

This is a repository copy of ZN graded discrete Lax pairs and Yang-Baxter maps.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/119445/

Version: Accepted Version

Article:

Fordy, AP orcid.org/0000-0002-2523-0262 and Xenitidis, P (2017) ZN graded discrete Lax pairs and Yang-Baxter maps. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473 (2201). 20160946. ISSN 1364-5021

https://doi.org/10.1098/rspa.2016.0946

(c) 2017 The Author(s). Published by the Royal Society. All rights reserved. This is an author produced version of a paper published in Proceedings of the Royal Society A. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

\mathbb{Z}_N graded discrete Lax pairs and Yang-Baxter maps

Allan P. Fordy^{*} and Pavlos Xenitidis[†]

April 22, 2017

Abstract

We recently introduced a class of \mathbb{Z}_N graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In this paper we introduce the corresponding Yang-Baxter maps. Many well known examples belong to this scheme for N = 2, so, for $N \geq 3$, our systems may be regarded as generalisations of these.

In particular, for each N we introduce a class of multi-component Yang-Baxter maps, which include H_{III}^B (of [6]), when N = 2, and that associated with the discrete modified Boussinesq equation, for N = 3. For $N \ge 5$ we introduce a new family of Yang-Baxter maps, which have no lower dimensional analogue. We also present new multi-component versions of the Yang-Baxter maps F_{IV} and F_V (given in the classification of [2]).

Keywords: Discrete integrable system, Lax pair, symmetry, Yang-Baxter map.

1 Introduction

The term "Yang-Baxter map" was introduced by Veselov [10] as an abbreviation for Drinfeld's notion of "set-theoretical solutions to the quantum Yang-Baxter equation". The basic ingredient is a map $R : X \times X \to X \times X$, where X is some algebraic variety. For the case $X = \mathbb{CP}^1$, these were partially classified in [2, 6]. In [8] a symmetry approach was introduced to relate Yang-Baxter equations with 3D consistent equations on quad-graphs, which had been classified in [1]. Starting with any symmetry of an integrable equation on a quad-graph, the authors introduce invariant functions, which are then used to define a map. The Yang-Baxter relation was shown to be a *consequence* of 3D consistency. Multi-component Yang-Baxter maps are not yet classified, but several are known (see, for example, [9, 8, 7, 5, 3]).

We recently introduced a class of \mathbb{Z}_N graded discrete Lax pairs and studied the associated discrete integrable systems [4]. Many well known examples belong to that scheme for N = 2, so, for $N \geq 3$, our systems may be regarded as generalisations of these. As mentioned above, the quad systems for N = 2 can be related to Yang-Baxter maps. In this paper we construct generalisations of these, associated with our generalised lattice equations.

In Section 2 we present the basic background theory of Yang-Baxter maps and their relationship to lattice equations on a quadrilateral lattice. In Section 3, we introduce the \mathbb{Z}_N -graded Lax pairs of [4] and derive the reduction to Yang-Baxter maps. We show that all such maps are equivalent to ones with "level structure" $(0, \delta; 0, \delta)$. For each N and δ , with $1 \leq \delta \leq \frac{N}{2}$, we present a Yang-Baxter map $R^{(\delta)}(a, b)$ with 2N - 2 components (see Section 4). For $\delta = 1$, this

^{*}School of Mathematics, University of Leeds, Leeds LS2 9JT, UK. E-mail: a.p.fordy@leeds.ac.uk

[†]School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, UK. E-mail: p.xenitidis@kent.ac.uk

includes the map H_{III}^B of [6], when N = 2, and the Yang-Baxter map associated with the discrete modified Boussinesq equation, for N = 3. The general map for $\delta = 1$ is known [5], but for $\delta \geq 2$ this is a new class of Yang-Baxter maps. In Section 5 we present a new multi-component generalisation of the Yang-Baxter maps F_{IV} and F_V (given in the classification of [2])

2 Basic Definitions

Let X be an algebraic variety. A parametric Yang-Baxter map R(a, b), depending upon parameters (a, b), is a map

$$R(a,b): \mathbf{X} \times \mathbf{X} \to \mathbf{X} \times \mathbf{X},$$

satisfying:

 $R_{23}(a_2, a_3) \circ R_{13}(a_1, a_3) \circ R_{12}(a_1, a_2) = R_{12}(a_1, a_2) \circ R_{13}(a_1, a_3) \circ R_{23}(a_2, a_3),$ (2.1)

where $R_{ij}(a_i, a_j)$ is the map that acts as R(a, b) on the *i* and *j* factor of X × X × X, and identically on the other.

Definition 2.1 (Reversibility) Let P be the involution given by $P(\mathbf{x}, \mathbf{y}; a, b) = (\mathbf{y}, \mathbf{x}; b, a)$. If $P \circ R(a, b)$ is also an involution, then the map R(a, b) is said to be reversible.

Remark 2.2 An alternative way of writing this is that the map $P \circ R(a, b) \circ P$ is the inverse of R(a, b).

Lax pairs were defined for Yang-Baxter maps in [10, 9]. A matrix $L(\mathbf{x}, a)$, with $\mathbf{x} \in \mathbf{X}$, depending upon the YB parameter a and the spectral parameter λ is used to define the equation:

$$L(\mathbf{x}', a)L(\mathbf{y}', b) = L(\mathbf{y}, b)L(\mathbf{x}, a).$$
(2.2)

It was shown in [10] that if L satisfies this, then the map $(\mathbf{x}, \mathbf{y}) \mapsto (\mathbf{x}', \mathbf{y}')$ satisfies the parametric Yang-Baxter equation (2.1) and is *reversible*.

Definition 2.3 (The Companion Map) The companion map $(\mathbf{x}, \mathbf{y}') \mapsto (\mathbf{x}', \mathbf{y})$ is obtained by solving equation (2.2) for the variables $(\mathbf{x}', \mathbf{y})$.

2.1 Travelling Wave Reductions of a Lattice Equation

Suppose we have a square lattice with vertices labelled (m, n). At each vertex we have functions

$$\mathbf{u}_{m,n} = \left(u_{m,n}^{(0)}, \dots, u_{m,n}^{(N-1)}\right), \quad \mathbf{v}_{m,n} = \left(v_{m,n}^{(0)}, \dots, v_{m,n}^{(N-1)}\right),$$

and vector function $\Psi_{m,n}$, satisfying

$$\Psi_{m+1,n} = L(\mathbf{u}_{m,n}, a) \,\Psi_{m,n}, \quad \Psi_{m,n+1} = L(\mathbf{v}_{m,n}, b) \,\Psi_{m,n}, \tag{2.3}$$

with compatibility conditions

$$L(\mathbf{u}_{m,n+1}, a)L(\mathbf{v}_{m,n}, b) = L(\mathbf{v}_{m+1,n}, b)L(\mathbf{u}_{m,n}, a).$$
(2.4)

If we now consider the reduction

$$\mathbf{u}_{m,n} = \mathbf{x}_p, \quad \mathbf{v}_{m,n} = \mathbf{y}_{p+1}, \quad \text{where} \quad p = n - m,$$
 (2.5)

then (2.4) reduces to (2.2), with $\mathbf{x} = \mathbf{x}_p$, $\mathbf{x}' = \mathbf{x}_{p+1}$, $\mathbf{y} = \mathbf{y}_p$, $\mathbf{y}' = \mathbf{y}_{p+1}$, with the map $(\mathbf{x}, \mathbf{y}) \mapsto (\mathbf{x}', \mathbf{y}')$ being Yang-Baxter.

Remark 2.4 Notice that this does not rely on any underlying Lie point symmetry of the lattice equation. It is just a "travelling wave" solution of the lattice equation.

3 \mathbb{Z}_N -Graded Lax Pairs

We now consider the specific discrete Lax pairs, which we introduced in [4]. Consider a pair of matrix equations of the form

$$\Psi_{m+1,n} = L_{m,n} \Psi_{m,n} \equiv \left(U_{m,n} + \lambda \Omega^{\ell_1} \right) \Psi_{m,n}, \qquad (3.1a)$$

$$\Psi_{m,n+1} = M_{m,n} \Psi_{m,n} \equiv \left(V_{m,n} + \lambda \Omega^{\ell_2} \right) \Psi_{m,n}, \qquad (3.1b)$$

where

$$U_{m,n} = \operatorname{diag}\left(u_{m,n}^{(0)}, \dots, u_{m,n}^{(N-1)}\right) \Omega^{k_1}, \quad V_{m,n} = \operatorname{diag}\left(v_{m,n}^{(0)}, \dots, v_{m,n}^{(N-1)}\right) \Omega^{k_2}, \tag{3.1c}$$

and

$$(\Omega)_{i,j} = \delta_{j-i,1} + \delta_{i-j,N-1}.$$

The matrix Ω defines a grading and the four matrices of (3.1) are said to be of respective levels k_i, ℓ_i , with $\ell_i \neq k_i$ (for each *i*). The Lax pair is characterised by the quadruple $(k_1, \ell_1; k_2, \ell_2)$, which we refer to as *the level structure* of the system, and for consistency, we require

$$k_1 + \ell_2 \equiv k_2 + \ell_1 \;(\bmod N). \tag{3.2}$$

Since matrices U, V and Ω are independent of λ , the compatibility condition of (3.1),

$$L_{m,n+1}M_{m,n} = M_{m+1,n}L_{m,n}, (3.3)$$

splits into the system

$$U_{m,n+1}V_{m,n} = V_{m+1,n}U_{m,n}, \qquad (3.4a)$$

$$U_{m,n+1}\Omega^{\ell_2} - \Omega^{\ell_2}U_{m,n} = V_{m+1,n}\Omega^{\ell_1} - \Omega^{\ell_1}V_{m,n}, \qquad (3.4b)$$

which can be written explicitly as

$$u_{m,n+1}^{(i)}v_{m,n}^{(i+k_1)} = v_{m+1,n}^{(i)}u_{m,n}^{(i+k_2)}, \qquad (3.5a)$$

$$u_{m,n+1}^{(i)} - u_{m,n}^{(i+\ell_2)} = v_{m+1,n}^{(i)} - v_{m,n}^{(i+\ell_1)}, \qquad (3.5b)$$

or, in a solved form, as

$$u_{m,n+1}^{(i)} = \frac{u_{m,n}^{(i+\ell_2)} - v_{m,n}^{(i+\ell_1)}}{u_{m,n}^{(i+k_2)} - v_{m,n}^{(i+k_1)}} u_{m,n}^{(i+k_2)}, \quad v_{m+1,n}^{(i)} = \frac{u_{m,n}^{(i+\ell_2)} - v_{m,n}^{(i+\ell_1)}}{u_{m,n}^{(i+k_2)} - v_{m,n}^{(i+k_1)}} v_{m,n}^{(i+k_1)}, \quad (3.6)$$

assuming that $u_{m,n}^{(i)} \neq v_{m,n}^{(j)}$ for all i, j. In all the above formulae, i, j are taken (mod N).

It is easily seen that the quantities

$$a = \prod_{i=0}^{N-1} u_{m,n}^{(i)}, \quad b = \prod_{i=0}^{N-1} v_{m,n}^{(i)} \quad \text{satisfy} \quad \Delta_n(a) = \Delta_m(b) = 0, \tag{3.7}$$

where

$$\Delta_m = \mathcal{S}_m - 1, \quad \Delta_n = \mathcal{S}_n - 1, \quad \text{with} \quad \mathcal{S}_m f_{m,n} = f_{m+1,n}, \quad \mathcal{S}_n f_{m,n} = f_{m,n+1}.$$

3.1 Reduction to Yang-Baxter Maps

We can now employ the reduction (2.5), using (3.7) to replace the components $x_p^{(N-1)}$, $y_p^{(N-1)}$. This introduces parameters a, b into the Lax matrices. If we define

$$X_p = \operatorname{diag}\left(x_p^{(0)}, \dots, x_p^{(N-1)}\right), \quad Y_p = \operatorname{diag}\left(y_p^{(0)}, \dots, y_p^{(N-1)}\right), \tag{3.8}$$

then the compatibility condition (3.3) takes the form

$$(X_{p+1}\Omega^{k_1} + \lambda\Omega^{\ell_1})(Y_{p+1}\Omega^{k_2} + \lambda\Omega^{\ell_2}) = (Y_p\Omega^{k_2} + \lambda\Omega^{\ell_2})(X_p\Omega^{k_1} + \lambda\Omega^{\ell_1}),$$
(3.9)

and equations (3.5) take the form

$$x_{p+1}^{(i)}y_{p+1}^{(i+k_1)} = y_p^{(i)}x_p^{(i+k_2)}, \quad x_{p+1}^{(i)} + y_{p+1}^{(i+\ell_1)} = y_p^{(i)} + x_p^{(i+\ell_2)}.$$
(3.10)

We can write (3.9) as

$$(X_{p+1} + \lambda \Omega^{\delta})(\Omega^{k_1} Y_{p+1} \Omega^{-k_1} + \lambda \Omega^{\delta}) = (Y_p + \lambda \Omega^{\delta})(\Omega^{k_2} X_p \Omega^{-k_2} + \lambda \Omega^{\delta}),$$
(3.11)

where $0 < \delta \leq N - 1$, with $\delta \equiv \ell_i - k_i \pmod{N}$. This allows us to reduce the general case with level structure $(k_1, \ell_1; k_2, \ell_2)$ to that with level structure $(0, \delta; 0, \delta)$. First, note that formula (3.11) can be written

$$(\bar{X}_{p+1} + \lambda\Omega^{\delta})(\bar{Y}_{p+1} + \lambda\Omega^{\delta}) = (\bar{Y}_p + \lambda\Omega^{\delta})(\bar{X}_p + \lambda\Omega^{\delta}), \qquad (3.12)$$

where

$$\bar{X}_p = \operatorname{diag}\left(\bar{x}_p^{(0)}, \dots, \bar{x}_p^{(N-1)}\right), \quad \bar{Y}_p = \operatorname{diag}\left(\bar{y}_p^{(0)}, \dots, \bar{y}_p^{(N-1)}\right).$$

Comparing (3.12) and (3.11), we see that

$$\bar{x}_{p+1}^{(i)} = x_{p+1}^{(i)}, \quad \bar{y}_{p+1}^{(i)} = y_{p+1}^{(i+k_1)}, \quad \bar{x}_p^{(i)} = x_p^{(i+k_2)}, \quad \bar{y}_p^{(i)} = y_p^{(i)},$$

all taken (mod N). We see from (3.12) that the components $(\bar{x}_p^{(i)}, \bar{y}_p^{(i)})$ satisfy

$$\bar{x}_{p+1}^{(i)}\bar{y}_{p+1}^{(i)} = \bar{y}_p^{(i)}\bar{x}_p^{(i)}, \quad \bar{x}_{p+1}^{(i)} + \bar{y}_{p+1}^{(i+\delta)} = \bar{y}_p^{(i)} + \bar{x}_p^{(i+\delta)},$$

which are just (3.10) with $(k_i, \ell_i) = (0, \delta)$. We summarise these results in:

Proposition 3.1 In the Yang-Baxter reduction, <u>all</u> systems with level structure $(k_1, \ell_1; k_2, \ell_2)$, for which $\ell_i - k_i \equiv \delta \pmod{N}$, are equivalent (up to point transformation) to the system with level structure $(0, \delta; 0, \delta)$.

4 The Yang-Baxter Map Corresponding to the Case $(0, \delta; 0, \delta)$

In this section we consider the Lax equations with level structure $(0, \delta; 0, \delta)$, with $0 < \delta \le N-1$. The resulting equations are *quadrirational*, with both the Yang-Baxter and companion maps being *birational*. We find that the Yang-Baxter maps corresponding to δ and $N - \delta$ are inverses to each other and that the companion map is periodic, with period N.

4.1 The Equations and Maps

With Lax matrices

$$L(\mathbf{x}, a) = X_p + \lambda \Omega^{\delta}, \quad L(\mathbf{y}, b) = Y_p + \lambda \Omega^{\delta},$$
 (4.1)

where X_p and Y_p are defined by (3.8), with

$$x_p^{(N-1)} = \frac{a}{\prod_{i=0}^{N-2} x_p^{(i)}}, \quad y_p^{(N-1)} = \frac{b}{\prod_{i=0}^{N-2} y_p^{(i)}}, \tag{4.2}$$

the Lax equation (2.2) implies

$$x_{p+1}^{(i)}y_{p+1}^{(i)} = y_p^{(i)}x_p^{(i)}, \quad x_{p+1}^{(i)} + y_{p+1}^{(i+\delta)} = y_p^{(i)} + x_p^{(i+\delta)}, \quad 0 \le i \le N-1.$$
(4.3)

Only the formulae with $0 \le i \le N-2$ are independent, but the full set is useful when discussing first integrals.

Remark 4.1 (Level structure $(\delta, 0; \delta, 0)$ vs $(0, \delta; 0, \delta)$) Under the point transformation

$$x_{p+1}^{(i)} = \tilde{x}_p^{(i+\delta)}, \quad x_p^{(i)} = \tilde{x}_{p+1}^{(i)}, \quad y_{p+1}^{(i)} = \tilde{y}_p^{(i)}, \quad y_p^{(i)} = \tilde{y}_{p+1}^{(i+\delta)},$$

equations (4.3) take the form

$$\tilde{x}_{p+1}^{(i)}\tilde{y}_{p+1}^{(i+\delta)} = \tilde{y}_p^{(i)}\tilde{x}_p^{(i+\delta)}, \quad \tilde{x}_{p+1}^{(i)} + \tilde{y}_{p+1}^{(i)} = \tilde{y}_p^{(i)} + \tilde{x}_p^{(i)}, \quad 0 \le i \le N-1,$$

which are just the equations for level structure $(\delta, 0; \delta, 0)$, so these structures are equivalent.

4.1.1 The Yang-Baxter map $R^{(\delta)}(a, b)$

Here we solve (4.3) for $(x_{p+1}^{(i)}, y_{p+1}^{(i)})$ as functions of $(x_p^{(i)}, y_p^{(i)})$ (with $0 \le i \le N-2$ and $x_p^{(N-1)}, y_p^{(N-1)}$ replaced by (4.2)). We write this map as $R^{(\delta)}(a, b)$, but when no ambiguity can arise, we suppress the parametric dependence by writing the map as $R^{(\delta)}$.

Notice that by shifting $i \mapsto i + N - \delta \equiv i - \delta \pmod{N}$, the second part of equation (4.3) takes the form

$$x_{p+1}^{(i-\delta)} + y_{p+1}^{(i)} = y_p^{(i-\delta)} + x_p^{(i)},$$

which leads to:

Proposition 4.2 (Inverse Map) The Yang-Baxter map $R^{(-\delta)}(a,b)$ is just the <u>inverse</u> of the map $R^{(\delta)}(a,b)$.

This means that we only need to consider $\delta \leq \frac{N}{2}$ and that, when N = 2M, the map $R^{(M)}(a, b)$ is an involution.

Proposition 4.3 (First Integrals) The Yang-Baxter map $R^{(\delta)}(a, b)$ has the following N first integrals:

$$x_p^{(i)}y_p^{(i)} = c_i, \quad 0 \le i \le N-2, \quad \sum_{i=0}^{N-1} (x_p^{(i+\delta)} + y_p^{(i)}) = c_{N-1},$$
 (4.4)

where, in the latter, $x_p^{(N-1)}$ and $y_p^{(N-1)}$ are replaced by (4.2).

The last of these integrals is obtained by summing the additive equations of (4.3).

4.1.2 The Companion Map $\varphi^{(\delta)}$

Here we solve (4.3) for $(x_{p+1}^{(i)}, y_p^{(i)})$ as functions of $(x_p^{(i)}, y_{p+1}^{(i)})$ (with $0 \le i \le N-2$ and $x_p^{(N-1)}, y_p^{(N-1)}$ replaced by (4.2)). Since p is no longer the evolution parameter, we relabel our variables as:

$$(x_p^{(i)}, y_{p+1}^{(i)}) = (x_q^{(i)}, y_q^{(i)}), \quad (x_{p+1}^{(i)}, y_p^{(i)}) = (x_{q+1}^{(i)}, y_{q+1}^{(i)}),$$

Remark 4.4 (A second travelling wave reduction) This labelling follows directly from the travelling wave reduction

$$\mathbf{u}_{m,n} = \mathbf{x}_q, \quad \mathbf{v}_{m,n} = \mathbf{y}_q, \quad where \quad q = n + m$$

We can re-arrange the quadratic formulae in (4.3) (with this new labelling) to obtain N-1 first integrals:

$$\frac{x_q^{(i)}}{y_q^{(i)}} = c_i, \quad 0 \le i \le N - 2.$$
(4.5)

We can also re-arrange the linear formulae of (4.3) to obtain

$$x_{q+1}^{(i)} - y_{q+1}^{(i)} = x_q^{(i+\delta)} - y_q^{(i+\delta)}, \quad 0 \le i \le N - 1.$$

If we define

$$f(x,y) = x - y, \tag{4.6}$$

then

$$f(x_{q+1}^{(i)}, y_{q+1}^{(i)}) = f(x_q^{(i+\delta)}, y_q^{(i+\delta)}), \quad 0 \le i \le N - 1.$$
(4.7)

We may use

$$\left(\frac{x_q^{(0)}}{y_q^{(0)}}, \dots, \frac{x_q^{(N-2)}}{y_q^{(N-2)}}, f\left(x_q^{(0)}, y_q^{(0)}\right), \dots, f\left(x_q^{(N-2)}, y_q^{(N-2)}\right)\right)$$

as coordinates and, in these coordinates, the map $\varphi^{(\delta)}$ just shifts the coordinates $f(x_q^{(i)}, y_q^{(i)})$ by δ , whilst leaving the coordinates $\frac{x_q^{(i)}}{u_q^{(i)}}$ fixed. This leads to the following:

Proposition 4.5 (Periodicity) The map $\varphi^{(\delta)}$ is periodic with period N. When $(N, \delta) = 1$ this is the minimum period. Furthermore, we have that $\varphi^{(\delta)} = \varphi^{(1)} \circ \cdots \circ \varphi^{(1)}$ (the δ -fold composition of $\varphi^{(1)}$).

This statement is, of course, independent of coordinates.

Remark 4.6 ((2N-2) first integrals) Any cyclically symmetric function of $f(x_q^{(i)}, y_q^{(i)})$ is a first integral of the companion map, so it possesses (2N-2) first integrals. The common level set is then finite, corresponding to the periodicity of the map.

4.2 Examples of the map $R^{(\delta)}$

We can build hierarchies of Yang-Baxter maps for each δ . It follows from Proposition 4.2 that we only need to consider $\delta \leq \frac{N}{2}$. However, as the value of N increases, so does the number of different maps $R^{(\delta)}$. We have:

Case $\delta = 1$: At N = 2, we only have the case $\delta = 1$, and $R^{(1)}$ is just the map H^B_{III} in the classification of scalar Yang-Baxter maps [6]. The map $R^{(1)}$ exists for all $N \ge 2$, which can therefore be considered as a multi-component generalisation of the scalar Yang-Baxter map H^B_{III} .

Case $\delta = 2$: For $N \ge 4$ we have the map $R^{(2)}$. When N is <u>even</u>, this map degenerates to lower dimensional maps (see the case N = 4 below), but when N is <u>odd</u>, we have a <u>new</u> sequence of Yang-Baxter maps which fully couple 2N - 2 variables. The 8-component case can be seen in the case N = 5 below.

Case $\delta = 3$: For $N \ge 6$ we have the map $R^{(3)}$, but again, this map degenerates to lower dimensional maps when N is a multiple of 3. The first fully coupled system is at N = 7.

Whilst the generalisation of $\delta = 1$ is already known [5], the maps $R^{(\delta)}$, for $\delta \geq 2$, are <u>new</u> classes of Yang-Baxter maps.

4.2.1 When N = 2

Here we only have the case $\delta = 1$, which leads to (with $x^{(0)} = x$, $y^{(0)} = y$, $x^{(1)} = a/x$, $y^{(1)} = b/y$)

$$x_{p+1} = y_p\left(\frac{a+xy}{b+xy}\right), \quad y_{p+1} = x_p\left(\frac{b+xy}{a+xy}\right), \tag{4.8}$$

which (up to a relabelling of parameters) is just the map H_{III}^B in the classification of scalar Yang-Baxter maps [6].

The existence of the two invariant functions (4.4) implies (the well known fact) that this map is an involution.

4.2.2 When N = 3

Here we have $\delta = 1$ and $\delta = 2$, but since $N - 1 = 2 \equiv -1 \pmod{3}$, the map $R^{(2)}$ is just the inverse of $R^{(1)}$. In this case $R^{(1)}$ takes the form:

$$x_{p+1}^{(i)} = y_p^{(i)} \frac{A^{(i)}}{A^{(i+1)}}, \qquad y_{p+1}^{(i)} = x_p^{(i)} \frac{A^{(i+1)}}{A^{(i)}}, \quad 0 \le i \le 1,$$
(4.9)

with upper indices taken (mod 2) and where

$$A^{(0)} = a(x_p^{(1)} + y_p^{(0)}) + x_p^{(0)}x_p^{(1)}y_p^{(0)}y_p^{(1)}, \quad A^{(1)} = A^{(0)} + (b-a)x_p^{(1)}, \quad A^{(2)} = A^{(1)} + (b-a)y_p^{(0)}.$$

Remark 4.7 (Discrete Modified Boussinesq Equation) This is equivalent to the Yang-Baxter map derived in [8], associated with the discrete modified Boussinesq equation (see equation (67a-b) of [8]). They are related by a simple point transformation:

$$x^{(0)} \mapsto \frac{c_0}{x^1}, \quad x^{(1)} \mapsto c_0 x^2, \quad y^{(0)} \mapsto \frac{c_0 \alpha_1}{\alpha_2 y^1}, \quad y^{(1)} \mapsto \frac{\alpha_1^2 y^2}{c_0^3}, \quad where \quad c_0^4 = \frac{\alpha_1^3}{\alpha_2}$$

4.2.3 When N = 4

For $\delta = 1$: We obtain the 6-component version of (4.9).

For $\delta = 2$: Since $(N, \delta) = 2 \neq 1$, the map is reducible, with a 4-component subsystem:

$$x_{p+1}^{(0)} = \frac{x_p^{(0)}(x_p^{(2)} + y_p^{(0)})}{x_p^{(0)} + y_p^{(2)}}, \quad x_{p+1}^{(2)} = \frac{x_p^{(2)}(x_p^{(0)} + y_p^{(2)})}{x_p^{(2)} + y_p^{(0)}},$$

$$y_{p+1}^{(0)} = \frac{y_p^{(0)}(x_p^{(0)} + y_p^{(2)})}{x_p^{(2)} + y_p^{(0)}}, \quad y_{p+1}^{(2)} = \frac{y_p^{(2)}(x_p^{(2)} + y_p^{(0)})}{x_p^{(0)} + y_p^{(2)}},$$
(4.10)

in which the parameters (a, b) are absent.

The remaining pair of equations are a non-autonomous version of (4.8), with coefficients depending upon $(x_p^{(0)}, x_p^{(2)}, y_p^{(0)}, y_p^{(2)})$:

$$x_{p+1}^{(1)} = \frac{y_p^{(0)} y_p^{(2)} y_p^{(1)} \left(a + x_p^{(0)} x_p^{(2)} x_p^{(1)} y_p^{(1)}\right)}{x_p^{(0)} x_p^{(2)} \left(b + y_p^{(0)} y_p^{(2)} x_p^{(1)} y_p^{(1)}\right)}, \quad y_{p+1}^{(1)} = \frac{x_p^{(0)} x_p^{(2)} x_p^{(1)} \left(b + y_p^{(0)} y_p^{(2)} x_p^{(1)} y_p^{(1)}\right)}{x_p^{(0)} x_p^{(2)} \left(a + x_p^{(0)} x_p^{(2)} x_p^{(1)} y_p^{(1)}\right)}.$$
 (4.11)

Notice that this last pair could also be written

$$x_{p+1}^{(1)} = \frac{x_p^{(1)}(x_p^{(3)} + y_p^{(1)})}{x_p^{(1)} + y_p^{(3)}}, \quad y_{p+1}^{(1)} = \frac{y_p^{(1)}(x_p^{(1)} + y_p^{(3)})}{x_p^{(3)} + y_p^{(1)}},$$

which, with the constraint (4.2), explains the formulae in (4.11).

The 4-component system (4.10) has 4 independent first integrals

$$I_1 = x_p^{(0)} y_p^{(0)}, \quad I_2 = x_p^{(2)} y_p^{(2)}, \quad I_3 = x_p^{(0)} x_p^{(2)}, \quad I_4 = x_p^{(0)} + x_p^{(2)} + y_p^{(0)} + y_p^{(2)},$$

so is periodic (and has period 2).

The remaining two equations (4.11) cannot be taken alone, but only as part of the 6-component system. This system has two more first integrals,

$$I_5 = x_p^{(1)} y_p^{(1)}, \quad I_6 = x_p^{(1)} + \frac{a}{x_p^{(0)} x_p^{(1)} x_p^{(2)}} + y_p^{(1)} + \frac{b}{y_p^{(0)} y_p^{(1)} y_p^{(2)}},$$

so is also periodic (of period 2). As commented after Proposition 4.2, this involutive property follows from $\delta = N - \delta$ for this case.

Remark 4.8 (Non-Coprime Case) This decoupling, when $(N, \delta) \neq 1$, is a general feature.

4.2.4 When N = 5

Here $\delta = 1$ and $\delta = 2$ give genuinely different maps.

For $\delta = 1$: The map $R^{(1)}$ takes the same form as (4.9):

$$x_{p+1}^{(i)} = y_p^{(i)} \frac{A^{(i)}}{A^{(i+1)}}, \qquad y_{p+1}^{(i)} = x_p^{(i)} \frac{A^{(i+1)}}{A^{(i)}}, \quad 0 \le i \le 3,$$
(4.12)

with upper indices taken (mod4) and where

$$\begin{split} A^{(0)} &= a(x_p^{(1)}x_p^{(2)}x_p^{(3)} + x_p^{(2)}x_p^{(3)}y_p^{(0)} + x_p^{(3)}y_p^{(0)}y_p^{(1)} + y_p^{(0)}y_p^{(1)}y_p^{(2)}) + \prod_{i=0}^3 x_p^{(i)}y_p^{(i)}, \\ A^{(1)} &= A^{(0)} + (b-a)x_p^{(1)}x_p^{(2)}x_p^{(3)}, \quad A^{(2)} &= A^{(1)} + (b-a)x_p^{(2)}x_p^{(3)}y_p^{(0)}, \\ A^{(3)} &= A^{(2)} + (b-a)x_p^{(3)}y_p^{(0)}y_p^{(1)}, \quad A^{(4)} &= A^{(3)} + (b-a)y_p^{(0)}y_p^{(1)}y_p^{(2)}. \end{split}$$

For $\delta = 2$: The map $R^{(2)}$ takes the form:

$$x_{p+1}^{(0)} = y_p^{(0)} \frac{A^{(2)}}{A^{(3)}}, \quad x_{p+1}^{(1)} = y_p^{(1)} \frac{A^{(0)}}{A^{(1)}}, \quad x_{p+1}^{(2)} = y_p^{(2)} \frac{A^{(3)}}{A^{(4)}}, \quad x_{p+1}^{(3)} = y_p^{(3)} \frac{A^{(1)}}{A^{(2)}}, \tag{4.13}$$

and $y_{p+1}^{(i)} = \frac{x_p^{(i)} y_p^{(i)}}{x_{p+1}^{(i)}}$, with upper indices taken (mod4) and where

$$\begin{split} A^{(0)} &= a(x_p^{(3)}x_p^{(0)}x_p^{(2)} + x_p^{(0)}x_p^{(2)}y_p^{(1)} + x_p^{(2)}y_p^{(1)}y_p^{(3)} + y_p^{(1)}y_p^{(3)}y_p^{(0)}) + \prod_{i=0}^3 x_p^{(i)}y_p^{(i)}, \\ A^{(1)} &= A^{(0)} + (b-a)x_p^{(3)}x_p^{(0)}x_p^{(2)}, \quad A^{(2)} &= A^{(1)} + (b-a)x_p^{(0)}x_p^{(2)}y_p^{(1)}, \\ A^{(3)} &= A^{(2)} + (b-a)x_p^{(2)}y_p^{(1)}y_p^{(3)}, \quad A^{(4)} &= A^{(3)} + (b-a)y_p^{(1)}y_p^{(3)}y_p^{(0)}. \end{split}$$

4.2.5 The Structure of the Formulae

The order of appearance of $A^{(i)}$ in (4.13) and the combination of variables appearing in the definition of $A^{(0)}$ is controlled by the following ordering of the variables $x_p^{(i)}, y_p^{(i)}$:

$$\{x^{(\delta-1)}, x^{(2\delta-1)}, \dots, x^{((N-1)\delta-1)}, y^{(\delta-1)}, y^{(2\delta-1)}, \dots, y^{((N-1)\delta-1)}\}$$

When $(N, \delta) = 1$, the numbers $\{(m\delta - 1)\}_{m=1}^{N-1}$ form a permutation of the numbers $0, \ldots, N-2$, so all the variables are included in this list. The formulae (4.13) are just

$$x_{p+1}^{(m\delta-1)} = y_p^{(m\delta-1)} \frac{A^{(m-1)}}{A^{(m)}}, \quad 1 \le m \le N-1.$$
(4.14)

The coefficient of the parameter a in function $A^{(0)}$ is constructed as follows: the first term is $\frac{\prod_{i=0}^{N-2} x^{(i)}}{x^{(\delta-1)}}$. We then repeatedly act by the permutation

$$x^{(\delta-1)} \to x^{(2\delta-1)} \to \dots \to x^{((N-1)\delta-1)} \to y^{(\delta-1)} \to y^{(2\delta-1)} \to \dots \to y^{((N-1)\delta-1)} \to x^{(\delta-1)},$$

for (N-2) times, which ends with $\frac{\prod_{i=0}^{N-2} y^{(i)}}{y^{(N-1-\delta)}}$. The coefficient of a is then just the sum of these (N-1) terms. The remaining term in $A^{(0)}$ is just $\prod_{i=0}^{N-2} x^{(i)} y^{(i)}$.

The functions $A^{(i)}$ are formed by successively changing the coefficient a to b at each of the terms in the above sum.

Example 4.9 (The case $N = 5, \delta = 2$) Here we have

$$x^{(1)} \to x^{(3)} \to x^{(0)} \to x^{(2)} \to y^{(1)} \to y^{(3)} \to y^{(0)} \to y^{(2)},$$

and

$$x_p^{(3)}x_p^{(0)}x_p^{(2)} \to x_p^{(0)}x_p^{(2)}y_p^{(1)} \to x_p^{(2)}y_p^{(1)}y_p^{(3)} \to y_p^{(1)}y_p^{(3)}y_p^{(0)},$$

giving the expression for $A^{(0)}$, given in the case of (4.13).

Example 4.10 (The case $N = 7, \delta = 3$) Here we have

$$x^{(2)} \to x^{(5)} \to x^{(1)} \to x^{(4)} \to x^{(0)} \to x^{(3)} \to y^{(2)} \to y^{(5)} \to y^{(1)} \to y^{(4)} \to y^{(0)} \to y^{(3)} \to y^{($$

and

$$x_p^{(5)}x_p^{(1)}x_p^{(4)}x_p^{(0)}x_p^{(3)} \to x_p^{(1)}x_p^{(4)}x_p^{(0)}x_p^{(3)}y_p^{(2)} \to \dots \to y_p^{(2)}y_p^{(5)}y_p^{(1)}y_p^{(4)}y_p^{(0)},$$

giving

$$A^{(0)} = a(x_p^{(5)}x_p^{(1)}x_p^{(4)}x_p^{(0)}x_p^{(3)} + x_p^{(1)}x_p^{(4)}x_p^{(0)}x_p^{(3)}y_p^{(2)} + \dots + y_p^{(2)}y_p^{(5)}y_p^{(1)}y_p^{(4)}y_p^{(0)}) + \prod_{i=0}^5 x_p^{(i)}y_p^{(i)}.$$

The remaining $A^{(i)}$ are then constructed by the above prescription and the map $R^{(3)}$, for N = 7 is given by (4.14), for $\delta = 3$.

4.3 The Quotient Potential Case and Symmetries

In [4] we introduced two potential forms of our equations (3.5). Here we briefly mention the "quotient potential", leaving the "additive potential" to Section 5.

Equations (3.5a) hold identically if we set

$$u_{m,n}^{(i)} = \alpha \frac{\phi_{m+1,n}^{(i)}}{\phi_{m,n}^{(i+k_1)}}, \quad v_{m,n}^{(i)} = \beta \frac{\phi_{m,n+1}^{(i)}}{\phi_{m,n}^{(i+k_2)}}, \tag{4.15}$$

where $a = \alpha^N$, $b = \beta^N$. Equations (3.5b) then take the form

$$\alpha \left(\frac{\phi_{m+1,n+1}^{(i)}}{\phi_{m,n+1}^{(i+k_1)}} - \frac{\phi_{m+1,n}^{(i+\ell_2)}}{\phi_{m,n}^{(i+\ell_2+k_1)}} \right) = \beta \left(\frac{\phi_{m+1,n+1}^{(i)}}{\phi_{m+1,n}^{(i+k_2)}} - \frac{\phi_{m,n+1}^{(i+\ell_1)}}{\phi_{m,n}^{(i+\ell_1+k_2)}} \right), \tag{4.16}$$

where indices are taken $(\mod N)$.

These equations have a weighted scaling symmetry, whose invariants are given exactly by the formulae (4.15), leading us back to equations (3.5) and therefore to our previous Yang-Baxter maps.

5 The Additive Potential

Equations (3.5b) hold identically if we set

$$u_{m,n}^{(i)} = \chi_{m+1,n}^{(i)} - \chi_{m,n}^{(i+\ell_1)}, \quad v_{m,n}^{(i)} = \chi_{m,n+1}^{(i)} - \chi_{m,n}^{(i+\ell_2)}.$$
(5.1)

Equations (3.5a) then take the form

$$\frac{\left(\chi_{m+1,n+1}^{(i)} - \chi_{m,n+1}^{(i+\ell_1)}\right)}{\left(\chi_{m+1,n+1}^{(i)} - \chi_{m+1,n}^{(i+\ell_2)}\right)} = \frac{\left(\chi_{m+1,n}^{(i+k_2)} - \chi_{m,n}^{(i+k_2+\ell_1)}\right)}{\left(\chi_{m,n+1}^{(i+k_1)} - \chi_{m,n}^{(i+k_1+\ell_2)}\right)},\tag{5.2}$$

and the first integrals (3.7) take the form

$$\prod_{i=0}^{N-1} \left(\chi_{m+1,n}^{(i)} - \chi_{m,n}^{(i+\ell_1)} \right) = a, \quad \prod_{i=0}^{N-1} \left(\chi_{m,n+1}^{(i)} - \chi_{m,n}^{(i+\ell_2)} \right) = b.$$
(5.3)

Remark 5.1 (Reduction) It is not always possible to use these first integrals to explicitly reduce (5.2) to a system with N-1 components (eliminating $\chi_{m,n}^{(N-1)}$), and even when this is possible the spectral problem (3.1) cannot be written in terms of the reduced variables.

In [4] we showed that it is possible to explicitly reduce the system with $(k_i, \ell_i) = (0, 1)$, which takes the form

$$\frac{\left(\chi_{m+1,n+1}^{(i)} - \chi_{m,n+1}^{(i+1)}\right)}{\left(\chi_{m+1,n+1}^{(i)} - \chi_{m+1,n}^{(i+1)}\right)} = \frac{\left(\chi_{m+1,n}^{(i)} - \chi_{m,n}^{(i+1)}\right)}{\left(\chi_{m,n+1}^{(i)} - \chi_{m,n}^{(i+1)}\right)}, \quad i = 0, \dots, N-3,$$
(5.4a)

$$\chi_{m+1,n+1}^{(N-2)} = \chi_{m,n}^{(0)} + \frac{1}{\chi_{m+1,n}^{(N-2)} - \chi_{m,n+1}^{(N-2)}} \left(\frac{a}{X} - \frac{b}{Y}\right),$$
(5.4b)

where $X = \prod_{j=0}^{N-3} (\chi_{m+1,n}^{(j)} - \chi_{m,n}^{(j+1)})$ and $Y = \prod_{j=0}^{N-3} (\chi_{m,n+1}^{(j)} - \chi_{m,n}^{(j+1)}).$

Remark 5.2 This is a direct generalisation of equation H1 in the ABS classification [1].

It is easy to see that the system (5.4) has the following pair of symmetry generators:

$$\mathbf{X}_{t} = \sum_{i=0}^{N-2} \omega^{m+n+i} \partial_{\chi_{m,n}^{(i)}}, \qquad (5.5a)$$

$$\mathbf{X}_{s} = \sum_{i=0}^{N-2} \omega^{m+n+i} \chi_{m,n}^{(i)} \partial_{\chi_{m,n}^{(i)}}, \quad \omega \neq 1,$$
(5.5b)

where $\omega^N = 1$. It is therefore possible to write equations (5.4) in terms of the invariants of these symmetries. We can then reduce this form of the lattice equations to Yang-Baxter maps.

5.1 The Invariants of X_t

It is straightforward to write a suitable "basis" for the invariants of \mathbf{X}_t . The formulae are more symmetric if we write "too many" invariants, which then satisfy some additional identities. We therefore define 4(N-1) invariants, satisfying (N-1) identities. Furthermore, we make the reduction (2.5), so that we derive a map. Following [8], we denote these invariants by

$$x^{(i)} \equiv x_p^{(i)}, \ y^{(i)} \equiv y_p^{(i)}, \ u^{(i)} \equiv x_{p+1}^{(i)}, \ v^{(i)} \equiv y_{p+1}^{(i)}, \ \text{where } p = n - m,$$
 (5.6)

corresponding to specific edges of the lattice square, as shown in Figure 1 and noting that the shifts $m \mapsto m-1$ and $n \mapsto n+1$ both correspond to $p \mapsto p+1$.

Figure 1: Invariants defined on edges

The 4(N-1) invariants:

$$\begin{aligned} x^{(i)} &= \chi_{m+1,n}^{(i)} - \chi_{m,n}^{(i+1)}, & i = 0, \dots, N-3, \quad x^{(N-2)} = \chi_{m+1,n}^{(N-2)} + \sum_{j=0}^{N-2} \chi_{m,n}^{(j)}, \\ y^{(i)} &= \chi_{m+1,n+1}^{(i)} - \chi_{m+1,n}^{(i+1)}, & i = 0, \dots, N-3, \quad y^{(N-2)} = \chi_{m+1,n+1}^{(N-2)} + \sum_{j=0}^{N-2} \chi_{m+1,n}^{(j)}, \\ u^{(i)} &= \chi_{m+1,n+1}^{(i)} - \chi_{m,n+1}^{(i+1)}, & i = 0, \dots, N-3, \quad u^{(N-2)} = \chi_{m+1,n+1}^{(N-2)} + \sum_{j=0}^{N-2} \chi_{m,n+1}^{(j)}, \\ v^{(i)} &= \chi_{m,n+1}^{(i)} - \chi_{m,n}^{(i+1)}, & i = 0, \dots, N-3, \quad v^{(N-2)} = \chi_{m,n+1}^{(N-2)} + \sum_{j=0}^{N-2} \chi_{m,n}^{(j)}, \end{aligned}$$

satisfy (N-1) identities:

$$x^{(i+1)} + y^{(i)} = u^{(i)} + v^{(i+1)}, \quad i = 0, \dots, N-3,$$
 (5.7a)

$$y^{(N-2)} + \sum_{j=0}^{N-2} v^{(j)} = u^{(N-2)} + \sum_{j=0}^{N-2} x^{(j)},$$
 (5.7b)

and equations (5.4) take the form

$$u^{(i)}v^{(i)} = x^{(i)}y^{(i)}, \quad i = 0, \dots, N-3,$$
 (5.7c)

$$u^{(N-2)} = \sum_{j=0}^{N-2} v^{(j)} + \frac{1}{x^{(N-2)} - v^{(N-2)}} \left(\frac{a}{\prod_{j=0}^{N-3} x^{(j)}} - \frac{b}{\prod_{j=0}^{N-3} v^{(j)}} \right).$$
(5.7d)

The Yang-Baxter map corresponds to the solution of equations (5.7) for $(u^{(i)}, v^{(i)})$. We do not have an explicit form of the solution in general, but for any given value of N, this can be found.

Remark 5.3 (The Case N = 2) We already remarked that for N = 2 the lattice equation is just H1 in the ABS classification [1]. Using the symmetry \mathbf{X}_t , with $\omega = -1$ leads to the Yang-Baxter map

$$u = y + \frac{a-b}{x-y}, \quad v = x + \frac{a-b}{x-y},$$

which is just F_V of the ABS classification of quadritational maps [2] (the Adler map). Clearly, we may consider this whole family of maps as multi-component generalisations of F_V .

Example 5.4 (The Case N = 3) In this case, we find

$$\begin{split} u^{(0)} &= y^{(0)} + \frac{(a-b)y^{(0)}}{b-x^{(0)}y^{(0)}(x^{(0)}+x^{(1)}-y^{(1)})}, \\ u^{(1)} &= y^{(1)} + \frac{(b-a)y^{(0)}}{b-x^{(0)}y^{(0)}(x^{(0)}+x^{(1)}-y^{(1)})} + \frac{(b-a)x^{(0)}}{a-x^{(0)}y^{(0)}(x^{(0)}+x^{(1)}-y^{(1)})}, \\ v^{(0)} &= x^{(0)} + \frac{(b-a)x^{(0)}}{a-x^{(0)}y^{(0)}(x^{(0)}+x^{(1)}-y^{(1)})}, \\ v^{(1)} &= x^{(1)} + \frac{(b-a)y^{(0)}}{b-x^{(0)}y^{(0)}(x^{(0)}+x^{(1)}-y^{(1)})}. \end{split}$$

5.2 The Invariants of X_s

Again we denote invariants as in (5.6) and Figure 1. The 4(N-1) invariants:

$$\begin{aligned} x^{(i)} &= \frac{\chi_{m+1,n}^{(i)}}{\chi_{m,n}^{(i+1)}}, \quad i = 0, \dots, N-3, \qquad x^{(N-2)} = \chi_{m+1,n}^{(N-2)} \prod_{j=0}^{N-2} \chi_{m,n}^{(j)}, \\ y^{(i)} &= \frac{\chi_{m+1,n+1}^{(i)}}{\chi_{m+1,n}^{(i+1)}}, \quad i = 0, \dots, N-3, \qquad y^{(N-2)} = \chi_{m+1,n+1}^{(N-2)} \prod_{j=0}^{N-2} \chi_{m+1,n}^{(j)}, \\ u^{(i)} &= \frac{\chi_{m+1,n+1}^{(i)}}{\chi_{m,n+1}^{(i+1)}}, \quad i = 0, \dots, N-3, \qquad u^{(N-2)} = \chi_{m+1,n+1}^{(N-2)} \prod_{j=0}^{N-2} \chi_{m,n+1}^{(j)}, \\ v^{(i)} &= \frac{\chi_{m,n+1}^{(i)}}{\chi_{m,n}^{(i+1)}}, \quad i = 0, \dots, N-3, \qquad v^{(N-2)} = \chi_{m,n+1}^{(N-2)} \prod_{j=0}^{N-2} \chi_{m,n}^{(j)}, \end{aligned}$$

satisfy (N-1) identities:

$$u^{(i)}v^{(i+1)} = x^{(i+1)}y^{(i)}, \quad i = 0, \dots, N-3,$$
(5.8a)

$$u^{(N-2)} \prod_{j=0}^{N-2} x^{(j)} = y^{(N-2)} \prod_{j=0}^{N-2} v^{(j)},$$
(5.8b)

and equations (5.4) take the form

$$u^{(i)}v^{(i+1)} = \frac{(v^{(i)}-1)v^{(i+1)} - (x^{(i)}-1)x^{(i+1)}}{v^{(i)} - x^{(i)}}, \quad i = 0, \dots, N-3,$$
(5.8c)

$$u^{(N-2)} = \left(1 + \frac{1}{x^{(N-2)} - v^{(N-2)}} \left(\frac{a}{X} - \frac{b}{Y}\right)\right) \prod_{j=0}^{N-2} v^{(j)},$$
(5.8d)

where $X = \prod_{j=0}^{N-3} (x^{(j)} - 1), \ Y = \prod_{j=0}^{N-3} (v^{(j)} - 1).$

Remark 5.5 (The Case N = 2) Again, since the lattice equation is just H1 in the ABS classification [1], the symmetry \mathbf{X}_s , with $\omega = -1$, leads to the Yang-Baxter map

$$u = y\left(1 + \frac{a-b}{x-y}\right), \quad v = x\left(1 + \frac{a-b}{x-y}\right),$$

which is just F_{IV} of the ABS classification of quadrizational maps [2]. Clearly, we may consider this whole family of maps as multi-component generalisations of F_{IV} .

Example 5.6 (The Case N = 3) In this case, we first define

$$P_a = ax^{(0)} - (x^{(0)} - 1)(y^{(0)} - 1)(x^{(0)}x^{(1)} - y^{(1)}), \quad P_b = bx^{(0)} - (x^{(0)} - 1)(y^{(0)} - 1)(x^{(0)}x^{(1)} - y^{(1)}).$$

We then have the map

$$\begin{split} u^{(0)} &= y^{(0)} \left(1 - \frac{(a-b)x^{(0)}(y^{(0)}-1)}{(y^{(0)}-1)P_a - y^{(0)}P_b} \right), \\ u^{(1)} &= y^{(1)} \left(1 - (a-b) \left(\frac{(x^{(0)}-1)y^{(0)}}{P_a} + \frac{(y^{(0)}-1)}{P_b} \right) \right), \\ v^{(0)} &= x^{(0)} \left(1 - \frac{(a-b)(x^{(0)}-1)}{P_a} \right), \\ v^{(1)} &= x^{(1)} \left(1 - \frac{(a-b)(y^{(0)}-1)x^{(0)}}{P_b} \right). \end{split}$$

Acknowledgements

PX acknowledges support from the EPSRC grant Structure of partial difference equations with continuous symmetries and conservation laws, EP/I038675/1, and an Academic Development Fellowship from the University of Leeds. We thank Jon Nimmo and Ralph Willox for bringing their paper [5] to our attention.

References

- V.E. Adler, A.I. Bobenko, and Yu.B. Suris. Classification of integrable equations on quadgraphs. the consistency approach. *Commun. Math. Phys.*, 233:513543, 2003.
- [2] V.E. Adler, A.I. Bobenko, and Yu.B. Suris. Geometry of Yang-Baxter maps: pencils of conics and quadrirational mappings. *Commun. Anal. Geom.*, 12:967–1007, 2004.
- [3] A. Doliwa. Non-commutative rational Yang-Baxter maps. Lett. Math. Phys., 104:299309, 2014.
- [4] A.P. Fordy and P. Xenitidis. \mathbb{Z}_N graded discrete Lax pairs and discrete integrable systems. 2014. preprint arXiv:1411.6059 [nlin.SI].
- [5] S. Kakei, J.J.C. Nimmo, and R. Willox. Yang-Baxter maps and the discrete KP hierarchy. *Glasgow Math. J.*, 51A:107119, 2009. arXiv preprint arXiv:0906.3258 [math.QA].
- [6] V.G. Papageorgiou, Yu.B. Suris, A.G. Tongas, and A.P. Veselov. On quadrirational Yang-Baxter maps. SIGMA, 6:003 (9 pages), 2010.
- [7] V.G. Papageorgiou and A.G. Tongas. Yang-Baxter maps associated to elliptic curves. 2009. arXiv preprint arXiv:0906.3258 [math.QA].
- [8] V.G. Papageorgiou, A.G. Tongas, and A.P. Veselov. Yang-Baxter maps and symmetries of integrable equations on quadgraphs. J Math Phys, 47:083502, 2006.
- [9] Yu. B. Suris and A.P. Veselov. Lax matrices for Yang-Baxter maps. J. Nonlin. Math. Phys, 10:223–30, 2003.
- [10] A.P. Veselov. Yang-Baxter maps and integrable dynamics. Phys.Lett.A, 314:214–221, 2003.