

performance of these four types of spherical nanoparticles was compared using the total equivalent 

projected area of nanoparticles in each dispersion, which necessarily required a significantly higher 

concentration of the 91 nm spheres compared to the 22 nm spheres. Hence the equivalent 

interfacial surface area (assuming hexagonal close packing, see Figure S5) was used, as described by 

Thompson et al.
38

       

The dynamic interfacial tension for each of the four spheres was measured over 10 min and 

compared to that of bare n-dodecane droplets in water (Figure 5). The concentration of 22 nm 

spheres was 0.01 % w/v, so concentrations of 0.02, 0.03 and 0.04 % w/v were used for the 41, 60 

and 91 nm spheres respectively (see Table 2). All four nanoparticle dispersions effectively lowered 

the interfacial tension compared to the interfacial tension observed in the absence of any 

nanoparticles, providing strong evidence for nanoparticle adsorption at the oil-water interface. 

Despite the variation in particle diameter, an equilibrium surface tension of 35.6 ± 0.4 mN·m
-1

 was 

observed in each case (see Table 2). This suggests that each of the PGMA39-PBzMAx spheres behave 

similarly at the oil-water interface provided that sufficient time is allowed for equilibration. Focusing 

on the first 80 s after the droplet is grown, the smallest spheres reduce the interfacial tension more 

quickly (see Figure 5 inset), while the largest spheres require the longest ageing time to reach 

equilibrium and intermediate behavior is observed for the 41 and 60 nm spheres. This is consistent 
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with the larger number of 22 nm spheres for the same equivalent projected surface area, leading to 

a higher probability of inelastic collisions during droplet growth.             

 

Figure 5. Interfacial tension profiles for n-dodecane droplets grown in unstirred aqueous dispersions 

of PGMA39-PBzMAx spheres and aged for 10 min (where x = 60, 125, 200 and 300 for 22 nm, 41 nm, 

60 nm and 91 nm diameter nanoparticles, respectively). The concentrations correspond to the 

equivalent interfacial area coating capacity of 22 nm spheres at 0.01% w/v (see Table 2). The black 

trace is a reference for n-dodecane droplets grown in pure water in the absence of any 

nanoparticles.  

 

Table 2. Summary of particle diameter, copolymer concentration for interfacial tension 

measurements (IFT) and equilibrium IFT for the four PGMA39-PBzMAx spheres used in this study. 

Particle 

diameter 

Copolymer 

concentration for 

IFT (% w/v) 

Equilibrium IFT 

(mN/m) 

22 nm 0.01  35.2 ± 0.3 

41 nm 0.02  35.9 ± 0.1 

60 nm 0.03  35.4 ± 0.3 

91 nm 0.04  36.0 ± 0.3 

 

 

The coalescence behavior of two giant n-dodecane droplets in each aqueous sphere dispersion was 

assessed at a concentration that resulted in an equivalent projected area to that of the 22 nm 
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spheres at 0.03 % w/v, or 9.16×10
17

 nm
2
. Therefore concentrations of 0.06 % w/v, 0.09 % w/v and 

0.13 % w/v were used for the 41, 60 and 91 nm spheres, respectively (see Table 1). Millimeter-sized 

n-dodecane droplets were grown in turn in the presence of each nanoparticle dispersion and the 

ageing time was systematically varied. The mean coalescence time versus ageing time for the four 

sets of nanoparticles is shown in Figure 6. Both the 22 nm and 41 nm spheres produced either stable 

or partially stable  droplets (i.e. some droplets coalesced, whereas others remain stable for at least 

30 min) when employing ageing times of just 45 s. However, no droplet stability was observed when 

using either the 60 or 91 nm spheres. Ageing times of up to 20 min were examined but droplet 

coalescence was invariably observed in all cases. This indicates that droplet coalescence is 

remarkably sensitive to the mean nanoparticle diameter in the range investigated as summarized in 

Scheme 1. 

  

 

Figure 6. Coalescence time versus ageing time for two n-dodecane droplets grown in dilute aqueous 

dispersions of PGMA39-PBzMAx spheres of varying mean diameter. The copolymer concentrations 

used correspond to the equivalent interfacial area coating capacity. Open markers indicate 

conditions where, in some cases, droplets were stable from coalescence for at least 30 min. 

The post-coalescence behavior of the four sets of spheres was analyzed, see Figure S6. An ageing 

time of 30 s was selected, as this corresponded to the longest ageing time when coalescence was 

observed for all four sphere diameters. A similar phase lag was observed for the majority of the 

nanoparticles. A slightly larger damping coefficient with increasing particle diameter is observed, but 

all damping coefficients lie between 0.025 and 0.030 ms-1 and hence differ only slightly to that 

observed for pure n-dodecane in water (0.024 ms
-1

). 
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To examine whether the 60 nm and 91 nm spheres could provide sufficient coverage of the droplet 

interfaces to prevent coalescence, PPG-TDI cross-linker was added to the n-dodecane phase (0.1 

mg/mL). PPG-TDI reacts with the hydroxyl groups on the collapsed PGMA stabilizer chains that are in 

direct contact with the oil phase, cross-linking neighboring nanoparticles at the oil-water interface to 

yield stable colloidosomes.
65

 The PPG-TDI molecule is estimated to have a maximum extended 

length of 15 nm,38 therefore both the 60 nm and 91 nm nanoparticles must be sufficiently close-

packed on the n-dodecane surface to enable cross-linking between adjacent nanoparticles (as 

opposed to cross-linking between PGMA stabilizer chains within individual nanoparticles). PPG-TDI-

loaded oil droplets were grown in the presence of either 60 or 91 nm spheres and brought into 

contact after various ageing times, see Figure 7 and Scheme 1. Thompson et al. reported that an 

ageing time of 20 min was required to ensure droplet stability when using relatively large PGMA-PS 

latexes. In contrast, much shorter times were required for the smaller PGMA-PBzMA spheres used 

herein.38 After just 5 min ageing, the 60 nm spheres prevented droplet coalescence, while only 2 min 

ageing was required for the 91 nm spheres to ensure droplet stability. This indicates the formation 

of stable colloidosomes via adsorption of the 60 and 91 nm spheres at the oil-water interface. For 

ageing times of less than 60 s, the incomplete (patchy) colloidosomes produced using the 60 or 91 

nm spheres exhibited similar behavior to the Pickering emulsions prepared in the absence of any 

PPG-TDI cross-linker, and coalesced soon after contact. However, longer ageing times led to more 

robust colloidosomes with up to five times longer droplet coalescence times compared to the 

corresponding Pickering emulsions. In general, longer ageing times lead to more stable droplets. This 

is because more nanoparticles can adsorb at the oil-water interface to form a relatively close-packed 

monolayer and the PPG-TDI cross-linker has longer to react with the PGMA stabilizer chains to 

produce colloidosomes.
38
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Figure 7. Coalescence time versus ageing time for a pair of n-dodecane droplets grown in an 

aqueous dispersion of either 60 nm diameter PGMA39-PBzMA200 spheres or 91 nm diameter PGMA39-

PBzMA300 spheres, with and without the presence of 0.10 mg/mL PPG-TDI as a cross-linker. A control 

experiment was also conducted utilizing 0.1 mg/mL PPG-TDI in the absence of any nanoparticles. 

The copolymer concentrations utilized in these experiments correspond to the equivalent interfacial 

area coating capacity. The arrows indicate where the two droplets were stable to coalescence for at 

least 30 min. 

These crosslinking experiments confirmed adsorption of all four spheres at the surface of the oil 

droplets, as supported by the interfacial tension data shown in Figure 5. Given that the sole variable 

within the study is the particle diameter, the differing stabilities of these nanoparticle-coated 

interfaces are consistent with the corresponding variation in the maximum sustainable capillary 

pressure, which scales with the mean curvature (∝ 1/R) for a fixed contact angle (as presented here). 

This is opposed by the aqueous film thickness which is proportional to the mean sphere diameter for 

a fixed three-phase particle contact angle. This balance yields a complex emulsion stability diagram 

for emulsions stabilized by a double layer of closely-packed nanoparticles, which is believed to be 

present in the above experiments.35 In this context, Kaptay’s analysis suggests markedly reduced 

emulsion stability for low curvature interfaces, which is the case for the giant Pickering droplets 

investigated herein. 

Conclusions 

The coalescence behavior of millimeter-sized n-dodecane droplets stabilized by PGMA37-PHPMA60-

PBzMA30 worms in aqueous solution was compared directly to that obtained for 22 nm diameter 

PGMA39-PBzMA60 spheres, which have comparable dimensions to the mean worm width. Both the 

spheres and worms adsorbed at the surface of the oil droplets, reducing the interfacial tension 
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relative to that of bare n-dodecane. Both spheres and worms were able to stabilize these giant 

Pickering emulsions. However, the 22 nm spheres proved to be more effective at stabilizing the 

interface in the absence of interfacial ageing, which was attributed to the very high capillary 

pressure generated by using such small nanoparticles. This is the first example of nanoparticle-

stabilized giant Pickering emulsions. By comparison, the highly anisotropic worms required an ageing 

time of at least 90 s before droplet stability was observed, which is consistent with the somewhat 

slower adsorption and interfacial rearrangement/relaxation of such relatively massive particles. 

Analysis of droplet coalescence dynamics at 0.03% w/v after ageing times of 30 s revealed that the 

worm coated droplets exhibited a discernible time lag compared to that of either bare n-dodecane 

droplets or droplets prepared in the presence of the 22 nm spheres which is indicative of interfaces 

with restricted surface area changes. Systematic variation of the copolymer concentration revealed 

that the worms diffuse more slowly to the oil-water interface but are able to stabilize giant Pickering 

droplets at lower concentrations than the equivalent 22 nm spheres.  

The effect of varying the sphere diameter on droplet coalescence behavior was also examined. 

PGMA39-PBzMAx spheres of 22, 41, 60 and 91 nm diameter were compared at the same equivalent 

packing surface area. In each case the interfacial tension was lowered compared to bare n-dodecane 

droplets, suggesting nanoparticle adsorption at the oil-water interface. The relationship between 

coalescence time and ageing time indicated that stable droplets could be achieved when using the 

22 nm and 41 nm spheres, but coalescence was always observed when employing the 60 nm and 91 

nm spheres, even for relatively long ageing times of up to 20 min. Since all other parameters 

remained constant, this reduction in droplet stability with increasing nanoparticle diameter is 

attributed to the lower capillary pressure. Finally, addition of 0.1 mg/mL PPG-TDI crosslinker 

produced stable colloidosomes when using both the 60 nm and 91 nm spheres, which confirms that 

nanoparticle adsorption must occur in both cases.     

 

Supporting Information 

Thin film stability as a function of capillary pressure for contact angles of 60° and 90°. GPC data for 

the diblock copolymer spheres and triblock copolymer worms, TEM and DLS particle size 

measurements, a schematic representation of the coalescence apparatus, a TEM image of a dried 

Pickering emulsion droplet prepared using the 22 nm spheres together with the coalescence 

dynamics for coalescing n-dodecane droplets coated with the spherical nanoparticles. The 

Supporting Information is available free of charge on the ACS Publications website. 
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