

This is a repository copy of *Limited contribution of permafrost carbon to methane release from thawing peatlands*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/119361/

Version: Accepted Version

Article:

Cooper, M.D.A., Estop-Aragonés, C., Fisher, J.P. et al. (11 more authors) (2017) Limited contribution of permafrost carbon to methane release from thawing peatlands. Nature Climate Change, 7. pp. 507-511. ISSN 1758-678X

https://doi.org/10.1038/nclimate3328

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 Nature Climate Change: DOI: 10.1038/NCLIMATE3328

- 2 URL: https://www.nature.com/nclimate/journal/v7/n7/pdf/nclimate3328.pdf
- 3

4 Limited contribution of permafrost carbon to methane release from thawing

5 peatlands

- 7 Mark D. A. Cooper¹, Cristian Estop-Aragones^{1†}, James P. Fisher², Aaron Thierry³, Mark H.
- 8 Garnett⁴, Dan J. Charman¹, Julian B. Murton⁵, Gareth K. Phoenix², Rachael Treharne²,
- 9 Steve V. Kokelj⁶, Stephen A. Wolfe^{7,8}, Antoni G. Lewkowicz⁹, Mathew Williams³, Iain P.
- 10 Hartley^{1*}
- 11
- 12 ¹Geography, College of Life and Environmental Sciences, University of Exeter, Rennes
- 13 Drive, Exeter, EX4 4RJ, UK.
- ²Department of Animal & Plant Sciences, University of Sheffield, Western Bank, Sheffield,
- 15 S10 2TN, UK.
- ³School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF.
- 17 ⁴NERC Radiocarbon Facility, Scottish Enterprise Technology Park, Rankine Avenue, East
- 18 Kilbride, G75 OQF, UK.
- ⁵Department of Geography, University of Sussex, Brighton, BN1 9QJ, UK.
- ⁶Northwest Territories Geological Survey, Government of the Northwest Territories,
- 21 Yellowknife, NWT, Canada.
- ⁷Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario,
 Canada.
- ⁸Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada.
- ⁹Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa,
- 26 Ontario, Canada K1N 6N5
- 27
- ¹Present address: Department of Renewable Resources, University of Alberta, Edmonton,
- 29 AB, T6G 2H1, Canada
- 30
- 31 *Corresponding author: i.hartley@exeter.ac.uk
- 32

33 Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 2100¹⁻³. The effect on the 34 35 Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH₄), rather than carbon dioxide (CO_2)^{1,4}; 36 37 even if CH₄ emissions represent just 2% of the C release, they would contribute approximately one guarter of the climate forcing⁵. In northern peatlands, thaw of ice-38 39 rich permafrost causes surface subsidence (thermokarst) and water-logging⁶, 40 exposing substantial stores (10s of kg C m⁻², ref. 7) of previously-frozen organic 41 matter to anaerobic conditions, and generating ideal conditions for permafrost-42 derived CH_4 release. Here we show that, contrary to expectations, although substantial CH₄ fluxes (>20 g CH₄ m⁻² yr⁻¹) were recorded from thawing peatlands in 43 44 northern Canada, only a small amount was derived from previously-frozen C (<2 g CH₄ 45 m^{-2} yr⁻¹). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. 46 We conclude that thaw-induced changes in surface wetness and wetland area, rather 47 than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH₄ emissions from northern peatlands. 48

49 Permafrost peatlands occupy more than 1 million km² (ref. 7), and could dominate the permafrost CH₄ feedback³. Although these peatlands only store approximately 20% of 50 51 the total permafrost C stock which is predicted to thaw this century⁸, potential decomposition rates associated with frozen organic soils are up to five times greater than for frozen mineral 52 soils⁹, and peats are disproportionately likely to be water-logged following thaw^{3,10}. For these 53 54 reasons, one modelling study assumed that all the CH₄ released as a result of permafrost 55 thaw would be derived from currently-frozen peats (histels)³. The histels most vulnerable to 56 thaw during this century are located in the southern permafrost zone¹¹, where the presence 57 of permafrost raises the peat surface above the water table, forming plateaus dominated by tree, shrub, moss and lichen communities (see supplementary material)¹². This results in the 58 59 formation of a mixture of woody (sylvic) and Sphagnum-moss peat. Thaw of ice-rich 60 permafrost within these peatland plateaus causes surface subsidence, resulting in the

formation of collapse wetlands with water-logging and vegetation change^{6,12}. In collapse 61 62 wetlands, there is then significant potential for CH₄ to be released from the decomposition of previously-frozen organic matter because: 1) thaw makes 10s of kg C m⁻² vulnerable to 63 microbial decomposition, and 2) water-logging produces oxygen-limited conditions 64 65 throughout the soil profile and thus all newly-thawed organic matter will decompose under 66 anaerobic conditions. However, despite the potential importance of these peatlands to the permafrost CH₄ feedback³, to date, no study has quantified rates of CH₄ release from the 67 68 decomposition of previously-frozen C in these systems.

Unlike in thermokarst lakes where there is no in situ vegetation¹³, it is unclear to what 69 70 extent any CH₄ emitted from collapse wetlands is derived from old, previously-frozen C (ref. 71 14) versus new C inputs from the hydrophilic vegetation communities that develop post 72 thaw^{6,15}. This is important because determining the source of the CH_4 is required for 73 accurately simulating future fluxes, as the factors controlling emission rates differ 74 fundamentally. While the total C stock and its decomposability are the main relevant 75 predictors of CH₄ release from previously frozen C (ref. 3), the most important driver of CH₄ 76 fluxes from new C inputs is the change in wetland area, together with the quantity and quality of new inputs¹⁶. Radiocarbon (¹⁴C) measurements offer the potential to address this 77 78 key uncertainty. Because permafrost C is typically thousands of years old, measuring the ¹⁴C 79 content of the CH₄ can determine whether previously-frozen, old C contributes substantially 80 to CH₄ release post thaw. However, until recently such measurements were very challenging 81 in remote locations.

Using new techniques that overcome previous limitations¹⁷, we quantified the ¹⁴C
content of CH₄ produced within, and emitted from the surface, in contrasting collapse
wetlands in both the sporadic discontinuous permafrost zone (near Teslin, Yukon Territory in
2013: 60°05'27.5"N, 132°22'06.4"W) and the extensive discontinuous permafrost zone (near
Yellowknife, Northwest Territories in 2014: 62°27'25.7" N, 114°31'59.8 "W). The total depth
of peat in the collapse wetlands was at least 160 cm in Teslin and 140 cm in Yellowknife.
Peat cores extracted from the collapse wetlands revealed clear stratigraphic transitions from

89 relatively undecomposed sedge/moss peat accumulated post thaw to plateau peat. The 90 depths of this transition were ~60 cm at Teslin and ~25 cm at Yellowknife (see 91 supplementary material). We used probes to collect CH₄ from 40 cm below the transition 92 depth at each site, and collected samples of CH₄ released from surface collars that either 93 included (full-profile collars) or physically excluded (near-surface collars) CH₄ production 94 from peat layers deeper than 40 cm from the surface (Fig. S1). In addition, site differences 95 allowed us to 1) determine how the contributions of the different CH₄ sources changed with 96 time since peat plateau collapse from recent to ~60 years (Fig. 1a; at Teslin by sampling at 97 the collapse wetland Margin, 5m in, and at the wetland centre) and 2) investigate the 98 importance of the different types of post-thaw vegetation community (Fig. 1b; Yellowknife: sedges with their potential for rapidly transporting CH₄ up from depth¹⁸ versus Sphagnum 99 100 moss-dominated communities).

101 Collapse wetlands released substantial amounts of CH₄, whereas, consistent with previous observations^{6,15}, net CH₄ release was not detected from undisturbed peat plateaus. 102 103 In Teslin, the water table remained within 5 cm of the soil surface throughout the 2013 growing season (Fig S3) and CH₄ emissions reached up to 400 mg CH₄ m⁻² day⁻¹ with an 104 estimated release of 21 g CH₄ m⁻² during the growing season (Fig. 2a). We did not observe 105 106 differences in CH₄ fluxes across the gradient of time since collapse (up to an age of 60 107 years; P = 0.192). This demonstrates that high fluxes can persist for multiple decades 108 (Fig. 2a), although previous studies have identified lower fluxes in collapse wetlands with 109 ages older than 200 years¹⁹. In Yellowknife, an anomalously dry summer in 2014, with less 110 than 30 mm of rain in June and July, approximately 30% of the long-term average rainfall for 111 these months, resulted in the water table falling to a depth of 30 cm (Fig S3). As a result, 112 growing season CH₄ emissions were lower than in Teslin (Fig. 2a,b). We calculated that 3.2 g and 2 g CH₄ m⁻² were released from sedge- and moss-dominated collapse wetlands, 113 114 respectively. The difference between vegetation communities was not significant (P = 115 0.093), but there was some uncertainty in calculating growing season fluxes caused by 116 limited mid-season site access due to forest fire hazards.

In Teslin, the CH₄ collected at depth with probes had a depleted ¹⁴C signature, 117 118 demonstrating that organic matter with radiocarbon ages ranging from 700 to 2800 years 119 before present (y BP), was decomposing to produce CH_4 (see Table S1). Conversely, the 120 ¹⁴C content of CH₄ released at the collapse wetland surface was greater than that of the 121 current atmosphere²⁰ (Fig 3a), indicating that the flux was dominated by C fixed since 122 nuclear weapons testing enriched the atmosphere in ¹⁴C during the second half of the 20th century. The ¹⁴C content of the CH₄ emitted from collars that included deeper peat layers 123 124 was significantly lower than from the collars that excluded fluxes from below 40 cm 125 (P = 0.022), identifying a measureable contribution from deeper peat (>40 cm). Given the 126 variation in the ages of CH_4 collected by the probes, a sensitivity analysis (Equation 1) was 127 used to estimate the potential maximum contribution of previously-frozen C to the surface 128 flux. Based on dating the organic matter at the base of the active layer (1200 y BP), a 129 maximum of 8.4 % (1.5 to 2 g CH₄ m⁻²) of the CH₄ emissions was calculated to be derived 130 from former permafrost peat, and did not change significantly with time since collapse 131 (Fig. 4; Supplementary Information and Equation 1).

132 The drier conditions in Yellowknife made the collection of probe CH₄ samples more 133 challenging, which may have contributed to the younger age of the CH₄ (150-800 y BP; 134 Table S1). However, the CH₄ released from the soil surface had a lower ¹⁴C content than in 135 Teslin and was also lower than that of the current atmosphere, indicating that relatively old C 136 was being released (Fig. 3b). The ¹⁴C content of the CH₄ emitted from near-surface collars 137 was higher than that from the full-profile collars again suggesting a contribution from deeper 138 soil layers, although the difference between collar treatments was not statistically significant (P = 0.375). By carrying out the same sensitivity analysis based on the age of uppermost 139 140 permafrost C, it was estimated that previously-frozen organic matter could have contributed a maximum of 30% to the CH₄ emissions (Fig. 4); this corresponds to 0.7-1.0 g CH₄ m⁻² 141 142 during the growing season. No significant difference in ¹⁴C between the moss and sedgedominated vegetation communities was detected (P = 0.982). It appears that by suppressing 143 144 near-surface CH₄ production, the dry conditions greatly reduced total CH₄ fluxes and thus

there was a greater proportional contribution of previously-frozen C. Regardless, the
absolute amount of CH₄ derived from previously-frozen C remained low.

The results from these two contrasting sites in different permafrost zones
demonstrate that, where substantial CH₄ fluxes occurred, they were dominated by anaerobic
decomposition of recent C inputs. Total rates of CH₄ release from previously-frozen C were
low irrespective of differences in time since thaw, vegetation community composition and/or
water-table depth. By calculating maximum potential contributions of previously-frozen C,
our calculations still likely represent an overestimation, adding to confidence to this overall
conclusion (see sensitivity analysis in Supplementary Information).

154 In both study sites, permafrost thaw exposed ~1 m of previously-frozen peat and >50 155 kg C m⁻² to anaerobic decay and yet maximum CH₄ release rates from this store during the 156 growing season were only 1-2 g C m⁻², or 0.02-0.04 g CH₄-C kg soil C⁻¹. Rates of CH₄ 157 emitted from the decomposition of previously-frozen C in thermokarst lakes in situ (0.5 g CH₄-C kg soil C⁻¹ yr⁻¹)¹³ and observed rates of CH₄ production in anaerobic incubations (1.2 158 g CH₄-C kg soil C⁻¹ yr⁻¹)²¹ are at least an order of magnitude greater than our in situ peatland 159 160 fluxes. The low rates of CH₄ release may be related to oxidation of the CH₄ to CO₂ during 161 transport within the peat, or slow rates of anaerobic decomposition of previously-frozen 162 SOM. We consider it unlikely that oxidation could explain the low rate of old CH₄ release, at 163 least at Teslin where the water table remained within 5 cm of the peat surface throughout the 164 growing season, and the sedge communities will have promoted rapid CH₄ transport from 165 depth¹⁸. Under long-term anaerobic conditions, the build-up of inhibitory compounds (e.g. 166 phenolics) within peats, may strongly suppress microbial activity and contribute to low rates of anaerobic decomposition at depth²². Possibly reflecting this, warming of up to 9 °C did not 167 increase rates of decomposition in anaerobic peat layers below 20 cm in an ombrotrophic 168 bog in northern Minnesota²³. Thus, there may be little potential for CH₄ release from the 169 170 decomposition of deep peat C stores irrespective of whether or not these layers have been 171 frozen in the recent past. Given that histels are currently predicted to play a key role in the 172 permafrost CH₄ feedback³, the low rates of release we observed, suggest that anaerobic

173 decomposition of previously-frozen peat may not result in the release of 1-4 GT of CH_4 by 174 2100 that models and expert assessments predict^{3,5}.

On the other hand, CH₄ fluxes from thawing peatlands may still represent a key 175 component of the permafrost feedback. The differences between our field sites indicate that 176 CH4 fluxes vary with water table depth post thaw, which may be linked to the magnitude of 177 surface subsidence, local hydrological conditions and climate variability²⁴. In our wetter field 178 179 site at Teslin, despite the low contribution of previously-frozen C, substantial amounts (21 g CH_4 m⁻²) of CH_4 were released during the growing season. The fact that high CH_4 fluxes 180 181 were observed from areas that had thawed several decades ago suggests that permafrost thaw at this site could have promoted the release up to 1 kg of CH_4 -C m⁻² over the last 50 182 183 years. Therefore, where there is deep subsidence and near-surface water-logging, CH₄ 184 fluxes from thawing permafrost peatlands can still produce a positive feedback to climate 185 change; the CH₄ is just not primarily derived from previously-frozen C. There is evidence that 186 the endpoint for permafrost thaw in boreal peatlands is inundated fens¹⁰ and studies have 187 identified an expansion of this type of wetland in parts of northern Canada²⁵. The 188 subsequent CH₄ release could lead to substantial increases in regional CH₄ fluxes¹⁶. However, considerable observational^{26,27} and modelling^{16,28} uncertainty remains regarding 189 190 whether permafrost thaw will increase or decrease wetland extent in different regions. 191 Remote sensing techniques that can directly detect the spatial extent of wetlands and their 192 vegetation communities, especially sedges^{25,29,30}, may prove invaluable for quantifying the 193 effect of permafrost thaw on high-latitude CH₄ fluxes.

In conclusion, our study demonstrates that anaerobic decomposition of new C inputs drive CH₄ emissions in contrasting thawed permafrost peatlands in northern Canada. These results may have major implications for modelling the permafrost feedback, suggesting that, to simulate future fluxes, efforts should be focused on accurately predicting the effects of permafrost thaw on the spatial extent of wetlands, rather than rates of anaerobic decomposition of previously-frozen peat.

200) References	
201	1	Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of
202		Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
203		Climate Change (eds T.F. Stocker et al.) Ch. 6, 465-570 (Cambridge University
204		Press, 2013).
205	2	Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact
206		of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003,
207		(2014).
208	3	Koven, C. D. et al. A simplified, data-constrained approach to estimate the
209		permafrost carbon-climate feedback. Phil. Trans. R. Soc. A. 373, 20140423, (2015).
210	4	Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature
211		520 , 171-179, (2015).
212	5	Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to
213		climate change. Clim. Change 119, 359-374, (2013).
214	6	Turetsky, M. R., Wieder, R. K., Vitt, D. H., Evans, R. J. & Scott, K. D. The
215		disappearance of relict permafrost in boreal north America: Effects on peatland
216		carbon storage and fluxes. Glob. Change Biol. 13, 1922-1934, (2007).
217	7	Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified
218		uncertainty ranges and identified data gaps. Biogeosciences 11, 6573-6593, (2014).
219	8	Harden, J. W. et al. Field information links permafrost carbon to physical
220		vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704, (2012).
221	9	Schadel, C. et al. Circumpolar assessment of permafrost C quality and its
222		vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641-
223		652, (2014).
224	10	Swindles, G. T. et al. The long-term fate of permafrost peatlands under rapid climate
225		warming. Sci. Rep. 5 , 17951, (2015).
226	11	McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change.
227		Ecol. Monogr. 79 , 523-555, (2009).

- Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined
 from a pan-Arctic synthesis of plant macrofossils. J. Geophys. Res. Biogeosci. 121,
 78-94, (2016).
- Walter Anthony, K. M. et al. Methane emissions proportional to permafrost carbon
 thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679-682, (2016).
- 23314Miao, Y. et al. Growing season methane emission from a boreal peatland in the234continuous permafrost zone of Northeast China: effects of active layer depth and
- 235 vegetation. Biogeosciences **9**, 4455-4464, (2012).
- Wickland, K. P., Striegl, R. G., Neff, J. C. & Sachs, T. Effects of permafrost melting
 on CO₂ and CH₄ exchange of a poorly drained black spruce lowland. J. Geophys.
 Res. Biogeosci. **111**, G02011, (2006).
- Gao, X. et al. Permafrost degradation and methane: low risk of biogeochemical
 climate-warming feedback. Environ. Res. Lett. 8, 035014, (2013).
- Garnett, M. H., Hardie, S. M. L. & Murray, C. Radiocarbon analysis of methane
 emitted from the surface of a raised peat bog. Soil Biol. Biochem. 50, 158-163,
 (2012).
- 18 Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L. & Pfeiffer, E. M. Regulation of
 methane production, oxidation, and emission by vascular plants and bryophytes in
 ponds of the northeast Siberian polygonal tundra. J. Geophys. Res. Biogeosci. 120,
 2525-2541, (2015).
- Johnston, C. E. et al. Effect of permafrost thaw on CO₂ and CH₄ exchange in a
 western Alaska peatland chronosequence (vol 9, 085004, 2013). Environ. Res. Lett.
 9, 109601 (2014).
- 251 20 Levin, I., Kromer, B. & Hammer, S. Atmospheric ∆14CO₂ trend in Western European
 252 background air from 2000 to 2012. Tellus B 65, (2013).
- 253 21 Treat, C. C. et al. A pan-Arctic synthesis of CH₄ and CO₂ production from anoxic soil
 254 incubations. Glob. Change Biol. **21**, 2787-2803, (2015).

- 255 22 Freeman, C., Ostle, N. & Kang, H. An enzymic 'latch' on a global carbon store A
 256 shortage of oxygen locks up carbon in peatlands by restraining a single enzyme.
 257 Nature **409**, 149-149, (2001).
- 258 23 Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun.
 259 7, (2016).
- 260 24 Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and
- physical controls on northern terrestrial methane emissions across permafrost zones.
 Glob. Change Biol. **19**, (2013).
- 26325Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests264on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob.
- 265 Change Biol. **20**, 824-834 (2014).
- 26 26 Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic
 267 lakes. Science **308**, 1429-1429, (2005).
- 268 27 Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, K. C. Surface water inundation
 269 in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res.
- 270 Lett. **9**, 075001, (2014).
- 271 28 Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G.
- 272 Permafrost thaw and resulting soil moisture changes regulate projected high-latitude
 273 CO₂ and CH₄ emissions. Environ. Res. Lett. **10**, 094011, (2015).
- 274 29 Fraser, R. H. et al. Detecting Landscape Changes in High Latitude Environments
 275 Using Landsat Trend Analysis: 1. Visualization. Remote Sens. 6, 11533-11557,
- 276 (2014).
- Hartley, I. P. et al. Quantifying landscape-level methane fluxes in subarctic Finland
 using a multiscale approach. Glob. Change Biol. 21, 3712-3725, (2015).
- 279

280 Figure legends

281

282 Figure 1| Schematic diagram of the site-specific sampling designs. Panel a shows the 283 Teslin sampling locations, which were established at three separate positions across a 284 gradient of time since thaw of a peat plateau, from (i) recent thaw at the edge of the collapse 285 wetland (Margin); to (ii) 5 m into the wetland where there were still standing dead trees (5 286 m); and in the wetland centre where collapse occurred approximately 60 years ago (centre). 287 Panel **b** shows the Yellowknife sampling locations in Moss and Sedge-dominated collapse 288 wetlands. Three replicate collapse features colonized by each vegetation type were studied. 289 The average ages of the collapse features are presented below the figures and the deeper 290 water table in Yellowknife is indicated (water table depths are identified with the black 291 upside-down triangles). The arrows indicate the locations at which CH₄ fluxes were 292 measured. The smaller arrows indicate that, although measurements were made on the 293 plateaus, no net release of CH₄ was detected.

294

Figure 2| Seasonal CH₄ fluxes in the collapse wetlands. Panel a. Teslin and b.
Yellowknife (mean ± s.e.m; n=3 for measurements at each time point). It was not possible to
visit the Yellowknife site during the middle of the growing season because of forest fires.
During this time there was no rainfall and thus the water table would have remained at least
as deep within the peat profile, making it extremely unlikely that we missed any peaks in CH₄
release. Note the difference in the y-axes scales in panels a and b. We did not detect net
CH₄ emissions on the undisturbed peat plateaus.

302

Figure 3| Mean ¹⁴C content of CH₄ collected from full-profile collars, near-surface
collars and the probes located 40 cm below the moss/sedge peat and plateau peat
transitions in the different thermokarst wetlands. Panel a shows the results for Teslin
and panel b the results from Yellowknife collapse wetlands. The dashed lines indicates the

- 307 estimated ¹⁴C content of the atmosphere in the respective sampling years²⁰. Error bars 308 represent \pm s.e.m. (n=3).
- 309

310 Figure 4 | Sensitivity analysis to estimate the contribution of previously-frozen C to

311 surface CH₄ fluxes. The difference in the ¹⁴C contents of the CH₄ released from near-

312 surface and full-profile collars was used and the age of previously-frozen C (Page in

- Equation 1) was varied between 600 and 1800 y BP to create the sensitivity analysis curve.
- 314 The presence of white river ash tephra at the base of the active layer in the plateaus

indicates the age of the permafrost peat on the plateaus to be at least 1200 yr BP. Using the

- ¹⁴CH₄ data and assuming Page to equal 1200 yr BP, the maximum possible contribution
- 317 from previously-frozen carbon can be calculated (thin dashed lines).

319 Acknowledgements

320 We would like to thank Chris Burn for providing the permafrost coring equipment that was 321 used in Teslin and Robert Sagar for help with the late season CH₄ flux measurements in 322 Teslin. We are grateful to the Yukon College and Aurora Geosciences Ltd. for logistical 323 support in Teslin and Yellowknife, respectively, and would also like to acknowledge Ute 324 Skiba at CEH Edinburgh for the gas chromatography CH₄ analyses. This work was funded by the UK Natural Environment Research Council (NERC) and Department of Energy and 325 Climate Change (DECC) through grants NE/K000179/1 to I.P.H., NE/K00025X/1 to G.K.P., 326 NE/K000241/1 to J.M. and NE/K000292/1 to M.W., and a University of Sheffield Righ 327 328 Foundation Studentship to R.T.

329

330 Author Contributions

- 331 I.P.H., D.C., and C.E.A. designed the study; M.D.A.C. led the CH₄ flux measurements with
- the support of C.E.A., J.P.F. and R.T. and carried out the sampling and initial processing of
- the CH₄ samples under the supervision of M.H.G.; Site selection and set-up was carried out
- 334 by A.G.L, S.A.W., S.V.K., I.P.H., C.E.A., D.C., J.B.M., G.K.P., A.T., and M.W., who also led
- the overall project. The manuscript was drafted by M.D.A.C., C.E.A. and I.P.H. and all
- authors contributed to the final version.

- 338 Competing Financial Interests
- 339 The authors declare no competing financial interests
- 340
- 341

342 Methods

343

- 344 Field-site description
- 345

Research was undertaken in two study sites: near Teslin, Yukon Territory in 2013 (sporadic discontinuous permafrost zone) and near Yellowknife, Northwest Territories (extensive discontinuous permafrost zone) in 2014. The mean annual air temperature (MAAT) (1981 – 2010) for Teslin was -0.6°C, with monthly averages ranging from -17.1°C in January to 14.1°C in July and the mean annual precipitation (MAP) was 346 mm³¹. For Yellowknife, the MAAT (1981 – 2010) was -4.3°C, with monthly averages ranging from -25.6°C in January to 17.0°C in July. The MAP for Yellowknife was 289 m m.

353 The Yukon study site contains an isolated permafrost peat plateau fringed by a 354 collapse wetland (Fig 1a) located near MP788 (Alaskan Highway Milepost), approximately 355 20 km southeast of Teslin in the Yukon Territory (60°05'27.5"N, 132°22'06 .4"W). The mean 356 thaw depth in 2013 on peat plateau was 49 cm, while thaw depths exceeded 120 cm in the 357 wetland³². The peat plateau was elevated up to 1.5 m above the surrounding wetland, with 358 resistivity probe measurements suggesting that permafrost thickness was between 15 and 359 18 m in the higher parts of the plateau³². A layer of tephra identified as White River Ash 360 present near the bottom of the active layer in the peat plateau indicates that the minimum 361 age of the organic matter at the top of the current permafrost layer was ~1200 BP³³. The 362 unfrozen wetland was dominated by hydrophilic sedges (Carex rostrata Stokes).

The second study site was a peat plateau, collapse wetland complex approximately 8 km west of Yellowknife, Great Slave Lake region in the Northwest Territories (62°27'25.7" N, 114°31'59.8" W). Approximately 65% of the Great Slave Lake region is underlain by thin permafrost exhibiting widespread signs of degradation³⁴. The underlying bedrock constitutes part of the Canadian Shield consisting of Precambrian granites. At the end of the last glacial maximum, the whole Yellowknife region was submerged by glacial Lake McConnell. During the Holocene, the lake recessed resulting in permafrost aggradation within lacustrine

sediments and peat mound formation in the newly exposed land³⁵. The site contains an 370 371 intact peat plateau surrounded by multiple collapse wetlands characterised by two distinct vegetation communities: 1) sedge-dominated (Carex rostrata) with isolated moss patches, 372 and 2) Sphagnum spp moss carpet with little vascular plant cover (Fig 1b). Maximum active-373 374 layer thickness on the peat plateau during the year of study was ~50 cm, with no ice being 375 detected within the collapse wetlands during the middle of the growing season. Access to 376 the study site was limited at times during the middle of the 2014 summer due to road closure 377 from nearby wildfires. This reduced the amount of flux data that was collected but did not interfere with the ¹⁴CH₄ sample collection. 378

379

380 Sampling design

381

382 In 2013, at the Teslin study site, three sampling areas were established across a 383 gradient from the actively subsiding edge of the permafrost plateau to the centre of the 384 collapse wetland, to investigate how time since initial thaw affected the ¹⁴C content and 385 source of CH₄ released. The first sampling area was located adjacent to the intact plateau 386 (representing recent thaw), the second area was 5 m into the collapse wetland (representing 387 an intermediate time since thaw with dead trees still standing) and the third sampling 388 location was established at the centre of the wetland (representing the longest time since 389 thaw and with no standing trees). In 2014, in Yellowknife, sampling locations were 390 established in three replicate collapse wetlands dominated by either moss or sedge, to 391 assess how contributions of previously-frozen C depended on vegetation type. Radiocarbon 392 analysis of the peat transition (plateau to sedge/moss peat) indicated that permafrost thaw had started ~60 years ago in Teslin, and in Yellowknife, on average 18 and 42 years ago in 393 394 the moss and sedge dominated collapse wetlands, respectively (Fig. 1b).

395

396 Chamber flux measurements

CH₄ flux measurements using the static chamber method³⁶ were carried out twice 398 399 monthly (July -October) in Teslin, but were more limited in Yellowknife due to forest fires. In 400 each sampling location, three replicate PVC collars, 10 cm deep and 30 cm in diameter, 401 were inserted 5 cm into the wetland soil surface, with 5 cm of the collar projecting above the 402 water or peat surface, and all vegetation being maintained intact inside the chamber. The 403 chamber lids were attached to sampling collars using a rubber inner tube creating an internal 404 headspace volume of 11 L during chamber enclosure. Each chamber lid contained CPC 405 quick connect auto-shutoff couplings (Colder Products Company, USA) which allowed a 406 closed loop to be set up between the chamber headspace and a CH₄ analyser [Detecto Pak 407 Infrared CH4 analyser (DP-IR), Heath Consultants Inc, USA]. CH₄ concentrations were 408 measured five times at hourly intervals. The flux was calculated from the time series of CH₄ 409 concentrations within the chamber using linear regression and all R² values were greater 410 than 0.9. The overall annual (growing season) CH₄ flux estimates were calculated by linear 411 interpolation between measured fluxes. An intercomparison between the DP-IR measured 412 CH₄ concentrations and Gas chromatography confirmed the suitability of the approach (see 413 Fig S2 and Supplementary materials).

414

415 ¹⁴CH₄ sample collection and analysis

416

417 In order to estimate the proportion of CH₄ flux derived from previously-frozen organic material, we measured the ¹⁴C content of CH₄ released using two types of sampling collars 418 419 made from PVC pipe with an internal diameter of 30 cm. The first collar type was a full-420 profile collar inserted 40 cm into the wetland profile. For the second collar type, 40 cm cores 421 were extracted using a serrated knife, transferred into cylinders with sealed bottoms (near-422 surface collars), and then inserted back into the wetland to exclude any CH₄ contributions 423 from depth (Fig. S1). All vegetation was maintained within the two collar types. Extracted 424 cores were retained intact during the transfer to the near-surface collars. Some root damage

will have occurred during installation, but there was no die back or visible effect on growth of
surface vegetation within the sampling collar and therefore it appears that the impacts were
minimal. Water-table depths rarely differed between the full-profile and near-surface collars
but when they did, water was added to the near-surface collars from the surrounding
wetland.

430 To establish whether anaerobic decomposition of former permafrost was taking place, probes were inserted into the peat profiles. Consistent with previous observations^{6,37}, 431 432 peat cores extracted from collapse wetlands at both study sites, revealed a clear and sharp 433 transition between a relatively undecomposed layer of sedge or Sphagnum moss peat that 434 had accumulated vertically since the initiation of collapse, and the underlying plateau peat. 435 This was observed at a depth of on average 60 cm in Teslin and 25 cm in Yellowknife. 436 Probes were inserted 40 cm below these transition zones at 100 and 65 cm depth for Teslin 437 and Yellowknife, respectively. Given that the active layer thickness was ~50 cm on the 438 plateau and some peat compaction will have taken place following collapse, by installing the 439 probes at these depths we were able to sample from approximately where the top of the 440 permafrost was before thaw took place. Each probe was sealed at the bottom to prevent 441 blockages during installation, and the bottom 10 cm of the probe was perforated to allow 442 water to enter. The emergent component of the probe contained a tygon tubing attachment 443 which was sealed using WeLoc clips to prevent gas exchange with the atmosphere. Three 444 replicates of each collar type and the probes were established in each sampling location.

445 CH₄ sampling for radiocarbon analysis was carried out in mid-August in both years to 446 ensure that seasonal ice had thawed completely. As with the flux measurements, chambers 447 were attached to the collars, with rubber tubes used to create an airtight seal between collar 448 and chamber. The total headspace volume was ~11 L. During enclosure, changes in CH₄ 449 concentration within the chamber headspace were monitored by connecting the DP-IR 450 analyser to the chambers through the same tubes and connectors as used for the flux 451 monitoring. When sufficient concentrations had accumulated within the chamber headspace, 452 samples were collected by attaching a 10 L foil gas sample bag (SKC, UK) to the exhaust of

the DP-IR (via CPC couplings). To prevent the creation of a vacuum, chamber pressure was 453 454 equilibrated to the atmosphere during sample collection through a vent in the lid. Dilution by 455 ingress of atmospheric air caused chamber CH₄ concentration to fall during sampling; this 456 was monitored using the DP-IR. In Teslin, given the high concentrations of CH₄ in the 457 chambers, and the low concentration of CH₄ in the atmosphere, contamination will have 458 been < 2% of the CH₄ collected and will not have had a measureable effect on the 14 C 459 contents. Due to lower rates of CH₄ release in Yellowknife, multiple sample bags were 460 extracted and then bulked for radiocarbon processing, increasing potential contamination to around 5% but still within measurement error for ¹⁴CH₄. 461

462 For the probe sampling, 1 L of soil water was extracted using 60ml syringes then 463 transferred in a 10 L collapsible water carrier ['Accordion Water Carrier' (AWC); Highlander, 464 Livingston, UK]. The first syringe of water was discarded to remove any experimental error 465 associated with water standing within the probe. The headspace of the water carrier was 466 inflated with atmospheric air. Given that the target CH₄ concentration required for 467 radiocarbon analysis were > 350 ppm, CH_4 concentrations of 1.8 ppm present in ambient air 468 represented a contamination of < 0.5 %. In order to equilibrate CH₄ from water, the water 469 carrier was shaken for 3 minutes; previous testing had demonstrated that 3 minutes are 470 sufficient to equilibrate and transfer CH₄ from the water without influencing the isotopic 471 composition³⁸. CH₄ concentrations in the water carrier headspace were monitored using the 472 DP-IR. By squeezing the water carrier, the headspace was transferred to a foil bag, attached 473 through CPC couplings, but care was taken to ensure that water did not enter the foil bag. 474 New techniques have recently been developed at the UK Natural Environment 475 Research Council Radiocarbon Facility that overcome previous obstacles for radiocarbon analysis of CH₄ from remote locations¹⁷. These include i) improved gas collection methods 476 that allow samples to be reliably ¹⁴C dated even at CH₄ concentrations well below the lower 477 478 explosive limit, and ii) conversion of CH₄ samples to CO₂ followed by collection on zeolite 479 molecular sieves prior to transportation. The first stage of laboratory processing was to

480 remove any CO₂ from the field sample. This was carried out by passing the field sample

481 through a soda lime cartridge (dimensions diameter 20mm, length 250mm) into a cleaned (CO₂ free) foil bag. Verification of CO₂ removal was confirmed using an infra-red gas 482 483 analyser (EGM-4; PP-systems UK) and the process was repeated if necessary. Next, the 484 CO₂-free sample was transferred through another soda lime cartridge to remove any final 485 traces of CO₂ from the sample, after which the CH₄ was converted to CO₂ through 486 combustion at 950°C using a platinum-alumina bead catalyst. This CO₂ was transferred 487 through a cartridge containing magnesium perchlorate to absorb any water vapour produced 488 during combustion, and then trapped on a molecular sieve cartridge containing Type 13X zeolite³⁹ to enable safe transportation to the Radiocarbon facility in the UK. Back in the UK, 489 490 CH₄-derived CO₂ was desorbed by heating, cryogenically purified and aliquoted into separate samples for ¹⁴C and δ^{13} C analysis. Following convention, radiocarbon results were 491 492 expressed as conventional radiocarbon years before present (BP; where 0 BP = AD 1950) 493 and %modern⁴⁰.

494

495 Calculations and data analysis.

496

497 Probe samples yielded highly variable ¹⁴C contents, and contemporary signatures 498 were observed in Yellowknife, perhaps reflecting the fact that it was difficult to reliably 499 sample deep water from the 65 cm probes given the water table was at 30 cm (Table S1). 500 For these reasons, we used a sensitivity analysis approach to calculate the maximum 501 possible contribution of CH₄ derived from previously-frozen peat (Equation 1; Fig. 4), varying 502 the age of this CH₄ between 600 and 1800 y BP. These ages were chosen because radiocarbon and tephra dating indicated that the age of the organic matter at the top of the 503 504 permafrost in the peat plateaus was approximately 1200 y BP. In addition, although variable, 505 the average age of the CH₄ collected from the 1 m probes in Teslin was 1216 ± 213 y BP 506 (mean \pm 1SE, N=9).

507

$$PF CH_4 (\%) = \left(\frac{FP^{14}CH_4 - NS^{14}CH_4}{Page - NS^{14}CH_4} \right) *100$$
(Equation 1)

509

510 Where PF CH₄ (%) is the % contribution of previously-frozen C to the total CH₄ efflux, FP¹⁴CH₄ 511 is the ¹⁴C content of the CH₄ collected from the Full-profile collars, NS¹⁴CH₄ is the ¹⁴C content 512 of the CH₄ collected from the Near-surface collars, and Page is the ¹⁴C content of previously-513 frozen C, which was varied between ¹⁴C contents equivalent to radiocarbon ages of 600 and 514 1800 y BP (see Supplementary materials for more information).

Statistical analyses were carried out using SPSS (Version 22, SPSS Science) and data were checked for suitability for parametric analysis. Repeated measures two-way ANOVAs were used to determine whether CH_4 fluxes changed over time (within-subject factor) or differed across the gradient of time since thaw (Fig. 1a) or between vegetation communities (Fig. 1b; between-subject factors). Repeated-measures two-way ANOVAs were also used to examine the effects of collar type (within-subject factor) and either time since thaw or vegetation community (between-subject factors) on the ¹⁴C content of the CH₄

- 522 released.
- 523

524 Data availability

525

All of the radiocarbon data are presented in the supplementary information (Table S1). The
CH₄ flux data and environmental monitoring data are available from the corresponding
author upon request.

- 529
- 530

531 **References in methods only:**

- 532 31 Environment Canada, Climate Data Online. at
- 533 <<u>http://climate.weather.gc.ca/climate_normals</u>>
- 534 32 Lewkowicz, A. G., Etzelmuller, B. & Smith, S. L. Characteristics of Discontinuous
- 535 Permafrost based on Ground Temperature Measurements and Electrical Resistivity
- 536 Tomography, Southern Yukon, Canada. Permafrost Periglac. **22**, 320-342, (2011).
- 537 33 Clague, J. J., Evans, S. G., Rampton, V. N. & Woodsworth, G. J. Improved age
- estimates for the white-river and bridge-river tephras, western Canada. Can. J. Earth
 Sci. 32, 1172-1179, (1995).
- 540 34 Morse, P. D., Wolfe, S. A., Kokelj, S. V. & Gaanderse, A. J. R. The Occurrence and
- 541 Thermal Disequilibrium State of Permafrost in Forest Ecotopes of the Great Slave

542 Region, Northwest Territories, Canada. Permafrost Periglac. 27, 145-162, (2016).

- 543 35 Wolfe, S. A. & Morse, P. D. Lithalsa Formation and Holocene Lake-Level Recession,
 544 Great Slave Lowland, Northwest Territories. Permafrost Periglac. doi:DOI:
- 545 10.1002/ppp.1901 (2016).
- 546 36 Livingston, G. & G, H. in Biogenic trace gases: measuring emissions from soil and 547 water (eds P.A. Matson & R.C Harriss) 14-51 (Blackwell Publishing, 1995).
- 548 37 Myers-Smith, I. H. et al. Wetland succession in a permafrost collapse: interactions 549 between fire and thermokarst. Biogeosciences **5**, 1273-1286 (2008).
- 550 38 Garnett, M. H., Gulliver, P. & Billett, M. F. A rapid method to collect methane from 551 peatland streams for radiocarbon analysis. Ecohydrology **9**, 113-121, (2016).
- Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Rowland, A. P. & Ostle, N. J. Carbon
 dioxide capture using a zeolite molecular sieve sampling system for isotopic studies
- 554 $(^{13}C \text{ and } ^{14}C)$ of respiration. Radiocarbon **47**, 441-451 (2005).
- 555 40 Stuiver, M. & Polach, H. A. Reporting of ¹⁴C data discussion. Radiocarbon **19**, 355363 (1977).
- 557
- 558

Figure 1

562 Figure 1b

Figure 1

b. Sedge/moss peat Moss peat Active layer Water table Φ Permafrost Permafrost tabl Water tabl Water tabl Plateau peat Plateau peat Water Underlying mineral soil Underlying mineral soil

Moss wetland centre: Collapse 18 years ago Peat plateau: No net CH₄ Sedge wetland centre: Collapse 42 years ago

