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Increasing the accuracy of crop productivity estimates is a key element in planning 110 

adaptation strategies to ensure global food security under climate change. Process-111 

based crop models are effective means to project climate impact on crop yield, but 112 

have large uncertainty in yield simulations. Here we show that variations in the 113 

mathematical functions currently used to simulate temperature responses of 114 

physiological processes in 29 wheat models account for >50% of uncertainty in 115 

simulated grain yields for mean growing season temperatures from 14°C to 33°C. 116 

We derived a set of new temperature response functions that when substituted in 117 

four wheat models reduced the error in grain yield simulations across 7 global 118 

sites with different temperature regimes by 19% to 50% (42% average). We 119 

anticipate the improved temperature responses to be a key step to improve modeling of 120 

crops under rising temperature and climate change, leading to higher skill of crop yield 121 

projections.  122 

Process-based modeling of crop growth is an effective way of representing how crop 123 

genotype, environment and management interactions affect crop production to aid 124 

tactical and strategic decision making1. Process-based crop models are increasingly 125 

used to project impact of climate change on crop yield2. However, current models 126 

produce different results, creating large uncertainty in crop yield simulations3. A model 127 

inter-comparison study within the Agricultural Model Inter-comparison and 128 

Improvement Project (AgMIP)4 of 29 widely used wheat models against field 129 

experimental data revealed that there is more uncertainty in simulating grain yields 130 

from the different models than from 16 different climate change scenarios3. The greatest 131 

uncertainty was in modeling crop responses to temperature3,5. Similar results were 132 

found with rice and maize crops6,7. Such uncertainty should be reduced before informing 133 

decision-making in agriculture and government policy. Here we show contrasting 134 

differences in temperature response functions of key physiological processes adopted 135 

in the 29 crop models. We reveal opportunities for improving simulation of temperature 136 

response in crop models to reduce the uncertainty in yield simulations.     137 

We aim to reassess the scientific assumptions underlying model algorithms and 138 

parameterization describing temperature-sensitive physiological processes, using 139 

wheat, one of the most important staple crops globally, as an example. We hypothesized 140 

that: 1) the difference among models in assumed temperature responses is the largest 141 

source of the uncertainty in simulated yields; and 2) the uncertainty in the multi-model 142 
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ensemble results can be reduced by improving the science for modeling temperature 143 

response of physiological processes.  144 

 Temperature affects crop performance primarily through its impact on 1) the rate of 145 

phenological development from seed germination to crop maturity, including the 146 

fulfillment of cold requirement (vernalization); 2) the initiation and expansion of plant 147 

organs; 3) photosynthesis and respiration, considered either separately or combined as 148 

net biomass growth simulated using radiation use efficiency (RUE)8;  and 4) the 149 

senescence, sterility or abortion of plant organs. All 29 models simulate these processes, 150 

except for sterility and abortion, in response to temperature change. 151 

Here, we compare the temperature functions of these four categories of physiological 152 

processes built into the 29 wheat models and identify the representative response types. 153 

We analyze how different temperature response functions affected simulations of wheat 154 

growth compared to observations in a field experiment8-10, in which well-fertilized and 155 

irrigated wheat grew under contrasting sowing dates and temperature environments 156 

(Hot Serial Cereal [HSC] experiment).  We further evaluate the impact of the different 157 

response types by implementing them in two models (APSIM and SiriusQuality) and 158 

analyzing their results against the HSC data and an additional global dataset from the 159 

International Heat Stress Genotpye Experiment (IHSGE)8 carried out by the 160 

International Maize and Wheat Improvement Center (CIMMYT). More importantly, 161 

we derive, based on newest knowledge and data, a set of new temperature response 162 

functions for the key physiological processes of wheat, and demonstrate that when 163 

substituted in four wheat models the new functions reduced the error in grain yield 164 

simulations across seven global sites with different temperature regimes covered by the 165 

IHSGE data.  166 

Results 167 

Contrasting temperature functions in 29 models. 168 

A wide range of temperature responses was observed in the 29 models (Supplementary 169 

Table 1 & 2) which we grouped into four major types (type 1-4) according to how 170 

phenological development and biomass growth (RUE) are treated (Fig. 1 and 171 

Supplementary Table 3), i.e. whether increasing or decreasing slopes are linear or 172 

curvilinear, whether base (Tmin), optimum (Topt) or maximum (Tmax) temperatures are 173 

defined, and whether Topt is a range or a point. The simplest type is a linear increase in 174 
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developmental rate with temperature from a base temperature (Tmin) around 0°C 175 

assuming no temperature optimum (Topt) or maximum (Tmax) (type 1 Phenology, Fig. 176 

1a), and a linear decline of biomass growth rate above a certain temperature assuming 177 

no Tmin (type 1 Biomass, Fig. 1b). For both processes, the second type defines both Tmin 178 

and Topt, but assumes no Tmax, thus simulating an increasing rate with temperature below 179 

Topt and a constant maximum rate above Topt, respectively (type 2, Fig. 1, c and d). Most 180 

models define the three cardinal temperatures, simulating an increasing rate with 181 

temperature from Tmin to Topt and a decreasing rate from Topt to Tmax (Fig.1, e, f, g, and 182 

h). Some of the models in this category define Topt as a range (type 3, Fig. 1, e and f), 183 

while the rest define it as a single value (type 4, Fig. 1, g and h). Some models 184 

implement linear responses to temperature between the cardinal temperatures, the 185 

others curvilinear. 186 

 For both phenology and biomass growth, most models agree on a Topt when the rate 187 

is maximum (Fig. 1), except for models that lack a Topt (Fig. 1a). At temperatures lower 188 

or higher than Topt, the uncertainty in the simulation of phenological development and 189 

biomass increases, particularly at higher temperatures. Response types for 190 

photosynthesis were consistent, but different cardinal temperatures were used 191 

introducing uncertainty (Supplementary Fig. 1, a and b). The simulated temperature 192 

responses of respiration differ widely from each other (Supplementary Fig. 1, c and d). 193 

When such estimates of respiration and photosynthesis are combined to simulate 194 

growth, any uncertainty is compounded at high temperatures. For leaf growth and 195 

senescence, contrasting temperature responses were deployed, with much greater 196 

uncertainty at temperatures above 25-30°C (Supplementary Fig. 1, e, f, g, and h). For 197 

grain growth, the differences in temperature responses are even greater, generating 198 

increased uncertainty above 24°C (Supplementary Fig. 1, i and j).  199 

Model performance against HSC data.  200 

Simulation results of the 29 models against the HSC experiment were analyzed by 201 

grouping all the models based on the four temperature response types and cardinal 202 

temperatures deployed for simulating phenology and biomass growth. The results were 203 

standardized at 20°C to remove any systematic bias and compare their response to 204 

temperature (Fig. 2). For phenology, the models agreed most closely with each other at 205 

a mean growing season temperature around 20°C and matched the observed anthesis 206 

and maturity dates well (Fig. 2, a to h). At lower and higher temperatures, the simulated 207 



6 

 

results departed from each other and did not match the observed dates. Three type 4 208 

response models (with three cardinal temperatures, Fig. 1g) with low Topt and Tmax 209 

severely underestimated the pre-flowering development rate at temperatures above 210 

25°C and thus predicted durations longer than were observed (Fig. 2d). For post-211 

flowering development, 20 out of the 29 models predicted the physiological maturity 212 

to be later than was observed at temperatures above 25°C (Fig. 2, e to h), particularly 213 

the models that have a Tmax around 35°C (Fig. 2h).  214 

For total above ground biomass and grain yield, the models with type 2 response for 215 

biomass growth (no reduction at higher temperatures) tended to overestimate biomass 216 

at high temperatures (Fig. 2j). For type 3 (with an optimal temperature range, Fig. 2k) 217 

and type 4 (Fig. 2l) responses, the models that have a higher Topt and Tmax for either 218 

RUE (Fig. 1, f and h) or photosynthesis (Supplementary Fig. 1a) also overestimated 219 

biomass at temperatures above 25°C (Fig. 2, k and l). The simulated responses for grain 220 

yield for the HSC experiment varied in a similar way to those for biomass (Fig. 2, m to 221 

p). These findings indicate that improved modeling of temperature responses of 222 

phenological development, biomass growth (RUE), photosynthesis and respiration 223 

rates is necessary to reduce uncertainty in simulation of grain yield. 224 

Impact of temperature response functions.  225 

While the impact of the temperature functions in different models may be compounded 226 

by interactions with other simulated processes, we further evaluated the impact of the 227 

different temperature response types (Supplementary Table 3) by implementing 20 228 

combinations of temperature response types in the APSIM and SiriusQuality models to 229 

simulate the HSC data and the additional IHSGE data from CIMMYT8,11,12. This 230 

change caused the two models to predict different grain yields as a result of differences 231 

in simulated growth duration, leaf area index, and biomass (Fig. 3). Differences in 232 

simulated grain yield were greater than 100%, particularly at low and high temperatures 233 

(Fig. 3). The range of simulated grain yield caused by different combinations of 234 

temperature response functions in APSIM and SiriusQuality was on average 52% 235 

(65%) and 64% (78%) of the uncertainty of the whole ensemble of 29 models for the 236 

HSC (IHSGE) data, respectively, highlighting the significant impact of temperature 237 

response functions alone on simulated wheat growth in the absence of water and 238 

nutrient stresses.   239 
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New temperature response functions.  240 

A recent synthesis of available data on phenological development and tissue expansion 241 

indicated that rates of pre-anthesis phenological development, tissue expansion, and cell 242 

division of crop plants all followed a common Arrhenius-type response curve, and for 243 

wheat the response curve has a Tmin of 0°C, Topt of 27.7°C, and Tmax of 40°C13,14. We used 244 

this information to derive and unify the modeling of the temperature response for wheat 245 

phenological development and initiation and expansion of leaves, nodes, tillers, stem, 246 

grain, and roots using a non-linear function (f(T)15 (Fig. 4, a and equation 1). If such a 247 

temperature response represents the crop’s development of sink capacity13, leaf 248 

photosynthesis under current CO2 levels, typical radiation and stress-free conditions 249 

should closely follow this response, with Topt around 27.7°C (Fig. 4c), although the Topt 250 

of C3 crops such as wheat may increase under higher CO2 concentrations and light 251 

intensities when photorespiration is suppressed16.  252 

Data on Q10 (the factor by which the rate of a process increases when temperature is 253 

raised by 10°C) for various species living in a wide temperature range17 enabled us to 254 

derive cardinal temperatures for respiration using the f(T) equation (Fig. 4c). This new 255 

function can accurately simulate the decline in Q10 with increasing temperature (Fig. 256 

5), and is similar to that estimated for Eucalyptus pauciflora18. This clearly demonstrates 257 

the need to replace the traditional constant Q10 approach to better quantify the temperature 258 

response of respiration. The rates of post-anthesis development calculated with data 259 

from experiments in outdoor climate chambers19 and the HSC experiment, together 260 

with the f(T) equation, enabled derivation of the cardinal temperatures of post-anthesis 261 

development (Fig. 4b). The rates of post-anthesis development increases with 262 

temperature up to 25-30°C20,21. 263 

We used the derived response functions for photosynthesis and respiration combined 264 

with the SPASS canopy photosynthesis and growth model22 to generate the temperature 265 

response for RUE (Supplementary Fig. 2a, Fig. 4d). The emergent response showed a 266 

Topt of 20°C, Tmin of -1°C and Tmax of 35°C under moderate to high radiation, but Topt 267 

shifted towards lower temperatures under low radiation (data not shown), giving a 268 

wider Topt range (Supplementary Fig. 2a). The same f(T) equation with these derived 269 

cardinal temperatures for RUE (Fig. 4d) is able to explain 99% of the variance of the 270 

emergent responses generated from the SPASS model (Supplementary Fig. 2b).  271 
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 The derived temperature response functions captured real responses well, compared 272 

to the pre-anthesis developmental rates reported13 and calculated from the HSC 273 

experimental data (Fig. 4a), post-anthesis developmental rates estimated from an 274 

additional data set for a winter wheat cultivar grown in outdoor climate chambers23 (Fig. 275 

4b), and measured leaf photosynthesis rates24 (Fig. 4c). Pooling all data, the derived 276 

response functions explained 84% (for post-anthesis development) to 95% (for seedling 277 

elongation) of the variation in the rates calculated from measured data (Supplementary 278 

Fig. 3). The derived temperature function for RUE (Fig. 4d) matched the response of 279 

maximum net biomass growth rates calculated from the HSC, and that of the maximum 280 

RUE calculated from LAI, biomass and radiation interception for two additional data 281 

sets for winter wheat grown in the field in the North China Plain (NCP)25 and in outdoor 282 

climate chambers19. A comparison of the net biomass growth rate and RUE for the NCP 283 

and outdoor climate chamber experiments (Supplementary Fig. 4) demonstrated that 284 

under the current CO2 level, RUE for biomass growth under conditions free of other 285 

stresses follows the temperature response shown in Fig. 4d, representing the upper 286 

boundary of the calculated RUE across a wide temperature range, and is consistent with 287 

previous studies24. Except for the responses of daily biomass growth and RUE where 288 

daily average temperatures are used, use of sub-daily temperatures and canopy 289 

temperatures may further improve the simulated response. 290 

Improvement in wheat yield simulations.   291 

Implementation of the derived temperature response functions in APSIM and 292 

SiriusQuality improved the simulation of wheat phenological development, biomass 293 

growth and grain yield across growing temperatures from 15°C to 32°C compared with 294 

data from both HSC experiment and the independent IHSGE global experiment (Fig. 295 

3). For HSC, only the post-anthesis development rates were used to derive f(T) so that 296 

data can be considered as semi-independent. Compared with the original models, the 297 

root mean squared relative error (RMSRE) of the models for grain yield with the 298 

derived temperature responses was reduced by 58% (from 58% to 24%) and 53% (from 299 

53% to 25%) for APSIM and SiriusQuality, respectively against the HSC data. The 300 

error reduction for the IHSGE data set was 60% (from 100% to 39%) and 39% (from 301 

31% to 19%) for APSIM and SiriusQuality, respectively.  302 

The improved temperature functions were tested further using two additional models 303 

(SALUS and WheatGrow) with the multi-environment IHSGE experimental data 304 
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(Table 1). Improvements in simulating total biomass and grain yields were 305 

demonstrated in all the four models, with a reduction in RMSE by 28-60% for biomass 306 

and 19-59% for grain yield. Less improvement was achieved for modelling 307 

phenological development for both models, possibly due to an over-fitting of the 308 

original models as phenological data were provided to modelers and models were not 309 

fully recalibrated after the implementation of the improved equations. The four 310 

improved models had a larger modeling efficiency for both total biomass and grain 311 

yield (Table 1), indicating that they better captured the variations of these variables to 312 

temperature. We conclude that the common equation f(T) with different parameters for 313 

different processes is able to simulate the temperature responses of major physiological 314 

processes in wheat and may be potentially applied to other crops to increase certainty 315 

in simulating crop yield under climate change13,14. 316 

Discussion 317 

With the increased applications of process-based crop models to address genotype × 318 

environment × management interactions as they impact on yield under climate change, 319 

the science underpinning a model for simulation of crop growth processes and yield 320 

needs to be critically examined to ensure high scientific rigor and simulation certainty. 321 

Our analyses revealed contrasting differences in the type of mathematical equations 322 

used to simulate temperature responses of the key physiological processes of wheat. 323 

Such differences are a major cause for large uncertainty in simulated wheat yields 324 

across different temperature environments. They also reflect the insufficient 325 

understanding of how key physiological processes respond to temperature at the time 326 

when the models were originally developed, many of which were only based on limited 327 

data and local conditions. We demonstrated that by updating the temperature response 328 

functions based on newest science and data, crop models can better capture the impact 329 

of temperature change on growth processes and gain yield, unveiling a major step to 330 

improve modeling of crops under rising temperature and climate change, leading to 331 

higher skill of crop yield projections. 332 

The Agricultural Model Inter-comparison and Improvement Project (AgMIP) has 333 

enabled a worldwide comparison of agricultural models against global datasets. The 334 

inter-comparison of 29 wheat models showed that uncertainty in simulated wheat yield 335 

from different models increases with rising temperature, which provides the 336 

background and forms the basis for our current study. Previous results from a multi-337 
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model ensemble approach for wheat3,5, rice, maize and potato crops6,7,26 indicated that 338 

the mean simulated crop yield of a multi-model ensemble agreed reasonably well with 339 

observations, pointing to the use of a multi-model ensemble approach as an effective 340 

way of quantifying and reducing uncertainty in crop yield projections under climate 341 

change. However, such agreement will ultimately depend on how the response 342 

functions for all major physiological processes compare among the models and how 343 

closely they are to the ‘true’ response to environmental variables like temperature. 344 

Although the multi-model ensemble approach provides one useful way of uncertainty 345 

quantification, it is expensive and difficult to apply in terms of labor, timing and 346 

expertise. In addition, the ensemble approach itself does not necessarily lead to 347 

improvement in process understanding, unless a further step is taken to increase the 348 

rigor of science underpinning the process submodules by improving algorithms in 349 

comparison to data, as demonstrated here.  350 

Further analysis of our newly derived response functions reveal that the median 351 

responses from all the 29 models closely matched the derived temperature responses 352 

for pre-anthesis phenological development from 0°C to 30°C, and for biomass growth 353 

rates, RUE and respiration in the range of 0°C to 35°C.  However, for post-flowering 354 

phenological development, the ensemble median only matched the derived responses 355 

up to 25°C, while the median model photosynthesis response matched the derived 356 

temperature response of RUE rather than that of photosynthesis (Fig. 4e). The 357 

deviations of temperature response functions for various processes in individual models 358 

from the newly derived functions based on experimental data imply that there is no 359 

guarantee for the multi-model ensemble median or mean to provide the best yield 360 

predictor, particularly at high temperatures. Our results highlight the importance of 361 

careful ex-ante screening and evaluation of the individual models for their robustness 362 

to simulate temperature responses before they are selected in a multi-model ensemble 363 

for the purpose of reducing uncertainty in assessment of climate change impact. 364 

Our analyses identified several key knowledge gaps. Very limited data are available 365 

to quantify wheat response to extreme temperatures, at both low and high temperature 366 

ranges. Further research is needed for the post-anthesis development rate under high 367 

temperatures, where models disagree with each other and only few data are available. 368 

The models that simulate photosynthesis tend to underestimate Topt for this process and 369 

thus need to be reparametrized. There is still a lack of measurement data to quantify 370 
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how net biomass growth rate responds to temperature, and to verify simulated RUE 371 

response to temperature. More generally, variations in vapor pressure deficit (VPD) 372 

among environments could introduce noise in the temperature response due to 373 

differences in evaporative cooling confounding the association between air and actual 374 

plant temperature and thereby reduce the certainty of prediction. Pollination, sterility 375 

or abortion of plant organs as affected by abnormal temperatures have rarely been 376 

simulated, but can become important under rising temperature, thus needs more 377 

attention.  While our current analyses focus only on temperature, interactions with other 378 

climate drivers will also need to be addressed, for example, interactions with 379 

photoperiod on flowering, with radiation on growth rate, with CO2 concentration 380 

change under stressed and non-stressed conditions.  381 

Methods 382 

Inter-comparison of temperature responses in wheat crop models. Twenty-nine 383 

physiologically based wheat crop models previously used in the AgMIP-Wheat project8 384 

(Supplementary Table 1, Supplementary Dataset) were compared in terms of how the key 385 

temperature-responsive physiological processes are simulated. The different approaches used 386 

in the models are summarized in Supplementary Table 2 and Extended Database 1. The 387 

algorithms used in these models were extracted and the temperature response equations for key 388 

developmental and growth processes were categorized based on whether the cardinal 389 

temperatures (i.e., minimum Topt, optimum Topt, and maximum Tmax) are defined and if so how. 390 

For phenology and biomass four temperature types were identified (Fig 1, Supplementary Fig. 391 

1, and Supplementary Table 3).  392 

Comparison of model performance against data from the Hot-Serial-Cereal experiment. 393 

The 29 wheat models were tested against field data from a Hot-Serial-Cereal (HSC) experiment 394 

in which the spring wheat cultivar Yecora Rojo was grown with different sowing times and 395 

artificial infrared heat treatments under field conditions at Maricopa, AZ, USA (33.07° N, 396 

111.97° W, 361 m a.s.l.)9,27. Yecora Rojo is of short stature, requires little to no vernalization, 397 

has a low photoperiod sensitivity, and matures early28. All crops were well watered and 398 

fertilized with temperature being the most variable factor. 399 

The inter-comparison of model performance was part of the AgMIP-Wheat project, with 400 

four steps and different levels of available information for model calibration8. The results used 401 

in this study (Fig. 2, Fig. 3) were simulation results from all models that were calibrated against 402 

observed phenology (flowering and maturity dates) from all treatments, together with the in-403 

season and final, total above ground, leaf, stem, and grain dry mass and nitrogen, and leaf area 404 
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index from the highest yielding treatment, i.e., simulation step D “Blind test with calibrated 405 

highest yield”8.  406 

The HSC data set was also used to assess the uncertainty in the multi-model ensemble due 407 

to different types of temperature response functions for phenological development, leaf area 408 

index, biomass growth and grain yield (see below).  409 

Evaluation of wheat models against global multi-site experiments. The 29 wheat models 410 

were also evaluated against data from the International Heat Stress Genotype 411 

Experiments(IHSGE) carried out by CIMMYT (therefore referred to as IHSGE dataset) that 412 

had seven temperature environments, including time-of-sowing treatments11,12, in the absence 413 

of water and nutrient stresses and free of pest and diseases. The IHSGE experiments included 414 

two spring wheat cultivars (Bacanora 88 and Nesser) grown during the 1990-1991, and 1991-415 

1992 winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon, 416 

27.34° N, 109.92° W, 38 m a.s.l.; and Tlatizapan, 19.69° N, 99.13° W, 940 m a.s.l.), Egypt 417 

(Aswan, 24.1° N, 32.9° E, 200 m a.s.l.), India (Dharwar, 15.49° N, 74.98° E, 940 m a.s.l.), the 418 

Sudan (Wad Medani, 14.40° N, 33.49° E, 411 m a.s.l.), Bangladesh (Dinajpur, 25.65° N, 88.68° 419 

E, 29 m a.s.l.), and Brazil (Londrina, 23.34° S, 51.16° W, 540 m a.s.l.)11,12,29. Experiments in 420 

Mexico included normal (December) and late (March) sowing dates. Bacanora 88 has moderate 421 

vernalization requirement and low photoperiod sensitivity and Nesser has low to no 422 

vernalization requirement and photoperiod sensitivity. All experiments were well watered and 423 

fertilized with temperature being the most important variable. Variables measured in the 424 

experiment included plants m-2, total above ground biomass at 50% anthesis, days to 50% 425 

anthesis, days to physiological maturity, final total above ground biomass, grain yield, spikes 426 

m-2, grains spike-1, and average single grain mass at maturity. 427 

Model inter-comparison was carried out using standardized protocols and one step of 428 

calibration8.  These experimental data were not publicly available and were therefore used in a 429 

blind test. Sowing dates, anthesis and maturity dates, soil type characteristics and weather data 430 

for all sites, years, and cultivars were supplied to the modellers. Crop growth data were supplied 431 

only for one site (at Obregon) in one year, all other crop growth data were hold back and not 432 

supplied to modelers. The IHSGE dataset was also used to assess the uncertainty of the multi-433 

model ensemble due to different types of temperature response functions for phenological 434 

development, leaf area index, biomass growth, and grain yield (see below). None of these data 435 

were used to derive the improved temperature response functions. 436 

Evaluation of the impact of various temperature response functions on simulation results. 437 

In order to demonstrate the impact of the temperature response types used in different wheat 438 

crop models on simulated phenology, total above biomass and grain yield, the four major types 439 
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of temperature responses summarized from the models (Supplementary Table 3) were 440 

implemented in the APSIM and SiriusQuality models. These two models were chosen because 441 

they were built with different types of temperature response functions (Supplementary Table 3) 442 

and use different approaches to simulate phenology (progress to flowering by calculating the 443 

duration of phases between significant events on the shoot apex vs. tracks development through 444 

leaf appearance, using the prediction of final main stem leaf number), canopy expansion 445 

(branching vs. individual phytomer-based approaches), and biomass growth (radiation use 446 

efficiency of whole canopy vs. individual canopy layers). For phenology, we also separated the 447 

response type 4 into linear and curvilinear responses, resulting in a total of 20 temperature (4 × 448 

5) response type combinations for models using radiation use efficiency (RUE; Supplementary 449 

Table 3). The two modified models were executed against the HSC and IHSGE experimental 450 

data. For any given observed grain yield, the simulated yield ranges from the multi-model 451 

ensemble (of the 29 wheat models), the APSIM and SiriusQuality models (each with the 20 452 

combinations of temperature response functions), were calculated. The ratios of the simulated 453 

ranges of the APSIM and SiriusQuality with the 20 combinations of temperature response 454 

functions to those of the multi-model ensemble were used to estimate how much variations in 455 

the multi-model ensemble ranges were explained by each of the models together with the 456 

variations in temperature functions.  457 

New temperature response functions of wheat physiological processes derived based on 458 

data. The Wang-Engel (WE) curvilinear temperature response function used to model wheat 459 

phenology15 in the SPASS (Soil Plant Atmosphere Systems Simulation)-Wheat model30 was 460 

found to be accurate and flexible in simulating the temperature responses of wheat plants31,32. 461 

It has been successfully applied in modeling leaf development and phenology of wheat 31,32, 462 

maize33, rice34, and potato crops35.  463 

The WE temperature function constructs a curvilinear response based on Tmin, Topt, and Tmax 464 

of the simulated process. These three cardinal temperatures determine the shape of the response 465 

curve, so they have clear biological meanings. Once the cardinal temperatures are known, no 466 

extra parameters are needed in the model. It simulates the effect [0-1] of temperature between 467 

Tmin and Tmax as: 468 

ȕĮ Į 2Į
min opt min min

2Į
opt min max min

opt min

2( ) ( ) ( ) ln2
( ) ;  Į ,  ȕ 0~1

( )
ln

T T T T T T
f T

T T T T
T T

    
   

        

 (1) 469 

An extra shape factor  was added here in Equation (1) to account for temperature responses 470 

with more extended Topt (e.g. for RUE at low radiation). For all processes  = 1.0 was used to 471 
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describe temperature responses, except for RUE where  = 0.8 was used to reflect the different 472 

shape of the RUE response curve compared to other physiological processes.  473 

The cardinal temperatures derived for using Equation (1) to simulate temperature responses 474 

of various processes are given in Fig 4. For phenological development, the cardinal 475 

temperatures were derived from published data on seedling elongation and pre-anthesis 476 

development13, and post-anthesis development10,23 (see below). For photosynthesis under 477 

current CO2, the cardinal temperatures of pre-anthesis phenological development were used 478 

assuming it mimics the development of sink capacity. For respiration rate, Equation (1) with  479 

= 1.0 was used to derive the average Q10 (the factor by which the respiration rate increases when 480 

temperature is raised by 10°C) of respiration rate at different temperatures from 5 to 45°C with 481 

5°C interval. A genetic algorithm was applied to optimize the three cardinal temperatures (Tmin, 482 

Topt, and Tmax) to match the derived average Q10 to the Q10 estimated at the corresponding 483 

temperatures known from the literature17  (Fig. 5).  Finally, for RUE the cardinal temperatures 484 

were derived from simulation results using the SPASS canopy photosynthesis and growth 485 

model, together with the derived temperature functions for photosynthesis and respiration (see 486 

below). All rates were normalized at 20°C. 487 

Calculation of pre- and post-anthesis development rates from data. Pre-anthesis 488 

development rates were calculated from the HSC experiment. The rates of leaf emergence were 489 

estimated as the slope of the decimal number of emerged leaves (Haun index36) measured at 490 

least twice a week against days from seedling emergence37. The rate of development towards 491 

anthesis was calculated as the reciprocal of the duration from emergence to anthesis. The rates 492 

of seedling elongation for seven spring wheat cultivars grown in growth chambers with 493 

different temperature were also obtained from a recent data synthesis 13. 494 

Post-anthesis rate of development was calculated as the reciprocal of the time from anthesis 495 

to physiological maturity from the HSC data10 and experiments carried at INRA Clermont-496 

Ferrand, France (44.78° N, 3.17° E, 329 m a.s.l.) with the winter wheat cultivar Thésée grown 497 

during the 1993-1994, and 1997-1998 winter cropping cycles in outdoor climate chambers 498 

under well-watered and fertilized conditions with post-anthesis mean daily temperature ranging 499 

from 12.6 to 24.7°C23. In the HSC experiment, physiological maturity was judged when 500 

endosperm of grains becomes firm and almost dry. In the INRA experiments, physiological 501 

maturity was calculated as the time when 95% of final grain dry mass was reached by fitting a 502 

3-parameter logistic function equation to grain dry mass data plotted against the number of days 503 

after anthesis23. 504 

The calculated post-anthesis rate of development from the HSC data was the only data used 505 

for derivation of temperature response functions shown in Fig 4. No data from the IHSGE 506 
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dataset were used in the derivation of temperature functions. Therefore, for model testing, the 507 

IHSGE dataset is fully independent data, while the HSC dataset is semi-independent. 508 

Derivation of the emergent temperature response for radiation use efficiency (RUE) using 509 

a canopy photosynthesis and growth model. A simplified version of the canopy 510 

photosynthesis and growth sub-models in the SPASS-Wheat model30, together with the derived 511 

temperature response functions for photosynthesis and respiration rates (Fig 4c), were used to 512 

calculate the net biomass growth rate of a wheat canopy and derive the cardinal temperatures 513 

and shape parameter of the RUE temperature response function (Supplementary Fig. 2). The 514 

model integrates leaf level photosynthesis rate to canopy level. It also calculates the growth and 515 

maintenance respiration, then the net assimilation and net biomass growth. All the parameter 516 

values used in the simulations are given in Supplementary Table 4.  517 

 We assumed a wheat canopy at an early developmental stage with a leaf area index (LAI) 518 

of 3 m2 m-2 and a total above ground biomass of 3 t ha-1. For any new growth, 20% of assimilate 519 

would be partitioned to roots, and 80% to the above ground parts. In the simulations, we used 520 

47 years (1957-2003) of daily climate data from Birchip in Victoria of Australia to simulate the 521 

daily RUE of the wheat canopy in the absence of water and nutrient stresses. This gave us a 522 

daily global radiation range from 10 to 32 MJ d-1 and a daily mean temperature range of 3.6 to 523 

36°C. We also executed the model for an extra range of daily mean temperature from -5 to 5°C 524 

to generate the daily net above ground biomass growth rate. RUE was calculated for different 525 

daily temperatures as the net above ground biomass growth rate divided by the radiation 526 

intercepted by the canopy. 527 

Calculation of net biomass growth rate and radiation use efficiency under different 528 

temperatures. Net biomass growth rate was calculated from the HSC data as the ratio of total 529 

above ground biomass at maturity divided by the number of days from crop emergence to 530 

physiological maturity. Measurement data on dynamics of LAI and total above ground biomass 531 

from the INRA experiments described above 19 and from five experiments where the winter 532 

wheat cultivars SJZ8 and SJZ15 were grown during the 2004-2005, 2005-2006, 2006-2007, 533 

and 2009-2010 winter cropping cycles at Wuqiao, North China Plain (NCP, 37.41° N, 116.37° 534 

E, 20 m a.s.l.) with ample water and nitrogen supply 25, were used to calculate RUE under 535 

different temperatures.  536 

In the INRA experiments, LAI and total above ground biomass were measured every 4 to 8 537 

days starting at anthesis. Only dates when LAI was higher than 2.5 m2 m-2 were used (i.e. before 538 

the onset of the phase of rapid canopy senescence), leaving measurements from five to six dates 539 

with which to calculate the net biomass growth rate and RUE. Daily radiation interception was 540 

calculated as total incident radiation times (1-exp(-KL  LAI)), where KL (0.7 m2 ground m-2 541 
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green leaf) is the light extinction coefficient. RUE was calculated as the slope of total above 542 

ground biomass versus the cumulative radiation interception and the average net biomass 543 

growth rate was calculated as the slope of total aboveground biomass versus the number of days 544 

after anthesis. 545 

In the NCP experiments, LAI and total above ground biomass were measured before 546 

wintering, at greening, and at jointing, booting, anthesis and 10 days after flowering and at 547 

maturity. Daily increases in LAI were estimated through best fit polynomial equations to the 548 

data. Daily radiation interception was calculated as for the INRA experiments but using total 549 

incident radiation estimated from sunshine hours. The cumulative radiation interception for 550 

each period was calculated as the sum of daily radiation interception. RUE for each period 551 

(from jointing onwards) was calculated as the net biomass increase divided by the total radiation 552 

interception and the average net biomass growth rate was also calculated for each period (from 553 

jointing onwards) as the net biomass increase divided by the total number of days.  554 

Calculation of daily mean temperature. Daily mean air temperature (Tt) in the HSC and 555 

IHSGE experiments was calculated as the sum of eight contributions of a cosine variation 556 

between daily maximum (Tmax,daily) and minimum (Tmin,daily) daily air temperatures38: 557 

 
8

t h
1

1

8

r

r

T T r




   (2) 558 

   h min,daily max,daily min,dailyrT r T f T T    (3) 559 

 1 90
1 cos 2 1

2 8rf r    
 

 (4) 560 

where hT (°C) is the calculated 3-hour temperature contribution to estimated daily mean 561 

temperature, and r is an index for a particular 3-hour period. 562 

Evaluation of the improved temperature response functions. We tested the performance of 563 

the new temperature response functions on how accurately they capture the rates of the 564 

phenological development, tissue expansion, photosynthesis, and biomass growth (RUE) 565 

measured or derived from experimental data at a range of temperatures. This was done by 566 

comparing the rates calculated using the derived functions (Fig. 4) at a given temperature 567 

against the corresponding measured rates from the experiments at the same temperature 568 

(Supplementary Fig. 3-4). Significance of the relationship was tested and the coefficient of 569 

determination (R2) was used to see how much variation in the measurements could be explained 570 

by the new temperature functions.  571 

Evaluation of the improved skills of four wheat models when using the new temperature 572 

responses. To test the improvement by using the improved temperature response functions, 573 
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they were also implemented into the APSIM, SiriusQuality, SALUS and WheatGrow models 574 

replacing their original functions. The simulation results were then compared with the 575 

measurements (Fig 3, Table 1). These four models were chosen to have good representation of 576 

different temperature response functions for phenological development and biomass growth 577 

and thus to generalize the improvement in wheat model skills when they use the temperature 578 

response function we derived. One of the models (WheatGrow) uses a photosynthesis and 579 

respiration approach to model biomass growth, while the other three use a RUE approach. 580 

Many different measures of the discrepancies between simulations and measurements have 581 

been proposed39. We concentrated on three measures to highlight different aspects of the quality 582 

of simulation with the original and improved models. All measures are based on mean squared 583 

error (MSE), where the mean is over all measurements of a particular variable. The root mean 584 

squared error (RMSE) is the square root of MSE; it has the advantage to express errors in the 585 

same units as the variable. RMSE was calculated as: 586 

 2

1

1 ˆRMSE
N

i i
i

y y
N 

   (5) 587 

where iy  is the observed value of the ith measured treatment, ˆiy  is the corresponding 588 

simulated value, and N is the total number of treatments. 589 

For comparing very different growth environments likely to give a broad range of crop 590 

responses, the relative error can be more meaningful than the absolute error, so the root mean 591 

squared relative error (RMSRE) was also calculated because of the very wide range of total 592 

above ground biomass and grain yields in both the HSC and IHSGE datasets. RMSRE was 593 

calculated as: 594 
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i i

y y

N y
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 
  (6) 595 

 596 

Finally, the Nash–Sutcliffe model efficiency40 (EF) is a distance measure that compares 597 

model MSE with the MSE of using the average of measured values as an estimator. Therefore, 598 

EF is useful for making statements about the skill of a model relative to this simple reference 599 

estimator. For a model that simulates perfectly, EF = 1, and for a model that has the same 600 

squared error of simulation as the mean of the measurements, EF = 0. EF is positive for a model 601 

that has a smaller squared error than the mean of the measurements. EF was calculated as: 602 

 603 
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where y  is the average over the iy .   605 

Data availability. The data extracted from the models to describe their temperature functions 606 

are provided in Supplementary_Data_Set_D1 in Excel format. The experimental data used to 607 

calibrate and validate the models are available in Harvard Dataverse with the identifiers 608 

“doi:10.7910/DVN/1WCFHK”41 for and HSC data and “doi:10.7910/DVN/ECSFZG”42 for the 609 

IHSGE data. 610 
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 775 

Figure legends 776 

Figure 1 | Temperature response functions in 29 wheat simulation models. (a, c, e, g and i) 777 

Phenological development (pre-flowering). (b, d, f, h and j ) Biomass growth (or RUE). (a and 778 

b) Type 1, linear with no optimum or maximum temperature; (c and d) type 2, linear or 779 

curvilinear with an optimum but no maximum temperature; (e and f) type 3, linear with range 780 

of optimal temperatures; (g and h) type 4, linear or curvilinear with three cardinal temperatures. 781 
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(i and j ) Summary of temperature responses of all models, with red lines representing the 782 

median and shaded area the 10% and 90% percentiles for the 29 models. In (a to j ) rates are 783 

normalized to 20oC. Models are listed in Supplementary Table 1 784 

Figure 2 | Comparison of multi-model simulations against observations and average 785 

growing season temperature. (a to d) Simulated days from sowing to anthesis. (e to h) 786 

Simulated days from anthesis to maturity. (i to l) Simulated final total above ground biomass. 787 

(m to p) Simulated final grain yield. The data were standardized to 20°C and plotted against 788 

the mean average daily temperature from sowing to anthesis (a to d), from anthesis to maturity 789 

(e to h), and from sowing to maturity (i to p). Models were grouped according to their 790 

temperature response types for phenological development (a to h) or biomass growth (i to p), 791 

as defined in Fig. 1. Simulated and experimental data are for the HSC experiment8. Symbols 792 

with error bars are experimental means ± 1 s.d. for n = 3 independent replicates. 793 

Figure 3 | Uncertainty in simulated wheat responses due to variations in the temperature 794 

response functions of phenological development and biomass growth (RUE). Comparisons 795 

are between observed and simulated grain yield (a, b, c, d), total above ground biomass (e, f, g 796 

h), crop growth duration (i, j, k l ), and in season maximum LAI (m, n, o, p) for the HSC and 797 

IHSGE data sets. Simulations were executed with the wheat models APSIM and SiriusQuality. 798 

Red circles show the measurements (mean ± 1 s.d. for n = 3 independent replicates). Green 799 

areas show uncertainty in simulated values (10th to 90th percentile range) from the 29 models of 800 

the AgMIP-Wheat multi-model ensemble8. Blue areas show the range of simulated values when 801 

using APSIM or SiriusQuality combined with the 20 combinations of the four or five types of 802 

response functions for phenological development and biomass growth, respectively, using the 803 

cardinal temperatures reported in Supplementary Table 3. Dashed black lines show the 804 

simulated values by the original APSIM and SiriusQuality models. Solid black lines show the 805 

simulated values by APSIM or SiriusQuality with the improved temperature response functions 806 

for phenological development and biomass growth.  807 

Figure 4 | Derived temperature responses of various physiological processes. The relative 808 

rates of pre- (a) and post- (b) anthesis development, photosynthesis and respiration (c), and 809 

biomass growth or RUE (d) calculated with data from the literature (symbols) were compared 810 

with those estimated using the derived temperature response functions (solid lines). In (c) a Q10 811 

value of 2 was used for response shown with the dashed line. In (d) daily RUE (light blue 812 

circles) calculated with the SPASS photosynthesis and plant growth model using daily weather 813 

data covering temperature range of -5 to 36oC. The numbers in the brackets in the legends for 814 

the response lines indicate the minimum (Tmin), optimum (Topt) and maximum (Tmax) 815 

temperatures. The numbers in the brackets in the legends for the data symbols indicate the 816 

literature reference source of data. In (e), the derived responses (lines) were compared with the 817 

medians of the temperature responses calculated from all 29 models (symbols). All data were 818 

normalized at 20°C and all curves were generated using the f(T) function equation15 and the 819 

cardinal temperatures shown. For all processes  =  1.0 except for RUE where  = 0.8. 820 

Figure 5 | Comparison of Q10 for respiration derived from the temperature response 821 

function in Figure 4C to the temperature dependence of the Q10 of foliar respiration 822 

rates17. Closed symbols are mean Q10 of foliar respiration rate of species of arctic (circles, 49 823 

species), boreal (triangles, 24 species), temperate (squares, 50 species), and tropical 824 

(diamonds, 3 species) biomes taken from literature17. Black dotted lines indicate ± 1 s.d. of all 825 

observations across biomes17. A single linear regression was fitted to all experimental data 826 

(solid black line). The Q10 of the respiration rate derived using the non-linear function 827 

equation f(T) (equation 1), together with parameters in Figure 4C,  is shown (thick blue line). 828 

Data are reproduced with permission17.  829 
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Table 1 | Model improvement statistics for simulation of days to maturity, above ground biomass, grain yield and grain number in the independent IHSGE 

data after implementation of the new temperature response functions of phenological development and biomass growth (RUE) in four wheat models: 

APSIM, SiriusQuality, SALUS, and WheatGrow 

Model 

Grain yield   Total above ground biomass   Days to maturity  Grain number 

Original 

model 

Improved 

model   

Original 

model 

Improved 

model   

Original 

model 

Improved 

model  

Original 

model 

Improved 

model 

 

Root mean squared error (RMSE)                    

  (t ha-1)   (t ha-1)   (days)  (grain m-2) 

APSIM 2.99 1.23   5.91 2.38   12.3 8.3  4647 3732 

SiriusQuality 1.05 0.67   2.89 1.84   11.1 11.8  4046 2886 

Salus 2.00 0.88   2.56 1.85   10.1 10.7  - - 

WheatGrow 2.43 1.98   5.47 2.95   1.4 3.6  - - 

 

Modeling efficiency (EF)                    

  (-)   (-)   (-)  (-) 

APSIM -1.91 -0.09   -1.53 0.32   -0.10 0.62  -1.63 -0.78 

SiriusQuality -0.02 0.66   -0.14 0.46   0.32 0.41  -1.52 -0.06 

Salus 0.05 0.56   0.53 0.63   0.37 0.62  - - 

WheatGrow -1.73 -0.58   -1.48 -0.71   0.99 0.93  - - 

 

 


