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ZN graded discrete Lax pairs and Yang-Baxter maps

Allan P. Fordy∗ and Pavlos Xenitidis†

April 22, 2017

Abstract

We recently introduced a class of ZN graded discrete Lax pairs and studied the associated
discrete integrable systems (lattice equations). In this paper we introduce the corresponding
Yang-Baxter maps. Many well known examples belong to this scheme for N = 2, so, for
N ≥ 3, our systems may be regarded as generalisations of these.

In particular, for each N we introduce a class of multi-component Yang-Baxter maps,
which include HB

III
(of [6]), when N = 2, and that associated with the discrete modified

Boussinesq equation, for N = 3. For N ≥ 5 we introduce a new family of Yang-Baxter
maps, which have no lower dimensional analogue. We also present new multi-component
versions of the Yang-Baxter maps FIV and FV (given in the classification of [2]).

Keywords: Discrete integrable system, Lax pair, symmetry, Yang-Baxter map.

1 Introduction

The term “Yang-Baxter map” was introduced by Veselov [10] as an abbreviation for Drinfeld’s
notion of “set-theoretical solutions to the quantum Yang-Baxter equation”. The basic ingredient
is a map R : X × X → X × X, where X is some algebraic variety. For the case X = CP

1, these
were partially classified in [2, 6]. In [8] a symmetry approach was introduced to relate Yang-
Baxter equations with 3D consistent equations on quad-graphs, which had been classified in [1].
Starting with any symmetry of an integrable equation on a quad-graph, the authors introduce
invariant functions, which are then used to define a map. The Yang-Baxter relation was shown to
be a consequence of 3D consistency. Multi-component Yang-Baxter maps are not yet classified,
but several are known (see, for example, [9, 8, 7, 5, 3]).

We recently introduced a class of ZN graded discrete Lax pairs and studied the associated
discrete integrable systems [4]. Many well known examples belong to that scheme for N = 2,
so, for N ≥ 3, our systems may be regarded as generalisations of these. As mentioned above,
the quad systems for N = 2 can be related to Yang-Baxter maps. In this paper we construct
generalisations of these, associated with our generalised lattice equations.

In Section 2 we present the basic background theory of Yang-Baxter maps and their rela-
tionship to lattice equations on a quadrilateral lattice. In Section 3, we introduce the ZN -graded
Lax pairs of [4] and derive the reduction to Yang-Baxter maps. We show that all such maps
are equivalent to ones with “level structure” (0, δ; 0, δ). For each N and δ, with 1 ≤ δ ≤ N

2 , we

present a Yang-Baxter map R(δ)(a, b) with 2N − 2 components (see Section 4). For δ = 1, this
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includes the map HB
III of [6], when N = 2, and the Yang-Baxter map associated with the dis-

crete modified Boussinesq equation, for N = 3. The general map for δ = 1 is known [5], but for
δ ≥ 2 this is a new class of Yang-Baxter maps. In Section 5 we present a new multi-component
generalisation of the Yang-Baxter maps FIV and FV (given in the classification of [2])

2 Basic Definitions

Let X be an algebraic variety. A parametric Yang-Baxter map R(a, b), depending upon param-
eters (a, b), is a map

R(a, b) : X×X → X×X,

satisfying:

R23(a2, a3) ◦R13(a1, a3) ◦R12(a1, a2) = R12(a1, a2) ◦R13(a1, a3) ◦R23(a2, a3), (2.1)

where Rij(ai, aj) is the map that acts as R(a, b) on the i and j factor of X×X×X, and identically
on the other.

Definition 2.1 (Reversibility) Let P be the involution given by P (x,y; a, b) = (y,x; b, a). If
P ◦R(a, b) is also an involution, then the map R(a, b) is said to be reversible.

Remark 2.2 An alternative way of writing this is that the map P ◦ R(a, b) ◦ P is the inverse
of R(a, b).

Lax pairs were defined for Yang-Baxter maps in [10, 9]. A matrix L(x, a), with x ∈ X,
depending upon the YB parameter a and the spectral parameter λ is used to define the equation:

L(x′, a)L(y′, b) = L(y, b)L(x, a). (2.2)

It was shown in [10] that if L satisfies this, then the map (x,y) 7→ (x′,y′) satisfies the parametric
Yang-Baxter equation (2.1) and is reversible.

Definition 2.3 (The Companion Map) The companion map (x,y′) 7→ (x′,y) is obtained by
solving equation (2.2) for the variables (x′,y).

2.1 Travelling Wave Reductions of a Lattice Equation

Suppose we have a square lattice with vertices labelled (m,n). At each vertex we have functions

um,n =
(

u(0)m,n, . . . , u
(N−1)
m,n

)

, vm,n =
(

v(0)m,n, . . . , v
(N−1)
m,n

)

,

and vector function Ψm,n, satisfying

Ψm+1,n = L(um,n, a)Ψm,n, Ψm,n+1 = L(vm,n, b)Ψm,n, (2.3)

with compatibility conditions

L(um,n+1, a)L(vm,n, b) = L(vm+1,n, b)L(um,n, a). (2.4)

If we now consider the reduction

um,n = xp, vm,n = yp+1, where p = n−m, (2.5)

then (2.4) reduces to (2.2), with x = xp, x
′ = xp+1, y = yp, y

′ = yp+1, with the map (x,y) 7→
(x′,y′) being Yang-Baxter.

Remark 2.4 Notice that this does not rely on any underlying Lie point symmetry of the lattice
equation. It is just a “travelling wave” solution of the lattice equation.
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3 ZN-Graded Lax Pairs

We now consider the specific discrete Lax pairs, which we introduced in [4]. Consider a pair of
matrix equations of the form

Ψm+1,n = Lm,nΨm,n ≡
(

Um,n + λΩℓ1
)

Ψm,n, (3.1a)

Ψm,n+1 = Mm,nΨm,n ≡
(

Vm,n + λΩℓ2
)

Ψm,n, (3.1b)

where

Um,n = diag
(

u(0)m,n, . . . , u
(N−1)
m,n

)

Ωk1 , Vm,n = diag
(

v(0)m,n, . . . , v
(N−1)
m,n

)

Ωk2 , (3.1c)

and
(Ω)i,j = δj−i,1 + δi−j,N−1.

The matrix Ω defines a grading and the four matrices of (3.1) are said to be of respective levels
ki, ℓi, with ℓi 6= ki (for each i). The Lax pair is characterised by the quadruple (k1, ℓ1; k2, ℓ2),
which we refer to as the level structure of the system, and for consistency, we require

k1 + ℓ2 ≡ k2 + ℓ1 (modN). (3.2)

Since matrices U , V and Ω are independent of λ, the compatibility condition of (3.1),

Lm,n+1Mm,n = Mm+1,nLm,n, (3.3)

splits into the system

Um,n+1Vm,n = Vm+1,nUm,n , (3.4a)

Um,n+1Ω
ℓ2 − Ωℓ2Um,n = Vm+1,nΩ

ℓ1 − Ωℓ1Vm,n, (3.4b)

which can be written explicitly as

u
(i)
m,n+1v

(i+k1)
m,n = v

(i)
m+1,nu

(i+k2)
m,n , (3.5a)

u
(i)
m,n+1 − u(i+ℓ2)

m,n = v
(i)
m+1,n − v(i+ℓ1)

m,n , (3.5b)

or, in a solved form, as

u
(i)
m,n+1 =

u
(i+ℓ2)
m,n − v

(i+ℓ1)
m,n

u
(i+k2)
m,n − v

(i+k1)
m,n

u(i+k2)
m,n , v

(i)
m+1,n =

u
(i+ℓ2)
m,n − v

(i+ℓ1)
m,n

u
(i+k2)
m,n − v

(i+k1)
m,n

v(i+k1)
m,n , (3.6)

assuming that u
(i)
m,n 6= v

(j)
m,n for all i, j. In all the above formulae, i, j are taken (modN).

It is easily seen that the quantities

a =
N−1
∏

i=0

u(i)m,n, b =
N−1
∏

i=0

v(i)m,n satisfy ∆n(a) = ∆m(b) = 0, (3.7)

where

∆m = Sm − 1, ∆n = Sn − 1, with Smfm,n = fm+1,n, Snfm,n = fm,n+1.
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3.1 Reduction to Yang-Baxter Maps

We can now employ the reduction (2.5), using (3.7) to replace the components x
(N−1)
p , y

(N−1)
p .

This introduces parameters a, b into the Lax matrices. If we define

Xp = diag
(

x(0)p , . . . , x(N−1)
p

)

, Yp = diag
(

y(0)p , . . . , y(N−1)
p

)

, (3.8)

then the compatibility condition (3.3) takes the form

(Xp+1Ω
k1 + λΩℓ1)(Yp+1Ω

k2 + λΩℓ2) = (YpΩ
k2 + λΩℓ2)(XpΩ

k1 + λΩℓ1), (3.9)

and equations (3.5) take the form

x
(i)
p+1y

(i+k1)
p+1 = y(i)p x(i+k2)

p , x
(i)
p+1 + y

(i+ℓ1)
p+1 = y(i)p + x(i+ℓ2)

p . (3.10)

We can write (3.9) as

(Xp+1 + λΩδ)(Ωk1Yp+1Ω
−k1 + λΩδ) = (Yp + λΩδ)(Ωk2XpΩ

−k2 + λΩδ), (3.11)

where 0 < δ ≤ N − 1, with δ ≡ ℓi − ki (modN). This allows us to reduce the general case with
level structure (k1, ℓ1; k2, ℓ2) to that with level structure (0, δ; 0, δ). First, note that formula
(3.11) can be written

(X̄p+1 + λΩδ)(Ȳp+1 + λΩδ) = (Ȳp + λΩδ)(X̄p + λΩδ), (3.12)

where
X̄p = diag

(

x̄(0)p , . . . , x̄(N−1)
p

)

, Ȳp = diag
(

ȳ(0)p , . . . , ȳ(N−1)
p

)

.

Comparing (3.12) and (3.11), we see that

x̄
(i)
p+1 = x

(i)
p+1, ȳ

(i)
p+1 = y

(i+k1)
p+1 , x̄(i)p = x(i+k2)

p , ȳ(i)p = y(i)p ,

all taken (modN). We see from (3.12) that the components (x̄
(i)
p , ȳ

(i)
p ) satisfy

x̄
(i)
p+1ȳ

(i)
p+1 = ȳ(i)p x̄(i)p , x̄

(i)
p+1 + ȳ

(i+δ)
p+1 = ȳ(i)p + x̄(i+δ)

p ,

which are just (3.10) with (ki, ℓi) = (0, δ). We summarise these results in:

Proposition 3.1 In the Yang-Baxter reduction, all systems with level structure (k1, ℓ1; k2, ℓ2),
for which ℓi − ki ≡ δ (modN), are equivalent (up to point transformation) to the system with
level structure (0, δ; 0, δ).

4 The Yang-Baxter Map Corresponding to the Case (0, δ; 0, δ)

In this section we consider the Lax equations with level structure (0, δ; 0, δ), with 0 < δ ≤ N−1.
The resulting equations are quadrirational, with both the Yang-Baxter and companion maps
being birational. We find that the Yang-Baxter maps corresponding to δ and N − δ are inverses
to each other and that the companion map is periodic, with period N .
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4.1 The Equations and Maps

With Lax matrices
L(x, a) = Xp + λΩδ, L(y, b) = Yp + λΩδ, (4.1)

where Xp and Yp are defined by (3.8), with

x(N−1)
p =

a
∏N−2

i=0 x
(i)
p

, y(N−1)
p =

b
∏N−2

i=0 y
(i)
p

, (4.2)

the Lax equation (2.2) implies

x
(i)
p+1y

(i)
p+1 = y(i)p x(i)p , x

(i)
p+1 + y

(i+δ)
p+1 = y(i)p + x(i+δ)

p , 0 ≤ i ≤ N − 1. (4.3)

Only the formulae with 0 ≤ i ≤ N −2 are independent, but the full set is useful when discussing
first integrals.

Remark 4.1 (Level structure (δ, 0; δ, 0) vs (0, δ; 0, δ)) Under the point transformation

x
(i)
p+1 = x̃(i+δ)

p , x(i)p = x̃
(i)
p+1, y

(i)
p+1 = ỹ(i)p , y(i)p = ỹ

(i+δ)
p+1 ,

equations (4.3) take the form

x̃
(i)
p+1ỹ

(i+δ)
p+1 = ỹ(i)p x̃(i+δ)

p , x̃
(i)
p+1 + ỹ

(i)
p+1 = ỹ(i)p + x̃(i)p , 0 ≤ i ≤ N − 1,

which are just the equations for level structure (δ, 0; δ, 0), so these structures are equivalent.

4.1.1 The Yang-Baxter map R(δ)(a, b)

Here we solve (4.3) for (x
(i)
p+1, y

(i)
p+1) as functions of (x

(i)
p , y

(i)
p ) (with 0 ≤ i ≤ N − 2 and

x
(N−1)
p , y

(N−1)
p replaced by (4.2)). We write this map as R(δ)(a, b), but when no ambiguity

can arise, we suppress the parametric dependence by writing the map as R(δ).
Notice that by shifting i 7→ i + N − δ ≡ i − δ (modN), the second part of equation (4.3)

takes the form
x
(i−δ)
p+1 + y

(i)
p+1 = y(i−δ)

p + x(i)p ,

which leads to:

Proposition 4.2 (Inverse Map) The Yang-Baxter map R(−δ)(a, b) is just the inverse of the
map R(δ)(a, b).

This means that we only need to consider δ ≤ N
2 and that, when N = 2M , the map R(M)(a, b)

is an involution.

Proposition 4.3 (First Integrals) The Yang-Baxter map R(δ)(a, b) has the following N first
integrals:

x(i)p y(i)p = ci, 0 ≤ i ≤ N − 2,

N−1
∑

i=0

(x(i+δ)
p + y(i)p ) = cN−1, (4.4)

where, in the latter, x
(N−1)
p and y

(N−1)
p are replaced by (4.2).

The last of these integrals is obtained by summing the additive equations of (4.3).
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4.1.2 The Companion Map ϕ(δ)

Here we solve (4.3) for (x
(i)
p+1, y

(i)
p ) as functions of (x

(i)
p , y

(i)
p+1) (with 0 ≤ i ≤ N − 2 and

x
(N−1)
p , y

(N−1)
p replaced by (4.2)). Since p is no longer the evolution parameter, we relabel

our variables as:
(x(i)p , y

(i)
p+1) = (x(i)q , y(i)q ), (x

(i)
p+1, y

(i)
p ) = (x

(i)
q+1, y

(i)
q+1).

Remark 4.4 (A second travelling wave reduction) This labelling follows directly from the
travelling wave reduction

um,n = xq, vm,n = yq, where q = n+m

We can re-arrange the quadratic formulae in (4.3) (with this new labelling) to obtain N − 1
first integrals:

x
(i)
q

y
(i)
q

= ci, 0 ≤ i ≤ N − 2. (4.5)

We can also re-arrange the linear formulae of (4.3) to obtain

x
(i)
q+1 − y

(i)
q+1 = x(i+δ)

q − y(i+δ)
q , 0 ≤ i ≤ N − 1.

If we define
f(x, y) = x− y, (4.6)

then
f(x

(i)
q+1, y

(i)
q+1) = f(x(i+δ)

q , y(i+δ)
q ), 0 ≤ i ≤ N − 1. (4.7)

We may use
(

x
(0)
q

y
(0)
q

, . . . ,
x
(N−2)
q

y
(N−2)
q

, f
(

x(0)q , y(0)q

)

, . . . , f
(

x(N−2)
q , y(N−2)

q

)

)

as coordinates and, in these coordinates, the map ϕ(δ) just shifts the coordinates f(x
(i)
q , y

(i)
q ) by

δ, whilst leaving the coordinates
x
(i)
q

y
(i)
q

fixed. This leads to the following:

Proposition 4.5 (Periodicity) The map ϕ(δ) is periodic with period N . When (N, δ) = 1 this
is the minimum period. Furthermore, we have that ϕ(δ) = ϕ(1)◦· · ·◦ϕ(1) (the δ−fold composition
of ϕ(1)).

This statement is, of course, independent of coordinates.

Remark 4.6 ((2N − 2) first integrals) Any cyclically symmetric function of f(x
(i)
q , y

(i)
q ) is a

first integral of the companion map, so it possesses (2N − 2) first integrals. The common level
set is then finite, corresponding to the periodicity of the map.

4.2 Examples of the map R(δ)

We can build hierarchies of Yang-Baxter maps for each δ. It follows from Proposition 4.2 that
we only need to consider δ ≤ N

2 . However, as the value of N increases, so does the number of

different maps R(δ). We have:

6



Case δ = 1: At N = 2, we only have the case δ = 1, and R(1) is just the map HB
III in

the classification of scalar Yang-Baxter maps [6]. The map R(1) exists for all N ≥ 2, which
can therefore be considered as a multi-component generalisation of the scalar Yang-Baxter map
HB

III .

Case δ = 2: For N ≥ 4 we have the map R(2). When N is even, this map degenerates to lower
dimensional maps (see the case N = 4 below), but when N is odd, we have a new sequence of
Yang-Baxter maps which fully couple 2N − 2 variables. The 8−component case can be seen in
the case N = 5 below.

Case δ = 3: For N ≥ 6 we have the map R(3), but again, this map degenerates to lower
dimensional maps when N is a multiple of 3. The first fully coupled system is at N = 7.

Whilst the generalisation of δ = 1 is already known [5], the maps R(δ), for δ ≥ 2, are new
classes of Yang-Baxter maps.

4.2.1 When N = 2

Here we only have the case δ = 1, which leads to (with x(0) = x, y(0) = y, x(1) = a/x, y(1) = b/y)

xp+1 = yp

(

a+ xy

b+ xy

)

, yp+1 = xp

(

b+ xy

a+ xy

)

, (4.8)

which (up to a relabelling of parameters) is just the map HB
III in the classification of scalar

Yang-Baxter maps [6].
The existence of the two invariant functions (4.4) implies (the well known fact) that this

map is an involution.

4.2.2 When N = 3

Here we have δ = 1 and δ = 2, but since N − 1 = 2 ≡ −1 (mod3), the map R(2) is just the
inverse of R(1). In this case R(1) takes the form:

x
(i)
p+1 = y(i)p

A(i)

A(i+1)
, y

(i)
p+1 = x(i)p

A(i+1)

A(i)
, 0 ≤ i ≤ 1, (4.9)

with upper indices taken (mod2) and where

A(0) = a(x(1)p + y(0)p ) + x(0)p x(1)p y(0)p y(1)p , A(1) = A(0) + (b− a)x(1)p , A(2) = A(1) + (b− a)y(0)p .

Remark 4.7 (Discrete Modified Boussinesq Equation) This is equivalent to the Yang-
Baxter map derived in [8], associated with the discrete modified Boussinesq equation (see equation
(67a-b) of [8]). They are related by a simple point transformation:

x(0) 7→
c0
x1

, x(1) 7→ c0x
2, y(0) 7→

c0α1

α2y1
, y(1) 7→

α2
1y

2

c30
, where c40 =

α3
1

α2
.

4.2.3 When N = 4

For δ = 1: We obtain the 6−component version of (4.9).
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For δ = 2: Since (N, δ) = 2 6= 1, the map is reducible, with a 4−component subsystem:

x
(0)
p+1 =

x
(0)
p (x

(2)
p + y

(0)
p )

x
(0)
p + y

(2)
p

, x
(2)
p+1 =

x
(2)
p (x

(0)
p + y

(2)
p )

x
(2)
p + y

(0)
p

,

(4.10)

y
(0)
p+1 =

y
(0)
p (x

(0)
p + y

(2)
p )

x
(2)
p + y

(0)
p

, y
(2)
p+1 =

y
(2)
p (x

(2)
p + y

(0)
p )

x
(0)
p + y

(2)
p

,

in which the parameters (a, b) are absent.
The remaining pair of equations are a non-autonomous version of (4.8), with coefficients

depending upon (x
(0)
p , x

(2)
p , y

(0)
p , y

(2)
p ):

x
(1)
p+1 =

y
(0)
p y

(2)
p y

(1)
p

(

a+ x
(0)
p x

(2)
p x

(1)
p y

(1)
p

)

x
(0)
p x

(2)
p

(

b+ y
(0)
p y

(2)
p x

(1)
p y

(1)
p

) , y
(1)
p+1 =

x
(0)
p x

(2)
p x

(1)
p

(

b+ y
(0)
p y

(2)
p x

(1)
p y

(1)
p

)

x
(0)
p x

(2)
p

(

a+ x
(0)
p x

(2)
p x

(1)
p y

(1)
p

) . (4.11)

Notice that this last pair could also be written

x
(1)
p+1 =

x
(1)
p (x

(3)
p + y

(1)
p )

x
(1)
p + y

(3)
p

, y
(1)
p+1 =

y
(1)
p (x

(1)
p + y

(3)
p )

x
(3)
p + y

(1)
p

,

which, with the constraint (4.2), explains the formulae in (4.11).
The 4−component system (4.10) has 4 independent first integrals

I1 = x(0)p y(0)p , I2 = x(2)p y(2)p , I3 = x(0)p x(2)p , I4 = x(0)p + x(2)p + y(0)p + y(2)p ,

so is periodic (and has period 2).
The remaining two equations (4.11) cannot be taken alone, but only as part of the 6−component

system. This system has two more first integrals,

I5 = x(1)p y(1)p , I6 = x(1)p +
a

x
(0)
p x

(1)
p x

(2)
p

+ y(1)p +
b

y
(0)
p y

(1)
p y

(2)
p

,

so is also periodic (of period 2). As commented after Proposition 4.2, this involutive property
follows from δ = N − δ for this case.

Remark 4.8 (Non-Coprime Case) This decoupling, when (N, δ) 6= 1, is a general feature.

4.2.4 When N = 5

Here δ = 1 and δ = 2 give genuinely different maps.

For δ = 1: The map R(1) takes the same form as (4.9):

x
(i)
p+1 = y(i)p

A(i)

A(i+1)
, y

(i)
p+1 = x(i)p

A(i+1)

A(i)
, 0 ≤ i ≤ 3, (4.12)

with upper indices taken (mod4) and where

A(0) = a(x(1)p x(2)p x(3)p + x(2)p x(3)p y(0)p + x(3)p y(0)p y(1)p + y(0)p y(1)p y(2)p ) +
3
∏

i=0

x(i)p y(i)p ,

A(1) = A(0) + (b− a)x(1)p x(2)p x(3)p , A(2) = A(1) + (b− a)x(2)p x(3)p y(0)p ,

A(3) = A(2) + (b− a)x(3)p y(0)p y(1)p , A(4) = A(3) + (b− a)y(0)p y(1)p y(2)p .
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For δ = 2: The map R(2) takes the form:

x
(0)
p+1 = y(0)p

A(2)

A(3)
, x

(1)
p+1 = y(1)p

A(0)

A(1)
, x

(2)
p+1 = y(2)p

A(3)

A(4)
, x

(3)
p+1 = y(3)p

A(1)

A(2)
, (4.13)

and y
(i)
p+1 =

x
(i)
p y

(i)
p

x
(i)
p+1

, with upper indices taken (mod4) and where

A(0) = a(x(3)p x(0)p x(2)p + x(0)p x(2)p y(1)p + x(2)p y(1)p y(3)p + y(1)p y(3)p y(0)p ) +
3
∏

i=0

x(i)p y(i)p ,

A(1) = A(0) + (b− a)x(3)p x(0)p x(2)p , A(2) = A(1) + (b− a)x(0)p x(2)p y(1)p ,

A(3) = A(2) + (b− a)x(2)p y(1)p y(3)p , A(4) = A(3) + (b− a)y(1)p y(3)p y(0)p .

4.2.5 The Structure of the Formulae

The order of appearance of A(i) in (4.13) and the combination of variables appearing in the

definition of A(0) is controlled by the following ordering of the variables x
(i)
p , y

(i)
p :

{x(δ−1), x(2δ−1), . . . , x((N−1)δ−1), y(δ−1), y(2δ−1), . . . , y((N−1)δ−1)}.

When (N, δ) = 1, the numbers {(mδ− 1)}N−1
m=1 form a permutation of the numbers 0, . . . , N − 2,

so all the variables are included in this list. The formulae (4.13) are just

x
(mδ−1)
p+1 = y(mδ−1)

p

A(m−1)

A(m)
, 1 ≤ m ≤ N − 1. (4.14)

The coefficient of the parameter a in function A(0) is constructed as follows: the first term is
∏N−2

i=0 x(i)

x(δ−1) . We then repeatedly act by the permutation

x(δ−1) → x(2δ−1) → · · · → x((N−1)δ−1) → y(δ−1) → y(2δ−1) → · · · → y((N−1)δ−1) → x(δ−1),

for (N − 2) times, which ends with
∏N−2

i=0 y(i)

y(N−1−δ) . The coefficient of a is then just the sum of these

(N − 1) terms. The remaining term in A(0) is just
∏N−2

i=0 x(i)y(i).
The functions A(i) are formed by successively changing the coefficient a to b at each of the

terms in the above sum.

Example 4.9 (The case N = 5, δ = 2) Here we have

x(1) → x(3) → x(0) → x(2) → y(1) → y(3) → y(0) → y(2),

and
x(3)p x(0)p x(2)p → x(0)p x(2)p y(1)p → x(2)p y(1)p y(3)p → y(1)p y(3)p y(0)p ,

giving the expression for A(0), given in the case of (4.13).

Example 4.10 (The case N = 7, δ = 3) Here we have

x(2) → x(5) → x(1) → x(4) → x(0) → x(3) → y(2) → y(5) → y(1) → y(4) → y(0) → y(3),

and
x(5)p x(1)p x(4)p x(0)p x(3)p → x(1)p x(4)p x(0)p x(3)p y(2)p → · · · → y(2)p y(5)p y(1)p y(4)p y(0)p ,
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giving

A(0) = a(x(5)p x(1)p x(4)p x(0)p x(3)p + x(1)p x(4)p x(0)p x(3)p y(2)p + · · ·+ y(2)p y(5)p y(1)p y(4)p y(0)p ) +
5
∏

i=0

x(i)p y(i)p .

The remaining A(i) are then constructed by the above prescription and the map R(3), for N = 7
is given by (4.14), for δ = 3.

4.3 The Quotient Potential Case and Symmetries

In [4] we introduced two potential forms of our equations (3.5). Here we briefly mention the
“quotient potential”, leaving the “additive potential” to Section 5.

Equations (3.5a) hold identically if we set

u(i)m,n = α
φ
(i)
m+1,n

φ
(i+k1)
m,n

, v(i)m,n = β
φ
(i)
m,n+1

φ
(i+k2)
m,n

, (4.15)

where a = αN , b = βN . Equations (3.5b) then take the form

α

(

φ
(i)
m+1,n+1

φ
(i+k1)
m,n+1

−
φ
(i+ℓ2)
m+1,n

φ
(i+ℓ2+k1)
m,n

)

= β

(

φ
(i)
m+1,n+1

φ
(i+k2)
m+1,n

−
φ
(i+ℓ1)
m,n+1

φ
(i+ℓ1+k2)
m,n

)

, (4.16)

where indices are taken (modN).
These equations have a weighted scaling symmetry, whose invariants are given exactly by the

formulae (4.15), leading us back to equations (3.5) and therefore to our previous Yang-Baxter
maps.

5 The Additive Potential

Equations (3.5b) hold identically if we set

u(i)m,n = χ
(i)
m+1,n − χ(i+ℓ1)

m,n , v(i)m,n = χ
(i)
m,n+1 − χ(i+ℓ2)

m,n . (5.1)

Equations (3.5a) then take the form

(

χ
(i)
m+1,n+1 − χ

(i+ℓ1)
m,n+1

)

(

χ
(i)
m+1,n+1 − χ

(i+ℓ2)
m+1,n

) =

(

χ
(i+k2)
m+1,n − χ

(i+k2+ℓ1)
m,n

)

(

χ
(i+k1)
m,n+1 − χ

(i+k1+ℓ2)
m,n

) , (5.2)

and the first integrals (3.7) take the form

N−1
∏

i=0

(

χ
(i)
m+1,n − χ(i+ℓ1)

m,n

)

= a,
N−1
∏

i=0

(

χ
(i)
m,n+1 − χ(i+ℓ2)

m,n

)

= b. (5.3)

Remark 5.1 (Reduction) It is not always possible to use these first integrals to explicitly

reduce (5.2) to a system with N − 1 components (eliminating χ
(N−1)
m,n ), and even when this is

possible the spectral problem (3.1) cannot be written in terms of the reduced variables.

10



In [4] we showed that it is possible to explicitly reduce the system with (ki, ℓi) = (0, 1), which
takes the form

(

χ
(i)
m+1,n+1 − χ

(i+1)
m,n+1

)

(

χ
(i)
m+1,n+1 − χ

(i+1)
m+1,n

) =

(

χ
(i)
m+1,n − χ

(i+1)
m,n

)

(

χ
(i)
m,n+1 − χ

(i+1)
m,n

) , i = 0, . . . , N − 3, (5.4a)

χ
(N−2)
m+1,n+1 = χ(0)

m,n +
1

χ
(N−2)
m+1,n − χ

(N−2)
m,n+1

(

a

X
−

b

Y

)

, (5.4b)

where X =
∏N−3

j=0 (χ
(j)
m+1,n − χ

(j+1)
m,n ) and Y =

∏N−3
j=0 (χ

(j)
m,n+1 − χ

(j+1)
m,n ).

Remark 5.2 This is a direct generalisation of equation H1 in the ABS classification [1].

It is easy to see that the system (5.4) has the following pair of symmetry generators:

Xt =

N−2
∑

i=0

ωm+n+i∂
χ
(i)
m,n

, (5.5a)

Xs =
N−2
∑

i=0

ωm+n+iχ(i)
m,n∂χ(i)

m,n
, ω 6= 1, (5.5b)

where ωN = 1. It is therefore possible to write equations (5.4) in terms of the invariants of these
symmetries. We can then reduce this form of the lattice equations to Yang-Baxter maps.

5.1 The Invariants of Xt

It is straightforward to write a suitable “basis” for the invariants of Xt. The formulae are more
symmetric if we write “too many” invariants, which then satisfy some additional identities. We
therefore define 4(N − 1) invariants, satisfying (N − 1) identities. Furthermore, we make the
reduction (2.5), so that we derive a map. Following [8], we denote these invariants by

x(i) ≡ x(i)p , y(i) ≡ y(i)p , u(i) ≡ x
(i)
p+1, v(i) ≡ y

(i)
p+1, where p = n−m, (5.6)

corresponding to specific edges of the lattice square, as shown in Figure 1 and noting that the
shifts m 7→ m− 1 and n 7→ n+ 1 both correspond to p 7→ p+ 1.

✉ ✉

✉ ✉

x

v

u

y

χm,n χm+1,n

χm,n+1 χm+1,n+1

Figure 1: Invariants defined on edges
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The 4(N − 1) invariants:

x(i) = χ
(i)
m+1,n − χ(i+1)

m,n , i = 0, . . . , N − 3, x(N−2) = χ
(N−2)
m+1,n +

N−2
∑

j=0

χ(j)
m,n,

y(i) = χ
(i)
m+1,n+1 − χ

(i+1)
m+1,n, i = 0, . . . , N − 3, y(N−2) = χ

(N−2)
m+1,n+1 +

N−2
∑

j=0

χ
(j)
m+1,n,

u(i) = χ
(i)
m+1,n+1 − χ

(i+1)
m,n+1, i = 0, . . . , N − 3, u(N−2) = χ

(N−2)
m+1,n+1 +

N−2
∑

j=0

χ
(j)
m,n+1,

v(i) = χ
(i)
m,n+1 − χ(i+1)

m,n , i = 0, . . . , N − 3, v(N−2) = χ
(N−2)
m,n+1 +

N−2
∑

j=0

χ(j)
m,n,

satisfy (N − 1) identities:

x(i+1) + y(i) = u(i) + v(i+1), i = 0, . . . , N − 3, (5.7a)

y(N−2) +
N−2
∑

j=0

v(j) = u(N−2) +
N−2
∑

j=0

x(j), (5.7b)

and equations (5.4) take the form

u(i)v(i) = x(i)y(i), i = 0, . . . , N − 3, (5.7c)

u(N−2) =
N−2
∑

j=0

v(j) +
1

x(N−2) − v(N−2)

(

a
∏N−3

j=0 x(j)
−

b
∏N−3

j=0 v(j)

)

. (5.7d)

The Yang-Baxter map corresponds to the solution of equations (5.7) for (u(i), v(i)). We do not
have an explicit form of the solution in general, but for any given value of N , this can be found.

Remark 5.3 (The Case N = 2) We already remarked that for N = 2 the lattice equation
is just H1 in the ABS classification [1]. Using the symmetry Xt, with ω = −1 leads to the
Yang-Baxter map

u = y +
a− b

x− y
, v = x+

a− b

x− y
,

which is just FV of the ABS classification of quadrirational maps [2] (the Adler map). Clearly,
we may consider this whole family of maps as multi-component generalisations of FV .

Example 5.4 (The Case N = 3) In this case, we find

u(0) = y(0) +
(a− b)y(0)

b− x(0)y(0)(x(0) + x(1) − y(1))
,

u(1) = y(1) +
(b− a)y(0)

b− x(0)y(0)(x(0) + x(1) − y(1))
+

(b− a)x(0)

a− x(0)y(0)(x(0) + x(1) − y(1))
,

v(0) = x(0) +
(b− a)x(0)

a− x(0)y(0)(x(0) + x(1) − y(1))
,

v(1) = x(1) +
(b− a)y(0)

b− x(0)y(0)(x(0) + x(1) − y(1))
.
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5.2 The Invariants of Xs

Again we denote invariants as in (5.6) and Figure 1. The 4(N − 1) invariants:

x(i) =
χ
(i)
m+1,n

χ
(i+1)
m,n

, i = 0, . . . , N − 3, x(N−2) = χ
(N−2)
m+1,n

N−2
∏

j=0

χ(j)
m,n,

y(i) =
χ
(i)
m+1,n+1

χ
(i+1)
m+1,n

, i = 0, . . . , N − 3, y(N−2) = χ
(N−2)
m+1,n+1

N−2
∏

j=0

χ
(j)
m+1,n,

u(i) =
χ
(i)
m+1,n+1

χ
(i+1)
m,n+1

, i = 0, . . . , N − 3, u(N−2) = χ
(N−2)
m+1,n+1

N−2
∏

j=0

χ
(j)
m,n+1,

v(i) =
χ
(i)
m,n+1

χ
(i+1)
m,n

, i = 0, . . . , N − 3, v(N−2) = χ
(N−2)
m,n+1

N−2
∏

j=0

χ(j)
m,n,

satisfy (N − 1) identities:

u(i)v(i+1) = x(i+1)y(i), i = 0, . . . , N − 3, (5.8a)

u(N−2)
N−2
∏

j=0

x(j) = y(N−2)
N−2
∏

j=0

v(j), (5.8b)

and equations (5.4) take the form

u(i)v(i+1) =
(v(i) − 1)v(i+1) − (x(i) − 1)x(i+1)

v(i) − x(i)
, i = 0, . . . , N − 3, (5.8c)

u(N−2) =

(

1 +
1

x(N−2) − v(N−2)

(

a

X
−

b

Y

))N−2
∏

j=0

v(j), (5.8d)

where X =
∏N−3

j=0 (x(j) − 1), Y =
∏N−3

j=0 (v(j) − 1).

Remark 5.5 (The Case N = 2) Again, since the lattice equation is just H1 in the ABS clas-
sification [1], the symmetry Xs, with ω = −1, leads to the Yang-Baxter map

u = y

(

1 +
a− b

x− y

)

, v = x

(

1 +
a− b

x− y

)

,

which is just FIV of the ABS classification of quadrirational maps [2]. Clearly, we may consider
this whole family of maps as multi-component generalisations of FIV .

Example 5.6 (The Case N = 3) In this case, we first define

Pa = ax(0)− (x(0)−1)(y(0)−1)(x(0)x(1)−y(1)), Pb = bx(0)− (x(0)−1)(y(0)−1)(x(0)x(1)−y(1)).
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We then have the map

u(0) = y(0)

(

1−
(a− b)x(0)(y(0) − 1)

(y(0) − 1)Pa − y(0)Pb

)

,

u(1) = y(1)

(

1− (a− b)

(

(x(0) − 1)y(0)

Pa
+

(y(0) − 1)

Pb

))

,

v(0) = x(0)

(

1−
(a− b)(x(0) − 1)

Pa

)

,

v(1) = x(1)

(

1−
(a− b)(y(0) − 1)x(0)

Pb

)

.
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