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ABSTRACT: Addition of high and medium charge density anions (phosphate, sulfate, and chloride) to lysozyme in pure water
demonstrates three stages for stabilization of the protein structure. The first two stages have a minor impact on lysozyme stability
and are probably associated with direct interaction of the ions with charged and partial charges on the protein’s surface. There is a
clear transition between the second and third stages; in the case of sodium chloride, disodium sulfate and disodium hydrogen
phosphate this is at 550, 210, and 120 mM, respectively. Stabilization of lysozyme can be explained by the free energy required to
hydrate the protein as it unfolds. At low ion concentrations, the protein’s hydration layer is at equilibrium with the bulk water.
After the transition, bulk water is depleted and the protein is competing for water with the ions. With competition for water
between the protein and the ions at higher salt concentrations, the free energy required to hydrate the interior of the protein rises
and it is this that stabilizes the protein structure.

■ INTRODUCTION

In 1888, Franz Hofmeister observed that salts influence protein
solubility in a predictable manner. The series of salts listed from
those that precipitate to those that solubilize proteins is referred
to as the Hofmeister series.1−3 In the 1960s, Peter Von Hippel
and his co-workers found that the Hofmeister series also
applied to protein thermal stability.4 The salts that solubilize
proteins also destabilize them, and salts that precipitate proteins
also stabilize them.
Early theories explained the Hofmeister effect in terms of the

alteration to the hydrogen bond population of the bulk water
by the ions, kosmotropes enhancing the order of water, and
chaotropes breaking the structure of water. This idea was
supported by experimental work using phospholipids that
suggested that “hydration forces” around the phosphate groups
were responsible for holding lipid bilayers apart that could not
be explained by electrostatics alone and suggested nanometer-
scale range interactions between water and phosphate ions.5,6

There are chemists who adhere to the theory that alteration of
the water structure explains the Hofmeister effect.7 Advances in
analytical technology has resulted in the “structure making” and
“structure breaking” theory being rigorously challenged. A
range of techniques including terahertz spectroscopy and X-ray

scattering8−10 failed to detect perturbation of water beyond the
first layer around ions. Currently it is widely believed that given
the limited evidence for ions influencing water molecules
beyond the first layer the hydrogen bond population of water
has no bearing on the Hofmeister effect. Against this are limited
studies using dielectric relaxation spectroscopy,11 neutron
scattering12 and molecular dynamic simulation13 that suggest
a longer range interaction between ions and water. The
“structure making” and “structure breaking” theory is open to
challenge and has been shown to fail to explain the behavior of
organic molecules on protein stability.14

There is evidence that ions interact electrostatically with
proteins’ oppositely charged side chains charge (negating
electrostatic interaction) which has an effect of protein
solubility15 but has an unpredictable effect on protein
stability.16 This phenomenon occurs at relatively low salt
concentrations. A simple model was proposed to explain the
cloud point of lysozyme in monovalent anion containing
solutions which explained the observed effect on solubility in
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terms of charge screening at low salt concentrations and surface
tension effects at high salt concentrations.15 Preferential
interaction is a theory that explains the Hofmeister effect in
terms of attraction or repulsion of the ions to the protein
surface.17 A development to the preferential interaction theory
suggested that the effect was determined by a combination of
preferential interaction and the excluded volume of the
ions.18,19 It is applied to explain both protein stability and
solubility. These models are in agreement with the observation
that low charge density anions (chaotropes) interact with
apolar surfaces on the protein and are described as having
preferred interaction with the protein surface.20 High charge
density anions (kosmotropes) are described as being excluded
from the protein surface at higher ion concentrations, though
the mechanism for anion exclusion is not apparent. The
mechanism for stabilization of proteins by high density charge
ions is also not apparent unless through an indirect mechanism
such as surface tension. One theory is that the presence of the
stabilizing molecules results in preferential hydration of the
protein surface and it is this that stabilizes the structure.21 At
present, the mechanisms for protein stabilization and
destabilization by salts are subject to active debate.
In this paper, we describe differential scanning calorimetry

analysis of lysozyme temperature induced unfolding and use a
simple three-stage hypothesis to explain the mechanism behind
anion stabilization of lysozyme.

■ MATERIALS AND METHODS
Lysozyme and the salts were all sourced from Sigma-Aldrich,
Gillingham, UK. Lysozyme was dialyzed with HPLC grade
water using a Mini 8 kDa membrane dialysis kit (GE
Healthcare, Little Chalfont, U.K.) overnight at 4 °C. The
concentration of each lysozyme stock was measured and
adjusted using the absorbance at 280 nm on an Ultrospec 2100
pro UV spectrophotometer (Amersham Biosciences, Amer-
sham, U.K.). Lysozyme and salts were adjusted to pH 7. The
lysozyme concentration used for the differential scanning
calorimeter (DSC) runs was 1 mg/mL lysozyme. The DSC was
a Nano-DSC (TA Instruments, New Castle, DE, USA). The
heating rate was 1.5 °C/min from 30 to 100 °C. Data
evaluation used the software provided by the manufacturer.
Buffer−buffer baselines were subtracted from sample data. The
Tm value (the temperature with the maximum heat capacity),
ΔHunfolding (the change in enthalpy on unfolding), and ΔCp*
(the apparent heat capacity change) were measured. ΔGunfolding
was calculated using the Gibbs−Helmholtz equation.
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where ΔHunfolding
xM is the change in enthalpy in the presence of x

M salt, Tm
0 is the temperature of maximum unfolding in pure

water, Tm
xM is the temperature of maximum unfolding in x M

salt, and ΔCp* is the apparent heat capacity change in the
presence of the salt.10 ΔΔGunfolding was plotted against the
natural log of the concentration and a line fitted using partial
least squares regression to the linear sections of the data to
calculate the ∂ΔΔGunfolding/∂ lnC. The number of water
molecules around the ions at the second transition was
estimated based on the molar ratio of the ions to water.

■ RESULTS AND DISCUSSION
DSC Results. The ΔGunfolding values for lysozyme in aqueous

solutions containing different concentrations of sodium
chloride (Figure 1), disodium sulfate (Figure 2), and disodium

hydrogen phosphate (Figure 3) at pH 7.0 were calculated using
the Gibbs−Helmholtz equation10 using the ΔHunfolding

xM , Tm
0 , and

Tm
xM values determined experimentally using a DSC. The ΔCp*

used was an average over the experiments, as this value did not
significantly change. The effect of salt concentration on
ΔGunfolding shows three distinct stages. The first transition is
around 1 mM. Below this point, stabilization does not follow
the Hofmeister series; see ref 16 for details. The second
transition (Y) is at 550, 210, and 120 mM for sodium chloride,
sodium sulfate, and disodium hydrogen phosphate, respectively.

Figure 1. Change in free energy of unfolding (ΔΔGunfolding) values at
low concentrations of the sodium chloride (circles), disodium sulfate
(squares) and disodium hydrogen phosphate (triangles), pH 7.0.

Figure 2. Change in free energy of unfolding (ΔΔGunfolding) values for
varying concentrations of the sodium chloride, pH 7.0. The dotted
lines are purely a guide to the eye.

Figure 3. Change in free energy of unfolding (ΔΔGunfolding) values for
varying concentrations of the disodium sulfate, pH 7.0. The dotted
lines are purely a guide to the eye.
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At concentrations below the transition, the anion chloride had
no effect on ΔGunfolding, while sulfate and phosphate reduced
ΔGunfolding slightly. Above the transition, ΔGunfolding rose
abruptly. The volume taken up by the protein (1 mg/mL
lysozyme) in this experiment is only ∼0.1% (v/v), so it has
little impact on the ratio of water molecules per ion in the
solution at different salt concentrations. Importantly, the
transition (Y) occurred when there was a ratio of ∼100 water
molecules per sodium and chloride ions, ∼250 water molecules
per two sodium ions and a sulfate ion, and ∼450 water
molecules per two sodium ions and a phosphate ion.
To better understand the role of ions in protein unfolding,

the unfolding reaction has to be considered. Protein unfolding
involves the breaking of the noncovalent bonds that hold the
protein’s tertiary (and secondary structure) together. It also
exposes the apolar core to water. From a thermodynamic
perspective, the free energy required to unfold a protein
(ΔGunfolding) can be expressed as a function of the free energy
required to break the internal noncovalent bonds
(ΔGnoncovalent bonds) and the free energy required to hydrate
the exposed core (ΔGhydration). In proteins with minimal salt
bridging, the ΔGnoncovalent bonds values remain effectively
independent of salt concentration in the solution around the
protein. It is ΔGhydration that is susceptible to being modulated
by the presence of the salt. A change to ΔGhydration by the
presence of ions would affect a protein’s structural stability. If
the assumption is that ΔGnoncovalent bonds is constant, then
ΔGunfolding ≈ ΔGhydration.
For lysozyme at 1 mg/mL and pH 7.0, the following three

stages of stabilization are proposed.
Stage 1: At salt concentrations below 1 mM (X ≈ 1 mM),

the stoichiometry suggests ion pairing with opposite charged
side chains predominates. For thermal stability, this phenom-
enon is not related to the Hofmeister series and is probably side
chain and ion specific, being dictated by local conditions on the
protein surface; see ref 16 for details.
Stage 2: Between salt concentrations of X and Y (where Y is

550, 210, and 120 mM for sodium chloride, sodium sulfate, and
disodium hydrogen phosphate, respectively), the authors
suggest weak interactions between the ions and partial charges
on the peptide backbone and polar side chains predominate.
This interaction only has a weakly negative effect on the
ΔΔGunfolding value of lysozyme.
Stage 3: It is proposed that below the transition (Y) the

water required to hydrate the apolar core of the protein as it
unfolds is coming from the bulk water (water that is effectively
unperturbed by the presence of cosolutes) but as the salt
concentration increases the bulk water is depleted until the
water needed to hydrate the protein’s core has to come from
water associated with the anions and cations. In other words, as
the protein unfolds, it is competing for water with the ions’
“hydration layers”. This increases ΔΔGhydration (the energy
expended hydrating the apolar core of the protein as it unfolds)
and thus ΔΔGunfolding. The relationship expressed in terms of
the equilibrium constant for water in the protein’s hydration
layer switches from an equilibrium with the bulk water to an
equilibrium with the water associated with the anions and
cations; see Figure 4. The idea of competition between the
protein and salts is not a new one and was originally raised by
Franz Hofmeister in terms of the “water absorbing effect” of
salts2,3 and predates the water maker breaker theory by about
40 years.

It is worth noting that the X value is dictated by the
stoichiometry of binding of the ions to the protein’s charged
side chains, which would suggest X is dependent on protein
concentration. Y is likely to be independent of protein
concentration at lower protein concentrations, but at higher
protein concentrations, the water associated with the protein’s
hydration layer will have to be taken into account.

Comparison of Alternative Models. The hypothesis
presented here differs significantly from the preferential
interaction17 and models combining preferential interaction
with excluded volume18,19 and does provide a mechanism for
stabilization. The basic assumption behind the preferential
interaction model is that the hydration layer around a protein is
a single molecule thick and that the cosolute displaces this
water and destabilizes the protein. Cosolutes that do not
interact directly with the protein stabilize the protein by volume
exclusion which sterically favors a compact, folded form to an
open unfolded one.22 Here we contend that it is not volume
exclusion that drives protein stabilization but competition for
water between salt and the protein’s hydration layers and that it
is the free energy of the hydration layer of the protein that is
being modulated. As the free energy of the hydration layer is
altered, this would be expected to affect both stability where
water is required for hydration and solubility where water in the
protein’s hydration layer is displaced. This accounts for
“kosmotrope” (or higher charge density anions) stabilization
of proteins. The preferential hydration model assumes
additional hydration of the protein surface21 which is the
opposite of the mechanism suggested by the authors.
If competition for water explains the activity of “kosmo-

tropes”, it opens the question of the ability of “chaotropes”
(lower charge density anions) to destabilize proteins but
increase the solubility. The “chaotropic” anions, iodide and
perchlorate, both destabilize lysozyme starting from a low
concentration.16 If the assumption is made that the hydration
layer around a protein is thicker than a single or double water
layer and Kim Collins theory that low charge density ions
associate with apolar surfaces on a protein is true,20 then an
apolar surface on the protein will be changed to a charged
(albeit a low density charged) surface. The water interacting
with an apolar and a charged surface will be different in its
hydrogen bond population and would be expected to have
different free energies. It is suggested that low density anions
have a “detergent-like” effect; they turn apolar surfaces to
charged surfaces and convert apolar surfaces that energetically
favor association to like-charged surfaces that favor dispersion.
This would account for a rise in solubility. Stability would also
be reduced as the free energy required to hydrate the apolar

Figure 4. Change in free energy of unfolding (ΔΔGunfolding) values for
varying concentrations of the disodium hydrogen phosphate, pH 7.0.
The dotted lines are purely a guide to the eye.
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surface exposed during unfolding would decrease, reducing the
overall energy required to unfold the protein.
Interaction between Water, Ions, and Protein. The

hydration layer around both salts and proteins has been subject
to debate, and the perspective taken by researchers is often
dictated by the analytical technique that is applied to measure
this phenomenon. For the phenomenological hypothesis
proposed here to be correct, the number of water molecules
around the ions is more than a single or double layer. The case
against water around ions being modified beyond the first water
layer is detailed in a review by Huib Bakker.23 Extended
perturbation of water beyond the single or double layer has
been proposed before for noble gases and salts.12,13 The
authors contend that water molecules in the hydration layer
around ions are dynamic with strong close range interactions
but also with a weaker longer range electrostatic component
observed in the molecular dynamic simulation of water around
ions13 and that it is the free energy associated with the water
perturbed by the ions that is modulating the ΔΔGunfolding value.
The results presented in this paper do not provide evidence

of the extent of the hydration layer around proteins but it is
worth noting this field is also contentious and currently the
source of much debate. Protein functional studies,24 oxygen-17
magnetic relaxation dispersion experiments,25 molecular
dynamic simulation,26 and densitometry27 concluded that the
proteins’ hydration layer is a monolayer of water with the
possibility of weaker perturbation to the second layer of water,
and this extends 3−8 Å into the bulk liquid. This has been
contradicted by terahertz spectroscopy where an apparent
extended hydration layer can be detected around proteins and
peptides.28−30 Extended frequency range depolarized light
scattering experiments31 and ultra-fast two-dimensional infrared
spectroscopy32 also suggest a population of water around
lysozyme that extends further than the tightly bound water. To
quote Serge Timasheff, “the fact is that there is no rigid shell of
water around a protein molecule, but rather there is a
fluctuating cloud of water molecules that are thermodynami-
cally affected more or less strongly by the protein molecule”.
The authors suggest the same can be said for water around ions.

■ SUMMARY
The phenomenological hypothesis presented in this paper is a
three-stage thermodynamic explanation for the effect of
“kosmotropes” (higher charged anions) on the thermal stability
of lysozyme. In the first stage pairing of ions with oppositely
charged side chains had a small but unpredictable effect on
stability, in the second stage ions interaction with partial
charges on the peptide backbone had a small negative effect on
stability and the third stage dictated by competition for water
between the protein and the ions stabilized the protein. The
hypothesis explains the third stage of stabilization in terms of
the energy of hydration of the core of the protein as it unfolds,
and it is this that is being modulated by the presence of the ions
competing for water increasing ΔGunfolding. The idea of
competition for water to hydrate the interior of the protein
as it unfolds is related to the mechanism originally proposed by
Franz Hofmeister in terms of the “water absorbing effect” of
salts.2

■ ASSOCIATED CONTENT
*S Supporting Information
Figures showing Tm versus salt concentration are provided, as
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