
This is a repository copy of Limited contribution of permafrost carbon to methane release 
from thawing peatlands.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/119361/

Version: Accepted Version

Article:

Cooper, M.D.A., Estop-Aragonés, C., Fisher, J.P. et al. (11 more authors) (2017) Limited 
contribution of permafrost carbon to methane release from thawing peatlands. Nature 
Climate Change, 7. pp. 507-511. ISSN 1758-678X 

https://doi.org/10.1038/nclimate3328

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Nature Climate Change: DOI: 10.1038/NCLIMATE3328  1 

URL: https://www.nature.com/nclimate/journal/v7/n7/pdf/nclimate3328.pdf 2 

 3 

Limited contribution of permafrost carbon to methan e release from thawing 4 

peatlands 5 

 6 

Mark D. A. Cooper1, Cristian Estop-Aragones1†, James P. Fisher2, Aaron Thierry3, Mark H. 7 

Garnett4, Dan J. Charman1, Julian B. Murton5, Gareth K. Phoenix2, Rachael Treharne2, 8 

Steve V. Kokelj6, Stephen A. Wolfe7,8, Antoni G. Lewkowicz9,  Mathew Williams3, Iain P. 9 

Hartley1* 10 

 11 

1Geography, College of Life and Environmental Sciences, University of Exeter, Rennes 12 
Drive, Exeter, EX4 4RJ, UK.   13 
2Department of Animal & Plant Sciences, University of Sheffield, Western Bank, Sheffield, 14 
S10 2TN, UK.  15 
3School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF. 16 
4NERC Radiocarbon Facility, Scottish Enterprise Technology Park, Rankine Avenue, East 17 
Kilbride, G75 OQF, UK.  18 
5Department of Geography, University of Sussex, Brighton, BN1 9QJ, UK.   19 
6Northwest Territories Geological Survey, Government of the Northwest Territories, 20 
Yellowknife, NWT, Canada.  21 
7Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario, 22 
Canada.   23 
8Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada.  24 
9Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, 25 
Ontario, Canada K1N 6N5 26 
 27 
†Present address: Department of Renewable Resources, University of Alberta, Edmonton, 28 
AB, T6G 2H1, Canada 29 
 30 
*Corresponding author: i.hartley@exeter.ac.uk 31 
  32 

https://www.nature.com/nclimate/journal/v7/n7/pdf/nclimate3328.pdf


Models predict that thaw of permafrost soils at northern high-latitudes wil l release 33 

tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the 34 

Earth's climate depends strongly on the proportion of this C which is released as the 35 

more powerful greenhouse gas methane (CH 4), rather than carbon dioxide (CO 2)1,4; 36 

even if CH 4 emissions represent just 2% of the C release, they would contribute 37 

approximately one quarter of the climate forcing 5. In northern peatlands, thaw of ice-38 

rich permafrost causes surface subsidence (thermokarst) and water-logging 6, 39 

expos ing substantial stores (10s of kg C m -2, ref. 7) of previously-frozen organic 40 

matter to anaerobic conditions , and generating ideal conditions for permafrost-41 

derived CH4 release. Here we show that, contrary to expectations, although 42 

substantial CH 4 fluxes (>20 g CH 4 m-2 yr -1) were recorded from thawing peatlands i n 43 

northern Canada, only a small amount was derived from previously-frozen C (<2 g CH 4 44 

m-2 yr -1). Instead , fluxes were driven by anaerobic decomposition of recent C inputs. 45 

We conclude that thaw-induced changes in surface wetness and wetland area, rather 46 

than the anaerobic decomposition of previously-frozen C, may determine the effect of 47 

permafrost thaw on CH 4 emissions from northern peatlands. 48 

Permafrost peatlands occupy more than 1 million km2 (ref. 7), and could dominate 49 

the permafrost CH4 feedback3. Although these peatlands only store approximately 20% of 50 

the total permafrost C stock which is predicted to thaw this century8, potential decomposition 51 

rates associated with frozen organic soils are up to five times greater than for frozen mineral 52 

soils9, and peats are disproportionately likely to be water-logged following thaw3,10. For these 53 

reasons, one modelling study assumed that all the CH4 released as a result of permafrost 54 

thaw would be derived from currently-frozen peats (histels)3. The histels most vulnerable to 55 

thaw during this century are located in the southern permafrost zone11, where the presence 56 

of permafrost raises the peat surface above the water table, forming plateaus dominated by 57 

tree, shrub, moss and lichen communities (see supplementary material)12. This results in the 58 

formation of a mixture of woody (sylvic) and Sphagnum-moss peat. Thaw of ice-rich 59 

permafrost within these peatland plateaus causes surface subsidence, resulting in the 60 



formation of collapse wetlands with water-logging and vegetation change6,12. In collapse 61 

wetlands, there is then significant potential for CH4 to be released from the decomposition of 62 

previously-frozen organic matter because: 1) thaw makes 10s of kg C m-2 vulnerable to 63 

microbial decomposition, and 2) water-logging produces oxygen-limited conditions 64 

throughout the soil profile and thus all newly-thawed organic matter will decompose under 65 

anaerobic conditions. However, despite the potential importance of these peatlands to the 66 

permafrost CH4 feedback3, to date, no study has quantified rates of CH4 release from the 67 

decomposition of previously-frozen C in these systems.  68 

Unlike in thermokarst lakes where there is no in situ vegetation13, it is unclear to what 69 

extent any CH4 emitted from collapse wetlands is derived from old, previously-frozen C (ref. 70 

14) versus new C inputs from the hydrophilic vegetation communities that develop post 71 

thaw6,15. This is important because determining the source of the CH4 is required for 72 

accurately simulating future fluxes, as the factors controlling emission rates differ 73 

fundamentally. While the total C stock and its decomposability are the main relevant 74 

predictors of CH4 release from previously frozen C (ref. 3), the most important driver of CH4 75 

fluxes from new C inputs is the change in wetland area, together with the quantity and 76 

quality of new inputs16. Radiocarbon (14C) measurements offer the potential to address this 77 

key uncertainty. Because permafrost C is typically thousands of years old, measuring the 14C 78 

content of the CH4 can determine whether previously-frozen, old C contributes substantially 79 

to CH4 release post thaw. However, until recently such measurements were very challenging 80 

in remote locations.  81 

Using new techniques that overcome previous limitations17, we quantified the 14C 82 

content of CH4 produced within, and emitted from the surface, in contrasting collapse 83 

wetlands in both the sporadic discontinuous permafrost zone (near Teslin, Yukon Territory in 84 

2013: 60°05'27.5''N, 132°22'06.4''W) and the extensive discontinuous permafrost  zone (near 85 

Yellowknife, Northwest Territories in 2014: 62°27'25.7'' N, 114°31'59.8 '' W). The total depth 86 

of peat in the collapse wetlands was at least 160 cm in Teslin and 140 cm in Yellowknife. 87 

Peat cores extracted from the collapse wetlands revealed clear stratigraphic transitions from 88 



relatively undecomposed sedge/moss peat accumulated post thaw to plateau peat. The 89 

depths of this transition were ~60 cm at Teslin and ~25 cm at Yellowknife (see 90 

supplementary material). We used probes to collect CH4 from 40 cm below the transition 91 

depth at each site, and collected samples of CH4 released from surface collars that either 92 

included (full-profile collars) or physically excluded (near-surface collars) CH4 production 93 

from peat layers deeper than 40 cm from the surface (Fig. S1). In addition, site differences 94 

allowed us to 1) determine how the contributions of the different CH4 sources changed with 95 

time since peat plateau collapse from recent to ~60 years (Fig. 1a; at Teslin by sampling at 96 

the collapse wetland Margin, 5m in, and at the wetland centre) and 2) investigate the 97 

importance of the different types of post-thaw vegetation community (Fig. 1b; Yellowknife: 98 

sedges with their potential for rapidly transporting CH4 up from depth18 versus Sphagnum 99 

moss-dominated communities).  100 

Collapse wetlands released substantial amounts of CH4, whereas, consistent with 101 

previous observations6,15, net CH4 release was not detected from undisturbed peat plateaus. 102 

In Teslin, the water table remained within 5 cm of the soil surface throughout the 2013 103 

growing season (Fig S3) and CH4 emissions reached up to 400 mg CH4 m-2 day-1 with an 104 

estimated release of 21 g CH4 m-2 during the growing season (Fig. 2a). We did not observe 105 

differences in CH4 fluxes across the gradient of time since collapse (up to an age of 60 106 

years; P = 0.192). This demonstrates that high fluxes can persist for multiple decades 107 

(Fig. 2a), although previous studies have identified lower fluxes in collapse wetlands with 108 

ages older than 200 years19. In Yellowknife, an anomalously dry summer in 2014, with less 109 

than 30 mm of rain in June and July, approximately 30% of the long-term average rainfall for 110 

these months, resulted in the water table falling to a depth of 30 cm (Fig S3). As a result, 111 

growing season CH4 emissions were lower than in Teslin (Fig. 2a,b). We calculated that 3.2 112 

g and 2 g CH4 m-2 were released from sedge- and moss-dominated collapse wetlands, 113 

respectively. The difference between vegetation communities was not significant (P = 114 

0.093), but there was some uncertainty in calculating growing season fluxes caused by 115 

limited mid-season site access due to forest fire hazards. 116 



In Teslin, the CH4 collected at depth with probes had a depleted 14C signature, 117 

demonstrating that organic matter with radiocarbon ages ranging from 700 to 2800 years 118 

before present (y BP), was decomposing to produce CH4 (see Table S1).  Conversely, the 119 

14C content of CH4 released at the collapse wetland surface was greater than that of the 120 

current atmosphere20 (Fig 3a), indicating that the flux was dominated by C fixed since 121 

nuclear weapons testing enriched the atmosphere in 14C during the second half of the 20th 122 

century. The 14C content of the CH4 emitted from collars that included deeper peat layers 123 

was significantly lower than from the collars that excluded fluxes from below 40 cm 124 

(P = 0.022), identifying a measureable contribution from deeper peat (>40 cm). Given the 125 

variation in the ages of CH4 collected by the probes, a sensitivity analysis (Equation 1) was 126 

used to estimate the potential maximum contribution of previously-frozen C to the surface 127 

flux. Based on dating the organic matter at the base of the active layer (1200 y BP), a 128 

maximum of 8.4 % (1.5 to 2 g CH4 m-2) of the CH4 emissions was calculated to be derived 129 

from former permafrost peat, and did not change significantly with time since collapse 130 

(Fig. 4; Supplementary Information and Equation 1).  131 

The drier conditions in Yellowknife made the collection of probe CH4 samples more 132 

challenging, which may have contributed to the younger age of the CH4 (150-800 y BP; 133 

Table S1). However, the CH4 released from the soil surface had a lower 14C content than in 134 

Teslin and was also lower than that of the current atmosphere, indicating that relatively old C 135 

was being released (Fig. 3b). The 14C content of the CH4 emitted from near-surface collars 136 

was higher than that from the full-profile collars again suggesting a contribution from deeper 137 

soil layers, although the difference between collar treatments was not statistically significant 138 

(P = 0.375). By carrying out the same sensitivity analysis based on the age of uppermost 139 

permafrost C, it was estimated that previously-frozen organic matter could have contributed 140 

a maximum of 30% to the CH4 emissions (Fig. 4); this corresponds to 0.7-1.0 g CH4 m-2 141 

during the growing season. No significant difference in 14C between the moss and sedge-142 

dominated vegetation communities was detected (P = 0.982). It appears that by suppressing 143 

near-surface CH4 production, the dry conditions greatly reduced total CH4 fluxes and thus 144 



there was a greater proportional contribution of previously-frozen C. Regardless, the 145 

absolute amount of CH4 derived from previously-frozen C remained low.  146 

The results from these two contrasting sites in different permafrost zones 147 

demonstrate that, where substantial CH4 fluxes occurred, they were dominated by anaerobic 148 

decomposition of recent C inputs. Total rates of CH4 release from previously-frozen C were 149 

low irrespective of differences in time since thaw, vegetation community composition and/or 150 

water-table depth. By calculating maximum potential contributions of previously-frozen C, 151 

our calculations still likely represent an overestimation, adding to confidence to this overall 152 

conclusion (see sensitivity analysis in Supplementary Information). 153 

In both study sites, permafrost thaw exposed ~1 m of previously-frozen peat and >50 154 

kg C m-2 to anaerobic decay and yet maximum CH4 release rates from this store during the 155 

growing season were only 1-2 g C m-2, or 0.02-0.04 g CH4-C kg soil C-1. Rates of CH4 156 

emitted from the decomposition of previously-frozen C in thermokarst lakes in situ (0.5 g 157 

CH4-C kg soil C-1 yr-1)13 and observed rates of CH4 production in anaerobic incubations (1.2 158 

g CH4-C kg soil C-1 yr-1)21 are at least an order of magnitude greater than our in situ peatland 159 

fluxes. The low rates of CH4 release may be related to oxidation of the CH4 to CO2 during 160 

transport within the peat, or slow rates of anaerobic decomposition of previously-frozen 161 

SOM. We consider it unlikely that oxidation could explain the low rate of old CH4 release, at 162 

least at Teslin where the water table remained within 5 cm of the peat surface throughout the 163 

growing season, and the sedge communities will have promoted rapid CH4 transport from 164 

depth18. Under long-term anaerobic conditions, the build-up of inhibitory compounds (e.g. 165 

phenolics) within peats, may strongly suppress microbial activity and contribute to low rates 166 

of anaerobic decomposition at depth22. Possibly reflecting this, warming of up to 9 oC did not 167 

increase rates of decomposition in anaerobic peat layers below 20 cm in an ombrotrophic 168 

bog in northern Minnesota23. Thus, there may be little potential for CH4 release from the 169 

decomposition of deep peat C stores irrespective of whether or not these layers have been 170 

frozen in the recent past. Given that histels are currently predicted to play a key role in the 171 

permafrost CH4 feedback3, the low rates of release we observed, suggest that anaerobic 172 



decomposition of previously-frozen peat may not result in the release of 1-4 GT of CH4 by 173 

2100 that models and expert assessments predict3,5. 174 

On the other hand, CH4 fluxes from thawing peatlands may still represent a key 175 

component of the permafrost feedback. The differences between our field sites indicate that 176 

CH4 fluxes vary with water table depth post thaw, which may be linked to the magnitude of 177 

surface subsidence, local hydrological conditions and climate variability24. In our wetter field 178 

site at Teslin, despite the low contribution of previously-frozen C, substantial amounts (21 g 179 

CH4 m-2) of CH4 were released during the growing season. The fact that high CH4 fluxes 180 

were observed from areas that had thawed several decades ago suggests that permafrost 181 

thaw at this site could have promoted the release up to 1 kg of CH4-C m-2 over the last 50 182 

years. Therefore, where there is deep subsidence and near-surface water-logging, CH4 183 

fluxes from thawing permafrost peatlands can still produce a positive feedback to climate 184 

change; the CH4 is just not primarily derived from previously-frozen C. There is evidence that 185 

the endpoint for permafrost thaw in boreal peatlands is inundated fens10 and studies have 186 

identified an expansion of this type of wetland in parts of northern Canada25. The 187 

subsequent CH4 release could lead to substantial increases in regional CH4 fluxes16. 188 

However, considerable observational26,27 and modelling16,28 uncertainty remains regarding 189 

whether permafrost thaw will increase or decrease wetland extent in different regions. 190 

Remote sensing techniques that can directly detect the spatial extent of wetlands and their 191 

vegetation communities, especially sedges25,29,30, may prove invaluable for quantifying the 192 

effect of permafrost thaw on high-latitude CH4 fluxes.  193 

In conclusion, our study demonstrates that anaerobic decomposition of new C inputs 194 

drive CH4 emissions in contrasting thawed permafrost peatlands in northern Canada. These 195 

results may have major implications for modelling the permafrost feedback, suggesting that, 196 

to simulate future fluxes, efforts should be focused on accurately predicting the effects of 197 

permafrost thaw on the spatial extent of wetlands, rather than rates of anaerobic 198 

decomposition of previously-frozen peat.  199 
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Figure legends  280 

 281 

Figure 1| Schematic diagram of the site-specific sampling designs.  Panel a shows the 282 

Teslin sampling locations, which were established at three separate positions across a 283 

gradient of time since thaw of a peat plateau, from (i) recent thaw at the edge of the collapse 284 

wetland (Margin); to (ii) 5 m into the wetland where there were still standing dead trees (5 285 

m); and in the wetland centre where collapse occurred approximately 60 years ago (centre).  286 

Panel b shows the Yellowknife sampling locations in Moss and Sedge-dominated collapse 287 

wetlands. Three replicate collapse features colonized by each vegetation type were studied. 288 

The average ages of the collapse features are presented below the figures and the deeper 289 

water table in Yellowknife is indicated (water table depths are identified with the black 290 

upside-down triangles). The arrows indicate the locations at which CH4 fluxes were 291 

measured. The smaller arrows indicate that, although measurements were made on the 292 

plateaus, no net release of CH4 was detected.  293 

 294 

Figure 2| Seasonal CH 4 fluxes in the collapse wetlands. Panel a. Teslin and b. 295 

Yellowknife (mean ± s.e.m; n=3 for measurements at each time point). It was not possible to 296 

visit the Yellowknife site during the middle of the growing season because of forest fires. 297 

During this time there was no rainfall and thus the water table would have remained at least 298 

as deep within the peat profile, making it extremely unlikely that we missed any peaks in CH4 299 

release. Note the difference in the y-axes scales in panels a and b. We did not detect net 300 

CH4 emissions on the undisturbed peat plateaus. 301 

 302 

Figure 3| Mean 14C content of CH 4 collected from full-profile collars, near-surface 303 

collars and the probes located 40 cm below the moss/sedge peat and plateau peat 304 

transitions in the different thermokarst wetlands. Panel a shows the results for Teslin 305 

and panel b the results from Yellowknife collapse wetlands.  The dashed lines indicates the 306 



estimated 14C content of the atmosphere in the respective sampling years20. Error bars 307 

represent ± s.e.m. (n=3). 308 

 309 

Figure 4 | Sensitivity analysis to estimate the contribution of previously-frozen C to 310 

surface CH 4 fluxes.  The difference in the 14C contents of the CH4 released from near-311 

surface and full-profile collars was used and the age of previously-frozen C (Page in 312 

Equation 1) was varied between 600 and 1800 y BP to create the sensitivity analysis curve. 313 

The presence of white river ash tephra at the base of the active layer in the plateaus 314 

indicates the age of the permafrost peat on the plateaus to be at least 1200 yr BP. Using the 315 

14CH4 data and assuming Page to equal 1200 yr BP, the maximum possible contribution 316 

from previously-frozen carbon can be calculated (thin dashed lines). 317 
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Methods  342 

 343 

Field-site description 344 

 345 

 Research was undertaken in two study sites: near Teslin, Yukon Territory in 2013 346 

(sporadic discontinuous permafrost zone) and near Yellowknife, Northwest Territories 347 

(extensive discontinuous permafrost zone) in 2014.  The mean annual air temperature 348 

(MAAT) (1981 – 2010) for Teslin was -0.6°C, with monthly averages ranging from -17.1°C in  349 

January to 14.1°C in July and the mean annual precipitation (MAP) was 346 mm31.  For 350 

Yellowknife, the MAAT (1981 – 2010) was -4.3°C, with monthly averages ranging 351 

from -25.6°C in January to 17.0°C in July. The MAP for Yellowknife was 289 m m. 352 

 The Yukon study site contains an isolated permafrost peat plateau fringed by a 353 

collapse wetland (Fig 1a) located near MP788 (Alaskan Highway Milepost), approximately 354 

20 km southeast of Teslin in the Yukon Territory (60°05'27.5''N, 132°22'06 .4''W). The mean 355 

thaw depth in 2013 on peat plateau was 49 cm, while thaw depths exceeded 120 cm in the 356 

wetland32. The peat plateau was elevated up to 1.5 m above the surrounding wetland, with 357 

resistivity probe measurements suggesting that permafrost thickness was between 15  and 358 

18 m in the higher parts of the plateau32.  A layer of tephra identified as White River Ash 359 

present near the bottom of the active layer in the peat plateau indicates that the minimum 360 

age of the organic matter at the top of the current permafrost layer was ~1200 BP33. The 361 

unfrozen wetland was dominated by hydrophilic sedges (Carex rostrata Stokes).     362 

 The second study site was a peat plateau, collapse wetland complex approximately 363 

8 km west of Yellowknife, Great Slave Lake region in the Northwest Territories (62°27'25.7'' 364 

N, 114°31'59.8'' W). Approximately 65% of the Great Slave Lake region is underlain by thin 365 

permafrost exhibiting widespread signs of degradation34. The underlying bedrock constitutes 366 

part of the Canadian Shield consisting of Precambrian granites. At the end of the last glacial 367 

maximum, the whole Yellowknife region was submerged by glacial Lake McConnell.  During 368 

the Holocene, the lake recessed resulting in permafrost aggradation within lacustrine 369 



sediments and peat mound formation in the newly exposed land35. The site contains an 370 

intact peat plateau surrounded by multiple collapse wetlands characterised by two distinct 371 

vegetation communities: 1) sedge-dominated (Carex rostrata) with isolated moss patches, 372 

and 2) Sphagnum spp moss carpet with little vascular plant cover (Fig 1b).  Maximum active-373 

layer thickness on the peat plateau during the year of study was ~50 cm, with no ice being 374 

detected within the collapse wetlands during the middle of the growing season. Access to 375 

the study site was limited at times during the middle of the 2014 summer due to road closure 376 

from nearby wildfires. This reduced the amount of flux data that was collected but did not 377 

interfere with the 14CH4 sample collection.   378 

 379 

Sampling design 380 

 381 

In 2013, at the Teslin study site, three sampling areas were established across a 382 

gradient from the actively subsiding edge of the permafrost plateau to the centre of the 383 

collapse wetland, to investigate how time since initial thaw affected the 14C content and 384 

source of CH4 released. The first sampling area was located adjacent to the intact plateau 385 

(representing recent thaw), the second area was 5 m into the collapse wetland (representing 386 

an intermediate time since thaw with dead trees still standing) and the third sampling 387 

location was established at the centre of the wetland (representing the longest time since 388 

thaw and with no standing trees). In 2014, in Yellowknife, sampling locations were 389 

established in three replicate collapse wetlands dominated by either moss or sedge, to 390 

assess how contributions of previously-frozen C depended on vegetation type. Radiocarbon 391 

analysis of the peat transition (plateau to sedge/moss peat) indicated that permafrost thaw 392 

had started ~60 years ago in Teslin, and in Yellowknife, on average 18 and 42 years ago in 393 

the moss and sedge dominated collapse wetlands, respectively (Fig. 1b).   394 

 395 

Chamber flux measurements 396 

 397 



 CH4 flux measurements using the static chamber method36 were carried out twice 398 

monthly (July –October) in Teslin, but were more limited in Yellowknife due to forest fires.  In 399 

each sampling location, three replicate PVC collars, 10 cm deep and 30 cm in diameter, 400 

were inserted 5 cm into the wetland soil surface, with 5 cm of the collar projecting above the 401 

water or peat surface, and all vegetation being maintained intact inside the chamber. The 402 

chamber lids were attached to sampling collars using a rubber inner tube creating an internal 403 

headspace volume of 11 L during chamber enclosure. Each chamber lid contained CPC 404 

quick connect auto-shutoff couplings (Colder Products Company, USA)  which allowed a 405 

closed loop to be set up between the chamber headspace and a  CH4 analyser [Detecto Pak 406 

Infrared CH4 analyser (DP-IR), Heath Consultants Inc, USA]. CH4 concentrations were 407 

measured five times at hourly intervals. The flux was calculated from the time series of CH4 408 

concentrations within the chamber using linear regression and all R2 values were greater 409 

than 0.9. The overall annual (growing season) CH4 flux estimates were calculated by linear 410 

interpolation between measured fluxes. An intercomparison between the DP-IR measured 411 

CH4 concentrations and Gas chromatography confirmed the suitability of the approach (see 412 

Fig S2 and Supplementary materials). 413 

  414 

14CH4 sample collection and analysis 415 

 416 

 In order to estimate the proportion of CH4 flux derived from previously-frozen organic 417 

material, we measured the 14C content of CH4 released using two types of sampling collars 418 

made from PVC pipe with an internal diameter of 30 cm. The first collar type was a full-419 

profile collar inserted 40 cm into the wetland profile.  For the second collar type, 40 cm cores 420 

were extracted using a serrated knife, transferred into cylinders with sealed bottoms (near-421 

surface collars), and then inserted back into the wetland to exclude any CH4 contributions 422 

from depth (Fig. S1). All vegetation was maintained within the two collar types. Extracted 423 

cores were retained intact during the transfer to the near-surface collars. Some root damage 424 



will have occurred during installation, but there was no die back or visible effect on growth of 425 

surface vegetation within the sampling collar and therefore it appears that the impacts were 426 

minimal. Water-table depths rarely differed between the full-profile and near-surface collars 427 

but when they did, water was added to the near-surface collars from the surrounding 428 

wetland. 429 

To establish whether anaerobic decomposition of former permafrost was taking 430 

place, probes were inserted into the peat profiles. Consistent with previous observations6,37, 431 

peat cores extracted from collapse wetlands at both study sites, revealed a clear and sharp 432 

transition between a relatively undecomposed layer of sedge or Sphagnum moss peat that 433 

had accumulated vertically since the initiation of collapse, and the underlying plateau peat. 434 

This was observed at a depth of on average 60 cm in Teslin and 25 cm in Yellowknife. 435 

Probes were inserted 40 cm below these transition zones at 100 and 65 cm depth for Teslin 436 

and Yellowknife, respectively. Given that the active layer thickness was ~50 cm on the 437 

plateau and some peat compaction will have taken place following collapse, by installing the 438 

probes at these depths we were able to sample from approximately where the top of the 439 

permafrost was before thaw took place. Each probe was sealed at the bottom to prevent 440 

blockages during installation, and the bottom 10 cm of the probe was perforated to allow 441 

water to enter.  The emergent component of the probe contained a tygon tubing attachment 442 

which was sealed using WeLoc clips to prevent gas exchange with the atmosphere. Three 443 

replicates of each collar type and the probes were established in each sampling location.  444 

 CH4 sampling for radiocarbon analysis was carried out in mid-August in both years to 445 

ensure that seasonal ice had thawed completely. As with the flux measurements, chambers 446 

were attached to the collars, with rubber tubes used to create an airtight seal between collar 447 

and chamber. The total headspace volume was ~11 L. During enclosure, changes in CH4 448 

concentration within the chamber headspace were monitored by connecting the DP-IR 449 

analyser to the chambers through the same tubes and connectors as used for the flux 450 

monitoring. When sufficient concentrations had accumulated within the chamber headspace, 451 

samples were collected by attaching a 10 L foil gas sample bag (SKC, UK) to the exhaust of 452 



the DP-IR (via CPC couplings). To prevent the creation of a vacuum, chamber pressure was 453 

equilibrated to the atmosphere during sample collection through a vent in the lid. Dilution by 454 

ingress of atmospheric air caused chamber CH4 concentration to fall during sampling; this 455 

was monitored using the DP-IR. In Teslin, given the high concentrations of CH4 in the 456 

chambers, and the low concentration of CH4 in the atmosphere, contamination will have 457 

been < 2% of the CH4 collected and will not have had a measureable effect on the 14C 458 

contents. Due to lower rates of CH4 release in Yellowknife, multiple sample bags were 459 

extracted and then bulked for radiocarbon processing, increasing potential contamination to 460 

around 5% but still within measurement error for 14CH4. 461 

 For the probe sampling, 1 L of soil water was extracted using 60ml syringes then 462 

transferred in a 10 L collapsible water carrier [‘Accordion Water Carrier’ (AWC); Highlander, 463 

Livingston, UK]. The first syringe of water was discarded to remove any experimental error 464 

associated with water standing within the probe. The headspace of the water carrier was 465 

inflated with atmospheric air. Given that the target CH4 concentration required for 466 

radiocarbon analysis were > 350 ppm, CH4 concentrations of 1.8 ppm present in ambient air 467 

represented a contamination of < 0.5 %. In order to equilibrate CH4 from water, the water 468 

carrier was shaken for 3 minutes; previous testing had demonstrated that 3 minutes are 469 

sufficient to equilibrate and transfer CH4 from the water without influencing the isotopic 470 

composition38. CH4 concentrations in the water carrier headspace were monitored using the 471 

DP-IR. By squeezing the water carrier, the headspace was transferred to a foil bag, attached 472 

through CPC couplings, but care was taken to ensure that water did not enter the foil bag. 473 

 New techniques have recently been developed at the UK Natural Environment 474 

Research Council Radiocarbon Facility that overcome previous obstacles for radiocarbon 475 

analysis of CH4 from remote locations17. These include i) improved gas collection methods 476 

that allow samples to be reliably 14C dated even at CH4 concentrations well below the lower 477 

explosive limit, and ii) conversion of CH4 samples to CO2 followed by collection on zeolite 478 

molecular sieves prior to transportation. The first stage of laboratory processing was to 479 

remove any CO2 from the field sample. This was carried out by passing the field sample 480 



through a soda lime cartridge (dimensions diameter 20mm, length 250mm) into a cleaned 481 

(CO2 free) foil bag. Verification of CO2 removal was confirmed using an infra-red gas 482 

analyser (EGM-4; PP-systems UK) and the process was repeated if necessary. Next, the 483 

CO2-free sample was transferred through another soda lime cartridge to remove any final 484 

traces of CO2 from the sample, after which the CH4 was converted to CO2 through 485 

combustion at 950oC using a platinum-alumina bead catalyst.  This CO2 was transferred 486 

through a cartridge containing magnesium perchlorate to absorb any water vapour produced 487 

during combustion, and then trapped on a molecular sieve cartridge containing Type 13X 488 

zeolite39 to enable safe transportation to the Radiocarbon facility in the UK. Back in the UK, 489 

CH4-derived CO2 was desorbed by heating, cryogenically purified and aliquoted into 490 

separate samples for 14C and į13C analysis. Following convention, radiocarbon results were 491 

expressed as conventional radiocarbon years before present (BP; where 0 BP = AD 1950) 492 

and %modern40. 493 

 494 

Calculations and data analysis. 495 

 496 

Probe samples yielded highly variable 14C contents, and contemporary signatures 497 

were observed in Yellowknife, perhaps reflecting the fact that it was difficult to reliably 498 

sample deep water from the 65 cm probes given the water table was at 30 cm (Table S1). 499 

For these reasons, we used a sensitivity analysis approach to calculate the maximum 500 

possible contribution of CH4 derived from previously-frozen peat (Equation 1; Fig. 4), varying 501 

the age of this CH4 between 600 and 1800 y BP. These ages were chosen because 502 

radiocarbon and tephra dating indicated that the age of the organic matter at the top of the 503 

permafrost in the peat plateaus was approximately 1200 y BP. In addition, although variable, 504 

the average age of the CH4 collected from the 1 m probes in Teslin was 1216 ± 213 y BP 505 

(mean ± 1SE, N=9). 506 

 507 

 508 



PF CH4 (%) = ( FP14CH4 - NS14CH4 ) *100 
(Equation 1) 

Page - NS14CH4  
 509 

Where PF CH4 (%) is the % contribution of previously-frozen C to the total CH4 efflux, FP14CH4 510 

is the 14C content of the CH4 collected from the Full-profile collars, NS14CH4 is the 14C content 511 

of the CH4 collected from the Near-surface collars, and Page is the 14C content of previously-512 

frozen C, which was varied between 14C contents equivalent to radiocarbon ages of 600 and 513 

1800 y BP (see Supplementary materials for more information). 514 

Statistical analyses were carried out using SPSS (Version 22, SPSS Science) and 515 

data were checked for suitability for parametric analysis.  Repeated measures two-way 516 

ANOVAs were used to determine whether CH4 fluxes changed over time (within-subject 517 

factor) or differed across the gradient of time since thaw (Fig. 1a) or between vegetation 518 

communities (Fig. 1b; between-subject factors). Repeated-measures two-way ANOVAs were 519 

also used to examine the effects of collar type (within-subject factor) and either time since 520 

thaw or vegetation community (between-subject factors) on the 14C content of the CH4 521 

released.  522 

 523 

Data availability 524 

 525 

All of the radiocarbon data are presented in the supplementary information (Table S1). The 526 

CH4 flux data and environmental monitoring data are available from the corresponding 527 

author upon request. 528 

 529 
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Figure 3  567 
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Figure 4  571 
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