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Abstract. Medical images contain precious anatomical information for
clinical procedures. Improved understanding of medical modality may
contribute significantly in arena of medical image analysis. This paper
investigates enhancement of monochromatic medical modality into col-
orized images. Improving the contrast of anatomical structures facili-
tates precise segmentation. The proposed framework starts with pre-
processing to remove noise and improve edge information. Then colour
information is embedded to each pixel of a subject image. A resulting
image has a potential to portray better anatomical information than a
conventional monochromatic image. To evaluate the performance of col-
orized medical modality, the structural similarity index and the peak
signal to noise ratio are computed. Supremacy of proposed colorization
is validated by segmentation experiments and compared with greyscale
monochromatic images.
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1 Introduction

Digital image and signal processing encompasses a vast arena of technologies
for analysis of internal biological structure, function and treatment [8]. Medical
imaging utilizes fundamental physical phenomena, stretching from acoustic wave
dissemination to X-ray propagation, to understand the patient health param-
eters. Previously medical images represent structural appearance information
only, however today they are capable of examining complex and sophisticated
internal biological processes such as mutation, metabolism, blood circulation,
chemical reactions and many others. Medical imaging is not only contributing in
disease diagnoses, but also playing its role in understanding the human anatomy
along with evaluation of drugs chemical reaction.

Another versatile contribution of medical imaging is guided surgical assis-
tance during the procedure [3, 26]. There are various studies validating the
robotic assisted surgery using medical images [1, 26]. The entire foundation of
clinical processes from diagnostic, treatment, surgical procedures and case stud-
ies are incomplete without medical images. Machine learning algorithms can pro-
vide a strong foundation to build clinical decision support systems using medical
imaging [25,29]. Since past few decades, computer-aided detection and diagnosis
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has emerged as a vibrant research area. Lesions and organs may be diagnosed
by examining the biological pattern, thus supporting accurate prognosis and
treatment. Medical images hold a precious contribution in visual representation
of biological structures and diagnosis of diseases. To embed colour information
in traditional medical images play a significant role in clinical decision mak-
ing. Colourization empowers visual discrimination of biological structures and
supports diagnostic decision by surgeons [25].

Computer vision and image processing experts have been contributing in var-
ious technologies for decades, whereas colorization is rather new in the medical
field. Potentially colorization can play an effective role in medical applications.
A number of colorization methodologies, with varying computational costs, have
been utilized to colorize greyscale image. A seed of color is used to disseminate
color information to similar texture pixels [4]. Colorization technique was ini-
tially proposed by Welsh; the technique fell in the category of semi-automatic
coloring of natural images. Unfortunately the same methodology generates poor
quality colorization for medical images [28]. In the medical domain, technique of
false coloring demonstrates induction of coloring in CT (computed tomography)
modality images. The short fall of this technique is a consumption of higher sys-
tem resources during execution [15, 17, 27]. Comparing the luminance intensity
among images and colorized MRI (magnetic resonance imaging) images [2].

Image fusion is another approach that has been explored in order to introduce
colorized medical images [7, 14]. Using statistical parameters estimation using
pervious information with the maximum likelihood criteria the most suitable
color may be predicted [19]. In [13] colorized images were generated by cyphering
false color code within the image. Texture information was also utilized to predict
the similar pattern, potentially propagating colors across the similar texture [16].
Further, video frames were colorized through seeding color in keyframes [9, 12].

2 Literature Survey

Colorization of medical images has been a popular research area for a decade.
Identification of effected body cells form grey scale images is challenging as
well as time consuming assignment for medical professionals. For assistance of
medical experts, colorization of medical images is proposed by image processing
specialists for automatic detection of effected parts and better understanding
of bio-medical substances. Colorized medical images assist in prevention and
treatment of diseases. Colorization techniques can be classified into three types
— automatic, semi-automatic and user defined coloring techniques [21].

A seeded colorization scheme is one of recent techniques that propagates color
to pixels based on neighbouring pixels. This technique maps colorized scribbles
on original gary scale images. Scribbles act as seed and are responsible for de-
scribing color of pixels. This technique applies a seeded cellular automaton based
on the scribbled method. It was demonstrated that a seeded cellular automaton
was able to generates chromatic images from gray scale images with acceptable
visual quality [4]. Some studies applied coloring techniques based on threshold.



Medical Image Colorization 3

The drawbacks of the approach is that processing time and memory consumption
are very high [15].

In another technique brain MRI classification was achieved by applying two
independent methods, (i) highlighting the variability of input images, (ii) seg-
mentation for outlining gray images [2]. It was then followed by a colorization
technique to create chromatic brain MRI image. It was reported that there was
luminance distance of input image and target image. In [12] a colorization tech-
nique was applied on videos using a color seed, populating chromatic information
to remaining pixels. Colorized frames were then referred to when colorizing the
remaining frames.

To measure performances by various algorithms some standardized quality
parameters have been tested, such as a measure of enhancement, a similarity
index of the structure, peak signals and entropy [20]. A feature set consisting
of mean gray values, mode gray values, area fraction, aspect ratio and standard
deviation was used to classify medical images for identification of a tumor, where
a number of classification algorithms were tested including Naive Bayes, Tree
J48, artificial neural network and Lazy-Ibk. It was found that a neural network
classifier produced the most accurate results [11].

Furthermore, image segmentation based on a threshold leading to watershed
segmentation and morphological operators was proposed to locate tumorous ar-
eas [18]. Similarly, a tumor size and a location were detected by segmentation
based on texture information through morphological operators and the dual tree
wavelet decomposition [22]. Another work designed an algorithm for detecting
regions affected by a breast cancer [6]. Initially the image was enhanced through
a Gaussian smoothing filter, which was then followed by morphological oper-
ations. The resultant image was disintegrated into two scales using the DWT
(discrete wavelet transform) and reconstructed to form a binary image. Clas-
sification was made using the artificial neural network and the SVM (support
vector machine). It was found that SVM using RBF (radial basis function) and
linear kernel exhibited the highest accuracy rate.

3 Pre-processing

The proposed framework requires pre-processing where images are enhanced
to get finer details by removing noise and applying normalization techniques.
Pre-processing magnifies contrast, brightness and structural details of images. It
adds in significant visual illustration, generating colorized medical images with
the increased overall quality.

Series of steps are performed to pre-process a grey scale medical image. The
standard resolution for images is set to 256 × 256 pixels. Textual content is
removed from the image. Noise removal is achieved by implementing a weighted
averaging filter. The source image is convolved with a weighted kernel of the
size 3 × 3. A sliding kernel of the size m × n is centered at (x, y) of the source
Image(x, y) where m,n = 3.
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Suppose that zj is the pixel under process, where j represents the number of
pixels less than 9. Rxy stand for the area to calculate the average of the source
Image(x, y). Smoothing of Image(x, y) is achieved by

Weighted Kernel =





−1 −1 −1
−1 +2 −1
−1 −1 −1



 (1)

Noise is removed from the source and further processed to fix the contrast ratio
accentuating the details of image. After completing the noise removal step the
contrast is enhanced to highlight the minor details of the image.

The transform intensity I(x, y) is the sum of fraction of the pixel under
process zi and the total number of pixels:

I(x, y) =

n
∑

i=0

zi

Total Pixels
(2)

The image is passed to the edge enhancement phase after the contrast improve-
ment. Edge enhancement is done using the Sobel edge detector. The Sobel kernel
find the gradient in the vertical and the horizontal direction of the image. The
gradients are used to find the magnitude and the direction of edges. Mathemat-
ical expressions of the Sobel kernel and operations are presented below. The
horizontal and the vertical derivatives Kernelx, Kernely are given by
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Information is enhanced across edges by adding and subtracting these derivatives
near the edges. Convolution ∗ is calculated with the source image:

Imagex = Kernelx ∗ Image(x, y), Imagey = Kernely ∗ Image(x, y) (4)

resulting in two images with the horizontal and vertical derivative approxima-
tions. They are used to calculate the gradient magnitude:

Image′(x, y) =
√

Image2x + Image2y (5)

and the gradient’s direction:

θ = tan−1
Imagey

Imagex
(6)

The resultant image is more informative than the input because the edge in-
tensity has been increased noticeably. The image is processed further using the
negative transformation. Suppose that the maximum intensity of the image is
M . The negative of the image is

Image′′(x, y) = M − Image′(x, y) (7)

After the enhancement steps the image is used as an input for the colorization
phase. The outcomes of each phase are presented in Fig. 1.
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(a) input image (b) noise removal (c) contrast enhancement

(d) edge enhancement (e) image sharpening (f) negative image

Fig. 1: Outputs at pre-processing phases.

4 Colorization

Colorization phase requires a pre-processed image and a chromatic image of to
generate a colorized target image of the size 256× 256 pixels. The output needs
to be three dimensional to hold chromatic information, hence the second and
the third channels are populated to the input image.

Normalization is implemented with the input image, leading to the pixel
intensity in accordance with the target image. This allows the intensity of the
input image to be confined within the defined range. A normalized pixel intensity
value is expressed by

Normalized value of pixel =
I(x, y)× 255

255− (L− P )
(8)

where L and P are the maximum and minimum values of the intensity.
The source and the target images are both converted to YCbCr color. A com-

parison of pixel values between two images is computed at Y channel of YCbCr.
All pixels from the source image are mapped to chromatic values using chro-
matic information of the target image. After successful assignment of chromatic
information, the source image is converted to RGB colors for better visualization
and understanding. Fig. 2 presents the full flow chart of the algorithm.

5 Segmentation

The colorized medical image is segmented to regions to find the area of interest.
Segmentation is an important step to identify images that are more relevant.
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image en-
hancement

add 3rd
channel to
the image

convert to
the YCbCr
format

compare
pixels in
Y channel

convert to
the YCbCr
format

select
pixels with
the similar
intensity

transfer
chromatic
values for
selected
pixels

convert
YCbCr
to RGB

Fig. 2: Flow chart of the proposed algorithm.

After segmentation the image becomes a collection of segments that canvas the
entire image. Neighboring pixels are similar in terms of the color, the texture
and the intensity.

In the experiment, a PCNN (pulse coupled neural network) and a thresh-
olding are used for segmentation of colorized medical images. A PCNN is used
for elicitation of edge information, noise removal and segmentation by analyz-
ing the region of interest. Raw estimation of locating the interested region and
background is achieved by key point distribution. A PCNN is able to separate
the front end from background. Pixels are processed line by line, starting from
left to right or from top to bottom.

6 Result and Evaluation

The approach was tested using several medical image datasets acquired from
open source online repositories. Table 1 summarizes their modality and the
source.

imaging modality source

1. CT images of normal heart, brain and kidney [23]
2. Mammogram mammography images of above 60 year old women [5]
3. MRI normal brain, spine and knee images [?]
4. Nuclear Medicine full body, spine and knee images [10]
5. PET PET images of abdomen, heart and brain [23]
6. Ultrasound liver images of healthy people [23]
7. X-Ray X-ray images [24]

Table 1: Datasets for the experiment

6.1 Result

The outcome of the experiment presents better visual description of the image.
The proposed algorithm has resulted in meaningful perception of images, where
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different parts such as tissues, muscles and bones were visualized separately.
Table 2 compares the input grey scale images and their colorized images.

6.2 Comprehensive Comparison with the State-of-the-art

Techniques

The approach is compared with the recent state-of-the-art techniques [9, 13, 16,
19, 28]. Fig. 3 presents the comparison chart using the PSNR (peak signal-to-
noise ratio). It is clearly observed that approach performed far better than other
algorithms. The major factor for the significant improvement is caused by image
enhancement prior to colorization.

Fig. 3: Comparison chart with the state-of-the-art techniques.

7 Conclusion

Visual information is an important factor for doctors to analyze and diagnose
diseases. The proposed algorithm can offer better visualization by clearly differ-
entiating muscle, tissue and the bones area. The advantage of the algorithm is
that the structure of an image remain the same during the entire process. Fu-
ture work may include automatic detection of the disease area based on colored
images to support professionals.
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imaging modality input image output image

1. CT

2. Mammogram

3. MRI

4. Nuclear Medcine

5. PET

6. Ultrasound

7. X-Ray

Table 2: Input images and their colarization.
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