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 
Abstract—In the present study, a NARX (Nonlinear Auto 

Regressive with eXegenous input) model of nonlinear systems, 

where the physical parameters of interest for the system design 

appear explicitly as coefficients in the model, is introduced. The 

model is referred to as the NARX Model with parameters of 

interest for Design (NARX-M-for-D). The Output Frequency 

Response Function (OFRF) in terms of these physical parameters 

is then introduced for the NARX-M-for-D, and an efficient 

algorithm is derived to determine the OFRF so as to facilitate the 

design of nonlinear systems in the frequency domain. Moreover, a 

general procedure for the design of the physical parameters of the 

NARX-M-for-D in the frequency domain is proposed, which has 

the potential to be applied to design a wide range of engineering 

systems and structures. Finally, two case studies are provided to 

demonstrate the new OFRF-based nonlinear system design and its 

significance in engineering applications. 

Index Terms—The OFRF; Nonlinear systems; The frequency 

domain; The NARX model; Engineering system design; 

I. INTRODUCTION 

N engineering practice, the design of a system is often 

concerned with the determination of the system parameters 

that can be used to achieve desired system responses under 

considered loadings or input excitations [1-3]. The frequency 

domain design of linear systems [4-6] based on the traditional 

concept of Frequency Response Function (FRF) has been 

widely applied in engineering system designs such as, e.g., the 

design of the dynamic properties of vibration absorbers [7], 

vehicle suspensions [8], and aero engine blades [9]. 

In practice, many systems cannot be simply described by a 

linear model [10]. In this case, nonlinear system analysis and 

design methods in either the time or the frequency domain  have 

to be applied to study these systems. Compared with the time 

domain methods such as, e.g., the harmonic balance method 

and the multi-scale method [11], etc., the nonlinear system 

analysis in the frequency domain can deal with a general class 

of nonlinear systems rather than the systems with a specific 

model description [12, 13].  

This analysis is achieved by using the well-known 

Generalized Frequency Response Functions (GFRFs) [14]. 
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However, in spite of providing a general representation for a 

wide glass of nonlinear systems in the frequency domain, the 

GFRFs are a series of multi-dimensional functions which are 

often difficult to measure, display and interpret in practice. To 

address this issue, many new concepts such as Nonlinear 

Output Frequency Response Function (NOFRF) [15], Output 

Frequency Response Function (OFRF) [16], and Higher Order 

Sinusoidal Input Describing Functions (HOSIDF) [17] have 

been proposed. The OFRF reveals an analytical relationship 

between the output frequency response of nonlinear systems 

and the parameters which define the system nonlinearities and 

can be used to facilitate both the analysis and design of 

nonlinear systems in the frequency domain [18-19]. The 

HOSIDF can be considered as a special case of the OFRF [20]. 

Since the introduction of the OFRF in 2007 [16], many 

studies on the application of this concept to the nonlinear 

system analysis and design have been conducted. For example, 

Peng and Lang [21] have derived a recursive algorithm to 

determine the structure of the OFRF for the system described 

by a nonlinear differential equation model. More recently, the 

OFRF based approach has been applied in the analysis and 

design of nonlinear vibration isolators [22-24]. For example, by 

using the OFRF, Lang et al [22] and Peng et al [23] have 

rigorously proved significant beneficial effects of nonlinear 

damping on vibration isolation systems. Recently, Lv and Yao 

[24] have applied the OFRF to study the influence of damping 

coefficients on both the force and displacement 

transmissibility, showing that the nonlinear isolators can 

perform better than linear isolators over certain frequency 

ranges. 

The previous studies have shown that the OFRF-based 

nonlinear system analysis and design have advantages and 

potential to solve many engineering problems. However, 

almost all currently available results require that a nonlinear 

differential equation-based physical model of the system is 

available in which the physical parameters that can be used for 

the system analysis and design are the coefficients in the 

differential equation model. In most cases of engineering 

designs, such as, e.g., vibration isolators made of viscoelastic 

and composite materials [25] and bladed disks of aero-engines 

[26], it is difficult or impossible to find such a physical model 

for the systems. But, it is possible to find, via a nonlinear 

system identification approach, a data driven NARX model 

representing the relationship between the input excitation and 

corresponding system response [27]. In addition, as 

demonstrated by our previous work [28], it is also possible to 
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identify a NARX model such that the physically meaningful 

parameters appear explicitly as coefficients in the model. A 

general representation of such a NARX model is, in the present 

study, referred to as the NARX Model with parameters of 

interest for Design (NARX-M-for-D). The advantages of the 

OFRF in nonlinear system analysis and design as demonstrated 

in previous studies imply that there is a need to develop an 

OFRF based-approach for the NARX-M-for-D. 

In the present study, the OFRF of the NARX-M-for-D in 

terms of the design parameters is defined. The NARX-M-for-D 

is a novel and general model of nonlinear systems which can be 

directly determined from data and used to represent complex 

engineering systems for the purpose of system analyses and 

designs. A recursive algorithm for the determination of the 

structure of the OFRF for a class of nonlinear systems 

described by a NARX-M-for-D is derived, which can directly 

produce an OFRF representation of the system output 

frequency responses without involving any complicated 

mathematical derivations/operations. Then, a general OFRF- 

based approach to the frequency domain design of nonlinear 

systems described by the NARX-M-for-D is proposed, which 

allows a systematic OFRF-based design that, for the first time, 

can take the effect of both the system linear and nonlinear 

characteristics on the design into account. The new method is 

an extension of the original OFRF based method to a much 

more general case where the OFRF for a NARX-M-for-D has 

to be derived and design parameters of concern can affect both 

linear and nonlinear characteristics of the system. Case studies 

are used to demonstrate the effectiveness of the proposed new 

design approach, showing a promising application of the OFRF 

based design that is expected to be able to systematically 

address the design problems of a wide class of engineering 

systems. 

The paper is organized as follows. Section II introduces the 

NARX-M-for-D and defines the model’s OFRF in terms of the 

system parameters of interest for design. Section III is 

concerned with the determination of the OFRF for a class of 

nonlinear systems described by the NARX-M-for-D, where an 

effective recursive algorithm is derived for the determination 

the OFRF representation of the system output frequency 

responses. In Section IV, a general OFRF based approach for 

the frequency domain design of nonlinear systems is proposed. 

Then, two case studies with regard to the design of the output 

frequency response of a nonlinear oscillator and the force 

transmissibility of a nonlinear vibration isolator, respectively, 

are presented in Section V. Finally, conclusions are given in 

Section VI. 

II. THE NARX MODEL WITH PARAMETERS OF INTEREST FOR 

DESIGN AND ITS OFRF REPRESENTATION 

A. The NARX Model with parameters of interest for Design 

(NARX-M-for -D) 

1) The concept of the NARX-M-for-D 

The traditional NARX model of Single Input Single Output 

(SISO) nonlinear systems can be described as [29]: 

          

1

, 1 2

1 0 , 1 1 1

1 , , , 1 , ,

( , , , ) ( ) ( )
p q

y u

p p qM m K

p q p q i i

m p k k i i p

y t f y t y t n u t u t n

c k k k y t k u t k





     

    

 
   

 
   

 (1) 

where  .y  and  .u  are the outputs and inputs of the system; 

M  and K  are integers, p q m   and 
1 1, p q p q

K K K

k k k k 

   ; y
n  

and 
u

n  are the maximum time delay of the system for  .y  and 

 .u , respectively;  .f  is a nonlinear function representing 

the dynamic relationship between the system input and output 

which has, in model (1), been approximated by a polynomial 

function of the delayed system input and output. 

In practice, the NARX model (1) can be determined by using 

a nonlinear system identification method from the input and 

output data of a system. However, the values of the coefficients 

 , .
p q

c  in model (1) generally have no direct physical 

meanings. Because of this, in most cases, the NARX model (1) 

is used for evaluating the system output responses to different 

inputs [30]. It is generally difficult to directly use the model to 

analyse the effects of system physical characteristics on the 

system behaviours so as to achieve the objectives of system 

designs. In order to overcome this problem, a new NARX 

model known as the NARX-M-for-D is introduced as follows.  

The NARX-M-for-D is a NARX model where the physical 

parameters of interest for the system design appear explicitly as 

model coefficients. A general form of the single input single 

output NARX-M-for-D of nonlinear systems can be given as: 

         
   

1 , , , , 1 , ,

,

y

u

y t y t n u t u t
y t f

u t n

   
    θ ξ

       (2) 

where  θ ξ  is a vector representing a set of functions of the 

parameter vector  1, ,
S

 ξ , where 
1, ,

S
   are the 

physical parameters of interest for the system design, and S  is 

the number of these design parameters. 

Considering  .f  can be approximated by a polynomial 

function of the delayed system input and output as in model (1), 

the NARX-M-for-D can further be expressed as: 

 1 2

1

( , , , )

,

1 1 , 0 1 1

( ) ( ) 0p q

p q

p p qM m K
k k k

p q i i

m p k k i i p

y t k u t k 





     

 
   

 
   ξ (3) 

where    1( , , )

,

p qk k

p q
  ξ θ ξ  with p q m   represents the 

coefficients of the NARX-M-for-D (3). 

2) An example of the NARX-M-for-D 

M0
u(t)

y(t)

1 3,c c

1 3,k k

fout

 
Fig.1 A nonlinear oscillator 

In order to demonstrate the practical relevance of the 

NARX-M-for-D (3), consider a nonlinear oscillator system as 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

shown in Fig.1, where 
0 1 kgM  , 

1 3 1, ,k k c  and 
3c  are the 

oscillator parameters to be designed to achieve a desired 

vibration isolation performance.  u t  and  y t  are the input 

and output of the system, respectively. 

The differential equation model of the system in Fig.1 is: 

           3 3

1 1 3 3y t c y t k y t k y t c y t u t             (4) 

Considering that the first and the second derivatives in (4) 

can be approximated by: 

             
2

1 1 2 1
,

y t y t y t y t y t
y t y t

t t

     
 

 
  (5) 

respectively, where t  is the sampling period, substituting (5) 

into (4) with 1 512 Hzt   yields a NARX-M-for-D of the 

system as: 
                 
             
             
     

1 1 2

0,1 1,0 1,0

1,1,1 1,1,23 2

3,0 3,0

1,2,2 2,2,22 3

3,0 3,0

0

1,0

1 1 2

1 1 2

1 2 2

0

u t y t y t

y t y t y t

y t y t y t

y t

  
 
 


     
    
    


ξ ξ ξ
ξ ξ
ξ ξ

ξ

    (6) 

Eq. (6) is a specific case of the general NARX-M-for-D (3) 

with  1 1 3 3, , ,k c k cξ  and coefficients    (1) (1)

0,1 1,0, ξ ξ , etc. 

given in Appendix A.1 

The design of the parameters 
1 3 1, ,k k c  and 

1c  of the 

nonlinear system in Fig.1 can therefore be transformed to the 

design of the same parameters but for the NARX-M-for-D (6). 

It is worth pointing out that in order to obtain an effective 

discretized model, the sampling frequency 1
s

f t   is 

required to be large enough to cover all system behaviors of 

interest to ensure the discretized model can sufficiently 

represent the original nonlinear system.  

B. The OFRF of the NARX-M-for-D 

The OFRF of nonlinear systems is determined based on a 

nonlinear differential equation model [16], where a polynomial 

relationship between the system output frequency response and 

system parameters which defines the system nonlinearities is 

derived. In this relationship, the coefficients of the polynomial 

are dependent on the system linear characteristic parameters, 

and the order of the polynomial is determined by the highest 

order in the system's Volterra series representation.  

For the NARX-M-for-D (3), the OFRF concept can be 

introduced as described in Proposition 1 below. 

Proposition 1. Assume    1( , , )

,

p qk k

p q
  ξ θ ξ  can be 

represented by a polynomial function of the system design 

parameters 
1, ,

S
   up to the n th order such that 

   
 

1 1 2

1

1

( , , )

, 1 2, ,
, ,

p q S

S

S S

k k rr r

p q Sr r
r r

    



 
R

ξ           (7) 

where 
S

R  is a set of S -dimensional nonnegative integer 

vectors which contains the exponents of 1 2

1 2
Srr r

S
   , and 

1, ,
S

r r n ,  1 , , Sr r
  are constants.  

    The output frequency response  jY   of the NARX-M-for-D 

can be written into a poynomial function of  1, ,
S

 ξ  as 

     
 

1 2

1

1

1 2, ,
, ,

j j S

S

S

jj j

Sj j
j j

Y      


 
J

          (8) 

where    
1 , ,

j
Sj j

   are the functions of frequency variable   

and are dependent on  1( )

1,0

k ξ  and  1( )

0,1

k ξ  which are the 

linear characteristic parameters of system (3). J  denotes the 

integer vectors. (8) is the OFRF of the NARX-M-for-D (3). 

Proof of Proposition 1. Omitted due to the limited space. 

Remark 1: In the case of the NARX-M-for-D (6) of system 

(4), the parameters of interest for the system design are 
3k  and 

3c , and the OFRF can be obtained as: 

             
           

3 30,0 1,0 0,1

2 2

3 3 3 32,0 1,1 0,2

j j j j

j j j

Y k c

k k c c

      
     

   
  

 (9) 

where    
1 2,

j
j j

  , 
1 2, 0,1,j j   are the functions of   and 

dependent on the system linear parameters 
1c  and 

1k . Also, it 

can be shown that the OFRF of the NARX-M- for-D (6) given 
by (9) is the same as the OFRF that can be determined from the 
differential equation model (4) of the system. This implies that, 
instead of using a physically meaningful differential equation 
model, the NARX-M-for-D of a nonlinear system can equally 
be used to perform the OFRF-based system analysis and 
design.  

Remark 2: It is worth pointing out that in most cases the 

differential equation model of complex nonlinear systems is 

difficult even impossible to be obtained. In these cases, the 

NARX-M-for-D of the system needs to be determined by using 

a nonlinear system identification approach which involves 

procedures to determine both model structure and coefficients 

as well as deal with noise and model mismatch etc. problems as 

demonstrated in our previous work in [28] and other relevant 

works [27, 30]. 

Remark 3: Given the order of system nonlinearity to be 

taken into account, the OFRF of the NARX-M-for-D is a 

unique polynomial form representation for the system’s output 
spectrum [16]. The increase of the system design parameters 

may increase the complexity of the OFRF. But, different from 

numerical approximation or curve fitting, there is no overfitting 

issue because of the OFRF’s uniqueness.  
In order to use the OFRF of a NARX-M-for-D to perform the 

system analysis and design, it is very important that the 

“structure” and “coefficients” of the OFRF representation have 
to be determined. The OFRF “structure” basically refers to the 

monomials that need to be included in the OFRF 

representation, whilst the “coefficients” are the value of 

   
1 , ,

j
Sj j

   associated with each monomial in the OFRF. In 

next section, these issues will be addressed for a more general 

NARX-M- for-D where the NARX-M-for-D (2) or (3) is a 

special case. 

III. DETERMINATION OF THE OFRFS DESCRIBED BY A MORE 

GENERAL NARX-M-FOR-D 

A. A more general NARX-M-for-D 

Consider the nonlinear systems which can be described by 

the following more general NARX-M-for-D and are stable at 

zero equilibrium:  

 
1

1

1

( , , )

,

1 0 , 0 1 1

( ) ( ) 0p q

p q

M p p qm K
k k

p q i i

m p k k i i p

x t k u t k 





     

 
   

 
   ξ  (10a) 
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   
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( , , )
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( ) ( ) 0p q

p q

M p p qm K
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 (10b) 

where p q m  , 
1 2,M M  are positive integers.  .u  is the 

input and  .x ,  .y  are two outputs of the system. 

Basically, the NARX-M-for-D (10) represents a single input 

double output nonlinear system. (10a) is essentially the same as 

the NARX-M-for-D (2) or (3), whilst (10b) describes how a 

second system output  y t  is determined by the system input 

 u t  and the first output  x t . 

If the model coefficients are constants, system (10) is 

basically the one input two output NARX model considered in 

Jing et al [31]. The GFRFs of system (10) with respect to 

system output  x t  can be determined recursively from the 

parameters of the system time domain model (10a) as [29]: 

    
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with 

  

( 1)

, 1 1 , 1 1

1

1

,1 1 1 1 1

( , , ) ( , , ) ( , , )
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( , , ) ( , , ) exp j
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i
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

  

where t  is the sampling time of the discrete time system, 

1( , , ), 1,2,x

n n
H n    represents the n th order GFRFs of  

system (10) with respect to the output  x t , and , 1,2,
i

i   

are physical frequency variables. 
Similarly, it can be shown that the GFRFs of system (10) 

with respect to system output  y t  can be determined from the 

parameters of the system time domain model as 

    

 

  
 

1

1

1

1

1

1

( , , )

1 0, 1 1

, 0
1

( , , )

, , 1

1 1 , 0

1 1

( , , )

,0 , 1

1 , 0

( , , ) exp j

( , , )

exp j

( , , )

n

n

p q

n

p

p

K
k ky

n n n n n

k k
n qn K

k k

p q n q p n q

q p k k

n q p n p q

n K
k k

p n p n

p k k

H k k t

H

k k t

H

    

  

 

  






 
  

   

 

    

 

    
   



 

 

ξ

ξ

ξ

(11b) 

where 1( , , ), 1,2,y

n n
H n    represents the n th order 

GFRFs with respect to the system output  y t . 

Note that  , .
n p

H  in (11b) is the same as that in (11a) as the 

nonlinearities in (10b) is not related to  y t . Moreover, from 

[16], it is known that the output frequency responses of system 

(10) can be represented as 

   

 
   

1

1

11
1 1

j j

1
, , j d

2 n

N

n

n
nN

x

n n in
n i

X X

H U
n

  

 

   




   
 







 
 (12a) 

   

 
   

1

1

11
1 1

j j

1
, , j d

2 n

N

n

n
nN

y

n n in
n i

Y Y

H U
n

  

 

   




   
 







 
(12b) 

where N  is the maximum order of the system nonlinearity in 

the system’s Volterra series representation. 
From Eqs. (11) and (12), an effective algorithm can be 

derived to determine the OFRF representation of the spectra of 

the outputs  x t  and  y t  of system (10). 

B. Determination of the OFRF structure 

Assuming that the coefficients of system (10) can be 

expressed as a polynomial function of the system design 

parameters like Eq. (7), these coefficients can be written into a 

matrix form as: 

 
 

1 1 1

1 1 1

( , , ) ( , , ) ( , , )

, , ,

( , , ) ( , , ) ( , , )

, , ,

p q p q p q

p q p q p q

k k k k k k

p q p q p q

k k k k k k

p q p q p q




  

  

 




ξ ξ β
ξ ξ β

                (13) 

where 0p q  , 
1( , , )

,

p qk k

p q

ξ  and 
1( , , )

,

p qk k

p q

ξ  are two vectors 

composed of the monomials of the form of 1 2

1 2
Srr r

S
    and 

1 2

1 2
Srr r

S
   , respectively. 1( , , )

,

p qk k

p q

β  and 1( , , )

,

p qk k

p q

β  are the 

two constant vectors of a corresponding dimension. 

Based on the results in Section III-A, a recursive algorithm 

for determining the structure of the OFRFs of system (10) can 

be derived are described in the following propositions. 

Proposition 2. For system (10), given  1 jx
H  ,  1 jy

H   

and the input spectrum  jU  , the n th order output spectra 

of nonlinear system (10) can be expressed as: 

   j j
n n n

X   Ξ X  and    j j
n n n

Y   Ξ Y        (14) 

and the output spectra of system (10) can be expressed as: 

   
1

j j
N

n n

n

X  


Ξ X  and    
1

j j
N

n n

n

Y  


Ξ Y     (15) 

In Eq. (14) and Eq. (15), 
n

Ξ  and 
n

Ξ  are the vectors whose 

components are the monomials of the system design parameters 

of interest that have contribution to the n th order nonlinear 

output of the system,  j
n

X  and  j
n

Y  are vectors with 

corresponding dimensions whose components are dependent 

only on  1 jx
H  ,  1 jy

H   and the frequency variable  . 

Proof of Proposition 2. See Appendix B. 

Proposition 3. The vectors n
Ξ  and 

n
Ξ  introduced in 

Proposition 2 can be determined recursively using an 

algorithm as follows: 
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 

 

11

1 1

1

1

1
( , , )( , , )

0, , ,

, , 0 1 1 , , 0

( , , )

,0 ,

2 , , 0

p qn

n n

p

n

n qK n K
k kk k

n n p q n q p

k k q p k k

n K
k k

p n p

p k k






   

 

   
    
      
 

 
  

Ξ ξ ξ Ξ

ξ Ξ
 (16a) 

 

 

11

1 1

1

1

1
( , , )( , , )

0, , ,

, , 0 1 1 , , 0

( , , )

,0 ,

2 , , 0

p qn

n n

p

n

n qK n K
k kk k

n n p q n q p

k k q p k k

n K
k k

p n p

p k k






   

 

   
    
      
 

 
  

Ξ ξ ξ Ξ

ξ Ξ
 (16b) 

where the symbol “ ” is the Kronecker product with 

 1 1 1 Ξ Ξ                                     (17) 

 
1

, , 1

1

n p

n p i n i p

i

 

 


 Ξ Ξ Ξ  and 
,1n n
Ξ Ξ              (18) 

Proof of Proposition 3. See Appendix C. 

Proposition 3 provides an efficient algorithm for the 

determination of the monomials that need to be included in the 

OFRF representation for the output  jX   and  jY   of the 

more general NARX-M-for-D (10). Although the OFRF 

structure is theoretically related to the system model and can be 

determined in an analytical way, Proposition 3 provides an 

algorithm which can readily be implemented using computer 

codes to automatically produce all the monomials in the OFRF. 

According to Proposition 3, the OFRF of the output spectra 

of the NARX-M-for-D (10) can, like (8), be represented by 

polynomial function of the design parameters 
1 2, , ,

S
   . A 

special case of Proposition 3 is given in Corollary 1 as follows. 

Corollary 1. In the special case where  1( , , )

,

p qk k

p q
  ξ  

 1( , , )

,

p qk k

p q
  ξ  with   being a non-zero constant, the 

OFRF representation of the output spectra of NARX-M-for-D 

(10) can be described as: 

       
   

 

1 2

1

1

1 2 2

1 2, ,
, ,

j j j j

j S

S

S

N N

jj j

Sj j
j j

X    
    



   
 

J

X Ξ X Ξ X
     (19) 

       
   

 

1 2

1

1

1 2 2

1 2, ,
, ,

j j j j

j S

S

S

N N

jj j

Sj j
j j

Y    
    



   
 

J

Y Ξ Y Ξ Y
        (20) 

In (19) and (20),  
1 , ,

j
S

j j
  and    

1 , ,
j

Sj j
   are the 

functions of the same nature as    
1 , ,

j
Sj j

    in Proposition 1, 

and the monomials in Eq. (19) and Eq. (20) are the same, which 

can be found from the components of 

1

N

n

n

 Ξ Ξ Ξ                               (21) 

Proof of Corollary 1. See Appendix D. 

C. Evaluation of the OFRF coefficients 

It is known from Corollary 1, Proposition 2 that, the 

evaluation of the coefficients of the OFRF of the NARX-M- 

for-D (10) involves determining    
1 , ,

j
Sj j

   and    
1 , ,

j
Sj j

   

in (19) and (20), respectively. These coefficients are generally 

dependent on the frequency variable  , the system input, as 

well as the system linear characteristic parameters. When all of 

these are fixed, these coefficients are constants and can be 

numerically evaluated as described in Proposition 4 below. 

Proposition 4. Assume that the coefficients    
1 , ,

j
Sj j

   in 

the OFRF (19) are independent of the system design 

parameters 
1 2, , ,

S
   ξ . Given the monomial vector  

 1 2

1

1 2

1

2 1 2 1

1 2

0 0

1, , , , ,S

S

S

S

jj j

N S S

mm

jj j

S

j j

j j  

  
 

       
 

  
  

Ξ Ξ Ξ J
  (22) 

where 
i

m  is the maximum power of , 1, ,
i

i S   that has 

been determined by using Proposition 3, denote  

             2, ,
1, , , 1 , ,

j j N j j j
M       Ξ Ξ Ξ Ξ Ξ      (23) 

as the vector Ξ  evaluated at the j th set of the system design 

parameters  , 1, ,
i

j i S  , M  as the total number of 

designs that have been initially tried. Then the OFRF 
representation of the system output spectrum under the j th set 

of initial design can be written as 

           
       

1

1 1

j 1 , ,

1 , ,

j j j M

Mj j M

X M

l M l

 



   
   

Ξ Ξ Λ

Ξ Ξ Λ
             (24) 

where 
1MΛ  is a M  dimensional vector whose components 

are the coefficients of the OFRF (19) and 

1, , ; 0, 1, ,
iM

l l l i M    L                    (25) 

is a constant vector, and  

    T

11 1 1
1 , ,

M M M M
l l M  
   Λ Λ Λ                  (26) 

are the coefficients in the representation of (24). Moreover, the 

coefficients in (24) can be determined as 

  1
T T

1 1M N M N M N M N



    Λ P P P X                     (27) 

where 

       

       

11 1

1

1

1

M

N M

MN N
N M

l M l

l M l





 
 
 
 
  

Ξ Ξ

P

Ξ Ξ

           (28) 

and  

       
T

11
j , , j

N N
X X 
   X                    (29) 

is a vector the components of which are the system output 

frequency responses under N M  different pilot designs. 

Proof of Proposition 4. Proposition 4 can be proved by 

using the traditional Least Square (LS) algorithm. 

Remark 4: The LS algorithm is a very basic method that can 

be applied as shown in Proposition 4 to determine coefficients 

of the OFRF using the system response data generated from a 

number of prototype designs. The introduction of the constant 

vector L  in (25) is to ensure the numerical stability of the LS 

solution (27). When  1, ,1L , (27) produces the coefficients 

of the OFRF (19), that is 

1 1M M Λ Λ                                    (30) 
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Otherwise, the coefficient vector 
1MΛ  evaluated from (27) 

is different from the coefficient vector of the original OFRF 

(19). This is needed in many practical cases to circumvent the 

problems numerically induced by significant difference 

between the values of different design parameters. 

Remark 5: It is known from Proposition 4 that a change of 

the values of system design parameters is required to determine 

the OFRF representation of a system. As the NARX-M-for-D is 

established by either a nonlinear system identification or a 

discretization process, the algorithm in Proposition 4 can be 

implemented using a NARX-M-for-D based simulation 

Therefore, there is no need to literally change the values of the 

system’s physical parameters. 

Remark 6: In general, the maximum order N  of the system 

nonlinearity is pre-determined. The error of a nonlinear 

system’s OFRF representation is induced by the truncation 
error associated with the Nth order Volterra series 

representation of the system. The increase of the order N will 

reduce the error of the representation.  In practice, up to 3-5th 

order system nonlinearity is often sufficient to use in an OFRF 

representation for the output frequency response of nonlinear 

systems [13, 16]. 

D. The OFRF based design of nonlinear systems  

The OFRF provides an analytical representation of the 

output spectrum of nonlinear systems. When the OFRF of a 

NARX-M-for-D has been determined using the algorithm 

derived above. The problem of the system design can be 

described as a constrained optimization problem and 

formulated as follows. 

Find the values of the system physical parameters of interest 

for the design: 

 0 1, ,
S

 ξ                              (31a) 

to solve the optimization problem 

 
   

 
 1

1

11

1 0, ,
, ,, ,

j jMIN ;
S

S

SS

jj

Sj j
j j

Y
 

      


 
J

 

(31b) 

under the constraint: 

 1, , 0; 1, ,
i S

g i m                         (31c) 

  In (31),   is the frequency range over which the design is 

considered,  0 jY  is a desired system output spectrum and 

 1, ,
i S

g   , 1, ,i m  are the functions associated with the 

design constraints. 
The approach to the solution to the design problem (31) can 

be summarized in a procedure of five steps as follows. 

 

Procedure of the OFRF based Design  

1: System modelling: Establish a NARX-M-for-D for the 

nonlinear system by either discretizing an available 

differential equation model of the system or using a 

nonlinear system identification method. 
2: Identify model coefficients: 

 (i) Nonlinear coefficients: Identify the NARX-N-for-D 
coefficients which define the system nonlinearity and 
find the relationship between the coefficients and system 

design parameters    1( , , )

,

p qk k

p q
  ξ θ ξ  where 1p q  . 

 (ii) Linear coefficients: Identify the coefficients of the 

NARX-M-for-D which define the system linear 
characteristics and the relationship between these 

coefficients and system design parameters   1( )

1,0

k ξ  and 

 1( )

0,1

k ξ  

3: Determine the design constraints: Determine the 

system linear characteristic parameters  1( )

1,0

k ξ  and 

 1( )

0,1

k ξ  as required by the design for the FRF of the 

linear part of the system 

 

     

   

1

1

1

1

0,1 1

1

1
( )

1,0 1

1

exp j

j

1 exp j

K
k

k

K
k

k

k t

H

k t

 


 





 


  





ξ

ξ
             (32) 

and establish a constraint for the design given by (31c) 

such that  1 jH   is independent from the variation of 

the system design parameters 
1, ,

S
  .  

4: Formulation of the design problem: Determine the 

OFRF of the NARX-M-for-D using the algorithm in 

Section III and formulate the optimization design 

problem (31). 

5: Optimal design: Solve the optimization design problem 

(31) to find a solution to the design. 
 
Remark 7: The specific form of the design constraint (31c) 

is determined by the practical requirements for the design. 
However, it is worth pointing out that the design constraint 
(31c) also has to make sure that the OFRF coefficients 

   
1 , ,

j
Sj j

   are independent of the design parameters

1, ,
S

  ξ . This is required by the method used to evaluate 

the OFRF coefficients in Section III-C. 

IV. CASE STUDIES 

In this section, two case studies will be conducted to 

demonstrate the new OFRF-based nonlinear system design and 

its significance in engineering applications.  

A. Case study 1 

Consider the nonlinear system in Fig.1 where the outputs are 

displacement  y t  and  out
f t is the force transmitted to the 

wall. The differential equation description of the system is 

given by 

           
         

3 3

1 1 3 3

3 3

1 1 3 3out

u t y t c y t k y t k y t c y t

f t c y t k y t k y t c y t

     


   
  (33) 

Discreting (33) using (5) and sampling frequency 
s

f 
512 Hz  yields a specific case of the NARX-M-for-D (10) as  

                 
           
             
       

                 
               

1 0 1

0,1 1,0 1,0

2 1,1,1 3

1,0 3,0

1,1,2 2,2,22 3

3,0 3,0

1,2,2 2

3,0

1 2 1,1,1 3

1,0 1,0 3,0

1,1,2 1,2,22 2

3,0 3,0

1 1

2 1

1 2 2

1 2 0

1 2 1

1 2 1 2

u t y t y t

y t y t

y t y t y t

y t y t

y t y t y t

y t y t y t y t

  

 

 



  

 



   

   

    

   

    

     



ξ ξ ξ

ξ ξ

ξ ξ

ξ

ξ ξ ξ

ξ ξ
       2,2,2 3

3,0 2 1 0
out

y t f t












     ξ

(34) 
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where  1 1 3 3, , ,k c k cξ  is the vector of design parameters, 

and the coefficients     (1) (0)

0,1 1,0, ξ ξ , etc. in (34) are given in 

Appendix A.2 indicating that Corollary 1 is satisfied in this 

case. 

Consider 5N  . Then, according to Corollary 1 and using 

Proposition 3, the structure of the OFRF, i.e., the monomials 

that are involved in the OFRF representation of the output 

spectra  jY   and  j
out

F   of system (4) can be obtained as: 

2 2

3 3 3 3 3 3

1

1, , , , ,
N

n

n

k c k c k c


     Ξ Ξ Ξ            (35) 

Therefore, the OFRF of NARX-M-for-D (34) can be 

represented as: 

             
           

3 30,0 1,0 0,1

2 2

3 3 3 32,0 1,1 0,2

j j j j

j j j

Y k c

k k c c

      
     
   

 
   (36a) 

             
           

3 30,0 1,0 0,1

2 2

3 3 3 32,0 1,1 0,2

j j j j

j j j

out
F k c

k k c c

      

     

   

 
  (36b) 

where   j   and  j   are dependent on the system input 

and linear characteristic parameters 
1 1,k c . 

Consider further the specific situation where  u t 

 05cos t , 
0 100 rad/s  , 

4

1 10 N/mk   and 
1

1 30 N/msc
 .  

For the purpose of evaluating the OFRF coefficients, take the 

constant vector L  as 
2 21, , , , ,

k c k k c c
l l l l l l   L                          (37) 

with 
8 210 , 10

k c
l l  , and evaluate, by numerical simulations 

(Runge-Kutta method), the system output frequency responses 

under the following four selections of the design parameters. 

 3 0.01, 0.5, 2, 8
k

k l   and  3 0.01, 4,10,15
c

c l     (38) 

In this case, 
N MP  and 

1MΛ  with 6M   and 16N   in 

(28) and (26) are as follows, 

                

                

2 2

3 3 3 3 3 31 1 1 1 1

16 6

2 2

3 3 3 3 3 316 16 16 16 16

1

1

k c k k c c

k c k k c c

k l c l k l k c l l c l

k l c l k l k c l l c l



 
 
 
 
 
 

P  

(39a) 

         

           
6 1 0,0 0 0 01,0 0,1

T
2 2

0 0 02,0 1,1 0,2

j j j

j j j

k c

k k c c

l l

l l l l

     

     


 




Λ
     (39b) 

It is worth pointing out that there is no significant numerical 

difference among the components in matrix 
16 6P  thanks to the 

introduction of L  in (37). This produces the OFRF coefficients 

  1
T T

6 1 16 6 16 6 16 6 16 1



    Λ P P P X                    (40) 

and, consequently, a theoretically equivalent but numerically 

more reliable OFRF representation for system (34) as follows. 

   
 
 
 
  
 

2 3

0

4 4 1

3

4 4 1

3

5 6 2 2

3

16 5

3 3

5 7 2 2

3

j 0.120 10 0.636 10 i

0.210 10 0.676 10 i

0.499 10 0.137 10 i

0.177 10 0.598 10 i

0.183 10 0.331 10 i

0.157 10 0.659 10 i

k

c

k

k c

c

Y

l k

l c

l k

l l k c

l c

  

  

  

  

 

  

    

   

    

    

   

  

      (41a) 

     
 
 
  
 

1

0 3

1

3

2 2 2

3

12

3 3

3 2 2

3

j 13.978 2.771i 0.211 0.676i

0.499 0.137i

0.018 0.591 10 i

0.178 10 0.033i

0.016 0.668 10 i

out k

c

k

k c

c

F l k

l c

l k

l l k c

l c

 



 



 

    
  
   

  

 

(41b) 

Fig.2 shows the frequency spectra  0jY   and  0j
out

F   

of system (34) with respect to the variation of 
2

3 1,15 10c    
3 3N/m s  in the case of 

8 3

3 3 10 N/mk   . The results are 

determined by the OFRFs (41) and the numerical simulation, 

respectively. A comparison of these results clearly indicates a 

very good match between the OFRF representation and the 

accurate (simulated) result, demonstrating the effectiveness of 

the proposed OFRF determination method.  

×10
-3

Simulation

OFRF (41a)

O
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1.10
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

 
(a) Output spectrum of  0jY   

33

3 /N/msc

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rc

e 
/N
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2

Simulation

OFRF (41b)
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10
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(b) Output spectrum of  0j
out

F   

Fig.2 A comparison of the output spectra of system (34) determined 

using the OFRF (41) with the numerical simulation results  

In order to demonstrate how to follow the five step procedure 

in Section III-D to carry out a design, consider the design of the 

simple nonlinear system (33). The design objective is to 

achieve a specified force  out
f t  for the system. 

In this case, Steps 1 and 2 have been completed as the 

NARX-M-for-D (34) of the system has been established. 
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In Step 3, by designing the natural frequency of the system at 

100 rad/s
r

   and the linear damping coefficient as 

1 30 N/msc  , two design constraints in this case can be 

obtained as 

 
 

1 1 1 3 3 1

2 1 1 3 3 1

, , , : 100 0

, , , : 30 0

g k c k c k

g k c k c c

  


 
                   (42) 

In Step 4, the OFRF representation of the spectrum of the 

output force of system (34) is obtained as given in (41b). By 

specifying  0 0j 12.0 NY   , 
0 100 rad/s  , and introducing 

two more constraints 
8 3

3 12 10 N/mk    and 
2

3 15 10c  
3 3N/m s  on the design parameters 

3k  and 
3c , the optimization 

problem (31) can now be formulized as: 

Find 

 0 1 1 3 3, , ,k c k cξ                                (43a) 

to solve the optimization problem 

 
 

1 1 3 3

0
, , ,
MIN j 12.0

out
k c k c

F                             (43b) 

under the constraint 

 
 
 
 

1 1 1 3 3 1

2 1 1 3 3 1

8

3 1 1 3 3 3

2

4 1 1 3 3 3

, , , : 100 0

, , , : 30 0

, , , : 12 10 0

, , , : 15 10 0

g k c k c k

g k c k c c

g k c k c k

g k c k c c

  
  
   
   

                 (43c) 

The solution to the optimization problem (43) is 

straightforward. From the OFRF (41b), the relationship 

between  0j
out

F   and the design parameters 
3k  and 

3c  can 

be obtained as shown in Fig.3 and 4. 

3 3

3 / N/m sc


3

3 / N/mk

O
u
tp

u
t 

fo
rc

e 
/N

10

11

0

12

13

14

5

15

121010 864215 0
×10

2

×10
8

 
Fig.3 The output spectrum of system (33) 
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
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150
1
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3
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7
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10
11
12
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×10
2

×10
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Fig.4 Contour map of the output spectrum of system (33) 

According to Fig.4, the design for 3k  and 3c  can be reached 

simply by finding the values of  3k  and 3c  along the contour 

line of 12.0 . For example, if selecting 
8 3

3 10 10 N/mk   , 

along the contour line of 12.0  in Fig.4, 3k  can be obtained as 
2 3 3

3 6.72 10 N/m sc
  . Consequently, a final design can be 

achieved as 
4

1 10 N/mk  , 
3 -3

1 30 N/m sc  , 
8 3

3 10 10 N/mk    

and 
2 3 3

3 6.72 10 N/m sc
  . Substituting the designed 

1k , 
1c , 

3k  and 
3c  into the system model (34) and, evaluating the 

output force of the system by simulation yields 

 0j 12.241 N
out

F                               (44) 

which is a good match to the design specification. Note that 
8 3

3 10 10 N/mk    is beyond the range of  6 8

3 10 , 0.5 10 ,k  

8 8 32 10 , 8 10 N m   over which the OFRF (41) was 

determined. This demonstrates that the OFRF is not a simple 
approximation but an inherent representation of the system 
output frequency response and can, therefore, be used to 
perform the system design over a wide range of the design 
parameter space. 

In this case, the NARX-M-for-D of the system is established 

by discretizing an available physical differential equation 

model. However, in practice, a NARX-M-for-D often cannot be 

determined in this way as a differential equation model is often 

not available for complex physical systems. In next case study, 

a component of the system to design can only be described by a 

data-driven dynamic model. Consequently, the newly proposed 

NARX-M-for-D becomes a natural representation of the 

system that needs to be used to perform the system design. 

B. Case study 2 

In this case study, the design of the vibration isolation system 

shown in Fig.5 is considered where 
0 1 kgM  . 

1 1k   and 

1 2c   are the parameters of the spring and damper in the 

system. The isolator in the system is a piece of damping 
material which cannot be described by an analytical physical 
model but whose NARX-M-for-D has been determined under 

the sampling frequency 512 Hz
s

f   as 

       3 3

1 3 2 3 3 3 1
iso

f t a y t a y t a y t               (45) 

by using  nonlinear system identification techniques described 

in [28].  

In (45),  iso
f t  is the damping force produced by the isolator 

in the system, 
3  is the parameter of the isolator to be used for 

the system design, and  
3 4 4

1 2 34 10 , 10 , 0.75 10a a a
                   (46) 

are constants.  

M0

u(t)

y(t)

1c
fout

1k

Isolator

3

 
Fig.5 The vibration isolation system to design in Case study 2 

According to the basic physical principle, the system in Fig.5 

can be described as: 

         
       

0 1 1

1 1

iso

out iso

u t M y t c y t k y t f t

f t c y t k y t f t

   


  
             (47) 

From (45) to (47), the NARX-M-for-D of the isolation 

system can be obtained as: 
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                 
                 
                 
       

1 2 1

0,1 1,0 1,0

1,1,1 2,2,2 03 3

3,0 3,0 1,0

1 2 1,1,1 3

1,0 1,0 3,0

2,2,2 3

3,0

1 2 1

1 2 0

1 2 1

2 1 0
out

u t y t y t

y t y t y t

y t y t y t

y t f t

  

  

  



      

     


     


   

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ

 (48) 

which is clearly a specific case of the NARX-M-for-D (10) 

with  1 2 3, ,  ξ , and the details of the coefficients are 

given in Appendix A.3. 

In the following, the design of parameters ξ  of the vibration 

isolation system when the system is subject to the multi-tone 
input  

     36cos 4cos
F F

u t t t                        (49) 

where 100 rad/s
F

   is considered. The design objective is to 

achieve a desired force transmissibility at the frequency 
F

  as 

defined by 

   
 

j
j

j

out
F

T
U





                                 (50) 

where  jU   and  j
out

F   is the spectrum of the input and 

output forces of the system, respectively. 
From the NARX-M-for-D (48), the results in Steps 1 and 2 of 

the proposed general design approach are obtained, which are 

the NARX-M-for-D (48) and the relationship between the 

system design parameters ξ  and the linear and nonlinear 

characteristic parameters of the system. In Step 3, three 

constraints on the design parameters ξ  are introduced as 

 
 
 

3 4

1 1 3

2 2

4

3 1

: 4 10 10 0

: 30 0

: 6 10 0

g

g

g

 



    
  
   

ξ
ξ
ξ

                    (51) 

to ensure that the FRF of the system at the driving frequency 

100 rad/s
F

   is as specified in the following 

 
     

           

1

0,1

1 1 2

1,0 1,0

5 4

exp j
j

1 exp j exp 2j

3.469 10 3.320 10 i

F

F

F F

t
H

t t

 


   
 

 


     

   

ξ
ξ ξ  (52) 

and  3g ξ  is a constraint on the maximum value of the 

stiffiness of the spring. 
Moreover, in Step 4, the OFRF representation of the force 

transmissibility  j
F

T   of the system is determined. In this 

case, 11N   

2 3 4 5

3 3 3 3 3

1

1, , , , ,
N

n

n

    


     Ξ Ξ Ξ              (53) 

and the OFRF was determined from the system output 

responses to input (49) when the design parameters 3  changes 

over the range of  0.01, 0.8, 2, 3, 4, 5  as 

     
   
   

1

3

2 2 3 3

3 3

4 4 3 5 5

3 3

j 2.456 1.443i 1.383 4.098i

0.846 3.293i 0.285 1.244i

0.047 0.220i 0.306 10 0.015i

F
T l

l l

l l



 

 

 
 
 



 

  

     
    

    

 (54) 

where 610l   

Based on the results of Steps 1-4 above, in Step 5, the design 

issue in this case study can be described as an optimal design 

probem as follows. 

Find  

 0 1 2 3, ,  ξ                                   (55a) 

to solve the optimization problem 

 
 

1 2 3, ,
MIN j 1.5

F
T

  
                                 (55b) 

under the constraint 

 
 
 

3 4

1 1 3

2 2

4

3 1

: 4 10 10 0

: 30 0

: 6 10 0

g

g

g

 



    
  
   

ξ
ξ
ξ

                  (55c) 

where 

     2 2j Re j Im j
F F F

T T T                      (56) 

and 

 

 

1 2 2

3 3

3 3 4 4 3 5 5

3 3 3

1 2 2

3 3

3 3 4 4 5 5

3 3 3

Re j 2.456 1.383 0.846

0.285 0.047 0.306 10

Im j 1.443 4.098 3.293

1.244 0.220 0.015

F

F

T l l

l l l

T l l

l l l

 

  

 

  

  
  

  
  

 

   

 

  

       
  

      
  

  (57) 

Considering the constraints of  1g ξ  and  3g ξ , it can be 

obtained that 
4

61

3 3

10
12.5 10

4 10


 


  


                         (58) 

Under the constraint of (58), inequality (55c) can be solved 

to yield 
6 6

32.3 10 12.5 10                             (59) 

Consequently, from (58) and (59), it can be obtained that 
4 4

11.92 10 6 10                                (60) 

Therefore, the feasible solutions to the design problem in the 

case study are: 
6 6

3

2
4 4

1

2.3 10 12.5 10

30

1.92 10 6 10






    
 
    

                     (61) 

If 
3  is designed as 

6

3 2.3 10   , the corresponding 

1 1k   and 2 1c   can be obtained as 
4

1 1 1.92 10k   
N/m , 

1

2 1 30 N/msc   . The time history of the output 

force and the corresponding transmissibility are shown in Fig.6, 
where a comparison with the result in the case of 

4

1 1 1.92 10 N/mk    , 
1

2 1 30 N/msc    and 
3 0   can 

also be observed. 
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(a) Time history of the output force 
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 (b) The force transmissibility 

Fig.6 A comparison of the system performances under the linear and 

nonlinear designs 

From Fig.6, it can be observed that under the design, the 

transmissibility at the base frequency of 100 rad/s
F

   has 

reached 1.5 as required. But, compared to the case of 
3 0   

where no material-based nonlinear isolator is introduced, the 
optimal design induces additional components at super 

harmonic frequencies, 3
F

   and 5
F

  . However, the 

time history of the system response shown in Fig.6 (a) indicates 
that the optimal design has an overall better performance in 
vibration isolation. In order to confirm this observation, the 

concept of power transmissibility  F
E   introduced in [32]  

 
 

 
 

0

0

2

2
0

2
1

0

d
j

d
F

T

out

F T p
p

f t t
E T

u t t
 

 





  


, 0

2

F

T



    (62) 

was used to evaluate the vibration isolation performance of the 

system in the two cases. The results are  

  8.457
F

E                                   (63) 

when no material-based isolator is used and 

  2.559
F

E                                  (64) 

when the isolator is applied. Clearly, the optimal nonlinear 

design has achieved an overall better performance than the 

linear solution. 

    It is worth pointing out that because the optimisation 

problem is formulated using the OFRF which is a polynomial 

function of the design parameters, the numerical costs 

associated with the new design are normally less than the costs 

associated with a completely numerical simulation based 

method. In the case study above, for example, the overall 

computation on a standard PC running MATLAB codes only 

took 30 sec to complete.    

V. CONCLUSIONS 

Traditional nonlinear system designs are basically based on 

the time domain response analysis, which is often difficult to 

reveal the relationship between the system performance and the 

parameters that can be used to perform the design. Motivated 

by the wide engineering applications of the FRF-based linear 

system frequency domain analysis and design, the OFRF 

concept was proposed in order to extend the effective linear 

system approach to the nonlinear case. However, the methods 

required to know a differential equation-based physical model 

of the system where the physical parameters that can be used 

for analysis and design are the coefficients in the model. 

Considering that it is difficult even impossible to find a 

differential equation model for complex engineering systems 

and the need to extend the physical model-based system design 

approach to address more complicated complex system 

designs, a new model known as the NARX-M-for-D is first 

proposed in the present study. A NARX-M-for-D can be 

derived from a nonlinear differential equation model of a 

system but, more importantly, can also be determined from the 

system input output data through a nonlinear system 

identification process. Moreover, a new OFRF-based 

methodology is developed that can be applied to the design of 

nonlinear systems described by a NARX-M-for-D. The 

methodology consists of a five step procedure including novel 

algorithm and technique for determining the structure and 

evaluating the coefficients of the OFRF of a NARX-M-for-D 

and can be applied to design a general class of nonlinear 

systems in the frequency domain. Two case studies have been 

provided to demonstrate the significance of the new design 

methodology.  

The paper is basically concerned with the introduction of the 

NARX-M-for-D of nonlinear systems and the design of a 

nonlinear system based on the OFRF of the system’s 
NARX-M-for-D. The determination of the NARX-M-for-D 

from practical testing data has been demonstrated in our 

previous works, and the focus of the present study is therefore 

the evaluation of the OFRF and the OFRF based optimal 

system design which is relevant to real world nonlinear system 

design.  

The new design method, for the first time, transforms a 

complicated dynamic loading oriented engineering design into 

a much simpler polynomial-based optimal design problem.  

The method, therefore, has potential to be applied to address 

challenges with the optimal design of complex engineering 

systems and structures which, so far, can only be deal with 

using numerical simulation and random search etc. 

sophisticated and time consuming procedures. 

Appendix A.1 The coefficients of NARX-M-for-D (6) 

The model coefficients can be written as 
       
     
     
     
       
   

1 05

0,1 1,0

1 2 5

1,0 1 1

2 2

1,0 1

1,1,1 5 3

3,0 3 3

1,1,2 1,2,23 3

3,0 3 3,0 3

2,2,2 3

3,0 3

0.381 10 ; 1;

0.195 10 0.381 10 2 ;

1 0.195 10 ;

0.381 10 0.512 10 ;

1.023 10 ; 1.023 10 ;

0.512 10 ; else p

c k

c

k c

c c

c

 







 

 



 





   

     

   

    

    

 

ξ ξ
ξ

ξ

ξ

ξ ξ
ξ  1 2( , , , )

, 0p qk k k

q

 ξ

(A1) 

Appendix A.2. The coefficients of NARX-M-for-D (34) 

The model coefficients can be written as 
       
     
     
     
       
   

1 05

0,1 1,0

1 2 5

1,0 1 1

2 2

1,0 1

1,1,1 5 3

3,0 3 3

1,1,2 1,2,23 3

3,0 3 3,0 3

2,2,2 3

3,0 3

0.381 10 ; 1;

0.195 10 0.381 10 2 ;

1 0.195 10 ;

0.381 10 0.512 10 ;

1.023 10 ; 1.023 10 ;

0.512 10 ; else p

c k

c

k c

c c

c

 







 

 



 





   

     

   

    

    

 

ξ ξ
ξ

ξ

ξ

ξ ξ
ξ  1 2( , , , )

, 0p qk k k

q

 ξ

 (A2) 

and 
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       
       
       

 1 2

1 23 3

1,0 1 1 1,0 1

1,1,1 1,1,28 7

3,0 3 3 3,0 3

1,2,2 3,3,37 8

3,0 3 3,0 3

( , , , )

,

0.512 10 ; 0.512 10 ;

0.745 10 ; 0.149 10 ;

0.149 10 ; 0.745 10 ;

else 0p qk k k

p q

c k c

k c c

c c

 

 

 

 

 

 

     

     

    



ξ ξ
ξ ξ
ξ ξ

ξ

(A3) 

such that  

     1 1 1( , , ) ( , , ) ( , , )2 5

, , ,2.621 10p q p q p qk k k k k k

p q s p q p q
f      ξ ξ ξ  (A4) 

for 2p q  , and the condition of Corollary 1 is satisfied. 

Appendix A.3. The coefficients of NARX-M-for-D (48) 
The model coefficients can be written as 
       
   
       
     1 2

1 05

0,1 1,0

1 2 5 9

1,0 2 1 3

2 1,1,12

1,0 2 3,0 3

( , , , )2,2,2

3,0 3 ,

0.381 10 ; 1;

2 0.195 10 0.381 10 0.153 10 ;

0.195 10 1; 0.038 ;

0.029 ; else 0p qk k k

p q

 

   

   

   



  



   

      

    

 

ξ ξ
ξ
ξ ξ
ξ ξ

(A5) 

and 
   
       
     1 2

1 3 3

1,0 2 1 3

2 1,1,13 4

1,0 2 3,0 3

( , , , )3,3,3 4

3,0 3 ,

0.512 10 4 10 ;

0.512 10 ; 10 ;

0.75 10 ; else 0p qk k k

p q

   
   
   

    

   

  

ξ
ξ ξ
ξ ξ

     (A6) 

Appendix B. Proof of Proposition 2 

According to (11a) and (11b), it can be seen that given linear 

coefficients 
   .

0,1 ξ , 
   .

1,0 ξ , 
   .

0,1 ξ  and 
   .

1,0 ξ , the n th 

order GFRFs of the (10a) can be written as [16]: 

 
 

1 2

1

1

1 1 2, ,
, ,

1

( , , )

( , , )

sN

sN

sN

vv vx

n n sNv v
v v

n n n

H h    

 







V

Θ h
    (B1) 

where V  represents a sN -dimensional nonnegative integer 

vectors which contains the exponents of 1 2

1 2
sNvv v

sN
    and 

 1 , , sNv v
h  are constants,  1( , , )

1 2 ,, , , 2nk k

sN p q
p q       ξ . 

Substituting (13) into (B1), yields: 

   1 : 1 : :
1

1

( , , ) ( , , )

( , , )

N
x

n n n i n n i n i

i

n n n

H h   

 









 ξ β

Ξ H
           (B2) 

where 
: 1( , , )

n i n
h    are the i th element of 1( , , )

n n
 h , 

n
Ξ  is composed of  :n i

ξ , 1, ,i N  , and N   is the maximum 

dimension of vector 
n

Θ . 

Substituting (B2) into (11a), yields: 

   

 
 

 

1

1

11
1 1

1

j j

1
( , , ) j d

2

j

n

N

n

n

nN

n n n in
n i

N

n n

n

X X

U
n

  

 

   






   
 











 



Ξ H

Ξ X

(B3) 

where  

 
 

 
1

11
1

1
j ( , , ) j d

2 n

n

n n n in
i

U
n

  
    

    


 X H (B4) 

Similarly, it can be obtained that  

    
1

j j
N

n n

n

Y  


Ξ Y                       (B5) 

Therefore, Proposition 2 is proven. 

Appendix C. Proof of Proposition 3 

In (11a), the n th order GFRFs’ coefficient vector n
Θ  can be 

calculated by using the algorithm discussed in Peng et al [33]: 

    

  

11

1 1

1

1

1
( , , )( , , )

0, , ,

, , 1 1 1 , , 1

( , , )

,0 ,

2 , , 1

p qn

n n

p

n

n qK n K
k kk k

n n p q n q p

k k q p k k

n K
k k

p n p

p k k

 








   

 

   
    
      
 

 
  

Θ ξ ξ Θ

ξ Θ

(C1) 

where  
1

, , 1

1

n p

n p i n i p

i

 

 


 Θ Θ Θ  and 
,1n n
Θ Θ . 

Substituting (13) into (C1), 2Ξ  can be obtained satisfying 

Proposition 3. Moreover, by using the mathematical induction 

and assuming Proposition 3 holds for n
Ξ , it can be obtained 

that 

 

 

11 1

1 1 1 1

1

1 1

1
( , , )( , , )

1 0, 1 , 1 ,

, , 1 1 1 , , 1

1
( , , )

,0 1,

2 , , 1

p qn

n n

p

n

n qK n K
k kk k

n n p q n q p

k k q p k k

n K
k k

p n p

p k k



 



 

   
   




 

   
    
      
 

 
  

Ξ ξ ξ Ξ

ξ Ξ

(C2) 

where, according to (11a), 1,n pΞ  can be obtained as: 

 
1 1

1, 1 , 1

1

1,1 1

n p

n p i n i p

i

n n

  

   


 


 


 

Ξ Ξ Ξ

Ξ Ξ
                   (C3) 

Therefore, (16a) in the Proposition 3 is proven. For (16b), it 

can be proved by using the same process as from (C1) to (C3). 

Appendix D. Proof of Corollary 1 

From the condition    1 1( , , ) ( , , )

, ,

p q p qk k k k

p q p q
  ξ ξ and (13), 

it is known that 

 
 

1 1 1

1 1 1

( , , ) ( , , ) ( , , )

, , ,

( , , ) ( , , ) ( , , )

, , ,

p q p q p q

p q p q p q

k k k k k k

p q p q p q

k k k k k k

p q p q p q

 



  

  



 

ξ β ξ

ξ ξ β
              (D1) 

As 1( , , )

,

p qk k

p q

ξ  and 1( , , )

,

p qk k

p q

ξ  are variables, (D1) indicates 

that 

1 1

1 1

( , , ) ( , , )

, ,

( , , ) ( , , )

, ,

p q p q

p q p q

k k k k

p q p q

k k k k

p q p q

 

 

 




β β

ξ ξ
                        (D2) 

and (16b) can be reduced to (16a) as 

 

 

11

1 1

1

1

1
( , , )( , , )

0, , ,

, , 1 1 1 , , 1

( , , )

,0 ,

2 , , 1

p qn
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p

n

n qK n K
k kk k

n n p q n q p

k k q p k k

n K
k k

p n p n

p k k






   

 

   
    
      
 

  
  

Ξ ξ ξ Ξ

ξ Ξ Ξ
(D3) 

Then Corollary 1 is proven. 
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