UNIVERSITY OF LEEDS

This is a repository copy of The uncertainty of crop yield projections is reduced by
improved temperature response functions.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/119376/

Version: Accepted Version

Article:

Wang, E, Martre, P, Zhao, Z et al. (53 more authors) (2017) The uncertainty of crop yield
projections is reduced by improved temperature response functions. Nature Plants, 3.
17102. ISSN 2055-026X

https://doi.org/10.1038/nplants.2017.102

(c) 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. This is
an author produced version of a paper published in Nature Plants. Uploaded in
accordance with the publisher's self-archiving policy.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

O o0 NOULL D WN -

VUV UVUBRADEAENADEREALARARDRNRAWWWWWWWWWWNRNRNNNNNNNNRRR B R B 1B 2 B
PAONRPROCLOLOXNIYUODUPRPWNNRPROLOLONIYNONUNTRAROWNRPROOVOONAUVRWNROOLON U D WN R O

The uncertainty of crop yield projections is reduced by improved temperature
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Increasing the accuracy of crop productivity estimates is a key element itigmning
adaptation strategies to ensure global food security under climate change. Process-
based crop models are effective means to project climate impact on crgield, but
have large uncertainty in yield simulations. Here & show that variations in the
mathematical functions currently used to simulate temperature responses of
physiological processes in 29 wheat models account for >50% of uncertainty in
simulated grain yields for mean growing season temperatures from 14°C to 33°C
We derived a set of new temperature response functions that when substituted in
four wheat models reduced the error in grain yield simulations across 7 global
sites with different temperature regimes by 19% to 50% (42% average)We
anticipate the improved temperature responses to keekey step to improve modeling of
crops under rising temperature and climate changdeading to higher skill of crop yield

projections.

Process-based modeling of crop growth is an effective way of representing how crop
genotype, environment and management interactions affect crop production to aid
tactical and strategic decision maﬁw@’rocess-based crop models are increasingly
used to project impact of climate change on crop Iﬂie’rkd)wever, current models
produce different results, creating large uncertainty in crop yield simuﬁtj@m;odel
inter-comparison study within the Agricultural Model Inter-comparison and
Improvement Project (Angﬁ) of 29 widely used wheat models against field
experimental data revealed that there is more uncertainty in simulating gram yield
from the different models than from 16 different climate change scﬂa'rhlsgreatest
uncertainty was in modeling crop responses to tempegngtusemilar results were
found with rice and maize cr% Such uncertainty should be reduced before informing
decision-making in agriculture and government policy. Here we show contrasting
differences in temperature response functions of key physiological processes adopted
in the 29 crop models. We reveal opportunities for improving simulation of temperature

response in crop models to reduce the uncertainty in yield simulations.

We aim to reassess the scientific assumptions underlying model algorithms and
parameterization describing temperature-sensitive physiological processes, using
wheat, one of the most important staple crops globally, as an example. We hypothesized
that: 1) the difference among models in assumed temperature responses is the largest

source of the uncertainty simulated yields; and 2) the uncertainty in the multi-model
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ensemble results can be reduced by improving the science for modeling temperature

response of physiological processes.

Temperature affects crop performance primarily through its impact on 1) the rate of
phenological development from seed germination to crop maturity, including the
fulfillment of cold requirement (vernalization); 2) the initiation and expansion of plant
organs 3) photosynthesis and respiration, considered either separately or combined as
net biomass growth simulated using radiation use efficiency ﬁUEhd 4) the
senescence, sterility or abortion of plant organs. All 29 models simulate these processes

except for sterility and abortion, in response to temperature change.

Here, wve compare the temperature functions of these four categories of physiological
processes built into the 29 wheat models and identify the representative response types.
We analyze how different temperature response functions affected simulations of wheat

growth compared to observations in a field experi@nm which well-fertilized and

irrigated wheat grew under contrasting sowing dates and temperature environments
(Hot Serial Cereal [HSC] experiment). We further evaluate the impact of the different
response types by implementing them in two models (APSIM and SiriusQuality) and
analyzing their results against the HSC data and an additional global dataset from the
International Heat Stress Genotpye Experiment (IHEIGEs)rried out by the
International Maize and Wheat Improvement Center (CIMMYT). More importantly,
we derive, based on newest knowledge and data, a set of new temperature response
functions for the key physiological processes of wheat, and demonstrate that when
substituted in four wheat models the new functions reduced the error in grain yield
simulations across seven global sites with different temperature regimes covered by the
IHSGE data.

Results

Contrasting temperature functions in 29 models.

A wide range of temperature responses was observed in the 29 models (Supplementary
Table 1 & 2) which we grouped into four major types (type 1-4) according to how
phenological development and biomass growth (RUE) are treated (Fig. 1 and
Supplementary Table 3), i.e. whether increasing or decreasing slopes are linear or
curvilinear, whether base k), optimum (Bp) or maximum (hay temperatures are

defined, and whetherdis a range or a point. The simplest type is a linear increase in
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developmental rate with temperature from a base temperatwig &found 0°C
assuming no temperature optimump{Tor maximum (hay (type 1 Phenology, Fig.

1a), and a linear decline of biomass growth rate above a certain temperature assuming
no Tmin (type 1 Biomass, Fig. 1b). For both processes, the second type definesiboth T
and Tpt, but assumes nandy, thus simulating an increasing rate with temperature below
Toptand a constant maximum rate aboyg, Tespectively (type 2, Fig. t and d). Mos

models define the three cardinal temperatures, simulating an increasing rate with
temperature fromfin to Topt and a decreasing rate frorgyeto Tmax (Fig.1, €, f, g, and

h). Some of the models in this category defigg s a range (type 3, Fig. dand f),

while the rest define it as a single value (type 4, Figg and h). Some models
implement linear responses to temperature between the cardinal temperatures, the

others curvilinear.

For both phenology and biomass growth, most models agreesiwdén the rate
is maximum (Fig. 1), except for models that lack,: (Fig. 1a). At temperatures lower
or higher than dy, the uncertainty in the simulation of phenological development and
biomass increases, particularlgt higher temperatures. Response types for
photosynthesis were consistent, but different cardinal temperatures were used
introducing uncertainty (Supplementary Fig.aland b). The simulated temperature
responses of respiration differ widely from each other (Supplementary Eignd,d).
When such estimates of respiration and photosynthesis are combined to simulate
growth, any uncertainty is compounded at high temperatures. For leaf growth and
senescence, contrasting temperature responses were deployed, with much greater
uncertainty at temperatures above 25-30°C (Supplementary Fig. 1, e, f, g, and h). For
grain growth, the differences in temperature responses are even greater, generating

increased uncertainty above 24°C (Supplementary Figri j).
Model performance against HSC data.

Simulation results of the 29 models against the HSC experiment were analyzed by
grouping all the models based on the four temperature response types and cardinal
temperatures deployed for simulating phenology and biomass growth. The results were
standardized at 20°C to remove any systematic bias and compare their response to
temperature (Fig. 2). For phenology, the models agreed most closely with each other at
a mean growing season temperature around 20°C and matched the observed anthesis

and maturity dates well (Fig. &to h). At lower and higher temperatures, the simulated
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results departed from each other and did not match the observed dates. Thrkee type
response models (with three cardinal temperatures,1g)gwith low Topt and Thax
severely underestimated the pre-flowering development rate at temperatures above
25°C and thus predicted durations longer than were observed (Fig. 2d). For post-
flowering development, 20 out of the 29 models predicted the physiological maturity
to be later than was observed at temperatures above 25°C (Eig. ), particularly

the models that have a& around 35°C (Fig. 2h).

For total above ground biomass and grain yield, the models with type 2 response for
biomass growth (no reduction at higher temperatures) tended to overestimate biomass
at high temperatures (Fig. 2j). For type 3 (with an optimal temperature range, )Fig. 2k
and type 4 (Fig. 2l) responses, the models that have a high@ndl Tax for either
RUE (Fig. 1,f and h) or photosynthesis (Supplementary Eg).also overestimated
biomass at temperatures above 25°C (Fig. 2, k and I). The simulated responses for grain
yield for the HSC experiment varied in a similar way to those for biomass (Figo2,

p). These findings indicate that improved modeling of temperature responses of
phenological development, biomass growth (RUE), photosynthesis and respiration

rates is necessary to reduce uncertainty in simulation of grain yield.
Impact of temperature response functions.

While the impact of the temperature functions in different models may be compounded
by interactions with other simulated processes, we further evaluated the impact of the
different temperature response types (Supplementary Table 3) by implementing 20
combinations of temperature response types in the APSIM and SiriusQuality models to
simulate the HSC data and the additional IHSGE data from CII\W This
change caused the two models to predict different grain yields as a result of differences
in simulated growth duration, leaf area index, and biomass (Fig. 3). Differences in
simulated grain yield were greater than 100%, particularly at low and high temperatures
(Fig. 3). The range of simulated grain yield caused by different combinations of
temperature response functions in APSIM and SiriusQuality was on average 52%
(65%) and 64% (78%) of the uncertainty of the whole ensemble of 29 models for the
HSC (IHSGE) data, respectively, highlighting the significant impact of temperature
response functions alone on simulated wheat growth in the absence of water and

nutrient stresses.
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New temperature response functions.

A recent synthesis of available data on phenologicatldpment and tissue expansion
indicated that rates of pre-anthesis phenological development, tiggaresion, and cell
division of crop plants all followed a common Arrheniupdyresponse curve, and for
wheat the response curve has:a 8f 0°C, Topt0f 27.7°C, and rax of 40°C 14] We used

this information to derive and unify the modeling af temperature response for wheat

phenological development and initiation and expansion of leaves, nolées, slem,
grain, and roots using a non-linear function I@[Fig. 4 a and equation)1If such a
temperature response represents the ’crdpvelopment of sink capacit)EI leaf
photosynthesis under current €{@vels, typical radiation and stress-free conditions
should closely follow this response, witkytlaround 27.7°C (Fig. 4c¢), although the:T

of Cs crops such as wheat may increase under higherddfxentrations and light

intensities when photorespiration is supprﬁed

Data on Qo (the factor by which the rate of a process increases when temperature is
raised by 10°C) for various species living in a wide temperaturelﬁagabled us to
derive cardinal temperatures for respiration using the f(T) equation (Fig. 4c). This new
function can accurately simulate the decline i With increasing temperature (Fig.
5), and is similar to that estimated for Eucalyptus pauﬁ}ﬂrhis clearly demonstrates
the need to replace the traditional constapgRproacltio better quantify the temperature
response of respiration. The rates of post-anthesis development calculated with data
from experiments in outdoor climate chan@md the HSC experiment, together
with the f(T) equation, enabled derivation of the cardinal temperatures of post-anthesis

development (Fig. 4b The rates of post-anthesis development increases with

temperature up to 25-3

We used the derived response functions for photosynthesis and respiration combined
with the SPASS canopy photosynthesis and growth ﬁnk—:generate the temperature
response for RUE (Supplementary Fig. 2a, Fig. 4d). The emergent response showed a
Topt Of 20°C, Thin Of -1°C and hax of 35°C under moderate to high radiation, bgg T
shifted towards lower temperatures under low radiation (data not shown), giving a
wider Topt range (Supplementary Fig. 2a). The same f(T) equation wite tezived
cardinal temperatures for RUE (Fig. 4d) is able to explain 99% of the variance of the
emergent responses generated from the SPASS model (Supplementary Fig. 2b).
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The derived temperature response functions captured real responses well, compared
to the pre-anthesis developmental rates reﬁﬁtadd calculated from the HSC
experimental data (Fig. 4a), post-anthesis developmental rates estimated from an
additional data set for a winter wheat cultivar grown in outdooraté chambﬁ(Fig.
4b), and measured leaf photosynthesis(ertg. 4c). Pooling all data, the derived
response functions explained 84% (for post-anthesis development) to 95% (for seedling
elongation) of the variation in the rates calculated from measured data (Supplementary
Fig. 3). The derived temperature function for RUE (Fig. 4d) matched the response of
maximum net biomass growth rates calculated from the HSC, and that of the maximum
RUE calculated from LAI, biomass and radiation interception for two additional data
sets for winter wheat grown in the field in the North China Plain (m}iﬁ)j in outdoor
climate chambﬁ A comparison of the net biomass growth rate and RUE for the NCP
and outdoor climate chamber experiments (Supplementary Fig. 4) demonstrated that
under the current CQevel, RUE for biomass growth under conditions free of other
stresses follows the temperature response shown in Fig. 4d, representing the upper
boundary of the calculated RUE across a wide temperature range, and is consistent with
previous studi Except for the responses of daily biomass growth and RUE where
daily average temperatures are used, use of sub-daily temperatures and canopy

temperatures may further improve the simulated response.
Improvement in wheat yield simulations

Implementation of the derived temperature response functions in APSIM and
SiriusQuality improved the simulation of wheat phenological development, biomass
growth and grain yield across growing temperatures from 15°C to 32°C compared with
data from both HSC experiment and thdependent IHSGE global experiment (Fig.

3). For HSC, only the post-anthesis development rates were used to derive f(T) so that
data can be considered as semi-independent. Compared with the original models, the
root mean squared relative error (RMSRE) of the models for grain yield with the
derived temperature responses was reduced by 58% (from 58% to 24%) and 53% (from
53% to 25%) for APSIM and SiriusQuality, respectively against the HSC data. The
error reduction for the IHSGE data set was 60% (from 100% to 39%) and 39% (from
31% to 196) for APSIM and SiriusQuality, respectively.

The improved temperature functions were tested further using two additional models

(SALUS and WheatGrow) with the multi-environment IHSGE experimental data

8
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(Table 1). Improvements in simulating total biomass and grain yields were
demonstrated in all the four models, with a reduction in RMSE by 28-60% for biomass
and 19-59% for grain yield. Less improvement was achieved for modelling
phenological developmerfor both models, possibly due to an over-fitting of the
original models as phenological data were provided to modelers and models were not
fully recalibrated after the implementation of the improved equations. The four
improved models had a larger modeling efficiency for both total biomass and grain
yield (Table 1), indicating that they better captured the variations of these variables to
temperature. We conclude that the common equatignvi{i different parameters for
different processds able to simulate the temperature responses of major physiological
processes in wheat and may be potentially applied to other crops to increase certainty
in simulating crop yield under climate cha%

Discussion

With the increased applications of process-based crop models to address genotype x
environment x management interactions as they impact on yield under climate change,
the science underpinning a model for simulation of crop growth processes and yield
needs to be critically examined to ensure high scientific rigor and simulation certainty.
Our analyses revealed contrasting differences in the type of mathematical equations
used to simulate temperature responses of the key physiological processes of wheat.
Such differences are a major cause for large uncertainty in simulated wheat yields
across different temperature environments. They also reflect the insufficient
understanding of how key physiological processes respond to temperature at the time
when the models were originally developed, many of which were only based on limited
data and local conditions. We demonstrated that by updating the temperature response
functions based on newest science and data, crop models can better capture the impact
of temperature change on growth processes and gain yield, unveiling a major step to
improve modeling of crops under rising temperature and climate change, leading to

higher skill of crop yield projections.

The Agricultural Model Inter-comparison and Improvement Project (AgMIP) has
enabled a worldwide comparison of agricultural models against global datasets. The
inter-comparison of 29 wheat models showed that uncertainty in simulated wheat yield
from different models increases with rising temperature, which provides the

background and forms the basis for our current study. Previous results from a multi-

9
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model ensemble approach for W@tice maize and potato cr(ﬁr‘ %lindicated that

the mean simulated crop yield of a multi-model ensemble agreed reasonably well with
observations, pointing to the use of a multi-model ensemble approach as an effective
way of quantifying and reducing uncertainty in crop yield projections under climate
change. However, such agreement will ultimately depend on how the response
functions for all major physiological processes compare among the models and how
closely they are to the ‘true’ response to environmental variables like temperature.
Although the multi-model ensemble approach provides one useful way of uncertainty
guantification, it is expensive and difficult to apply in terms of labor, timing and
expertise. In addition, the ensemble approach itself does not necessarily lead to
improvement in process understanding, unless a further step is taken to increase the
rigor of science underpinning the process submodules by improving algorithms in

comparison to data, as demonstrated here.

Further analysis of our newly derived response functions reveal that the median
responses from all the 29 models closely matched the derived temperature responses
for pre-anthesis phenological development from 0°C to 30°C, and for biomass growth
rates, RUE and respiration in the range of 0°C to 35°C. However, for post-flowering
phenological development, the ensemble median only matched the derived responses
up to 25°C, while the median model photosynthesis response matched the derived
temperature response of RUE rather than that of photosynthesis (Fig. 4e). The
deviations of temperature response functions for various processes in individual models
from the newly derived functions based on experimental data imply that there is no
guarantee for the multi-model ensemble median or mean to provide the best yield
predictor, particularly at high temperatur€r results highlight the importance of
careful ex-ante screening and evaluation of the individual models for their robustness
to simulate temperature responses before they are selected in a multi-model ensemble

for the purpose of reducing uncertainty in assessment of climate change impact.

Our analyses identified several key knowledge gaps. Very limited data are available
to quantify wheat response to extreme temperstatdoth low and high temperature
ranges. Further research is needed for the post-anthesis development rate under high
temperatures, where models disagree with each other and only few data are available.
The models that simulate photosynthesis tend to underestigghar This process and

thus need to be reparametrized. There is still a lack of measurement data to quantify

10
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how net biomass growth rate responds to temperature, and to verify simulated RUE
response to temperature. More generally, variations in vapor pressure deficit (VPD)
among environments could introduce noise in the temperature response due to
differences in evaporative cooling confounding the association between air and actual
plant temperature and thereby reduce the certainty of prediction. Pollination, sterility
or abortion of plant organs as affected by abnormal temperatures have rarely been
simulated, but can become important under rising temperature, thus needs more
attention. While our current analyses focus only on temperature, interactions with other
climate drivers will also need to be addressed, for example, interactions with
photoperiod on flowering, with radiation on growth rate, with Gfncentration

change under stressed and non-stressed conditions.
Methods

Inter-comparison of temperature responses in wheat crop modelsTwenty-nine
physiologically based wheat crop models previously used in the AgMIP-Wheatroject
(Supplementary Table 1, Supplementary Dataset) were compared in terms of how the key
temperature-responsive physiological processes are simulated. The different s

in the models are summarized in Supplementary Table 2 and Extended Database 1. The
algorithms used in these models were extracted and the temperature response equaipons fo
developmental and growth processes were categorized based on whether the cardinal
temperatures (i.e., minimumpt, optimumTopt, and maximumlmay) are defined and if so how

For phenology and biomass four temperature types were identified (Fig 1, Supplementary Fig.

1, and Supplementary Table 3).

Comparison of model performance against data from the Hot-Serial-Cereal experiment
The 29 wheat models were tested against field data from a Hot-Serial-Ce&S€lgkperiment

in which the spring wheat cultivar Yecora Rojo was grown with differenfrgptimes and
artificial infrared heat treatments under field conditions at Maricopa, AZ, (B3/07° N,
111.97° W, 361 m a. i| Yecora Rojo is of short stature, requires little to no vernalization,
has a low photoperiod sensiti, and matures eﬁ All crops were well watered and

fertilized with temperature being the most variable factor.

The inter-comparison of model performance was part of the AgMIP-Wheat pwwjdtt
four steps and different levels of available information for model calitﬁfﬁm results used
in this study (Fig. 2, Fig. 3) were simulation results from all models that eadibrated against
observed phenology (flowering and maturity dates) from all treatmegether with then-

season and final, total above ground, leaf, stem, and grain dry mass and nitrogen, and leaf area
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index from the highest yielding treatment, i.e., simulation step D “Blind test with calibrated
highest yieldﬂ

The HSC data set was also used to assess the uncertainty in the multi-meniéledsie
to different types of temperature response functions for phenological developmieatetea

index, biomass growth and grain yield (see below).

Evaluation of wheat models against global multi-site experiment3he 29 wheat models
were also evaluated against data from the International Heat Stress Genotype
Experiments(IHSGE) carried out by CIMMYT (therefore referred ttHSGE dataset) that

had seven temperature environments, including tfreewing treatmernjt§*q in the absence

of water and nutrient stresses and free of pest and diseases. The IHSGReswpencluded

two spring wheat cultivars (Bacanora 88 and Nesser) grown during the 1990-1991, and 1991-
1992 winter cropping cycles at hot, irrigated, and low latitude sites in Mexigdd€Obregon,

27.34° N, 109.92° W, 38 m a.s.l.; and Tlatizapan, 19.69° N, 99.13° W, 940 m a.s.l.), Egypt

(Aswan, 24.1° N, 32.9° E, 200 m a.s.l.), India (Dharwar, 15.49° N, 74.98° E, 940 m a.s.l.), the

Sudan (Wad Medani, 14.40° N, 33.49° E, 411 m a.s.l.), Bangladesh (Dinajpur, 25.65° N, 88.68°
E, 29 m a.s.l.), and Brazil (Londrina, 23.34° S, 51.16° W, 540 Eﬁﬁ Experiments in

Mexico included normal (December) and late (March) sowing dates. Bacanora 88 has moderate

vernalization requirement and low photoperiod sensitivity and Nesser has low to no
vernalization requirement and photoperiod sensitivity. All experiments were weladaand
fertilized with temperature being the most important variable. Variables méagurthe
experiment included plantsintotal above ground biomass at 50% anthesis, days to 50%
anthesis, days to physiological maturity, final total above ground biomassyigidinspikes

m2, grains spiké, and average single grain mass at maturity.

Model inter-comparison was carried out using standardized protocols and one step of
calibratioﬁl These experimental data were not publicly available and were therefore used in a
blind test. Sowing dates, anthesis and maturity dates, soil type characteristicatne Wata
for all sites, years, and cultivars were supplied to the modellers. Crop growtredatsupplied
only for one site (at Obregon) in one year, all other crop growth dasaheé back and not
supplied to modelers. THEISGE dataset was also used to assess the uncertainty of the multi-
model ensemble due to different types of temperature response functions for phenologica
development, leaf area index, biomass growth, and grain yield (see below). None of these data

were used to derive the improved temperature response functions.

Evaluation of the impact of various temperature response functions on simuian results.
In order to demonstrate the impact of the temperature response types ustedent dvheat

crop models on simulated phenology, total above biomass and grain yield, the fouypsgor t
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of temperature responses summarized from the models (Supplementary Table 3) were
implemented in the APSIM and SiriusQuality models. These two models were chosen because
they were built with different types of temperature response functionsléaugntary Table 3)

and use different approaches to simulate phenology (progress to flowering batoejciie
duration of phases between significant events on the shoot apex vs. tracks developogint thr
leaf appearance, using the prediction of final main stem leaf number), carpagsion
(branching vs. individual phytomer-based approaches), and biomass growth (radiation use
efficiency of whole canopy vs. individual canopy layers). For phenology, weepsoated the
response type 4 into linear and curvilinear responses, resulting in af 2@alemperature (4 x

5) response type combinations for models using radiation use efficRb&y Supplementary

Table 3). The two modified models were executed against the HSIEI&EIE experimental

data. For any given observed grain yield, the simulated yield ranges frormuttrenaodel
ensemble (of the 29 wheat models), the APSIM and SiriusQuality models (eachevitf t
combinations of temperature response functions), were calculated. The ratiosiwifutllated

ranges of the APSIM and SiriusQuality with the 20 combinations of temperature response
functions to those of the multi-model ensemble were used to estimate how mationgin

the multi-model ensemble ranges were explained by each of the models togethitre with

variations in temperature functions.

New temperature response functions of wheat physiological processes derived based on
data. The Wang-Engel (WE) curvilinear temperature response function used to model wheat
phenoloqﬂin the SPASS (Soil Plant Atmosphere Systems Simulation)-Wheat|iode

found to be accurate and flexible in simulating the temperature responses oplahgs*

It has been successfully applied in modeling leaf development and phenology heat

maiz ric and potato cr

The WE temperature function constructs a curvilinear response basgd, dgd and Tax

of the simulated process. These three cardinal temperatures determine thod tteagesponse
curve, so they have clear biological meanings. Once the cardinal temperatures arenknown,

extra parameters are needed in the model. It simulates the effect [Gdjpefrature between

Tmin andTmax as
p
20 -T ) (T, -T. ) -(T-T_)" In2
f _ min opt min min C o= , =0~1
(T) (Topl - Tmin = B (1)

In Tmax - TminJ
Topt - Tmin

An extra shape fact@rwas added here in Equation (1) to account for temperature responses

with more extended,}: (e.g. for RUE at low radiation). For all procesBes 1.0 was used to
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472  describe temperature responses, exceRHE wherepy = 0.8 was used to reflect the different

473  shape of the RUE response curve compared to other physiological processes.

474 The cardinal temperatures derived for using Equation (1) to simulate tempezahorses

475  of various processes are given in Fig 4. For phenological development, the cardinal
476  temperatures were derived from published data on seedling elongation and pre-anthesi

477 developmel?_tfl and post-anthesis developr1‘ﬁ| (see below). For photosynthesis under

478  current CQ, the cardinal temperatures of pre-anthesis phenological development were used
479  assuming it mimics the development of sink capacity. For respiration rate, Equation (1) with
480 =1.0was used to derive the average(tQe factor by which the respiration rate increases when
481 temperature is raised by IDfPof respiration rate at different temperatures from 5 to 45°C with
482  5°C interval. A genetic algorithm was applied to optimize the three cardinpkratures (G,

483  Top, and Thay to match the derived averageo@ the Qo estimated at the corresponding

484  temperatures known from the Iitera@e{Fig. 5). Finally, foRUE the cardinal temperatures

485  were derived from simulation results using the SPASS canopy photosynthesis and growth
486  model, together with the derived temperature functions for photosynthesis and respiration (see

487  below). All rates were normalized at 20°C.

488  Calculation of pre- and post-anthesis development rates from dataPre-anthesis

489  development rates were calculated from the HSC experiment. The rates of leainemevgre

490 estimated as the slope of the decimal humber of emerged leaves (Ha imeesured at

491 least twice a week against days from seedling emefﬁtre rate of development towards

492  anthesis was calculated as the reciprocal of the duration from emergence to anthesis. The rates
493  of seedling elongation for seven spring wheat cultivars grown in growth chamhiiars w

494  different temperature were also obtained from a recent data sy[ithesis

495 Post-anthesis rate of development was calculated as the reciprocal of thertinaatinesis

496  to physiological maturity from the HSC cﬁand experiments carried at INRA Clermont-

497  Ferrand, France (44.78° N, 3.17° E, 329 m a.s.l.) with the winter wheat cultivaeTdrésvn

498  during the 1993-1994, and 1997-1998 winter cropping cycles in outdoor climate chambers
499  under well-watered and fertilized conditions with post-anthesis mean daily tempesatgirgr

500 from 12.6 to 24.7 In the HSC experiment, physiological maturity was judged when
501 endosperm of grains becomes firm and almost dry. In the INRA experiments, phgsaiolog
502  maturity was calculated as the time when 95% of final grain dry mass was reached by fitting a
503  3-parameter logistic function equation to grain dry mass data plotted abainsimber of days

504  after anthe

505 The calculated post-anthesis rate of development from the HSC data was tiet@niyed

506 for derivation of temperature response functions shown in Fig 4. No dataHedid$SGE
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dataset were used in the derivation of temperature functions. Therefore, for miilg)| ties

IHSGE dataset is fully independent data, while the HSC dataset is semi-independent.

Derivation of the emergent temperature response for radiation use efficiency (RYEsing

a canopy photosynthesis and growth modelA simplified version of the canopy
photosynthesis and growth sub-models in the SPASS-Wheaﬂutm@ther with the derived
temperature response functions for photosynthesis and respiration rates (Fig 4uyeadre
calculate the net biomass growth rate of a wheat canopy and derivedimald@mperatures

and shape parameter of the RUE temperature response function (Supplementary Fig. 2). The
model integrates leaf level photosynthesis rate to canopy level. It also calthageowth and
maintenance respiration, then the net assimilation and net biomass grovitie pdirameter

values used in the simulations are given in Supplementary Table 4.

We assumed a wheat canopy at an early developmental stage with a leaf area index (LAI
of 3 n? m2 and a total above ground biomass of 3 lf@r any new growth, 20% of assimilate
would be partitioned to roots, and 80% to the above ground parts. In the simulationsdwe us
47 years (1957-2003) of daily climate data from Birchip in Victoria of Austtalimulate the
daily RUE of the wheat canopy in the absence of water and nutrient stidsisegave us a
daily global radiation range from 10 to 32 M3 ahd a daily mean temperature range of 3.6 to
36°C. We also executed the model for an extra range of daily mean temperaturetb&¥C5
to generate the daily net above ground biomass growth rate. RUE was calculdttdréont
daily temperatures as the net above ground biomass growth rate divided by thenradiatio

intercepted by the canopy.

Calculation of net biomass growth rate and radiation use efficiency under differg
temperatures.Net biomass growth rate was calculated from the HSC data as the ratial of t
above ground biomass at maturity divided by the number of days from crop emergence to
physiological maturity. Measurement data on dynamics of LAl and total above grourasbiom
from the INRA experiments described abﬂand from five experiments where the winter
wheat cultivars SJZ8 and SJZ15 were grown during the 2004-2005, 2005-2006, 2006-2007,
and 2009-2010 winter cropping cycles at Wugiao, North China Plain (NCP, 37.41° N, 116.37°
E, 20 m a.s.l.) with ample water and nitrogen su@lwere used to calculate RUE under

different temperatures.

In the INRA experiments, LAl and total above ground biomass were measured every 4 to 8
days starting at anthesis. Only dates when LAI was higher thar? 205 were used (i.e. before
the onset of the phase of rapid canopy senescence), leaving measurements foosixfdates
with which to calculate the net biomass growth rate and RUE. Daily radiatgrception was

calculated as total incident radiation times (1-exp&KAl)), where K (0.7 nf ground n?
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green leaf) is the light extinction coefficient. RUE was calculatedeasltipe of total above
ground biomass versus the cumulative radiation interception and the average net biomass
growth rate was calculated as the slope of total aboveground biomass vensustibeof days

after anthesis.

In the NCP experiments, LAl and total above ground biomass were measured before
wintering, at greening, and at jointing, booting, anthesis and 10 daydlaeftering and at
maturity. Daily increases in LAl were estimated through best fit polynoegadtions to the
data. Daily radiation interception was calculated as for the INRA experimentsing total
incident radiation estimated from sunshine hours. The cumulative radiatioceptten for
each period was calculated as the sum of daily radiation interception. RUECHoper@od
(from jointing onwards) was calculated as the net biomass increase divitthedtbtal radiation
interception and the average net biomass growth rate was also calculated for each period (fr
jointing onwards) as the net biomass increase divided by the total number of days.

Calculation of daily mean temperature.Daily mean air temperature (Tt) in the HSC and
IHSGE experiments was calculated as the sum of eight contributions of a cosinewariat

between daily maximum (kx.dai) @nd minimum (Fin,daiy) daily air temperaturﬁ

1 r=8
T=g2T(1) @)
r=1
Th (r ) = Tmin,daily + fr (Tmax,daily_T min,daily) (3)
1 90
f-=[1 2-
: 2( +cos—( 1} (@)

where Th (°C) is the calculated 3-hour temperature contribution to estimated daily mean

temperature, and r is an index for a particular 3-hour period.

Evaluation of the improved temperature response functiondVe tested the performance of

the new temperature response functions on how accurately they capture thef ries
phenological development, tissue expansion, photosynthesis, and biomass growth (RUE)
measured or derived from experimental data at a range of temperatures. Thisnedsy
comparing the rates calculated using the derived functions (Fig. 4) at a eperature

against the corresponding measured rates from the experiments at the same temperature
(Supplementary Fig. 3-4). Significance of the relationship was tested and the eoeffici
determination (B was used to see how much variation in the measurements could be explained

by the new temperature functions.

Evaluation of the improved skills of four wheat models when using the netemperature

responsesTo test the improvement by using the improved temperature response functions,
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they were also implemented into the APSIM, SiriusQuality, SALUS and WheatGrow models
replacing their original functions. The simulation results were then compared with the
measurements (Fig 3, Table 1). These four models were chosen to have good representation of
different temperature response functions for phenological development and biomass growth
and thus to generalize the improvement in wheat model skills when they usepezdture
response function we derived. One of the models (WheatGrow) uses a photosynthesis an
respiration approach to model biomass growth, while the other three use a RUE approach.

Many different measures of the discrepancies between simulations and measurements have
been propos We concentrated on three measures to highlight different aspects of the quali
of simulation with the original and improved modé{.measures are based on mean squared
error (MSE), where the mean is over all measurements of a particular variable. flineano
squared error (RMSE) is the square root of MSE; it has the advantage to exjonssia ¢ne
same units as the variable. RMSE was calculated as:

1y,
RMSE= NZ(yi—yi)2 (5)

i=1
where Y, is the observed value of the ith measured treatmgnis the corresponding

simulated value, and N is the total number of treatments.

For comparing very different growth environments likely to give a broad rangepf cr
responses, the relative error can be more meaningful than the absolute errorpsbrtiesan
squared relative error (RMSRE) was also calculated because of theideryawge of total
above ground biomass and grain yields in both the HSAHMS&GE datasets. RMSRE was

calculated as:

2
.
RMSRE= 100« %Z(yy_yj (6)

i=1

Finally, the NashSutcliffe model efﬁcien@(EF) is a distance measure that compares
model MSE with the MSE of using the average of measured values as an estimator. Therefore
EF is useful for making statements about the skill of a model relativsteitmple reference
estimator. For a model that simulates perfectly, EF = 1, and for a modélathéihe same
squared error of simulation as the mean of the measurements, EF = 0. EF is positivediar a

that has a smaller squared error than the mean of the measurements. EF was calculated as:
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2 (=%
604 EF=1-53—— (7)

N

D (Y -y’

i=1
605 whereY is the average over thg.

606  Data availability. The data extracted from the models to describe their temperature functions
607 are provided in Supplementary_Data_Set D1 in Excel format. The experimental data used to
608 calibrate and validate the models are available in Harvard Dataverse with th&eidenti

609  “doi:10.7910/DVN/IWCFHR* for and HSC datand “doi:10.7910/DVN/ECSFZG'l*?| for the

610 IHSGE data.
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Figure legends

Figure 1 |Temperature response functions in 29 wheat simulation model&, c, e, g andi)
Phenological development (pre-flowerind), @, f, h andj) Biomass growth (or RUE)a(nd

b) Type 1, linear with no optimum or maximum temperatucearid d) type 2, linear or
curvilinear with an optimum but no maximum temperatueegr(df) type 3, linear with range

of optimal temperaturesy @ndh) type 4, linear or curvilinear with three cardinal temperatures.
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(i andj) Summary of temperature responses of all models, with red lines represeating th
median and shaded area the 10% and 90% percentiles for the 29 modets.jrétes are
normalized to 28C. Models are listed in Supplementary Table 1

Figure 2 | Comparison of multi-model simulations against observations and average
growing season temperature.(a to d) Simulated days from sowing to anthesis.t@ h)
Simulated days from anthesis to maturityto(l) Simulated final total above ground biomass.

(m to p) Simulated final grain yield. The data were standardized to 20°C and plotted against
the mean average daily temperature from sowing to antzesisl), from anthesis to maturity

(e to h), and from sowing to maturityi (o p). Models were grouped according to their
temperature response types for phenological developra¢ahj or biomass growthi to p),

as defined in Fig. 1. Simulated and experimental data are for the HSC exjj@rByentiols

with error bars are experimental means £ 1 s.d. for n = 3 independent replicates.

Figure 3 |Uncertainty in simulated wheat responses due to variations in the temperature
response functions of phenological development and biomass growth (RUEpmparisons

are between observed and simulated grain y&lt,(c, 9, total above ground biomass €, g

h), crop growth durationi,(j, k I), and in season maximum LA n, o, p for the HSC and
IHSGEdata sets. Simulations were executed with the wheat models APSIM and SiriusQuality.
Red circles show the measurements (mean + 1 s.d. for n = 3 independent replicatas). Gree
areas show uncertainty in simulated value$' (d®0" percentile range) from the 29 models of

the AgMIP-Wheat multi-model ensenfBiBlue areas show the range of simulated values when
using APSIM or SiriusQuality combined with the 20 combinations of the four etyjpes of
response functions for phenological development and biomass growth, respectiveltheising
cardinal temperatures reported in Supplementary Table 3. Dashed black lines show the
simulated values by the original APSIM and SiriusQuality models. Solid blaek §how the
simulated values by APSIM or SiriusQuality with the improved temperature redpotens

for phenological development and biomass growth.

Figure 4 |Derived temperature responses of various physiological processé&se relative
rates of pre-d) and post-lf) anthesis development, photosynthesis and respiratjpar{d
biomass growth dRUE (d) calculated with data from the literature (symbols) were compared
with those estimated using the derived temperature response functionsriss)iditi €) a Qo
value of 2 was used for response shown with the dashed lind) ttaily RUE (light blue
circles) calculated with the SPASS photosynthesis and plant growth model usingedsiigr
data covering temperature range of -5 téC3@ he numbers in the brackets in the legends for
the response lines indicate the minimummwd)T optimum (T,) and maximum (Fa)
temperatures. The numbers in the brackets in the legends for the data symbols timglicate
literature reference source of data.d)) the derived responses (lines) were compared with the
medians of the temperature responses calculated from all 29 models (symbolsya Méxat
normalized at 20°C and all curves were generated using the f(T) function ¢tfletidrihe
cardinal temperatures shown. For all procegsed.0 except for RUE wher@= 0.8.

Figure 5 | Comparison of Qofor respiration derived from the temperature response

function in Figure 4C to the temperature dependence of the Qof foliar respiration

rate$”’] Closed symbols are meano@f foliar respiration rate of species of arctic (circles, 49
species), boreal (triangles, 24 species), temperate (squares, 50 species), and tropical
(diamonds, 3 species) biomes taken from litefafuiBtack dotted lines indicate + 1 s.d. of all
observations across biofh§sA single linear regression was fitted to all experimental data
(solid black line). The @ of the respiration rate derived using the non-linear function
equation f(T) (equation 1), together with parameters in Figure 4C, is shown (thick blue line).
Data are reproduced with permisgitn
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Table 1 | Model improvement statistics for simulation of days to maturity, above ground biomass, grain yield and grain number in the independent IHSGE
data after implementation of the new temperature response functions of phenological development and biomass growth (RUE) in four wheat models:

APSIM, SiriusQuality, SALUS, and WheatGrow

Grain yield Total above ground biomass Days to maturity Grain number
Original  Improved Original Improved Original Improved Original Improved
Model model model model model model model model model

Root mean squared error (RMSE)

(t hal) (tha?) (days) (grain m?)
APSIM 2.99 1.23 5.91 2.38 12.3 8.3 4647 3732
SiriusQuality 1.05 0.67 2.89 1.84 11.1 11.8 4046 2886
Salus 2.00 0.88 2.56 1.85 10.1 10.7 - -
WheatGrow 2.43 1.98 5.47 2.95 1.4 3.6 - -
Modeling efficiency (EF)
(-) () () ()
APSIM -1.91 -0.09 -1.53 0.32 -0.10 0.62 -1.63 -0.78
SiriusQuality -0.02 0.66 -0.14 0.46 0.32 0.41 -1.52 -0.06
Salus 0.05 0.56 0.53 0.63 0.37 0.62 - -

WheatGrow -1.73 -0.58 -1.48 -0.71 0.99 0.93 - -




