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Abstract 

 

Our knowledge of the timing and completeness of the transition from foraging, fishing and hunting 
to food production in boreal northeastern Europe is far from clear. Here, we present new bone 
collagen AMS 14C dates, and δ13C and δ15N isotope values for 20 humans and 17 animals from a 
7,500-year period dating from the Late Mesolithic to the Bronze Age in Lithuania. AMS 14C dates 
revealed large discrepancies in comparison to previously obtained radiocarbon dates, thus 
highlighting the need to re-date all prehistoric human remains where chronology was based on 14C 
dating of bone collagen. Stable isotope data indicate that inland Mesolithic-Subneolithic hunter-
gatherers (7000–3000 cal BC) relied on a balance of freshwater food and game animals with regard 
to protein intake. The coastal Subneolithic groups (ca. 3000 cal BC) relied heavily on lagoon 
fishing, while seals and forest game were of lesser importance. Animal husbandry, most likely of 
sheep or goats, was a main source of protein for Neolithic Corded Ware Culture people (2900–
2400 cal BC), although a significant contribution of freshwater food is also evident. Significant 
intra-individual variation in stable isotope values may demonstrate that a highly flexible 
subsistence strategy was adopted by the CWC people. Unusually high δ13C values indicate that 
millet had been already introduced into the farming economy of the Late Bronze Age around 1000 
cal BC. 
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Introduction 

  

The Neolithic transition in the boreal zone of Eastern Europe deviated significantly from the 
“classic” European neolithisation model, details of which are still far from being completely 
understood. Yet how farming became established in an environment so rich in wild foodstuffs and 
so much less prepossessing for crop production is an important question in European prehistory. 
Zooarchaeological data supports the hypothesis that mixed economies with limited animal 
husbandry were developed around lagoonal or inland lakes during the Neolithic (3200-2000 cal 
BC), and continued into the Bronze Age (Piličiauskas, 2016).1 

 

The aim of the research reported here was twofold − to reconstruct a more comprehensive view of 
hunter-gatherers', as well as first farmers', dietary patterns and their change during the Holocene 
in the southeastern Baltic, and to refine the chronology of Lithuanian Stone and Bronze Age human 
remains. In the southeastern Baltic region there are no known large Stone or Bronze Age 
cemeteries akin to those in  Northern Latvia, for example (Zagorskis, 2004). Human remains are 
instead found in small cemeteries, single graves, or as loose bones in refuse layers of ancient 
lakeshore settlements or fishing stations. These small cemeteries usually contain skeletons from 
different time periods, burial artefacts are few, and where present, their association with the burial 
is not guaranteed. Due to this, burial artefacts and burial customs generally cannot be used to date 
the burial. It is therefore essential to have direct and reliable 14C dates of almost all Stone and 
Bronze Age skeletons. As such, burials having suspiciously late 14C dates or large uncertainties (of 
± 100 years BP and more) were re-dated here by AMS 14C, as well some graves and loose bones 
that had not been previously radiocarbon dated. 

 

Another potential of human remains lies in the composition of bone collagen stable isotopic ratios 
of carbon (δ13C) and nitrogen (δ15N) which can be used to infer dietary patterns across time and/or 
space (Vogel and van der Merwe, 1977; DeNiro, 1987;), and also intra-individual dietary change 
(see Eriksson and Lidén, 2013). The ratio of 15N to 14N increases with each trophic level and it can 
be used to identify breastfeeding infants, and consumers of high trophic level foods, e.g. aquatic 
resources (Hedges and Reynard, 2007). The 13C to 12C ratio in human tissues provides an indication 
of the amount of freshwater and marine foods as well as C3 and C4 plants consumed (Richards and 
Hedges, 1999; Schoeninger, 2009). This approach has been extensively used to examine the 
magnitude of dietary change following the introduction of farming in other parts of Europe (e.g. 
Tauber, 1981; Richards et al., 2003; Schulting, 2011; Lelli et al., 2012). During this project all 
available Lithuanian human remains (n=20), including the newest discoveries, were sampled for 
carbon and nitrogen stable isotope analysis. In addition, prehistoric animal and fish species (n=17) 
were analysed for carbon and nitrogen stable isotopes. To our sample we also add the published 

1 In this paper we use the following time periods of Lithuanian prehistory: Late Mesolithic 7000−5000 cal BC, 
Subneolithic 5000−2900 cal BC, Neolithic 3200/2900−2000 cal BC, Early Bronze Age 2000−1300 cal BC, and Late 
Bronze Age 1300−500 cal BC (Piličiauskas, 2016). The appearance of pottery shall be considered as the criterion of 
the beginning of the Subneolithic, and farming of the Neolithic. 

                                                 



Lithuanian isotopic data from 20 humans and 42 animals dating from the Stone to Bronze Ages 
(Antanaitis-Jacobs et al., 2009). 

 

Sites 

The human and animal bone materials analysed in this study are mainly from inland Lithuanian 
Mesolithic-Neolithic cemeteries (Donkalnis, Spiginas, and Kretuonas 1B), Corded Ware Culture 
(thereafter CWC) single graves (Gyvakarai, Biržai, and Plinkaigalis), a single Late Bronze Age 
(thereafter LBA) sacrificial site (Turlojiškė), as well as from refuse layers of Subneolithic-
Neolithic dwelling sites (Nida, Žemaitiškė 2, Daktariškė 1, and 5) (Table 1; Fig. 1). Stable isotope 
data from important coastal Subneolithic-Neolithic sites at Šventoji as well as from the nearby 
Benaičiai cemetery are briefly discussed, although are published in detail elsewhere (Piličiauskas 
et al., 2017b). Many of these archaeological sites have been previously and extensively 
investigated (Butrimas, 1982; Butrimas et al., 1985; Rimantienė, 1989; Butrimas, 1992; 
Kazakevičius, 1993; Girininkas, 1994; Tebelškis and Jankauskas, 2006; Merkevičius, 2012). A 
recently discovered Biržai CWC grave (Duderis, 2015), as well as the Nida Subneolithic-Neolithic 
coastal site (3500–2400 cal BC), where new field investigations were launched by G. Piličiauskas 
in 2011 and which are still continuing today (for first results see Piličiauskas and Heron, 2015), 
are the only exceptions. 

 

Materials and Methods 

 

Previous to this study, 28 14C dates were published for Lithuanian Stone Age-Bronze Age human 
remains (Butrimas et al., 1985; Merkevičius, 2005; Tebelškis and Jankauskas, 2006; Antanaitis-
Jacobs et al., 2009; Piličiauskas and Heron, 2015; Piličiauskas et al., 2017b). For this study we 
attempted to date a further 16 individuals from the previously established period of 7000–500 cal 
BC (Table 1). 

 

Direct AMS 14C dates of human bones and associated materials were undertaken at Poznań 
Radiocarbon Laboratory. We had no information about consolidants having been used for prior 
conservation of the skeletal material, and no traces were detected during visual inspection of the 
dated bone samples with the exception of a single individual from Spiginas grave 2. To remove 
the unknown consolidant the sample was treated with acetone and alcohol before dating. Extraction 
of collagen was performed using the procedures originally described by Longin (1971), with 
further modifications (Piotrowska and Goslar, 2002). The extracted collagen was ultrafiltered 
using pre-cleaned Vivaspin™ 15kDa MWCO filters (Brown et al., 1988; Bronk Ramsey et al., 
2004). All dates in this study were calibrated by using OxCal 4.2 software and IntCal13 
atmospheric curve (Bronk Ramsey, 2009; Reimer et al., 2013). Dates are discussed with 95.4% 
probability when calibrated. 

 



In total, 31 bone and dentine collagen δ13C and δ15N values for 20 humans, and 17 bone collagen 
δ13C and δ15N values for forest, marine and domestic animals are included in this study. Isotopic 
data from 16 of the 20 human individuals was previously published by Antanaitis-Jacobs et al. 
(2009). As such, we report here the results of repeated measurements on the same individuals as 
Antanaitis-Jacobs et al. (2009), as well as those made on tooth dentine which was not analysed in 
the previously published study. In addition we also include data from 12 humans published by 
Piličiauskas and colleagues (2017). In total, stable isotope values for 32 Stone and Bronze Age 
humans from coastal sites are used for dietary reconstruction (Antanaitis-Jacobs et al., 2009; 
Piličiauskas et al., 2017b). Collagen from 40 human and animal samples was extracted at the 
Laboratory for Bioarchaeological Research at the University of Central Florida and analysed at the 
Colorado Plateau Stable Isotope Laboratory at North Arizona University (NAU), and of these, 
eight human samples were re-analysed at the University of York (UoY) in order to understand the 
origin of inter-laboratory variability among the samples tested at NAU and the Max Planck 
Institute (MPI) (Antanaitis-Jacobs et al., 2009). 

 

At the University of Central Florida collagen was extracted using a modified version of the Longin 
(1971) protocol and dentine collagen extraction followed a similar procedure as outlined by Wright 
and Schwarcz (1999). Bone and tooth samples were cleaned by utrasonication and then left to dry 
in a 60°C oven for a minimum of 12 hours. Each sample was ground into two to five millimeter 
fragments, and from this three to five grams of bone and all the dentine was used for extraction. 
Each sample was treated with 2:1 chloroform:methanol mixture to remove any remaining lipids. 
After drying the samples were demineralized in 0.5 M HCl, with acid changed daily until complete 
demineralisation was achieved. Demineralised samples were rinsed with distilled water until 
attaining a pH of 2.5 to 3.0. Samples were treated with 0.1 M NaOH for humic acid removal, and 
then rinsed with distilled water to a pH of 7.0 ± 1.0. Samples were rinsed in 0.25 M HCl and then 
distilled water was added to each sample until a pH of 2.5 to 3.0 was achieved. Samples were then 
placed in a 90°C  oven for 16 hours. Gelatinised samples were pipetted into two-dram glass vials 
and placed in a 90°C  oven until the remaining collagen was dry. Stable isotope analysis was 
performed using a Thermo- Electron DELTA V Advantage isotope ratio mass spectrometer with 
a CONFLO III using a Carlo Erba NC2100 Elemental Analyzer. Precision of analysis was 
determined by completing duplicate sample analyses (10%), which for δ13C was ±0.09‰, and for 
δ15N was ±0.07‰. Accuracy was assessed using a laboratory standard (NIST peach leaves), which 
gave an average δ13C value of -26.17±0.03‰, and an average δ15N value of 1.67±0.01‰ for 11 
analyses.  

 

Collagen extraction at the University of York followed a modified Longin collagen extraction 
protocol (1971) using ultrafiltration (30kDa MWCO) on approximately 500mg of bone (Brown et 
al., 1988; Richards and Hedges, 1999; Colonese et al., 2015). Samples were initially cleaned 
manually using a scalpel, and then were demineralised in 0.6M aq. HCl solution at 4°C, and the 
resulting insoluble fraction gelatinised in pH3 HCl for 48h at 80°C. The supernatant solution was 
then ultrafiltered (30kDa MWCO, Amicon) to isolate the high molecular weight fraction, which 
was then lyophilised. Purified collagen samples (1mg) were analysed at the University of York in 



duplicate by EA-IRMS on a Sercon GSL analyser coupled to a Sercon 20-22 Mass Spectrometer. 
Accuracy was determined by measurements of international standard reference materials within 

each analytical run. These were IAEA 600 δ 13Craw = -27.7 ±0.1, δ 13Ctrue = -27.8 ±0.0,  δ15Nraw = 

0.5 ±0.2, δ15Ntrue = 1.0 ±0.2; IAEA N2 δ15Nraw = 20.6 ±0.1, δ15Ntrue =20.3 ±0.2; IA Cane, δ 13Craw 

-11.8 ±0.1; δ 13Ctrue = -11.6 ±0.00. In addition, a homogenised bovine bone extracted and analysed 

within the same batch as the samples produced the following values; δ 13C = -22.9 ±0.1; δ15N = 7.0 
±0.2. The overall mean value among 50 separate extracts of this bone sample produced values of 

δ 13C = -23.0 ±0.3 and δ15N = 6.7 ±0.4. 

 

In all cases, stable isotope ratios are expressed as ‘per mil’ or parts per thousand (‰). The 
difference in the 15N/14N ratio between the sample and the internationally defined standard AIR 
(atmospheric air) in ‰ units is referred to as δ15N, and δ13C refers to the difference in 13C/12C ratio 
between the sample and the internationally defined standard, PDB (Vienna Peedee Belemnite 
Limestone). The reported ratios are calculated using the equation: δX = ((Rsample - Rstandard)/Rstandard) 
x 1000. 

 

Results and Discussion 

 

Chronology of human remains 

 

Nine of the sixteen samples were AMS dated with success, while in six cases collagen preservation 
was too poor, and in one case a modern date was obtained for an ungulate bone which suggests 
that this bone is not associated with the Mesolithic grave 3 at the Spiginas cemetery (Table 2). 
From the nine successfully dated samples, three of the samples had been previously dated and were 
included in this analysis in order to test the reliability of the previous dating results (i.e. Gyvakarai, 
Spiginas grave 2, and Turlojiškė grave 3). 

 

The oldest dates in the new AMS 14C dataset are from double grave 5 in the Donkalnis cemetery. 
Bones from a child and an infant were found to be of a comparable date, i.e. dating to the Late 
Mesolithic – 7140 ± 40 BP (Poz-61589) and 7110 ± 40 BP (Poz-61588) (combined date 7125 ± 29 
BP, 6060–5925 cal BC). Another burial from the same cemetery, grave 6, appears to be from a 
much later period, i.e. Subneolithic (5770 ± 40 BP (Poz-61574), 4720–4530 cal BC). Graves 2 and 
3 from the Spiginas cemetery were re-dated by AMS. A human bone from Grave 2, previously 
dated by the beta decay radiocarbon method and showing a large uncertainty (4080 ± 120 BP (GIN-
5570), 2910–2300 cal BC) was shown to be significantly younger with the AMS dating method 
(3580 ± 60 BP (Poz-61573), 2130–1750 cal BC). Grave 3 from the Spiginas cemetery was 
previously dated by AMS at the Oxford laboratory (7780 ± 65 BP (OxA-5925), 6800–6460 cal 
BC), giving the opportunity to investigate the FRE of Biržulis Lake. This was possible through the 
dating of an ungulate long bone labelled in the museum as part of the inventory of the grave 3. 
Unfortunately, the AMS 14C date of the sample revealed it to be modern, 175 ± 30 BP (Poz-61571), 



indicating that the sample was a recent deposit. This finding cautions against the uncritical 
acceptance of artefacts as being associated with Stone Age burials, particularly when recovered 
from shallow and often disturbed graves. Burials such as these may contain more recent or even 
modern materials that are visually indistinguishable from the original burial artefacts. 

 

Direct AMS 14C dates are of even greater importance when dealing with single or loose human 
bones from ancient dwelling or other sites. Very often these bones come from unprovenanced and 
poorly documented contexts. For example, we were able to date the human skull fragment from 
the Daktariškė 1 site to the Subneolithic period (4635 ± 30 BP (Poz-61583), 3520–3355 cal BC), 
thereby providing a suitable sample for dietary studies using stable isotope analysis. 

 

The Kretuonas 1B cemetery located in northeastern Lithuania revealed interesting dating results. 
AMS 14C dates from graves 1 and 3 have been previously reported (5350 ± 130 BP (OxA-5935), 
4460–3820 cal BC and 5580 ± 65 BP (OxA-5926), 4550–4330 cal BC, respectively) (Antanaitis-
Jacobs et al., 2009). In 2014 we attempted to date bones from graves 1, 3, 4 and 5, and they all 
yielded similar results - insufficient bone collagen preservation. The last attempt to extract and 
date collagen from a human canine tooth from grave 5 yielded sufficient collagen and was dated 
to the Subneolithic period (5540 ± 35 BP (Poz-64677), 4450–4340 cal BC). This date is very 
similar in age to the AMS dates that were made by the Oxford Radiocarbon Accelerator Unit. The 
new date also confirms the narrow chronology of the Kretuonas 1B cemetery. It was most likely 
only used for several tens to several hundred years during the period of 4500–4300 cal BC, and its 
short usage appears to be the exception rather than the rule for Stone Age cemeteries in the Eastern 
Baltic. For instance, the Zvejnieki cemetery in Latvia, as well as the Spiginas and Donkalnis 
cemeteries in Lithuania were in use for several thousands of years during the Mesolithic, 
Subneolithic, and Neolithic (Zagorskis, 2004; Butrimas, 1992; Butrimas et al., 1985). 

 

AMS 14C dating was conducted on two Neolithic CWC single graves from Gyvakarai and Biržai. 
The grave from Gyvakarai has been 14C dated twice (3745 ± 70 BP (Ki-9470), 2440–1950 cal BC 
and 3710 ± 80 BP (Ki-9471), 2400–1890 cal BC) (Tebelškis and Jankauskas, 2006). These dates 
appear to be too young, as the associated burial artefacts (flint and stone axes, and a bone pin) 
should be attributed typologically to the classical CWC period, i.e. 2800–2400 cal BC. Doubts 
regarding the earlier dates were supported by a single new AMS 14C date (4030 ± 30 BP (Poz-
61584), 2620–2470 cal BC) which produced a significantly older age that fits completely with our 
expectations based on artefact typology. Another CWC grave, discovered recently and partially 
destroyed during construction works at Biržai city (Duderis, 2015), revealed almost the same age 
as the burial from Gyvakarai (3955 ± 30 BP (Poz-64678), 2570–2350 cal BC). 

 

The last AMS 14C dates were obtained for the Turlojiškė sacrificial site; where disarticulated 
human remains with signs of fatal blunt force cranial injuries were discovered within sediments of 
a boggy lake (Merkevičius, 2012). Three Turlojiškė humans were dated directly by 14C, although 
two AMS dates (2895 ± 55 BP (OxA-5931), 1230–920 cal BC and 2835 ± 55 BP (OxA-5927), 



1190–840 cal BC) differ significantly from the single date obtained by the beta decay radiocarbon 
method for grave 3 (3570 ± 130 BP (Vs-1097), 2300–1560 cal BC) (Antanaitis-Jacobs et al., 2009). 
We hypothesise that rather than a prolonged continuation of the deposition of human sacrifices at 
Turlojiškė, the 14C date analysed at the Vilnius lab might be an outlier. An AMS date for grave 3 
revealed a Late Bronze Age date (2730 ± 30 BP (Poz-66904), 930–810 cal BC), rather than 
Neolithic or EBA. 

 

The aquatic radiocarbon reservoir effects on the dating of human bones and correction factors have 
been already estimated and discussed elsewhere for the coastal Subneolithic Šventoji sites 
(Piličiauskas et al., 2017b). For Mesolithic-Subneolithic skeletons from the Spiginas and 
Donkalnis cemeteries, both located on Lake Biržulis, the fresh water reservoir effect (FRE) may 
have been only minimal, as has been shown by paired dates of humans and ungulates (Piličiauskas 
and Heron, 2015). δ13C and δ15N stable isotope values indicate that the dates of the samples from 
the Neolithic CWC, as well as of EBA humans, are also not affected by the FRE because the of 
the marginal role of freshwater food in the diet (see following section). The only dates that may be 
significantly affected by FRE are from the Kretuonas 1B cemetery. Even here, assuming a 
significant FRE, for example 1000 years (see Piličiauskas and Heron, 2015), the site chronology 
would not exceed the upper boundary of the Subneolithic, i.e. it would only change from 4400–
4300 to 3200–3100 cal BC. 

 

The AMS 14C re-dating of previous 14C dated human remains revealed important information. 
Significantly different ages were obtained in all three cases (Spiginas, Gyvakarai, Turlojišlė). In a 
single case an AMS 14C date appeared to be older by 300 ± 61 radiocarbon years (Gyvakarai CWC 
single grave), while in two cases (Spiginas and Turlojiškė) the AMS dates were younger than the 
beta decay method dates by 500 ± 134 and 840 ± 133 radiocarbon years, respectively. To these, 
we can also add already published paired dates for the CWC grave 3 from Benaičiai with an age 
difference of 1350 ± 76 radiocarbon years, although in this case, a goat and human bone were dated 
instead of sampling the same individual (Piličiauskas et al., 2017b). In addition, only one of five 
known cases of paired beta decay and AMS dates for human remains (Spiginas, burial 1) shows 
overlap in the 2 sigma ranges (4320–3370 and 4440–4240 cal BC) although the AMS date greatly 
refines the chronology because of the extremely large uncertainty that was produced by the 
Geological Institute laboratory in Russia (Fig. 2; Piličiauskas and Heron, 2015). Differences 
between the previous dates obtained at various conventional laboratories and recent AMS dates of 
the same contexts or individuals are evident enough to conclude that previous dates of bone 
collagen should be treated with  caution in all cases. We do not discuss here the possible factors 
causing errors with the dates made on bone collagen, although some of them, i.e. the condition of 
the bone and the chemical pre-treatment protocol, have been mentioned elsewhere (e.g. 
Piličiauskas and Heron, 2015). 

 

Stable isotope measurements of bone collagen data for humans and animals 

 



All human stable isotope results, including previously published data, are reported in Table 3. We 
also report samples that did not produce sufficient collagen for stable isotope analysis, four from 
NAU and two from UoY. Only two of the human samples, both from the Subneolithic Kretuonas 
1B cemetery, fall outside the acceptable range of C:N ratios of 2.9−3.6 (DeNiro, 1985), and these 
samples are not included in the discussion. 

All 17 animal bone samples were analysed at NAU, with 14 samples originating from the inland 
Žemaitiškė 2 site (Table 1). All animal sample values fell in the acceptable range for C:N ratios 
and collagen quality (DeNiro, 1985; van Klinken, 1999). In total, with previously published data, 
83 stable isotope values are available for Lithuanian Subneolithic-Bronze Age fauna (Table 4). 

 

Inter-laboratory comparison of carbon and nitrogen stable isotope data 

 

During repeated analysis of human bone collagen carbon and nitrogen stable isotopes, we found 
significant pairwise differences of up to 0.9 ‰ for δ13C and 1.5 ‰ for δ15N between values 
previously reported from analysis undertaken at the MPI (Antanaitis-Jacobs et al., 2009) and the 
NAU labs on the same skeletons (Tables 3 and 5). It was not clear, however, which skeletal element 
was sampled by the MPI. In order to understand such differences, we ran new measurements at the 
UoY. The analyses conducted at the UoY lab were run on the same bones as the analyses conducted 
by NAU. We hypothesised that if the main cause of the inter-laboratory differences was due to the 
analysis of different skeletal elements, then the measurements from UoY should demonstrate a 
better agreement with the values from NAU. This, however, was not the case. We found pairwise 
differences of up to 1.1 ‰ for δ13C and 1.9 ‰ for δ15N between values of the NAU and the UoY 
(Table 5). 

 

A plot of δ13C and δ15N values of the same individuals measured at three different labs clearly 
demonstrates that analysis of the same bone (NAU and UoY) do not guarantee the same stable 
isotope data (Fig. 3). However, in just one case (i.e. δ15N UoY-NAU) do our observed average 
inter-laboratory pairwise differences exceed the values (0.2 ‰ for δ13C and 0.4 ‰ for δ15N) 
reported by Pestle et al.’s (2014) inter-laboratory study. It is possible that the isotopic variability 
among the NAU-MPI and the UoY-MPI laboratories may be attributed to differences in sample 
preparation and analysis, although the MPI protocol was very similar to that used at UoY. Although 
such processes are currently unknown, pathological conditions can also introduce significant intra-
element isotopic variation to magnitude of 0.6 ‰ for δ13C and 2.5 ‰ for δ15N (Olsen et al., 2014) 
and could be significant here. It is important to note that these observed differences do not change 
our overall interpretation and reconstruction of diet (Fig. 3). Comparison and modelling of 
individual diets is not a sensible approach in dietary studies when differences in δ13C and δ15N are 
less than 1 ‰. 

 

Dietary differences between the last hunter-gatherers and the first farmers 

 



All available wild animal stable isotope data (Table 4; Fig. 4) is used to construct a single dietary 
baseline as the values do not demonstrate any significant discrepancies in regard to specific region 
or time period. For example, auroch/bison from north-eastern Lithuanian Subneolithic-EBA sites 
have average δ13C and δ15N values of -22.6 ‰ and 4.5 ‰ (n=3), while the same species from the 
coastal Šventoji sites have average values of -22.5 ‰ and 4.3 ‰ (n=2). Coastal elk do not differ 
from their inland counterparts (-23.4 ‰ and 4.3 ‰ (n=3); -23 ± 0.1 ‰ and 4.1 ‰ (n=2)). Contrary 
to what might be expected, omnivorous bears from coastal sites do not demonstrate a significant 
marine diet. Their δ13C values are only slightly more negative compared to inland animals (-21.2 
± 0.3 ‰; n=3 and -20.6 ± 0.4 ‰; n=3 respectively) and their δ15N values do not differ substantially 
(4.9 ± 0.7 ‰ and 4.8 ± 0.2 ‰). As distinct from bears, coastal boars have slightly less negative 
δ13C values compared to inland animals (-21.7 ± 0.1 ‰ (n=2) and -22.9 ± 0.5 ‰ (n=3) respectively), 
although δ15N values are not significantly different, perhaps because the δ15N values of inland 
boars are highly varied (5.1 ± 1.3 ‰). 

 

Distinct from the mammal data discussed previously, the stable isotope values of lagoonal 
freshwater fish (δ13C = -21.6 ± 1 ‰; δ15N = 11.2 ± 1.4 ‰; n=5) differ significantly from those of 
the same species living in inland rivers or lakes. For Lithuania, all data comes from the Šventoji 
Subneolithic sites dated to ca. 3000 cal BC and situated at a former lagoon. Pike, perch and 
pikeperch bones were investigated (Table 4; Piličiauskas et al. 2017b). Although there are no data 
from Lithuanian inland freshwater species, data from Latvia demonstrate that Subneolithic 
freshwater fish from the Burtnieki Lake had much more negative δ13C values (δ13C = -27.8 ± 1.4 ‰; 
δ15N = 9.2 ± 1.4 ‰; n=35) (Schmölcke et al., 2015). The very specific diet of coastal Subneolithic 
dogs as well as the stable isotope values of seals are discussed elsewhere (Piličiauskas et al., 2017b). 

 

Overall, Lithuanian Stone and Bronze Age human stable isotope data cluster into four distinct 
dietary groups (Fig. 4), related to different subsistence economies determined by both local ecology 
and cultural changes through time. We note, however, that there lacks chronological 
representativeness as there are no data from the Final Palaeolithic, Early Mesolithic, Early Bronze 
Age, as well as from any period of the coastal zone with the exception of very late Subneolithic 
and Neolithic (3200–2400 cal BC). The total number of human samples is small due to poor 
collagen preservation in a significant proportion of those sampled. For this study our success rate 
was 69.4%, i.e. collagen was preserved and gave reliable results for 25 humans of the 36 
individuals sampled. 

 

Mann-Whitney U tests were performed to compare the inland Late Mesolithic (δ13C = -22.6 ± 
0.3 ‰; δ15N =12.3 ± 1 ‰; n=6) and inland Subneolithic (δ13C = -22.5 ± 0.5 ‰; δ15N = 12 ± 0.7 ‰; 
n=7) δ13C and δ15N values. Mean δ13C values were -22.6‰, and the 7 Subneolithic δ13C values 
have higher mean ranks (7.43) than the 6 Late Mesolithic values (6.50), (U= 18, p = 0.668). Mean 
δ15N values were 12.2‰, and the 6 Late Mesolithic δ15N values have higher mean ranks (7.17) 
than the 7 Subneolithic values (6.86), (U = 20, p = 0.886). Analyses show no statistical differences 
in diet between these populations, therefore these are discussed together (Fig. 4). As the 



Subneolithic is a cultural horizon marking the introduction of pottery, it is interesting to note that 
this technology did not significantly change the protein sources eaten by hunters-gatherers, despite 
the new opportunities for food preparation and storage. When compared to other isotope data from 
the Eastern Baltic (Fig. 5), the inland Mesolithic-Subneolithic people of Lithuania (δ13C = -22.7 ± 
0.5 ‰; δ15N 12 ± 0.9 ‰; n=15) had similar diets to the contemporaneous population at Zvejnieki 
in northern Latvia (δ13C = -22.8 ± 1.3 ‰; δ15N 12.4 ± 1.2 ‰; n=34; Eriksson et al., 2003). Our 
data suggest that, overall, inland south-eastern Baltic hunter-gatherers had mixed diets of 
freshwater fish and hunted forest animals, perhaps with a greater contribution of the former. This 
is supported by both the zooarchaeological evidence (e.g. Schmölcke et al., 2015) and stable 
isotope data (Fig. 4) but contrasts with evidence of a dominance of aquatic products in Subneolithic 
pottery, supporting the notion that the latter was used highly selectively (Heron et al. 2015; Oras 
et al. 2017). Similar stable isotopic dietary evidence has been reported in contemporaneous 
populations in Estonia and north-western Russia (Tõrv and Meadows, 2015; Wood et al., 2013). 
These estimations, however, do not consider the contribution of low protein wild plant foods to 
diet, which was likely to have been significant. For example, based on the isotope analysis 
undertaken at Zvejnieki, it is estimated using a Bayesian model that plant foods provided 25-50% 
of the calorific intake during the Subneolithic Narva phase (Meadows et al., 2016). 

 

In contrast, the coastal Subneolithic groups relied strongly on lagoon fishing, while seals and forest 
game were of much lesser importance (Piličiauskas et al., 2017b). The coastal Subneolithic people 
are clearly distinguished isotopically from inland Subneolithic people (Fig. 4). This can be 
explained by the consumption of lagoonal freshwater fish, which were enriched in 13C and 15N 
compared to inland freshwater resources. The Lithuanian Subneolithic coastal peoples (δ13C –19.9 
± 0.8 ‰; δ15N 14.8 ± 0.6 ‰; n=5; Piličiauskas et al., 2017b) were not dedicated seal hunters such 
as those documented from the contemporaneous PWC communities on Gotland, Sweden (δ13C –
15 ± 0.6 ‰; δ15N 15.9 ± 0.6 ‰; n=37; Eriksson, 2004) even though they would have had access 
to the same marine ecosystem. Their isotope values are instead more similar to the Neolithic 
individuals buried in the Ostorf cemetery in northern Germany, who relied heavily on freshwater 
fish (δ13C –20.4 ± 0.8 ‰; δ15N 13.8 ± 0.9 ‰; n=15; Lübke et al., 2009). This similarity, however, 
is most likely not caused by similar diets at the German and Lithuanian sites, since Ostorf is located 
a significant distance from the coast, while the Šventoji sites were situated on the coast of the 
former lagoon, i.e. near the sea. The differences in geographical location most likely reflect 
differences in isotopic baselines. 

 

A major dietary shift is seen with the introduction of Neolithic Corded Ware culture at around 
2900−2400 cal BC. The Neolithic Corded Ware people in Lithuania (δ13C = -21.5 ± 0.4 ‰; δ15N 
= 10.1 ± 0.8 ‰; n=10 2), Latvia (δ13C = -21.7 ± 0.3 ‰; δ15N = 10.1 ± 0.3 ‰; n=4 3; Eriksson et 
al., 2003), north-eastern Poland (Niedrzwica site; δ13C =  -21.6 ‰; δ15N = 10.2 ‰; Reitsema et 
al., 2010), and central Poland (Kruszyno site; δ13C =  -21.9 ‰; δ15N = 10.2 ‰; Pospieszny et al., 

2 The Benaičiai infant's values are excluded. Number of measurements are given. Number of individuls is lower 
(n=6). 
3 The Selgas 2 infant's values are excluded. 

                                                 



2015) share a similar protein diet (Fig 5), and all differ from Late Mesolithic-Subneolithic hunter-
gatherers. The data are consistent with animal products, most likely meat and milk of sheep or 
goats, given the faunal assemblages (Piličiauskas et al. 2016b; Lõugas et al., 2007), providing the 
main source of protein during the Neolithic CWC. It may also be noted that the Globular Amphora 
Culture (GAC) people in South-Eastern Poland have similar isotopic values (δ13C = -20.7 ± 0.4 ‰; 
δ15N = 10.6 ± 0.5 ‰; n=15; Eriksson and Howcroft, 2014) to the South-Eastern Baltic CWC. More 
substantial zooarchaeological collections from the GAC settlements indicate a greater dietary role 
of cattle and pigs for the GAC people compared to the CWC people (Szmyt, 1996). 

 

A certain contribution of freshwater food in the diet of the South-Eastern Baltic CWC is also 
evident. An individual from Biržai highlights this point. In addition to the collagen stable isotope 
data from bone, we also determined the stable isotope values of dentine collagen from the teeth 
from one adult male (Fig. 4). This approach is frequently used to understand variability in diet 
during life, as unlike bone, tooth dentine does not turnover, meaning it can provide information on 
childhood diet whilst the teeth were forming (Hillson, 2005; Eriksson and Lidén, 2013). An adult 
male from a Biržai single grave died at the age of 30 to 35 and was then buried according customs 
of the Corded Ware Culture, in a crouched position and with a large boar tusk, flint axe, and knife. 
Interestingly, there is a discrepancy in the δ13C and δ15N values between the different tissues 
analysed. Dentine from the 3rd molar of this individual is over 2‰ enriched in 15N compared to the 
1st and 2nd molars, indicating a shift to a diet richer in freshwater fish when this tooth was forming 
during the individual’s teenage years. The bone collagen value represents diet over at least the last 
several decades before death and particularly during adolescence (Hedges et al., 2007), and is 
intermediate between these values, perhaps reflecting a shift to more terrestrial foods later in this 
individual’s life. Importantly, evidence of freshwater fish is only visible isotopically by sampling 
tissues that form over short periods. The longer averaged dietary record provide by bone shows a 
more mixed signal dominated by terrestrial protein (Fig 4). Such sporadic consumption of fish has 
been noted before in coastal Neolithic populations (Montgomery et al. 2013), and shows the highly 
flexible subsistence strategy of the CWC people living in this region. 

Another argument that freshwater food may have made up a considerable part of the CWC people's 
diet during particular periods is the slightly more negative δ13C and slightly more elevated δ15N 
values of some individuals (e.g. Gyvakarai grave; δ13C -21.9 ‰; δ15N 10.1 ‰) compared to the 
typical Neolithic and Bronze Age farming populations of the Baltic region (Fig. 5). It should also 
be noted that Swedish CWC people were not dedicated farmers or herders, as their stable isotope 
data shows that marine foodstuffs were consumed in significant quantities in coastal areas (Fig. 
5; Fornander, 2013). 

There is a lack of human remains from the period of 2000–1300 cal BC or the EBA. Grave 2 from 
the Spiginas cemetery (2130–1750 cal BC) is the only individual that can be attributed to the 
transition between Neolithic and EBA. The closest stable isotope data to that of the EBA comes 
from Estonia. Human remains from the Kivisaare I and Riigiküla cemeteries show stable isotope 
values (δ13C -21.8 ± 0.4 ‰; δ15N 11.2 ± 0.6 ‰; n=4; Tõrv and Meadows, 2015) that are similar to 
those of Lithuanian CWC people. 

 



The Late Bronze Age diet (δ13C -17.8 ± 0.6 ‰; δ15N 9.5 ± 0.4 ‰; n=5) is very distinct compared 
to all other groups (Fig. 4). The 5 individuals from Turlojiškė have collagen enriched in 13C but 
relatively depleted in 15N indicating much greater reliance on plant foods, including millet, at 
around 1000 cal BC, consistent with the large scale adoption of agriculture. Millet is a C4 plant 
with carbon isotope values that are significantly enriched in 13C compared to C3 plants, such as 
barley or wheat (DeNiro, 1987). Burnt millet (Panicum miliaceum) grains are found at Turlojiškė 
and dated to 2590 ± 75 BP (Ua-16681), 910–485 cal BC (Antanaitis and Ogrinc, 2000). A 
subsistence economy including millet is also found later, in Roman or even Medieval Poland 
(Reitsema et al. 2010), although it is absent in Estonia and Latvia during the Late Bronze Age (Fig. 
5; Laneman, 2012; Laneman and Lang, 2013). This suggests that the northern boundary between 
millet-cultivating and non-millet cultivating peoples ran somewhere through northern Lithuania or 
southern Latvia around 1000 cal BC and may define environmental limits for production of this 
crop. 

Although stable isotope data cannot specifically answer the question as to the importance of 
domesticated crops to the economy of the first farmers, the macrobotanical data indicates that 
intensification and consolidation of this new subsistence economy was a slow and gradual process 
which only became fully established in the middle of the Bronze Age (Piličiauskas et al., 2017a). 
The oldest evidence for crop cultivation in the East Baltic comes from the western Lithuanian 
Kvietiniai multi-period site where a charred barley grain was dated to ca. 1400/1200 cal BC 
(Vengalis et al., in prep). 

 

Conclusions 

 

New AMS dates obtained from Mesolithic-Late Bronze Age Lithuanian graves and isolated human 
bones have helped to refine the chronology of this period. In four out of five cases, the repeated 
AMS dating of human remains revealed large discrepancies between previous 14C dates and recent 
AMS dates in the order of magnitude from several hundred to one-thousand radiocarbon years. 
Such results highlight the need for re-dating (including rigorous procedures of collagen 
preservation assessment, pre-treatment and ultrafiltration) of all prehistoric human remains where 
chronology was previously based on 14C dating of bone collagen made at conventional dating labs. 

 

Four distinct diets may be interpreted from the analysis of stable isotopes in human and faunal 
samples. These diets relate to different subsistence economies determined by both local ecology 
and cultural changes: 

• Inland Mesolithic-Subneolithic hunters-gatherers (7000–3000 cal BC) consumed a mixed 
diet of freshwater food and hunted forest animals, although a substantial amount of foraged 
plant foods is also likely. 

• The coastal Subneolithic (3000 cal BC) groups relied heavily on lagoon fishing, while seals 
and forest game were of much lesser importance. 

• Animal husbandry, most likely of sheep or goats, was a main source of protein for the 
Neolithic Corded Ware Culture (2900–2400 cal BC) people, although freshwater fish were 



also consumed. The Biržai Neolithic adult male demonstrated significant intra-individual 
variation of δ15N, highlighting the highly flexible subsistence strategy of the CWC people. 

• Unusually high δ13C values indicate that millet was introduced into the farming economy 
of the Late Bronze Age people around 1000 cal BC or even earlier however. Unfortunately, 
a large gap with no stable isotope data exists between 2000–1300 cal BC due to the extreme 
rarity of Early Bronze Age human remains. 

 

The human and animal stable isotope data presented here supports the premise that agriculture in 
the eastern Baltic started 1000 years later than in the southwestern Baltic. The most likely driver 
for this economic transition was the arrival of migrants from the Pontic steppe synonymous with 
the Corded Ware cultural phenomenon (Haak et al., 2015). At this time the people of the Corded 
Ware Culture may have introduced new animals and possibly domesticated plants. Archaeological 
evidence demonstrates that the last hunter-fishers in particular regions lived side-by-side with the 
farmers for a rather long period in the east Baltic, and such a situation represents an intriguing 
opportunity to learn about various cultural, socioeconomic and possible even genetic encounters, 
and palaeodiet may be one of possible expressions of those processes. 
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Tables 

 

No Site Site function Time period 
AMS 14C δ13C and δ15N  

Humans Animals Humans Animals 

1 Biržai single grave Neolithic 1 (1)   1 (1)   

2 Daktariškė 1 dwelling area Subneolithic-Neolithic 1 (1)   1 (1)   

3 Daktariškė 5 refuse zone Subneolithic-Early Bronze Age    1 (1) 

4 Donkalnis cemetery Late Mesolithic-Neolithic 3 (3)   6 (6)   

5 Gyvakarai single grave Neolithic 1 (1)   1 (1)   

6 Kretuonas 1B cemetery Subneolithic 6 (1)   6 (1)   

7 Nida dwelling area Subneolithic-Neolithic       2 (2) 

8 Plinkaigalis single graves Neolithic     2 (2)   

9 Spiginas cemetery Late Mesolithic-Neolithic 1 (1) 1 (0) 4 (4)   

10 Turlojiškė sacrificial site  Late Bronze Age 1 (1)   4 (4)   

11 Žemaitiškė 2 refuse zone Subneolithic-Early Bronze Age       14 (14) 

Total 14 (9) 1 (0) 25 (20) 17 (17) 

 
Table 1. Sites investigated and the number of humans and animals analysed in this study. Total number analysed are shown without brackets and the number for 
which satisfactory results were obtained are shown in brackets. 
 

No site, cemetery 
14C date, 

years BP 

cal BC 

(95.4%) 

% 

collagen 
%C %N description 

period, 

culture 
reference 

1 Benaičiai 4025 ± 30 
(Poz-66923) 

2620–2470    grave 1, female, >40, skull 
Neolithic, 
CWC 

Piličiauskas et al., 
2017b 

2 Benaičiai 2690 ± 70* 
(Ki-10632) 

1020–670*    grave 3, goat bone 
Neolithic, 
CWC 

Merkevičius, 2005 

3 Benaičiai 4040 ± 30 
(Poz-61591) 

2830–2470    grave 3, infant, 0–1 
Neolithic, 
CWC 

Piličiauskas et al., 
2017b 

4 Biržai 
3955 ± 30 
(Poz-64678) 

2570–2350 7.2 11.4 4 grave, male, 30–35, phalanx 
Neolithic, 
CWC 

this study 

5 Daktariškė 1 
4635 ± 30 
(Poz-61583) 

3520–3355 6.7 6.6 1.4 loose bone, human skull Subneolithic this study 

6 Donkalnis 
7405 ± 45 
(CAMS-
85221) 

6400–6110    grave 2, male, 20–25 Mesolithic 
Antanaitis-Jacobs et 
al., 2009 

7 Donkalnis 
5785 ± 40 
(CAMS-
85220) 

4730–4530    grave 3, female, 25–30 Subneolithic 
Antanaitis-Jacobs et 
al., 2009 



8 Donkalnis 
6995 ± 65 
(OxA-5924) 

6000–5740    grave 4, male, 50–55 Mesolithic 
Antanaitis-Jacobs et 
al., 2009 

9 Donkalnis 
6960 ± 40 
(Poz-61575) 

5970–5740    grave 4, elk (?) incisor Mesolithic 
Piličiauskas and 
Heron, 2015 

10 Donkalnis 
7140 ± 40 
(Poz-61589) 

6075–5920 2.3 5.9 1.4 grave 5, child, ~7, femur Mesolithic this study 

11 Donkalnis 
7110 ± 40 
(Poz-61588) 

6060–5900 10 10.8 3.7 grave 5, newborn, femur Mesolithic this study 

12 Donkalnis 
5770 ± 40 
(Poz-61574) 

4720–4530 7.3 10.9 3.9 grave 6, female, 35–40, fibula Subneolithic this study 

13 Donkalnis 
6220 ± 90 
(Poz-61576) 

5460–4940 2.3 5.9 1.4 grave 7, male, >45. Elk/red deer incisor Mesolithic 
Piličiauskas and 
Heron, 2015 

14 Gyvakarai 
3745 ± 70* 
(Ki-9470) 

2440–1950*    grave, male, 35–45 
Neolithic, 
CWC 

Tebelškis and 
Jankauskas, 2006 

15 Gyvakarai 
3710 ± 80* 
(Ki-9471) 

2400–1890*    grave, male, 35–45 
Neolithic, 
CWC 

Tebelškis and 
Jankauskas, 2006 

16 Gyvakarai 
4030 ± 30 
(Poz-61584) 

2620–2470 4.5 5.4 1.6 grave, male, 35–45, fibula 
Neolithic, 
CWC 

this study 

  Kretuonas 1B not enough collagen    grave 2, juvenile, 14–16, radius   this study 

17 Kretuonas 1B 
5350 ± 130 
(OxA-5935) 

4460–3820    grave 1, female, 20–25 Subneolithic 
Antanaitis-Jacobs et 
al., 2009 

  Kretuonas 1B not enough collagen    grave 1, female, 20–25, humerus   this study 

18 Kretuonas 1B 
5580 ± 65 
(OxA-5926) 

4550–4330    grave 3, male, 50–55 Subneolithic 
Antanaitis-Jacobs et 
al., 2009 

  Kretuonas 1B not enough collagen    grave 3, male, 50–55, radius   this study 
  Kretuonas 1B not enough collagen    grave 4, female, >55, radius   this study 
  Kretuonas 1B not enough collagen    grave 5, male, 25–30, radius   this study 

19 Kretuonas 1B 
5540 ± 35 
(Poz-64677) 

4450–4340 2.8 10 3.8 grave 5, male, 25–30, canine tooth Subneolithic this study 

  Kretuonas 1B not enough collagen    grave 6, child, <3, metatarsal   this study 

20 Plinkaigalis 
4030 ± 55 
(OxA-5928) 

2860–2410    grave 241, female, 50–55 
Neolithic, 
CWC 

Antanaitis-Jacobs et 
al., 2009 

21 Plinkaigalis 
4280 ± 75 
(OxA-5936) 

3260–2630    grave 242, female, >40 
Neolithic, 
CWC 

Antanaitis-Jacobs et 
al., 2009 

22 Spiginas 
5020 ± 200* 
(Gin-5569) 

4320–3370*    grave 1, male, 35–45 Subneolithic Butrimas et al., 1985 

23 Spiginas 
5470 ± 40 
(Poz-61572) 

4440–4240    grave 1, male, 35–45, femur Subneolithic 
Piličiauskas and 
Heron, 2015 

24 Spiginas 
5370 ± 40 
(Poz-61569) 

4330–4060    grave 1, ungulate long bone Subneolithic 
Piličiauskas and 
Heron, 2015 

25 Spiginas 
7470 ± 60 
(Gin-5571) 

6440–6230    grave 4, female, 30–35 Mesolithic Butrimas et al., 1985 

26 Spiginas 
4080 ± 120* 
(Gin-5570) 

2910–2300*    grave 2, male, 50–55 Neolithic/EBA Butrimas et al., 1985 



27 Spiginas 
3580 ± 60 
(Poz-61573) 

2130–1750 0.9 5.2 1.3 grave 2, male, 50–55, ulna Neolithic/EBA this study 

28 Spiginas 
7780 ± 65 
(OxA-5925) 

6800–6460    grave 3, female, ? Mesolithic 
Antanaitis-Jacobs et 
al., 2009 

29 Spiginas 
175 ± 30 (Poz-
61571) 

1660–... AD 11 10.7 3.7 grave 3, ungulate long bone Modern this study 

30 Šventoji 4 
4330 ± 80 
(Poz-61577) 

3335–2700    loose bone, male, >50, skull 
Subneolithic/N
eolithic 

Piličiauskas et al., 
2017b 

31 Šventoji 6 
290 ± 30 (Poz-
61578) 

1490–1660 
AD 

   loose bone, metacarpal Modern 
Piličiauskas et al., 
2017b 

32 Šventoji 6 
4655 ± 35 
(Poz-71524) 

3620–3360    loose bone, maxilla Subneolithic 
Piličiauskas et al., 
2017b 

33 Šventoji 23 
4580 ± 30 
(Poz-61579) 

3500–3120    loose bone 1, male, 25–35, mandible Subneolithic 
Piličiauskas et al., 
2017b 

34 Šventoji 23 
4740 ± 35 
(Poz-61581) 

3640–3380    loose bone 2, adult, maxilla Subneolithic 
Piličiauskas et al., 
2017b 

35 Šventoji 23 
4730 ± 35 
(Poz-61582) 

3635–3380    loose bone 3, child, 7–11, mandible Subneolithic 
Piličiauskas et al., 
2017b 

 Šventoji 26 not enough collagen    loose bone, femur   
Piličiauskas et al., 
2017b 

36 Turlojiškė 
2895 ± 55 
(OxA-5931) 

1230–920    grave 'Kirsna', male, 25–30 LBA 
Antanaitis-Jacobs et 
al., 2009 

37 Turlojiškė 
2835 ± 55 
(OxA-5927) 

1190–840    grave 1, male, 25–30 LBA 
Antanaitis-Jacobs et 
al., 2009 

38 Turlojiškė 
3570 ± 130* 
(Vs-1097) 

2300–1560*    grave 3, male, 25–30 LBA 
Antanaitis-Jacobs et 
al., 2009 

39 Turlojiškė 
2730 ± 30 
(Poz-66904) 

930–810 13 11.7 4.1 grave 3, male, 25–30, ulna LBA this study 

 
Table 2. 14C dates and unsuccessful dating attempts (not counted, distinguished by italic) of individuals or loose human bones from 7000–500 cal BC in Lithuania. 
EBA – Early Bronze Age, LBA – Late Bronze Age. * – outliers or unreliable dates. Dates of the same grave are shaded 
 

 

 

 

 

No Site sample 

 MPI  NAU UoY 

δ13C 

(‰) 

δ15N 

(‰) 
C:N 

δ13C 

(‰) 

δ15N 

(‰) 
C:N 

% 

collag

en 

%C %N 
δ13C 

(‰) 

δ15N 

(‰) 
C:N 

% 

collag

en 

%C %N 

1 Benaičiai grave 1, mandible       –21.2 9.9 3.3 5.1 37.5 13.5          

2 Benaičiai grave 1, mandible       –21.2 9.8 3.2 5.8 37.4 13.6          

3 Benaičiai grave 3, skull       –21.4 10.6 3.3 12.9 39.7 14.2          



4 Benaičiai grave 3, skull       –21.3 10.9 3.2 15.1 44.5 16.1          

5 Biržai grave, phalanx       –22.0 11.0 3.2 19.8 43.8 16.3          

6 Biržai grave, M1 U.L. root       –21.4 9.7 3.1 17.6 45.5 17.2          

7 Biržai grave, M2 U.L. root       –21.1 9.5 3.1 17.9 45.1 17.0          

8 Biržai grave, M3 L.R. root       –22.1 11.9 3.1 18.1 44.1 16.6          

9 Daktariškė 1 loose bone, skull       –21.9 12.9 3.3 8.3 32.7 11.6          

10 Donkalnis grave 1, femur –23.2 10.6 3.2 –23.5 11.7 3.3 7.4 37.1 13.2 –24.3 12 3.2 4.4 44.8 16.1 
11 Donkalnis grave 2 –22.6 12.4 3.3                   

12 Donkalnis grave 3 –22.1 11.7 3.3                   

13 Donkalnis grave 4, ulna –22.8 12.5 3.6 –22.7 12.4 3.3 5.9 41.8 14.9          

14 Donkalnis 
grave 5 (infant), 
femur 

      –22.6 14.0 3.3 13.9 40.2 14.4          

15 Donkalnis 
grave 5 (child), 
femur 

–22.1 10.6 3.4 –22.2 12.1 3.3 6.1 43.8 15.7          

16 Donkalnis grave 6, fibula –22.1 10.3 3.2 –22.5 11.5 3.3    –22.4 11.6 3.2 10.9 45.1 16.4 

17 Donkalnis grave 7, fibula –22.4 9.6 3.3 –22.7 10.6 3.2    –21.6 11.5 3.3 3.1 43.2 15.1 

18 Donkalnis grave, disturbed –23.2 10.4 3.3                   

19 Gyvakarai grave, fibula –21.9 10.1 3.3 –22.1 10.4 3.2 8.7 44.4 16.2          

20 Kretuonas 1B grave 1, radius –23.4 11.3 3.2 not enough collagen  0.2            

21 Kretuonas 1B grave 2, femur       no peaks 2.2            

22 Kretuonas 1B grave 3, humerus –23.2 11.8 3.2 –22.4 11.8 3.2 3.7 35.4 12.8 –22.8 11.8 3.3 1.2 41.9 14.9 

23 Kretuonas 1B grave 4, fibula       –21.9 10.3 8.6 1.4 10.6 1.4          

24 Kretuonas 1B grave 5, radius       –23.4 10.9 5.4 0.5 13.0 2.8          

25 Kretuonas 1B grave 6, radius       
no 

peak 
9.7   1.4  0.5          

26 Plinkaigalis grave 241, femur –21.4 8 3.3 –21.4 8.9 3.3 10.5 43.4 15.6 –21.6 9.4 3.3 4.2 43.3 15.4 

27 Plinkaigalis grave 242, temporal –21.6 9.9 3.3 –21.5 9.8 3.3 7.1 31.3 11.1          

28 Spiginas grave 1, femur –23.3 11.8 3.6 –22.4 12.8 3.3 2.8 35.5 12.6 –23.2 12.6 3.4 2.4 43.6 15.0 

29 Spiginas grave 2, ulna –21.4 9.5 3.3 –21.2 10.1 3.3 5.1 30.5 10.8          

30 Spiginas grave 3, fibula –22.9 13.1 3.6 –23.3 11.6 3.2 12.0 43.5 15.7 –23.1 12.6 3.4 2.5 44.1 15.2 

31 Spiginas grave 4, humerus –22.7 12.6 3.5 –22.4 12.8 3.2 10.5 48.9 17.8          

32 Šventoji 4 loose bone, skull       –20.1 15.6 3.2 6.6 42.3 15.3          

33 Šventoji 6 loose bone, maxilla       –19.5 14.1 3.3 9.7 41.0 14.2          

34 Šventoji 23 
loose bone 1, 
mandible 

      –18.9 15.0 3.3 17.1 44.9 15.7          

35 Šventoji 23 
loose bone 1, M1 
L,L, root 

      –19.3 15.1 3.3 15.3 44.8 16.1          

36 Šventoji 23 
loose bone 1, M3 
L,R, root 

      –18.1 15.6 3.2 13.9 44.5 16.4          



37 Šventoji 23 
loose bone 2, 
maxilla 

      –20.3 14.4 3.4 17.5 41.8 14.4          

38 Šventoji 23 
loose bone 2, M1 
U,L, root 

      –19.6 16.0 3.3 9.5 41.8 14.7          

39 Šventoji 23 
loose bone 3, 
mandible 

      –21.0 15.0 3.3 12.3 33.7 11.8          

40 Šventoji 23 
loose bone 3, M1 
L,L, root 

      –21.2 15.3 3.2 10.3 42.9 15.5          

41 Šventoji 26 loose bone, femur       not enough collagen 0.2   not enough collagen    
42 Šventoji 43 loose bone, M tooth          not enough collagen    

43 Turlojiškė grave 'Kirsna', skull –18.1 10.1 3.2                   

44 Turlojiškė grave 3, ulna –18.7 9.2 3.3 –18.0 9.2 3.2 16.7 34.1 12.4 –18.8 9.3 3.2 11.4 44.1 15.9 

45 Turlojiškė grave 4, femur –17.2 9.2 3.3 –16.9 9.4 3.3 13.9 43.4 15.4          

46 Turlojiškė grave 5, ulna       –17.6 9.4 3.2 11.7 42.0 15.2          

47 Turlojiškė grave 6, clavicle       –18.3 9.4 3.3 14.8 45.8 16.4          

 

 
 
Table 3. δ13C and δ15N bone collagen values for Lithuanian humans dated to 7000–500 cal BC, including unreliable results and unsuccessful attempts. Measurements 
made at the MPI have been taken from Antanaitis-Jacobs et al. (2009), while those by NAU and UoY are from this study, with the exception of Benaičiai and 
Šventoji (Piličiauskas et al., 2017). The same bones were sampled by NAU and UoY and their descriptions are given in the table, whilst skeletal parts sampled at 
MPI as well as %C and %N values were not reported (Antanaitis-Jacobs et al. 2009). Repeated samples from the same individuals are shaded. For the UoY samples, % 
collagen yields were calculated from retentate samples only, following ultrafiltration. 
 
 
 

No species site period 
δ13C 
(‰) 

δ15N 
(‰) 

C:N 
% 

collagen 
%C %N reference 

1 
auroch/bison (Bos primigenius B./Bison 
bonasus bonasus L.) 

Kretuonas 1D Early Bronze Age –22.3 3.1 3.3       Antanaitis-Jacobs et al. 2009 

2 
auroch/bison (Bos primigenius B./Bison 
bonasus bonasus L.) 

Šventoji 2/4 Subneolithic –22.6 5.1 3.1 19.2 39.8 15.0 Piličiauskas et al., 2017b 

3 
auroch/bison (Bos primigenius B./Bison 
bonasus bonasus L.) 

Šventoji 43 Subneolithic –22.4 3.4 3.3 2.9 24.0 8.6 Piličiauskas et al., 2017b 

4 
auroch/bison (Bos primigenius B./Bison 
bonasus bonasus L.) 

Žemaitiškė 2 Subneolithic –22.6 5.1 3.3 14.1 42.0 15.1 this study 

5 
auroch/bison (Bos primigenius B./Bison 
bonasus bonasus L.) 

Žemaitiškė 2 Subneolithic –22.9 5.4 3.3 7.6 40.3 14.4 this study 

6 European badger (Meles meles L.) Žemaitiškė 2 Subneolithic –19.5 10.1 3.6       Antanaitis-Jacobs et al. 2009 
7 brown bear (Ursus arctos L.) Šventoji 3 Subneolithic –21.4 4.5 3.3       Antanaitis-Jacobs et al. 2009 
8 brown bear (Ursus arctos L.) Šventoji 43 Subneolithic –21.4 5.7 3.3 3.5 28.1 10.1 Piličiauskas et al., 2017b 



9 brown bear (Ursus arctos L.) Šventoji 6 Subneolithic –20.9 4.4 3.5       Antanaitis-Jacobs et al. 2009 
10 brown bear (Ursus arctos L.) Žemaitiškė 2 Subneolithic –20.9 4.6 3.2 10.9 38.7 14.1 this study 
11 brown bear (Ursus arctos L.) Žemaitiškė 2 Subneolithic –20.1 4.7 3.2 9.8 40.2 14.7 this study 
12 brown bear (Ursus arctos L.) Žemaitiškė 3B Subneolithic –20.7 5.0 3.3       Antanaitis-Jacobs et al. 2009 
13 beaver (Castor fiber L.) Šventoji 3 Subneolithic –22.1 5.4 3.4       Antanaitis-Jacobs et al. 2009 
14 beaver (Castor fiber L.) Šventoji 9 Early Bronze Age –22.9 4.5 3.2 16.1 41.5 15.3 Piličiauskas et al., 2017b 
15 beaver (Castor fiber L.) Žemaitiškė 2 Subneolithic –22.6 5.6 3.3 7.3 42.2 15.0 this study 
16 beaver (Castor fiber L.) Žemaitiškė 2 Subneolithic –23.9 4.8 3.3       Antanaitis-Jacobs et al. 2009 
17 beaver (Castor fiber L.) Žemaitiškė 2 Subneolithic –22.0 5.5 3.3 9.1 38.6 13.5 this study 
18 beaver (Castor fiber L.) Žemaitiškė 2 Subneolithic –23.0 3.5 3.5       Antanaitis-Jacobs et al. 2009 
19 boar (Sus scrofa scrofa L.) Šventoji 3 Subneolithic –21.7 5.5 3.4       Antanaitis-Jacobs et al. 2009 
20 boar (Sus scrofa scrofa L.) Šventoji 6 Subneolithic –21.6 5.3 3.4       Antanaitis-Jacobs et al. 2009 
21 boar (Sus scrofa scrofa L.) Žemaitiškė 1 Subneolithic –23.3 6.5 3.5       Antanaitis-Jacobs et al. 2009 
22 boar (Sus scrofa scrofa L.) Žemaitiškė 2 Subneolithic –23.1 4.6 3.2 3.4 32.8 12.0 this study 
23 boar (Sus scrofa scrofa L.) Žemaitiškė 2 Subneolithic –22.4 4.1 3.2 14.3 43.7 15.8 this study 

24 
boar/pig (Sus scrofa scrofa L./Sus scrofa 
domesticus L.) 

Kretuonas 1B Subneolithic –23.6 6.4 3.5       Antanaitis-Jacobs et al. 2009 

25 
boar/pig (Sus scrofa scrofa L./Sus scrofa 
domesticus L.) 

Šventoji 1B Subneolithic –21.8 4.1 3.4       Antanaitis-Jacobs et al. 2009 

26 
boar/pig (Sus scrofa scrofa L./Sus scrofa 
domesticus L.) 

Šventoji 3 Subneolithic –21.3 3.8 3.3       Antanaitis-Jacobs et al. 2009 

27 
boar/pig (Sus scrofa scrofa L./Sus scrofa 
domesticus L.) 

Šventoji 43 Subneolithic –22.2 6.9 3.2 16.1 44.8 16.3 Piličiauskas et al., 2017b 

28 
boar/pig (Sus scrofa scrofa L./Sus scrofa 
domesticus L.) 

Žemaitiškė 2 Subneolithic –21.4 3.8 3.3 17.1 44.5 15.8 this study 

29 cattle (Bos taurus L.) Turlojiškė Late Bronze Age –21.1 7.4 3.2       Antanaitis-Jacobs et al. 2009 
30 cattle (Bos taurus L.) Žemaitiškė 2 Subneolithic –22.7 4.8 3.2 13.1 40.5 14.7 this study 

31 
common goldeneye (Bucephala 
clangula L.) 

Žemaitiškė 2 Subneolithic –23.3 7.3 3.4       Antanaitis-Jacobs et al. 2009 

32 dog (Canis familiaris L.) Šventoji 23 Subneolithic –19.2 12.8 3.6       Antanaitis-Jacobs et al. 2009 
33 dog (Canis familiaris L.) Šventoji 43 Subneolithic –23.8 13.9 3.5 2.2 12.5 4.2 Piličiauskas et al., 2017b 
34 dog (Canis familiaris L.) Šventoji 6 Subneolithic –20.3 13.2 3.3 11.7 43.0 15.4 Piličiauskas et al., 2017b 
35 dog (Canis familiaris L.) Šventoji 6 Subneolithic –20.7 13.3 3.4       Antanaitis-Jacobs et al. 2009 
36 elk (Alces alces L.) Šventoji 1B Subneolithic –23.1 3.6 3.4       Antanaitis-Jacobs et al. 2009 
37 elk (Alces alces L.) Šventoji 2/4 Subneolithic –23.6 4.9 3.3       Antanaitis-Jacobs et al. 2009 
38 elk (Alces alces L.) Šventoji 43 Subneolithic –23.5 4.4 3.3 1.8 37.4 13.1 Piličiauskas et al., 2017b 
39 elk (Alces alces L.) Žemaitiškė 2 Subneolithic –22.9 4.1 3.3 8.2 44.3 15.9 this study 
40 elk (Alces alces L.) Žemaitiškė 2 Subneolithic –23.1 4.1 3.3 15.0 45.1 15.9 this study 
41 flounder (Platichthys flesus L.) Šventoji 2/4 Subneolithic –16.6 11.6 3.3       Antanaitis-Jacobs et al. 2009 
43 horse (Equus ferus caballus L.) Šventoji 41B Early Bronze Age –22.3 4.4 3.3 11.3 34.0 12.2 Piličiauskas et al., 2017b 
44 horse (Equus ferus caballus L.) Šventoji 43 Subneolithic –23.2 4.9 3.2 12.2 39.8 14.6 Piličiauskas et al., 2017b 



45 horse (Equus ferus caballus L.) Šventoji 43 Subneolithic –24.7 5.7 3.5 1.0 25.7 8.5 Piličiauskas et al., 2017b 
46 mallard (Anas platyrhynchos L.) Šventoji 2/4 Subneolithic –24.8 7.2 3.3       Antanaitis-Jacobs et al. 2009 
47 mallard (Anas platyrhynchos L.) Šventoji 23 Subneolithic –21.1 7.8 3.5       Antanaitis-Jacobs et al. 2009 
48 mallard (Anas platyrhynchos L.) Turlojiškė Late Bronze Age –19.4 8.4 3.5       Antanaitis-Jacobs et al. 2009 
53 northern pike (Esox lucius L.) Šventoji 2/4 Subneolithic –22.1 9.5 3.3 2.3 38.5 13.8 Piličiauskas et al., 2017b 
54 northern pike (Esox lucius L.) Šventoji 2/4 Subneolithic –21.6 12.6 3.3       Antanaitis-Jacobs et al. 2009 
49 pine marten (Martes martes L.) Žemaitiškė 2 Subneolithic –20.1 8.8 3.5       Antanaitis-Jacobs et al. 2009 

50 
otter or seal? (Lutra lutra L. or 
Phocidae?) 

Šventoji 23 Subneolithic –16.5 13.8 3.4       Antanaitis-Jacobs et al. 2009 

51 perch (Perca fluviatilis L.) Šventoji 2/4 Subneolithic –20.0 10.6 3.3 3.5 36.0 12.7 Piličiauskas et al., 2017b 
52 pig (Sus scrofa domesticus L.) Daktariškė 5 Bronze Age? –21.7 4.5 3.3 15.2 45.9 16.4 this study 
55 pikeperch (Sander lucioperca L.) Šventoji 2/4 Subneolithic –22.6 10.9 3.4 1.3 39.9 13.6 Piličiauskas et al., 2017b 
56 pikeperch (Sander lucioperca L.) Šventoji 2/4 Subneolithic –21.8 12.6 3.5       Antanaitis-Jacobs et al. 2009 
57 red deer (Cervus elaphus L.) Turlojiškė Late Bronze Age –22.5 5.5 3.4       Antanaitis-Jacobs et al. 2009 
58 red deer (Cervus elaphus L.) Žemaitiškė 1 Subneolithic –24.1 4.0 3.5       Antanaitis-Jacobs et al. 2009 
59 red deer (Cervus elaphus L.) Žemaitiškė 2 Subneolithic –22.3 5.4 3.2 18.8 44.6 16.3 this study 
60 red deer (Cervus elaphus L.) Žemaitiškė 2 Subneolithic –23.2 4.2 3.2 11.4 38.4 14.0 this study 
61 roe deer (Capreolus capreolus L.) Nida Neolithic –21.0 6.1 3.3 11.9 44.3 15.9 this study 
62 roe deer (Capreolus capreolus L.) Šventoji 43 Subneolithic –23.5 4.5 3.2 12.8 40.9 14.8 Piličiauskas et al., 2017b 
42 red fox (Vulpes vulpes L.) Šventoji 3 Subneolithic –18.5 11.4 3.4       Antanaitis-Jacobs et al. 2009 
63 true seals (Phocidae) Nida Neolithic –15.9 13.4 3.2 2.5 41.8 15.1 this study 
64 harbour seal (Phoca vitulina L.) Šventoji 1B Subneolithic –15.5 13.1 3.3       Antanaitis-Jacobs et al. 2009 
65 ringed seal (Phoca hispida L.) Šventoji 1B Subneolithic –16.5 11.1 3.4       Antanaitis-Jacobs et al. 2009 
66 true seals (Phocidae) Šventoji 2/4 Subneolithic –15.3 13.1 3.2       Heron et al. 2015 
67 true seals (Phocidae) Šventoji 2/4 Subneolithic –16.6 12.0 3.2       Heron et al. 2015 
68 ringed seal (Phoca hispida L.) Šventoji 2/4 Subneolithic –15.8 12.4 3.3       Antanaitis-Jacobs et al. 2009 
69 true seals (Phocidae) Šventoji 2/4 Subneolithic –17.7 10.6 3.4       Antanaitis-Jacobs et al. 2009 
70 true seals (Phocidae) Šventoji 2/4 Subneolithic –16.3 12.2 3.4       Antanaitis-Jacobs et al. 2009 
71 harbour seal (Phoca vitulina L.) Šventoji 2/4 Subneolithic –16.1 12.0 3.4       Antanaitis-Jacobs et al. 2009 
72 ringed seal (Phoca hispida L.) Šventoji 2/4 Subneolithic –18.7 13.9 3.4       Antanaitis-Jacobs et al. 2009 
73 true seals (Phocidae) Šventoji 2/4 Subneolithic –16.3 15.5 3.4       Heron et al. 2015 
74 grey seal (Halichoerus grypus L.) Šventoji 23 Subneolithic –16.5 12.7 3.5       Antanaitis-Jacobs et al. 2009 
75 harp seal (Pagophilus groenlandicus L.) Šventoji 3 Subneolithic –15.6 11.3 3.2 23.7 40.7 15.1 Piličiauskas et al., 2017b 
76 harp seal (Pagophilus groenlandicus L.) Šventoji 43 Subneolithic –16.5 12.7 3.3 3.1 28.2 10.0 Piličiauskas et al., 2017b 
77 grey seal (Halichoerus grypus L.) Šventoji 43 Subneolithic –16.9 11.7 3.4 2.0 23.7 8.2 Piličiauskas et al., 2017b 
78 ringed seal (Phoca hispida L.) Šventoji 6 Subneolithic –17.1 12.6 3.4       Antanaitis-Jacobs et al. 2009 
79 harp seal (Pagophilus groenlandicus L.) Šventoji 6 Subneolithic –16.6 13.3 3.4       Antanaitis-Jacobs et al. 2009 
80 grey wolf (Canis lupus L.) Šventoji 52 Subneolithic –20.9 9.0 3.2 12.6 41.0 14.8 Piličiauskas et al., 2017b 
81 wood grouse (Tetrao urogallus L.) Šventoji 23 Subneolithic –21.9 2.2 3.6       Antanaitis-Jacobs et al. 2009 

 



Table 4. δ13C and δ15N bone collagen values for Subneolithic-Bronze Age animals in Lithuania 
  



 

Sample 

UoY-MPI UoY-NAU NAU-MPI Average Stdev 

δ13C 

(‰) 

δ15N 

(‰) 

δ13C 

(‰) 

δ15N 

(‰) 

δ13C 

(‰) 

δ15N 

(‰) 

δ13C 

(‰) 

δ15N 

(‰) 

δ13C 

(‰) 

δ15N 

(‰) 

Spiginas, grave 1 –0.8 –0.2 0.1 0.8 –0.9 –1.0 –23.0 12.4 0.5 0.54 

Spiginas, grave 3 0.2 1.0 –0.2 –0.5 0.4 1.5 –23.1 12.4 0.2 0.77 

Kretuonas 1B, grave 3 –0.4 0.1 0.4 0.0 –0.8 0.1 –22.8 11.8 0.4 0.03 

Donkalnis, grave 7 1.1 0.9 0.8 1.9 0.3 –1.0 –22.2 10.6 0.6 0.96 

Donkalnis, grave 6 0.1 0.2 –0.3 1.3 0.4 –1.2 –22.3 11.1 0.2 0.72 

Donkalnis, grave 1 –0.8 0.3 –1.1 1.4 0.3 –1.1 –23.7 11.4 0.6 0.74 

Plinkaigalis, grave 241 –0.2 0.6 –0.2 1.4 0.0 –0.9 –21.5 8.8 0.1 0.72 

Turlojiškė, grave 3 –0.8 0.1 –0.1 0.1 –0.7 0.0 –18.5 9.2 0.4 0.05 

Average difference –0.2 0.4 –0.1 0.8 –0.1 –0.4 

Stdev 0.7 0.4 0.6 0.9 0.6 0.9 

 
Table 5. Inter-laboratory comparison of δ13C and δ15N bone collagen values and pairwise differences, average values, and standard deviations from the Max Planck 
Institute (MPI), Northern Arizona University (NAU), and the University of York (UoY) 
 



Figures 

 
Figure 1. Location of study materials 

 
Figure 2. A calibration plot of paired or triplicate 14C dates for Lithuanian Stone and Bronze Age 
human remains. Dates by conventional labs are in grey and italicised. 
 
Figure 3. δ13C and δ15N bone collagen values for the same individuals measured at three different 
laboratories and plotted against the expected consumers' areas with a trophic level shift of 
approximately 1 ‰ for δ13C and 4.1 ‰ for δ15N. The difference in isotopic values between the 
wolf and its potential prey was taken as a trophic level shift for nitrogen (for more details see 
Piličiauskas et al., 2017b). The data for the expected inland fish consumers’ area, Latvian stable 
isotope data from the Subneolithic Riņņukalns site, was adapted from Schmölcke et al. (2015), 
while the other animal data was taken from Lithuanian Subneolithic-Bronze Age sites (see Fig. 4 
and Table 4). Grey lines are connecting values of the same individuals. 
 
Figure 4. Human, animal and fish δ13C and δ15N bone collagen values from Lithuanian Mesolithic-
LBA sites with intra-individual variation of the Biržai CWC single grave in the bottom right corner. 
Expected consumers' areas are marked by dotted squares with a trophic level shift of approximately 
1‰ for δ13C and 4.1‰ for δ15N. The difference in isotopic values between wolf and its potential 
prey was taken as a trophic level shift for nitrogen (for more details see Piličiauskas et al., 2017b). 
The data for expected inland fish consumers’ area, Latvian stable isotope data from the 
Subneolithic Riņņukalns site, was adapted from Schmölcke et al. (2015), while the other animal 
data was taken from Lithuanian Subneolithic-Bronze Age sites (see Table 4). 1 – Subneolithic 
coastal humans from Šventoji 4, 6, 23, 2 – Late Mesolithic-Subneolithic inland humans from 
Daktariškė 1, Donkalnis, Spiginas, 3 – Neolithic (CWC) humans from Plinkaigalis, Gyvakarai, 
Biržai, Spiginas, 4 – LBA inland humans from Turlojiškė, 5 – Late Mesolithic infant from 
Donkalnis, 6 – Neolithic infant from Benaičiai, 7 – wood grouse, 8 – beaver, 9 – auroch/bison, 10 
– elk, 11 – red deer, 12 – roe deer, 13 – horse, 14 – boar, 15 – brown bear, 16 – ducks 17 – wolf, 
18 – badger, 19 – fox, 20 – pine marten, 21 – dog, 22 – perch, 23 – pikeperch, 24 – pike, 25 – 
flatfish, 26 – seals (new data; Piličiauskas et al., 2017b; Antanaitis-Jacobs et al., 2009). 
 
Figure 5. Lithuanian human stable isotope data plotted against the other Baltic region data (Fischer 
et al., 2007; Eriksson, 2004; Piličiauskas et al., 2017b; Tõrv and Meadows, 2015; Antanaitis-
Jacobs et al., 2009; Eriksson et al., 2003; Meadows et al., 2016; Reitsema, 2012; Pospieszny et al., 
2015; Eriksson and Howcroft, 2014; Laneman, 2012; Laneman and Lang, 2013; Fornander, 2013; 
Reitsema et al., 2010). 1–4 year old children are excluded in order to avoid data distortion due to 
breastfeeding. Major subsistence strategies are framed by dashed grey lines. 
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