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Abstract 

This year marks the 21st anniversary of the International GeoComputation Conference Series. To 

celebrate the occasion, Environment and Planning B invited some members of the geocomputational 

community to reflect on its achievements, some of the unrealised potential, and to identify some of 

the on-going challenges. 
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Introduction 

2017 marks the 21st anniversary and homecoming of the International GeoComputation Conference 

Series, started in Leeds in September 1996. The Nintendo 64 was released the same year. Two decades 

ůĂƚĞƌ͕ ƚŚĂƚ ĐŽŵƉĂŶǇ͛Ɛ ŵŽƐƚ ƌĞĐĞŶƚ Đonsole is described as a hybrid, merging the handheld and home 

gaming experiences. Geocomputation also is a hybrid, fusing together the geographical and the 

computational. Has 21 years of development created something original and innovative or is it an 

idiosyncratic outsider searching for mainstream acceptance? 

TŽ ĐĞůĞďƌĂƚĞ ƚŚĞ ŽĐĐĂƐŝŽŶ ĂŶĚ ĂƐ ƉĂƌƚ ŽĨ EŶǀŝƌŽŶŵĞŶƚ ĂŶĚ PůĂŶŶŝŶŐ B͛Ɛ ƌĞĨŽĐƵƐŝŶŐ ŽŶ ƵƌďĂŶ ĂŶĂůǇƚŝĐƐ 
and city science ʹ both areas of geographical and computational interest ʹ we invited eleven well-

respected members of the geocomputational community to reflect on some of its achievements, some 

of the unrealised potential, and some of the on-ŐŽŝŶŐ ĐŚĂůůĞŶŐĞƐ ŝŶ ƚŚĞ ĂŐĞ ŽĨ ͚BŝŐ DĂƚĂ͛͘ 

What exactly is geocomputation if not an excessively syllabic ƉŽƌƚŵĂŶƚĞĂƵ͍ AƐ DĂǀŝĚ O͛“ƵůůŝǀĂŶ 
observes (below), the geocomputation community has struggled to forge a distinct answer and 

ŝĚĞŶƚŝƚǇ ďĞǇŽŶĚ ͞ĚŽŝŶŐ ŐĞŽŐƌĂƉŚǇ ǁŝƚŚ ĐŽŵƉƵƚĞƌƐ͘͟ IŶ ƚŚĞ ĨŽƵƌƚŚ ĞĚŝƚŝŽŶ ŽĨ ƚŚĞ DŝĐƚŝŽŶĂƌǇ ŽĨ HƵŵĂŶ 
Geography (Johnston et al., 2000) it is described (by Paul Longley, 2000) as the creative and 

experimental application of geographic information technologies in research that emphasises process 

over form, dynamics over statics, and interaction over passive response. Its appearance in the 

Dictionary, just four years after the first conference, suggests an early degree of academic credibility 

ʹ of it doing something geographical that is not only recognisable but distinctive. 

To gauge the success of geocomputation, Mark Gahegan looks back to that first conference, and to 

ƚŚĞ ĨŝƌƐƚ ƉĂƉĞƌ͕ ƌĞĐĂůůŝŶŐ ƚŚĞ ĞŝŐŚƚ ĐŚĂůůĞŶŐĞƐ ŝƚ ƉƌĞƐĞŶƚĞĚ͘ HĞ ŶŽƚĞƐ ƚŚĞŝƌ ĐŽŵŵŽŶ ƚŚĞŵĞ͕ ͞ ƚŽ ĐŽŵƉƵƚĞ 
ŽƵƌ ǁĂǇ ƚŽ ďĞƚƚĞƌ ĂŶĂůǇƚŝĐ ƐŽůƵƚŝŽŶƐ ƚŽ ŐĞŽŐƌĂƉŚŝĐĂů ƉƌŽďůĞŵƐ͘͟ IŶ ƚŚŝƐ ƌĞŐĂƌĚ͕ ǁĞ ŵĂǇ ƌĞŐĂƌĚ 



geocomputation as prescient ʹ an early response to the rising tide of ever more powerful computing 

and to the deluge of data it washes upon the shores of geographical interest because so much of those 

data are georeferenced. The optimist may see in this the opportunity to reinvigorate the ambition of 

spatial science: to further our understandings of spatial interactions and of spatial processes ʹ time-

space geographies, for example, the interactions between people and places, between urban forms 

and functions, about how cities evolve Žƌ ͚ǁŽƌŬ͛ ĂƐ ;ĐŚĂŽƚŝĐͿ ƐǇƐƚĞŵƐ͕ Žƌ ĂďŽƵƚ ŚŽǁ ƉĞŽƉůĞ ďĞŚĂǀĞ 
and make decisions in different spatial places and contexts, and under varying social, economic and 

other constraints. And, it may do so in a way that lets the data do the talking through the brute force 

of computing; or, at least, in a way that is as much interested in exploring data geographically ʹ 

searching for spatial variation, looking for localised departures from a general trend, finding 

something new, unexplained and spatially clustered ʹ aƐ ŝƚ ŝƐ ĂďŽƵƚ ƚƌǇŝŶŐ ƚŽ ͚ƉƌŽǀĞ͛ ;ŝŶ Ă ƐƚĂƚŝƐƚŝĐĂů Žƌ 
ĐůĂƐƐŝĐĂůůǇ ĞĐŽŶŽŵĞƚƌŝĐ ƐĞŶƐĞͿ ŵŽƌĞ ŐĞŶĞƌĂůŝƐĞĚ ͚ůĂǁƐ͛ ĂŶĚ ƚŚĞŽƌŝĞƐ͘  

However, rising tides deposit rubbish. As both Paul Longley and Lex Comber are aware, the freedom 

of geocomputation needs to be balanced against producing practical and usable findings that have at 

least some anchoring in theory, testable propositions and realistic representations of the observable 

geographic world. In addition, users should be suitably critical of what the data have and have not 

measured, and of the results they generate. The well-worn maxim of garbage in, garbage out still 

applies. However, data deluge need not lead to data junk if suitable checks and balances are in place, 

including what Chris Brunsdon advocates as reproducible research. The suite of localised and 

geographically weighted statistics outlined by Martin Charlton epitomise the coupling of the geo and 

the computational, grounded within a statistical framework to search for and not ignore the 

geographical patterning of a variable across a map. At a minimum, such methods provide a diagnostic 

tool to check the assumption of independence that infuse most statistical methods, including 

ƌĞŐƌĞƐƐŝŽŶ͘ BƵƚ ŵŽƌĞ ƚŚĂŶ ƚŚĂƚ͕ ƚŚĞǇ ĐŚĂůůĞŶŐĞ ƚŚĞ ǁŚŽůĞ ŝĚĞĂ ŽĨ ͚ĂǀĞƌĂŐŝŶŐ ĂǁĂǇ͛ ƐƉĂƚŝĂů ĚŝĨĨĞƌĞŶĐĞƐ 
on the not unreasonable basis that those differences, and the processes that caused them, ought to 

be of some geographical interest. 

If a goal of geocomputation is indeed to model social and economic processes, then on face value 

agent based models tick all the right boxes as they use data, computation, simulation, rules and 

randomisation to explores the links between theory, processes and geographical outcomes. Nick 

Malleson is hopeful that with the sorts of data collected under the rubric of smart cities, 

geocomputation has the potential to create reliable forecasts of urban dynamics. Alison Heppenstall 

is more questioning of the current state of play and its ability to model how real-world individuals 

really behave. 

Therein lies thĞ ĐŚĂůůĞŶŐĞ͘ TŽ ƋƵŽƚĞ AůŝƐŽŶ͕ ͞ŚŽǁ ĐĂŶ ǁĞ ƵƐĞ ŶĞǁ ĨŽƌŵƐ ŽĨ ĚĂƚĂ ƚŽ ƵŶĚĞƌƐƚĂŶĚ ŚŽǁ 
ƌĞĂů ƉĞŽƉůĞ ƐŚĂƉĞ ĂŶĚ ĂƌĞ ƐŚĂƉĞĚ ďǇ ŐĞŽŐƌĂƉŚŝĐĂů ƉƌŽĐĞƐƐĞƐ͍͟ PŚƌĂƐĞĚ ŵŽƌĞ ďƌŽĂĚůǇ͕ ŚŽǁ ĚŽĞƐ Ăůů 
this computational power and all these data get us beyond measuring spatially differentiated 

outcomes to understanding better the processes that created those outcomes in the first place? How 

do we validate what we think we know about those processes and on what basis do we develop or 

discount existing theories? How does geocomputation engage with and contribute to the best of 

quantitative social science? And how do we do this in a way that has a wider impact, not locked away 

in the ivory towers of academia but engaging with commercial partners and teaching students the 

geocomputation skills they need to contribute to what Alex Singleton and Daniel Arribas-Bel call 

Geographic Data Science? 

Looking back, it is clear that geocomputation has inspired a lot of computational and methodological 

innovation. Nevertheless, 21 is a coming of age. Apparently, the Switch is the fastest-selling console 

in Nintendo history. Can geocomputation also shape something distinctive in an era of knowing more 



yet understanding less (Lynch, 2016)? Andy Evans is optimistic. If it holds to what he describes as the 

core principles of rigor, sympathy, and imagination, geocomputation will continue to inspire, innovate 

and evolve, and there will be plenty more celebrations ahead. 

Richard Harris 

School of Geographical Sciences, University of Bristol 

 

What Geocomputation is For: Doing Geography with Computers 

The geocomputation community has struggled to define itself clearly, and often is perceived as a 

quirky offshoot of geographical information science (GISci). However, self-consciously emerging in 

1ϵϵϲ Ăƚ ƚŚĞ ŝŶĂƵŐƵƌĂů LĞĞĚƐ ĐŽŶĨĞƌĞŶĐĞ͕ Ă ĨĞǁ ǇĞĂƌƐ ĂĨƚĞƌ GŽŽĚĐŚŝůĚ͛Ɛ ;ϭϵϵϮͿ ĐĂůůŝŶŐ ŝŶƚŽ ĞǆŝƐƚĞŶĐĞ ŽĨ 
GISci, it was clearly intended not to be GISci. Gahegan (1999) forcefully distances geocomputation 

ĨƌŽŵ ƚŚĞ ͞ĚŝƐĂďůŝŶŐ͟ ƚĞĐŚŶŽůŽŐǇ GI“͕ ǁŚŝĐŚ ŚĂƐ ŝƚƐĞůĨ Ěistanced quantitative geographers from 

geographical questions: 

Geocomputation is a conscious attempt to move the research agenda back to geographical 

analysis, with or without GIS in tow [...] It is about not compromising the geography, nor 

enforcing the use of unhelpful or simplistic representations (p. 204). 

It is difficult to argue plausibly that this goal has been achieved. Yet I am more optimistic now that it 

might be achieved, than I have been for some time. 

MĂƌŬ GĂŚĞŐĂŶ͛Ɛ ƉŝƚŚǇ ĂƌŐƵŵĞŶƚ ďĞĂƌƐ ƌĞǀŝƐŝƚŝŶŐ͘ IŶ ĞƐƐĞŶĐĞ͕ ŚĞ ƐƵŐŐĞƐƚƐ ƚŚĂƚ GI“ ŚĂƐ ďĞĞŶ Ă ͞ DŝƐĂďůŝŶŐ 
TĞĐŚŶŽůŽŐǇ͟ ;ŽƉ͘ Đŝƚ͕͘ Ɖ͘ ϮϬϯͿ͕ ďĞĐĂƵƐĞ ͞GI“ ƐĂǁ ƚŽ ŝƚ ƚŚĂƚ ŐĞŽŐƌĂƉŚĞƌƐ ďĞĐĂŵĞ ƚŚĞ ƐůĂǀĞƐ ŽĨ ƚŚĞ 
computer, having to adopt the impoverished representational and analysis capabilities that GIS 

provŝĚĞĚ͘͟ OĨ ĐŽƵƌƐĞ͕ ƚŚĞƌĞ ĂƌĞ ĂĚǀĂŶƚĂŐĞƐ ƚŽ ĂĚŽƉƚŝŶŐ ƐŚƌŝŶŬ-wrapped computer solutions, among 

ƚŚĞŵ ͞ŐĞƚƚŝŶŐ ƐŽŵĞ ƐůĞĞƉ ĂŶĚ ƉƌŽĚƵĐŝŶŐ ŵƵĐŚ ƉƌĞƚƚŝĞƌ ŽƵƚƉƵƚ͟ ĂůƚŚŽƵŐŚ ĂŶǇŽŶĞ ǁŚŽ ŚĂƐ ĂƚƚĞŵƉƚĞĚ 
to bend an obstinate GIS package to their will, might quibble with even this modest claim. 

More substantively, a side-effect of the widespread adoption of GIS in government, business, 

education and beyond, has been the actualization of early GIS-ďŽŽƐƚĞƌƐ͛ ĚƵďŝŽƵƐ ;Ăƚ ƚŚĞ ƚŝŵĞͿ ĐůĂŝŵ 
that 80 per cent of all data has a spatial component. The source of this often-cited boast is unclear. 

The earliest I have managed to trace it is to a conference paper by Antenucci (1989) but the context 

makes clear that it was by then already a commonplace assertion. Chrisman (pers. comm.) suggests it 

was routinely made to persuade doubting local government purchasing officers of the wisdom of 

investing in then untested GIS software with uncertain utility. In any case, 80% seems a likely 

underestimate now looked at 30 or 40 years later. Data today are routinely encoded with a spatial 

reference at the moment of collection, be it an address or GPS coordinates, and if not can be readily 

associated with a spatial location in a matter of minutes. This is thanks to the astonishing success and 

widespread adoption of GIS and more recently web-mapping and related technologies. 

NĞǀĞƌƚŚĞůĞƐƐ͕ ƚŚĞ ͞ƐŝŵƉůŝƐƚŝĐ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶƐ͟ ǁŚŝĐŚ GĂŚĞŐĂŶ ďĞŵŽĂŶƐ ƌĞŵĂŝŶ͘ FŽƌ ƚŚĞ ŵŽƐƚ ƉĂƌƚ͕ 
the geography associated with data is encoded as a point, or a polygon. Together with other points or 

polygons these are assembled in spatial layers. Notwithstanding the many operations that 

contemporary GIS software can perform on and between spatial layers ʹ which the web developer 

community at the time of writing is assiduously reinventing ʹ the limits of points, polygons (and also 

grids) as representations of geography are apparent. Geographers, as a rule, are more interested in 

the (spatial) relations among things than in the things in themselves and in how processes play out at 



multiple scales. How do spatial relations affect how things change over time, and how do those 

relations change over time and across scales as a result? 

Such geographical ĐŽŶĐĞƌŶƐ ůĂǇ Ăƚ ƚŚĞ ŚĞĂƌƚ ŽĨ ŐĞŽŐƌĂƉŚǇ͛Ɛ ƋƵĂŶƚŝƚĂƚŝǀĞ ƌĞǀŽůƵƚŝŽŶ ŽĨ ƚŚĞ ϭϵϲϬƐ ĂŶĚ 
persisted into the 1970s (see Forer 1978, for example). It was only as the initial hope of incorporating 

space into statistical tools proved trickier than expected (Gould 1970), and the hoped-for one-to-one 

correspondence between processes and the patterns they produce proved a mirage (Olsson 1969) 

that the confidence (hubris?) of quantifiers waned. Meanwhile geography embraced other 

epistemologies, and some of the creative energy of would-be quantifiers was directed into building 

mainstream GIS and its accompanying infrastructure of data models, ontologies, algorithms and 

routinized analytical approaches. 

Somewhat in the shadow of these developments we have seen the emergence of more open-ended, 

platform and data-model agnostic tools for the analysis of geographic data (see Brunsdon and 

Singleton 2014). This alternative geospatial ecosystem now seems ready for widespread adoption by 

geographers, without the same commitment to particular approaches to representation that GIS 

demands and subtly enforces. Geocomputation seems an apt label for this polyglot assortment of 

ĂƉƉƌŽĂĐŚĞƐ͘ AĨƚĞƌ Ăůů͕ ĂƐ HĞůĞŶ CŽƵĐůĞůŝƐ ;ϭϵϵϴͿ ŶŽƚĞĚ͕ ŝĨ ŝƚ ǁĞƌĞŶ͛ƚ ĨŽƌ ƚŚĞ ŚĂƉƉǇ ĂĐĐŝĚĞŶƚ ŽĨ ƚŚĞ 
ƉƌŽŶŽƵŶĐĞĂďŝůŝƚǇ ŽĨ ͚ŐĞŽ͛ ĂƐ Ă ƉƌĞĨŝǆ͕ ǁĞ͛Ě ůŝŬĞůǇ ĐĂůů ŝƚ ͚ŐĞŽŐƌĂƉŚŝĐĂů ĐŽŵƉƵƚĂƚŝŽŶ͛͘ AŶĚ ǁŚĂƚ ĞůƐĞ 
would a geographer with a computer be interested in? 

David O'Sullivan 

Department of Geography, University of California, Berkeley 

 

GĞŽĐŽŵƉƵƚĂƚŝŽŶ͛Ɛ Ϯϭ ǇĞĂƌ ƌĞƉŽƌƚ ĐĂƌĚ͗ B-, some good progress, but could try harder 

Geocomputation began in earnest with the conference at Leeds University in 1996 and rapidly became 

established as a vibrant research community (papers from the first gathering and all subsequent 

meetings are available at www.geocomputation.org). In the very first paper describing this new field, 

Stan Openshaw and Robert Abrahart (1996) defined a series of eight challenges that, for them, defined 

the direction (here paraphrased for brevity):  

1. improving the resolution and precision of computational models;  

2. computationally intensive statistical methods such as jack knifing and bootstrapping or the 

use of Monte Carlo significance tests in place of heavily assumption dependent classical 

alternatives;  

3. improved optimisation methods that can use stochastic search or evolution strategies;  

4. unsupervised learning methods to replace simplified statistical tools;  

5. improving supervised computational models by removing simplifying assumptions, via neural 

methods;  

6. adding more geographical knowledge into a problem (for example by using fuzzy logic);  

7. tools for data mining, pattern recognition and cluster detection, including artificial life 

methods, that can search large data spaces; 

8. application of new search techniques from machine vision.  



Of these, the first three aim to leverage improvements in computational speed and scientific 

computing to offer more accurate, more scalable analysis, or the use of previously intractable 

statistical methods.  The remainder aim to leverage what were recently pioneered techniques in 

machine learning and artificial intelligence. The common theme linking these challenges is the desire 

to compute our way to better analytic solutions to geographical problems, by continuously improving 

ŵĞƚŚŽĚƐ ĂŶĚ ůĞǀĞƌĂŐŝŶŐ MŽŽƌĞ͛Ɛ LĂǁ͘  Geocomputation is an apt name for such a field. 

HŽǁ ĨĂƌ ŚĂǀĞ ǁĞ ŐŽƚ ǁŝƚŚ ƚŚŝƐ ŽƌŝŐŝŶĂů ĂŐĞŶĚĂ͍  LĞƚ͛Ɛ ůŽŽŬ Ăƚ ƚŚĞ ŚŝŐŚ ĐŽŵƉƵƚŝŶŐ ĐŚĂůůĞŶŐĞƐ ĨŝƌƐƚ͘  Aƚ 
the beginnings of geocomputation, there was significant interest in high performance computing and 

GIS (e.g. Armstrong, 1995; Healey et al, 1997). At the time (1996), many universities had access to 

gigaFLOPS computing platformsͶthat is 109 floating-ƉŽŝŶƚ ŽƉĞƌĂƚŝŽŶƐ ƉĞƌ ƐĞĐŽŶĚ͕ ĂŶĚ ƚŚĞ ǁŽƌůĚ͛Ɛ 
fastest computer could manage around 1 teraFLOPS (1012 operations/sec). Access to this kind of 

computing power opened possibilities for many research communities in terms of new analysis 

methods and scaling up longstanding problems such as global climate and ocean circulation modelling.  

Two decades on and many single CPUs can now sustain over 1 teraFLOPS; some researchers have 

access to petaFLOPS (1015) machines.  I doubt there is an analytical question currently posed in 

ŐĞŽŐƌĂƉŚǇ ƚŚĂƚ ǁŽƵůĚ ŶĞĞĚ ŵŽƌĞ ĐŽŵƉƵƚĞ ƉŽǁĞƌ ƚŚĂŶ ƚŚĂƚ ŽĨ ƚŚĞ ǁŽƌůĚ͛Ɛ ĨĂƐƚĞƐƚ ĐŽŵƉƵƚĞƌ ;ĂƌŽƵŶĚ 
100 PFLOPS).  But the problem is not raw power, it is scaling up our algorithms so that they can take 

advantage of such platforms via parallelization and optimisation.  In this regard, geocomputation has 

achieved very little in the last twenty years: the re-expression of spatial algorithms and data structures 

onto established HPC templates (Asanovic, 2006) has proceeded intermittently with little concerted 

effort, a notable exception being the work to parallelise the GRASS open-source GIS (Akhter et al., 

2010).  However, there has been a late resurgence of interest in this topic, in large part due to the 

overlap of goals with CyberGIS and related cloud computing initiatives, (e.g. Shi et al., 2013; Satish, 

2015; Stojanovic and Stojanovic, 2013). 

Turning to machine learning and artificial intelligence, the report card is better.  Machine learning 

techniques such as neural networks, decision trees, genetic algorithms and artificial life have received 

a steady stream of interest. Papers experimenting with their application in spatial analysis, remote 

sensing, and ecology appear quite regularly in the literature (e.g. Fisher, 2006; Wiley et al, 2003; 

Pijanowski, et al., 2002; Gahegan, 2000).  More recently, the focus of such papers has moved from 

explaining and justifying these new methods to getting the best out of them and demonstrating how 

much better they are than simple statistical approaches (Rogan et al, 2008; Pradhan, 2013).  Related 

interest in geographic knowledge discovery (Miller and Han, 2009) has also helped to further this part 

of the geocomputation agenda. 

Despite their clear improvements in predictive power, machine learning methods remain notably 

absent from commercial GIS and remote sensing software.  The challenge in moving them towards 

mainstream adoption is twofold: machine learning methods usually require experimentation with 

various configuration and learning parameters to get the best out of them, which makes them difficult 

and time-consuming to use, especially for non-experts; (ii) the statistical models that machine learning 

challenges are often simpler to apply, more stable (results do not vary due to search heuristics) and 

the error or goodness of fit is computable.  However, the first of the challenge may already have been 

overcome.  Deep learning methodsͶoften based on hierarchies of neural networksͶare proving to 

be effective at many learning tasks, as they essentially remove or streamline much of the difficult 

setup and experimentation phase; essentially this too is solved by the network as part of its learning 

process (Yann et al, 2015; Schmidhuber, 2015).   



Moving from machine learning to the reasoning and automating aspects of artificial intelligence (AI), 

the progress is slower.  A review of the possibilities is provided by Wu and Silva (2010) and some of 

the practical benefits and challenges are discussed by Malerba et al, (2003). 

On reflection, I believe the biggest contribution that geocomputation has made in the last twenty 

years is to encourage a generation of scholars to experiment with new computational methods and 

with their application to geographical problems.  Given that geographers do not always have a strong 

background in computer science, some of these methods can be challenging to understand and 

difficult to apply.  It is immensely rewarding to see that so many researchers have tried, succeeded, 

and made geographical analysis and modelling richer and more powerful as a result.  

Mark Gahegan 

Centre for eResearch and Deprtment of Computer Science, The University of Auckland, New Zealand. 

 

Geocomputation: a geographically weighted success story 

In the early 1980s there was interest in the association of cancer 'clusters' with supposed sources of 

radiation contamination.  The media also was concerned with possible contamination arising from the 

nuclear waste reprocessing plant at Sellafield on the Cumbrian coast. The Black Advisory Committee 

(Black, 1984) concluded that the Sellafield plant was not connected with raised levels of leukaemia in 

Cumbria, but recommended re-analysis of local cancer registries. Stan Openshaw and colleagues at 

Newcastle University undertook the analysis, leading to his seminal paper (Openshaw et al, 1987) 

which appeared in the first volume of the fledgling International Journal of Geographical Information 

Systems.  

Existing approaches had identified a source of radiation in the electromagnetic spectrum to determine 

whether the rate of morbidity around it was somehow higher than some national level. My 

recollection is that electricity substations were regarded as suspicious, as were electricity powerlines. 

But could the sources include telephone boxes or fish and chip shops.? The underlying issue was that 

no-one knew what the linkage might be. 

Stan inverted the problem and decided that if he could determine where the excesses were centred, 

this might lead to more fruitful line of enquiry.  Thus a whole-map statistic that suggested evidence of 

clustering was replaced by a local statistic that suggested where that clustering was located. The 

implementation led to a range of computational and statistical challenges but those do not diminish 

the importance of Openshaw et al (1987) and subsequent papers.  

That was 30 years ago. We can see other stimuli to geographically-minded approaches. In the early 

1970s, Emilio Casetti (1972) had conceived of regression parameters that might exhibit heterogeneity; 

his ideas were subsequently extended by John Paul Jones III (Jones and Casetti, 1993). Wilpen Gorr 

had experimented with parameter 'drift' in regression models at around the same time (Gorr and 

Olligschlaeger, 1994), and Luc Anselin had looked at both modelling spatial structure and local 

statistics, in particular local indicators of spatial association (Anselin,1995).  Rogerson (1999) 

developed a local chi-square statistic to examine evidence for disease clustering in New York.  

Work at Newcastle University in the early 1990s lead to the first paper on geographically weighted 

regression (Brunsdon et al, 1996). A subsequent book by the same authors (Fotheringham et al, 2002) 

consolidated their previous work and presented new material. A paper on GWR was also presented at 

the first geocomputation meeting at the University of Leeds. However, an early issue was software. 

We forget that Openshaw's GAM code was written for the IBM and Amdahl computers at Newcastle 



University running a unique operating system developed at the University of Michigan. In the mid-

1980s rapid data exchange involved a 12 inch diamater reel of magnetic tape and a courier service.  

Embryonic FORTRAN code for GWR was made available for potential users to download.  Windows 

software for GWR was later available at cost from Newcastle University following the Fotheringham 

et al (2002) book launch. A more advanced Windows application has been available in the last few 

years.   

The award of a Strategic Research Centre to the National University of Ireland Maynooth by Science 

Foundation Ireland provided an opportunity to develop the geographical weighting approach.  The 

major output was a package of open source code for the R system: GWmodel (Lu et al, 2014; Gollini 

et al, 2015).  This extends the previous developments considerably, and includes functions for 

univariate and bivariate analysis, generalised linear models, ridge regression, discriminant analysis and 

principal component analysis. Criticism of the susceptibility of GWR to collinearity among the 

predictor variables has been addressed by the development of locally compensated ridge regression 

(Gollini et al, 2015).  The package also includes functions to allow the use of different distance metrics 

in the geographical weighting, including network distances and the Minkowski metrics.  

Chris Brunsdon has observed that the Pearson correlation coefficient can be unpicked as a LISA. If the 

two variables x and y have been mean centred, then the values: 
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are the individual components that sum to the value of r. These can be plotted on a map to show 

which locations contribute the most, or least, to the value of the correlation coefficient. Such an 

approach complements the geographically weighted correlation functions in GWmodel.  Recent work 

includes the development of geographically weighted correspondence matrices (Comber et al, 2016). 

GW‘ ĂƉƉĞĂƌƐ ĂƐ Ă ƚŽŽů ŝŶ ƚŚĞ “ƉĂƚŝĂů “ƚĂƚŝƐƚŝĐƐ ƚŽŽůďŽǆ ŽĨ E“‘I͛Ɛ AƌĐGI“ ƐŽĨƚǁĂƌĞ͕ ĂŶĚ ĨŽƌ ƵƐĞƌƐ ŽĨ 
Quantum GIS, it is available in the SAGA freeware that installs alongside QGIS. There are versions in 

other packages (including spgwr and gwrr). 

At the time of writing (early 2017) the search string geographically weighted regression returns 79600 

ŚŝƚƐ ŝŶ GŽŽŐůĞ͘ Iƚ͛Ɛ Ă ĨŝƚƚŝŶŐ ƚƌŝďƵƚĞ ƚŽ Ă ƉƵďůŝĐ ŚĞĂůƚŚ ƐĐĂƌĞ͕ Ă ŵĂŝŶĨƌĂŵĞ ͚ƐƵƉĞƌ ĐŽŵƉƵƚĞƌ͛ ĂŶĚ Ă 
visionary academic. 

Martin Charlton 

National Centre for Geocomputation, National University of Ireland Maynooth 

 

Geocomputational Musings on Big Data 

There is a great deal excitement across many scientific communities about the new opportunities 

afforded by Big Data. For the geocomputation community, the potential lies in Big Spatial Data, and 

the opportunities to harness the increasing number of open data initiatives, new forms of data 

generated by citizens, the near ubiquitous capture of location, and the near permanent connectivity 

via web-enabled devices that allow data to be shared and uploaded. 

Classically research is undertaken in the following way:  

1. Formulate a research question. 



2. Identify what data to collect and how to collect it. 

3. Perform some statistical tests to determine whether any effects or associations arise due 

to random sampling errors. 

4. Get an answer to the question. 

Big data turns experimental design and its associated inferential theory on its head: 

1. Collect lots of data about anything. 

2. Perform some kind of data mining. 

3. Get some kind of answer.  

4. Decide what question it was an answer to. 

A common theme is to allow the data to do their own talking, with the potential for data mining and 

machine learning to identify important but hidden associations of social or scientific interest: 

Scouring databases and other data stores for insight is often compared to the proverbial search 

ĨŽƌ Ă ŶĞĞĚůĞ ŝŶ Ă ŚĂǇƐƚĂĐŬ͕ ďƵƚ ͘͘͘ ďŝŐ ĚĂƚĂ ƚƵƌŶƐ ƚŚĂƚ ŝĚĞĂ ŽŶ ŝƚƐ ŚĞĂĚ ͙ ĂŶĚ ƋƵŽƚŝŶŐ VŝŬƚŽƌ 
Mayer-SĐŚƂŶďĞƌŐĞƌ ͞WŝƚŚ ďŝŐ ĚĂƚĂ͕ ǁĞ ĚŽŶ͛ƚ ŬŶŽǁ ǁŚĂƚ ƚŚĞ ŶĞĞĚůĞ ŝƐ͘ WĞ ĐĂŶ ůĞƚ ƚŚĞ ĚĂƚĂ 
ƐƉĞĂŬ ĂŶĚ ƵƐĞ ŝƚ ƚŽ ŐĞŶĞƌĂƚĞ ƌĞĂůůǇ ŝŶƚƌŝŐƵŝŶŐ ƋƵĞƐƚŝŽŶƐ͟ ;NĞĞĚůĞ͕ ϮϬϭϱͿ͘ 

The idea is attractive but also empirically and theoretically naive. If research questions are not 

specified in at least some sense in advance, then the results of data mining risk being answers to 

arbitrary questions. If the aim is to find a needle in a haystack then making the haystack bigger does 

ŶŽƚ ŵĂŬĞ ƚŚĞ ũŽď ĂŶǇ ĞĂƐŝĞƌ͕ ĂŶĚ ŝĨ ǁĞ ĚŽŶ͛ƚ ŬŶŽǁ ǁŚĂƚ kind of needle we are looking for, it helps 

even less. In the shadows of the Big Data paradigm is a need to revisit classic tools for statistical 

inference (Brunsdon, 2016). This is because of the ease with which spurious, nonsensical relationships 

and correlations between variables can be inferred through data mining, and because of the lack of 

ƌŝŐŽƌŽƵƐ ƐƚĂƚŝƐƚŝĐĂů ŵĞƚŚŽĚƐ ĨŽƌ ĂŶĂůǇƐŝŶŐ ǀĞƌǇ ůĂƌŐĞ ĚĂƚĂƐĞƚƐ͕ ǁŚĞƌĞ ƐƚĂƚŝƐƚŝĐĂů ͚ƐŝŐŶŝĨŝĐĂŶĐĞ͛ ŝƐ 
meaningless.   

Paul Mather and Stan Openshaw summarised these concerns in a prescient way in 1974.  Reflecting 

on the potential to analyse population census data using computers they suggested:  

It might be far more profitable to postulate a certain pattern of factor loadings (and inter-factor 

correlations) and attempt to find how far the hypothesis fits the data that has been collected. 

This attitude should help prevent the mindless approach in which numbers of variables 

characterized only by the fact that they are all easily culled from census volumes or derived 

from two or three basic variables, are picked over like cans on a rubbish tip. (Mather and 

Openshaw, 1974, p290, emphasis added). 

Geocomputation can play an important role in addressing these concerns. The process of big data 

analysis should be a process of investigation driven and supported by some sort of theoretical 

underpinning. Where these are absent, then analyses should proceed with reflective cycles of 

investigation and explanation, rather than simply data mining and hypothesis testing ʹ it should be 

explorative detective work perhaps aided by visualisation. The importance of exploratory analyses 

cannot be overstated: they support the iterative development of theoretical constructs as the basis 

for analysis and to develop robust and reproducible big data analyses by looking for patterns 

(geographical and otherwise) through repeated experiment. For example, in the absence of theory 

this could be by randomly sampling the big data, identifying patterns, applying to other samples or to 



the whole dataset, and then engaging with domain experts to anchor the results in a theoretical 

framework for the study. 

In short, geocomputational analysis should be grounded in some idea of what questions are 

important. The reflexive process described above supports that identification. Big Data analyses 

should include a reflexive cycle of investigation and explanation, rather than data mining, repeat 

testing (exploring rather than fishing) and it should support the iterative development of theoretical 

constructs as the basis for analysis. Until we act in this way Big Data analyses will not help us to answer 

the Big Questions we currently have, nor identify new Big Questions deep in the Big Data. 

Lex Comber 

School of Geography, University of Leeds 

 

Big Data, Geocomputation and Geography 

Unlike some other areas of computer intensive programming, geocomputation has fallen somewhat 

short in delivering transparent models with practical, usable findings. This is perhaps disappointing in 

contrast to (a) the obvious application success in embodying core principles of spatial organisation in 

geographic information systems and (b) the vast streams of spatially and temporally referenced data 

that have become available in many applications areas. 

In computational terms, it seems likely that this is because the geo-temporal frame that are subject 

ƚŽ ĂŶĂůǇƐŝƐ ĂƌĞ ƵŶďŽƵŶĚĞĚ͘ ͚GĞŽŐƌĂƉŚŝĐ͛ ŝƐ ĐŽŵŵŽŶůǇ ƚĂŬĞŶ ƚŽ ŝŵƉůǇ ƐĐĂůĞƐ ĨƌŽŵ ƚŚĞ ĂƌĐŚŝƚĞĐƚƵƌĂů ƚŽ 
the global and work presented at the very first geocomputation conference in 1996 illustrated that 

issues of scale and recursion opened up a seemingly infinite range of ways of framing representation 

of the world ʹ  in terms not only of form and process, but also statics and dynamics. Any representation 

of how the world looks and how it works is therefore necessarily partial, incomplete and, in temporal 

terms at least, open-ended. Contrast this with the closed system computational problems of, say, 

translating natural languages (where the system is bounded by finite dictionaries of words and 

grammatical structures), and it is perhaps unsurprising that the achievements of geocomputation are 

more muted. Piecemeal and partial models achieve piecemeal and partial outcomes and there is some 

inevitability that this wil be the case. 

TŚĞ ͚ ŐĞŽ-͛ ƉƌĞĨŝǆ ĚŝĨĨĞƌƐ ĨƌŽŵ ŝƚƐ ͚ ƐƉĂƚŝĂů͛ ĐŽƵŶƚĞƌƉĂƌƚ ŶŽƚ ũƵƐƚ ŝŶ ƚŚĞ ƌĂŶŐĞ ŽĨ ƐĐĂůĞƐ ƚŚĂƚ ŝƚ ŵĂǇ ĚĞƐĐƌŝďĞ͕ 
but also in its implied association with the unique place of the surface and near surface of Planet Earth. 

This fundamental distinction may have ƵŶĚĞƌƉŝŶŶĞĚ ƐŽŵĞ ŽĨ ƚŚĞ ͚GI“ ǁĂƌƐ͛ ďĞƚǁĞĞŶ OƉĞŶƐŚĂǁ ĂŶĚ 
Taylor, and others in the 1990s (Openshaw, 1991; Schuurman, 2000) ʹ analysis of the canals of Mars 

may meet the scale range criterion but does not fulfil the place criterion and as such, sensu stricto, 

does not qualify as geographic analysis. This distinction highlights that geography as a discipline brings 

tacit knowledge to understanding of places that are fundamentally unique accretions of the outcomes 

of past human and social processes. Representations of place need to provide an effective base for 

geocomputational analysis of the general effects of current and future geocomputational processes. 

This is because geographic objects of analysis are not simply locations in space but the accumulated 

outcomes of systems of networks and flows (see Batty 2013).  

UŶĚĞƌƐƚĂŶĚŝŶŐ ǁŚĂƚ ͚ƉůĂĐĞ͛ ŝƐ Žƌ Ăƚ ůĞĂƐƚ ŚŽǁ ŝƚ ĐĂŶ ďĞ ĞĨĨĞĐƚŝǀĞůǇ ƌĞƉƌĞƐĞŶƚĞĚ ƉƌĞƐĞŶƚƐ ĚĂƵŶƚŝŶŐ 
application specific challenges. Clear conceptions of the nature of the geographic data are required, 

yet there must be some concern that geocomputation has acceded to wider tendencies in Big Data 

analysis to disregard the provenance and quality of the huge volume and variety of data that are 



available today. A generation ago students of social and environmental science were, it seems, much 

better versed in widely accepted scientific principles of research design, as well as the statistical 

apparatus of generalisation.  This is not to say that there are never instances where the availability of 

billions of data points and ever greater data content cannot be a substitute for some vagaries of 

geographic coverage ʹ sometimes there is a trade-off between the largely unknown biases of 

unconventional data but the spatial and temporal precisions that they can bring. But precision is not 

the same as accuracy, and representations of the world need to be accurate it they are not to prove 

biased, partial and potentially delusional.  

How might geocomputation better respond to the challenges of a world in which is data rich but in 

which new forms of data do not provide anything that might be described as spatial data 

infrastructure? A first way is to better use what we know from conventional data sources that may be 

less detailed or up-to-date but which are of known provenance in terms of content and coverage. 

Machine-learning methods, for example, must be guided by clearly defined populations of interest. 

Geographical heuristics may be used to achieve the same ends. The richness and variety of Big Data 

make it possible to ground many more assumptions at highly disaggregate scales and, suitably 

triangulated with conventional framework data sources, draw inferences that are both robust and 

open to scrutiny. Current research using consumer data, which account for an increasing real share of 

all of the data collected about citizens, provides one relevant application area in this context (e.g. see 

cdrc.ac.uk). 

Paul Longley 

Department of Geography, University College London 

 

Reproducible Research, Quantitative Geography and Geocomputation 

A large proportion of practical quantitative work in geography relies on the analysis of data or on the 

running of simulation models. That analysis, and the results it generates, are the outcome of a process 

involving data verification, re-formatting, computer programming, modelling, data analysis and 

visualization. Many publications are created to share the results and to discuss their implications. It 

follows that the validity of the publications, and of future publications citing them depends on the 

validity of the initial work and on the analytical process. However, although the publication itself is 

widely available (in many current situations it is open access), details of the supporting activities - in 

particular, the data collected, the software code used and the exact stages of analysis - are often not 

available, or at least not easily traceable. 

The term reproducible research (Claerbout 1992) is used to describe an approach which may be used 

to address this problem, and allow code and data to be easily accessed. Although not noted greatly in 

quantitative geography at the time of writing (but see Brunsdon and Singleton 2015) it has gained 

attention in a number of applied fields where quantitative data analysis is used, exemplified here by 

statistics (Buckheit and Donoho 1995; Gentleman and Temple Lang 2004), econometrics (Koenker 

1996) and signal processing (Barni et al. 2007). The ultimate goal of reproducible research is that 

complete details of any reported results and the computation used to obtain them should be freely 

available, so that others following the same procedures and using the same data can obtain identical 

results. This approach is offered, for example, when using Rmarkdown - where data analysis code 

written in the R statistical programming language is incorporated into a text document. On viewing, 

the code is run and the output (either textual or graphical) is substituted into the document. 



Distributing documents in this way, together with sufficient information to access the data analysed 

facilitates an open and reproducible approach to data analysis and visualisation. 

A strong case can be made for a focus on this topic in quantitative geography, geocomputation and 

spatial science. The practice allows others to scrutinise not only the data used as the basis for an 

analysis, but also the approach to the analysis itself, creating a platform for greater scrutiny and 

accountability. A large amount of work involving the analysis of geospatial data influences policy in 

many fields - health, climate change and crime prevention are a small but significant set of examples. 

The key justification of a reproducible approach is precisely that: it can be reproduced and validated 

by others. However, there are additional benefits: Reproducible analyses can be compared: different 

approaches addressing the same hypothesis can be compared on the same data set, to assess the 

robustness of any conclusions drawn. Also, methods used are portable: code can be obtained from 

documents, allowing others to learn from other people, to apply the code to other data sets and to 

adapt the code for related problems. Finally, results may be updated in situations where updated 

versions of data are published (for example new census data) and methods applied to to the original 

data may be re-applied. 

Thus there are several arguments for reproducibility in quantitative analysis of spatial data - not just 

for academics, and not just for the geocomputationally minded, but also for public agencies and 

private consultancies charged with analysing data that may influence policy. Recent work 

;VĂŶĚĞǁĂůůĞ͕ KŽǀĂēĞǀŝđ͕ ĂŶĚ VĞƚƚĞƌůŝ ϮϬϬϵͿ ŚĂƐ ƐŚŽǁŶ ƚŚĂƚ ƉĂƉĞƌƐ ŝŶ Ă ŶƵŵďĞƌ ŽĨ ĨŝĞůĚƐ ĂĚŽƉƚŝŶŐ 
reproducible approaches have higher impact and visibility. 

Achieving reproducibility like this is clearly within reach in some situations, although there are also 

some challenges ahead, as the diversity, frequency and volume of geographically information 

increases. Even in situations where personal or sensitive information is analysed it could be argued 

ƚŚĂƚ ƚŚĞƌĞ ĂƌĞ ĂĚǀĂŶƚĂŐĞƐ ƚŽ ŚĂǀŝŶŐ ͚ĚŽŵĂŝŶƐ ŽĨ ƌĞƉƌŽĚƵĐŝďŝůŝƚǇ͛ ʹ that is, groups of people who are 

permitted to access this information adopting reproducible practices amongst themselves ʹ so that 

internal scrutiny, and updating of analyses becomes easier.   Adopting reproducibility calls for some 

changes in the practice of both analysts - in adopting reproducible practices, and learning new skills, 

and publishers - who in support of this would need to provide resources where reproducible document 

formats may be submitted, handled, distributed and viewed by a wide audience.  However, such 

changes are already taking place in other disciplines ʹ for example in the journal Biostatistics ʹ so why 

not in the field of geocomputation? 

Chris Brunsdon 

National Centre for Geocomputation, National University of Ireland Maynooth 

 

Big Data, Agent-Based Modelling, and Smart Cities: A Triumvirate to Rival Rome 

Following the Big Data revolution (Mayer-“ĐŚƂŶďĞƌŐĞƌ ĂŶĚ CƵŬŝĞƌ͕ ϮϬϭϯͿ͕ ĂƐƉĞĐƚƐ ŽĨ ƉĞŽƉůĞƐ͛ ůŝǀĞƐ ƚŚĂƚ 
have never before been documented are being captured and analysed through our use of smart-

phone applications, social media contributions (Croitoru et al., 2013; Malleson and Andresen, 2015), 

public transport smart cards (Batty et al., 2013), mobile telephone activity (Diao et al., 2016), debit 

card transactions, web browsing history, and so forth. Taken together, and supplemented with 

knowledge about the physical environment (air quality, temperature, noise, etc.), pedestrian footfall 

or vehicle counters (Bond and Kanaan, 2015), these data provide a wealth of current information 

ĂďŽƵƚ ƚŚĞ ǁŽƌůĚ͕ ĞƐƉĞĐŝĂůůǇ ĐŝƚŝĞƐ͘ TŚŝƐ ͞ĚĂƚĂ ĚĞůƵŐĞ͟ ;KŝƚĐŚŝŶ͕ ϮϬϭϯͿ ŚĂƐ ƐƉĂǁŶĞĚ ŝŶƚĞƌĞƐƚ ŝŶ ͚ƐŵĂƌƚ 



ĐŝƚŝĞƐ͖͛ Ă ƚĞƌŵ ƚŚĂƚ ƌĞĨĞƌƐ ƚŽ ĐŝƚŝĞƐ ƚŚĂƚ ͞ĂƌĞ ŝŶĐƌĞĂƐŝŶŐůǇ ĐŽŵƉŽƐĞĚ ŽĨ ĂŶĚ ŵŽŶitored by pervasive and 

ƵďŝƋƵŝƚŽƵƐ ĐŽŵƉƵƚŝŶŐ͟ ;KŝƚĐŚŝŶ͕ ϮϬϭϰͿ͘ 

One aspect to smart cities, largely absent in the published literature, is the ability to forecast as well 

as to react. Whilst most initiatives inject real-time data, these data rarely are used to make real-time 

predictions ĂďŽƵƚ ƚŚĞ ĨƵƚƵƌĞ͘ WŚĞƌĞ ͚ĨŽƌĞĐĂƐƚŝŶŐ͛ ŝƐ ĂŶ ĂĚǀĞƌƚŝƐĞĚ ĐĂƉĂďŝůŝƚǇ ŽĨ Ă ƐŵĂƌƚ ĐŝƚǇ ŝŶŝƚŝĂƚŝǀĞ͕ 
rarely is it explained in any detail. This might be due to the proprietary nature of many initiatives but 

it is equally likely that a lack of appropriate methods ŝƐ Ăƚ ĨĂƵůƚ͘ AůƚŚŽƵŐŚ ͚ďůĂĐŬ ďŽǆ͛ ĂƌƚŝĨŝĐŝĂů 
intelligence methods are progressing rapidly, there is little evidence that these are being used to 

forecast future states of smart cities. 

Perhaps agent-based modelling offers the missing component for predictive smart cities? Agent-based 

models (ABMs) simulate the behaviour of the individual components that drive system behaviour, so 

are ideally suited to modelling cities. A drawback with ABMs is that they require high-resolution, 

individual-level data to allow reliable calibration and validation, and traditionally these have been hard 

to come by. However, in the age of the smart city, this no longer is the case. Furthermore, ABMs are 

ŶŽƚ ͚ďůĂĐŬ ďŽǆĞƐ͖͛ ƚŚĞ ŝŶĚŝǀŝĚƵĂů ĂŐĞŶƚƐ ĂƌĞ ŝŵďƵĞĚ ǁŝƚŚ ďĞŚĂǀŝŽƵƌĂů ĨƌĂŵĞǁŽƌks that are (usually)  

based on sound behavioural theories. This makes it easier to dissect the models, as well as allowing a 

controller to manipulate the behaviour of the agents as required for a particular forecast. In addition, 

ďĞĐĂƵƐĞ ŵĂŶǇ ͚ďŝŐ͛ ĚĂƚĂ Ɛources are available in real time, there is the opportunity to calibrate models 

as soon as new data become available. This is akin to forecasting in fields such as meteorology, where 

the latest weather data are assimilated into running models to improve short-term predictions. This 

triumvirate of big data, agent-based modelling, and dynamic calibration has the potential to become 

the de facto tool for understanding and modelling urban systems. 

There are, however, substantial methodological challenges that must be met, including developing 

the means to assimilate the data into models. Furthermore, engagement with smart devices is not 

heterogeneous across the population, so there is a risk that those individuals who choose not to use 

͚ƐŵĂƌƚ͛ ƚĞĐŚŶŽůŽŐǇ ǁŝůů ďĞ forgotten about in simulations and planning processes. Simulations that are 

based on biased data have the potential to increase biases by presenting biased results that are then 

used to influence policy. For example, PredPol is an extremely popular predictive policing tool that is 

being purchased by police forces across the globe in order to predict where future crimes are going to 

take place. However, policing data are biased towards particular minorities as a result of where most 

policing activity already takes place, so the tool has the potential to increase those biases by sending 

more officers to areas that are already being heavily policed (Lum and Isaac, 2016). Any smart city 

modelling/forecasting tool must be able to mitigate against these risks. 

To conclude, although smart city initiatives are numerous, very few can evidence an ability to create 

reliable forecasts of future city states. However, advances in spatial methods that fall under the 

ƵŵďƌĞůůĂ ŽĨ ͚ŐĞŽĐŽŵƉƵƚĂƚŝŽŶ͛ ŚĂǀĞ ƚŚĞ ƉŽƚĞŶƚŝĂů ƚŽ ĐƌĞĂƚĞ reliable forecasts of urban dynamics under 

a variety of conditions. There are ethical issues that must be considered but, if conducted safely, the 

triumvirate of agent-based modelling, big data, and dynamic calibration is extremely attractive. 

Nick Malleson 

School of Geography, University of Leeds 

 

ABM and Geocomputation: a thinly disguised rant 



One of the significant changes in the area of Geocomputation over the past 20 years has been a shift 

in focus from top-down aggregate models to individual bottom-up approaches.  This has been 

accompanied by an increased recognition of the role that the individual plays in driving key social 

ƉƌŽĐĞƐƐĞƐ ƚŚĂƚ ĨŽƌŵ Ă ƐŝŐŶŝĨŝĐĂŶƚ ƉĂƌƚ ŽĨ ŐĞŽŐƌĂƉŚŝĐĂů ƐǇƐƚĞŵƐ ;BĂƚƚǇ͕ ϮϬϭϯ͕ O͛“ƵůůŝǀĂŶ Ğƚ Ăů͕ ϮϬϭϮͿ͘  
Whilst the acknowledgement that individuals are important components of these systems is not new 

in itself, the ability to chart the consequences of individual decisions and behaviours on geographical 

systems is.  These new insights have been made possible through the development of new individual-

based modelling methodologies enriched through the proliferation of micro-level population and 

economic data.  

An individual-based method that has seen great uptake by researchers within Geocomputation over 

the past 20 years is agent-based modelling (ABM) (Macal, 2016). ABM advocates an understanding of 

social and spatial phenomena through simulation at the individual level. By creating heterogeneous 

individuals who can interact with other individuals and the environment, we can track the emergence 

of new patterns or trends across a variety of spatial and temporal scales.  The emphasis within these 

models on the individual makes ABM a natural framework to apply within social and geographical 

systems as evidenced through the dazzling array of applications that are continually appearing, 

ranging from disaster relief (Crooks and Wise, 2013) to social epidemiology (El-Sayed et al, 2012). This 

popularity has been cemented by increases in computer processing power, data storage, 

developments in computer programming languages and easily accessible frameworks that enable 

rapid development of models with minimal programming experience. 

While ABM offers a potentially powerful way both to simulate and to understand geographical 

systems, there remain several important challenges that researchers in ABM, and Geocomputation 

more broadly, need to address.  Firstly, creating an agent-based model that can simulate the processes 

occurring in the real system requires the behaviours and actions of individuals, as well as 

environmental influences to be captured and represented.  Current practice is lacking with the 

ŵĂũŽƌŝƚǇ ŽĨ ͚ďĞŚĂǀŝŽƵƌĂů͛ ĨƌĂŵĞǁŽƌŬƐ ƐŚĂƌŝŶŐ ŵŽƌĞ Đommonality with mathematics and econometrics 

than psychology.  A more explicit link between ABM and behavioural frameworks is needed if we are 

to capture the complexity around decision-making and chart their consequences.  Secondly, capturing 

this level of complexity requires a vast amount of individual-ůĞǀĞů ĚĂƚĂ ĐŽǀĞƌŝŶŐ ͚ƐŽĨƚĞƌ͛ ĨĂĐƚŽƌƐ ƐƵĐŚ 
as feelings and opinions, data that more traditional quantitative research (and spatial science) has 

ignored.  While the appearance of big data has opened up new avenues of research allowing highly 

complex models to be constructed that are enriched by new insights and understanding, how we 

extract value and make sense of these new forms of data presents a considerable challenge. 

A final, and possibly the biggest challenge that ABM faces is that of calibration and validation. Creating 

realistic individual-based models requires a significant amount of data with a corresponding amount 

required to confidently calibrate and validate.  As Heppenstall et al. (2016) note, there is some irony 

that by pursuing the disaggregation of data to the individual it becomes near impossible (at present) 

to rigorously calibrate and validate such models.  However, even if the data were available, 

appropriate methods have not yet been established nor developed for measuring and analysing 

individual agents that are part of a large dynamic and non-linear system (Batty and Torrens, 2005; 

Torrens, 2010).  This absence of robust calibration and validation measures has precipitated the 

ĐƌŝƚŝĐŝƐŵ ŽĨ ABMƐ ĂƐ ͚ƚŽǇ ŵŽĚĞůƐ͛͘  UŶƚŝů ƌĞƐĞĂƌĐŚĞƌƐ ĐĂŶ ĨƵůůǇ ĞǀĂůƵĂƚĞ ƚŚĞƐĞ ŵŽĚĞůƐ ĂŐĂŝŶƐƚ ƌĞĂů ǁŽƌůĚ 
systems, it is unlikely that they will make the transition from academia into policy-making. 

What is clear is that researchers now have the data and tools at their disposal to examine geographical 

systems in unprecedented individual-level detail thus creating new knowledge and understanding 

about how these systems evolved and what the consequences of future individual behaviours are 



likely to be. The challenge for geocomputation is twofold: how can we use new forms of data to 

understand how real people shape and are shaped by geographical processes; and how can we 

realistically simulate these processes within our models? 

Alison Heppenstall 

School of Geography, University of Leeds 

 

Breaking-out of the ivory tower 

Over the past five years, a growth in geocomputational research has taken place away from academia, 

with many innovative new developments driven primarily by the commercial sector. In part this is 

their response to the opportunities arising through the emergence of big (geo)data in industry. These 

new forms of data challenge much of the pre-existing storage and processing infrastructure 

estabůŝƐŚĞĚ Ăƚ Ă ƚŝŵĞ ǁŚĞƌĞ ĐŽŶƚĞŵƉŽƌĂƌǇ ͞ďŝŐ ĚĂƚĂ͟ ĚŝĚ ŶŽƚ ĞǆŝƐƚ͘ UŶůŝŬĞ ƚŚĞ ƚƌĂĚŝƚŝŽŶĂů ƚĂƐŬƐ ŽĨ Ă 
database where a schema would be pre-defined and known, many applications exploring complex 

data sets require more flexible and adaptive technologies, and platforms such as Hadoop have been 

optimised for these purposes. There has been additional innovation from disciplines such as computer 

science around methods that use parallel optimisation, artificial intelligence, and supervised or 

unsupervised learning to translate data into useful insight. These methods may present a new 

epistemological approach within social science research (Kitchin, 2014) that challenges the 

frameworks of classical statistical inference long established. 

Academia has been slow to keep pace and has not developed mechanisms that provide effective 

bidirectional dissemination of expertise and knowledge with industrial partners. This is regrettable 

because the potential benefits are not negligible. Beyond the pragmatic needs for innovation within 

the contemporary data economy, academia should be trying to engage more intensively with research 

activities of industry; conversely, industry should not underestimate the advantages of partnering with 

universities. Within the UK, the ESRC funded Consumer Data Research Centre (www.cdrc.ac.uk) makes 

an important step towards opening-up commercial data to academic users through secure data access 

facilities. 

 

There has been significant growth in data science employment in roles requiring students who are 

geographically trained. For academia, this provides a significant constraint in attracting the most 

talented researchers and teachers (Rey, 2009). Although a challenge, the academic sector needs to do 

more to sell the benefits of research roles that include greater autonomy, more control over the 

destination and ownership of the outputs (including code), and the opportunity to work 

collaboratively across institutions without the shackles of protecting commercial interest. We take the 

view that academia needs to assume a more serious role as an incubator for innovation, where the 

knowledge, products and expertise developed as part of research activities can better be captured 

and have their exploitation supported in a way that generates a financial benefit to the researcher or 

teams involved. At the same time, academic institutions need to think carefully about how intellectual 

property generated by staff is captured and how these benefits may be shared, as well as how 

potential negative effects such as a reduction of open source development or reduced collaboration 

could be mitigated.  

An increased interaction between industry and academia would make the latter more relevant to the 

former, and the former more useful and accessible to the latter, both to their mutual gain. We argue 

that the academic geocomputation community needs to engage more fully with some of the most 



recent developments in the nascent field of Data Science. As others have argued elsewhere (Johnson, 

2014), this conversation can be strengthened through training and education. A more targeted 

delivery of core geocomputation concepts and methods in the context of the Data Science world 

would demonstrate the value of incorporating space and geographical context into cases where 

geography is relevant to the (data) question at hand. A close inspection of some of the main textbooks 

;“ĐŚƵƚƚ ĂŶĚ O͛NĞŝů͕ ϮϬϭϯ͖ PĞŶŐ ĂŶĚ MĂƚƐƵŝ͕ ϮϬϭϱ͖ PŝĞƌƐŽŶ Ğƚ Ăů͕͘ ϮϬϭϱ͖ EMC͕ ϮϬϭϱͿ ĂŶĚ ĐŽƵƌƐĞƐ 
(Franklin, 2014; Irizarry and Hicks, 2016, John Hopkins University, 2016) on Data Science reveals there 

ŝƐ Ă ŐƌŽǁŝŶŐ ďŽĚǇ ŽĨ ĞůĞŵĞŶƚƐ ƚŚĂƚ ƌĞŵĂŝŶ ƌĞŵĂƌŬĂďůǇ ĐŽŶƐŝƐƚĞŶƚ ĂĐƌŽƐƐ Ăůů ŽĨ ƚŚĞŵ͘ TŚŝƐ ͞ďĂƐŝĐ 
ĐƵƌƌŝĐƵůƵŵ͟ ŽĨ DĂƚĂ “ĐŝĞŶĐĞ ďƌŽĂĚůǇ ŝƐ ĐŽŵƉŽƐĞĚ ŽĨ ƚŚĞ ĨŽůůŽǁŝŶŐ ƚŚƌĞĞ ĂƌĞĂƐ͗ ĐŽŵƉƵƚĂƚŝŽŶĂů 
tools/software engineering, statistical methods, supervised and unsupervised machine learning, and 

data visualization. In all of these, there is little to no mention of explicitly spatial methods or wider 

considerations concerning their applications. At best, what we find are some examples of elementary 

mapping.  

To address this deficiency, we propose a curriculum of what we term Geographic Data Science (GDS). 

The main elements that we believe could extend Data Science into an explicitly spatial domain are the 

following: spatial databases and file formats (e.g. GeoJSON, PostGIS); Exploratory Spatial Data Analysis 

(ESDA), in particular local measures; geodemographic analysis and regionalization techniques; spatial 

econometrics and geographically weighted regression; point pattern analysis; and cartography. These 

are not typical of a standard undergraduate method course in the social sciences yet they represent 

the sorts of techniques that need to be learned if future academics are to have the skillsets that are 

needed to engage with geocomputation within and beyond our ivory towers.  

Alex Singleton and Daniel Arribas-Bel 

Department of Geography and Planning, University of Liverpool 

 

Geocomputation: conclusions, in way of catching breath 

Looking over the abstracts from the first GeoComputation conference, two things leap out: the ahead-

of-the-curve methodologies (machine learning; networks; web GIS; ABM; data-mining) and the 

breadth of applications areas. Geocomputation has been somewhat the victim of its own foresight in 

both: there are now tens of conferences in these methods and computational application areas. 

Nevertheless, one joy of the series is still being exposed to that breadth of techniques, both new and 

from other application areas.  

Moreover, as Gahegan notes, the idea of geocomputation has proven even more important. Globally, 

staff, courses, and institutions are labelled geocomputational, or feel part of the subject. The raison 

Ě͛ĞƚƌĞ of the series was to create a space for computation when quantitative geography was struggling 

against thĞ ͞ĐƵůƚƵƌĂů ƚƵƌŶ͟ in geography. In many ways, its most important legacy is to allow people to 

ŚŽůĚ ƚŚĞŝƌ ŚĞĂĚƐ ƵƉ ĂŶĚ ƐĂǇ ͞ůŽŽŬ͕ ŽƚŚĞƌƐ ĞůƐĞǁŚĞƌĞ ĚŽ ƚŚŝƐ ƐƚƵĨĨ͖ ǁĞ ƐŚŽƵůĚ ŝŶǀĞƐƚ͘͟  

Nevertheless, in a world that has finally caught up, and where analysis and visualisation of spatial data 

are ĞǀĞƌǇǁŚĞƌĞ͕ ŝƚ ďĞŚŽǀĞƐ ƵƐ ƚŽ ĂƐŬ ͞ǁŚĂƚ ŶŽǁ͟ ĨŽƌ ŐĞŽĐŽŵƉƵƚĂƚŝŽŶ͍  

First, there are issues to address. Our community gender balance is still poor and the traditional Anglo-

American-Antipodean focus of the conferences is looking increasingly outdated. On teaching, 

Singleton and Arribas-Bel highlight the opportunity for clarifying geocomputation͛Ɛ ƵŶŝƋƵĞ-selling-

points; we equally need to aim earlier, convincing children that coding is about more than making 

millions from an app and can be used to aid society. Finally, we need to manage our burgeoning 



knowledge (>1,350,000 academic papers p.a.; Björk et al. 2009; many useful to geocompers). 

Brunsdon highlights Open Source data and techniques, and we should consider knowledge 

management to avoid re-creation and to identify which new and old techniques are useful, as well as 

their pitfalls.  

More positive are our potential contributions to ongoing efforts in core areas. Industry, Singleton and 

Arribas-Bel note, is now investing in geocomputation far more than academia but we can still bring 

three things to the table. Firstly, rigor: we understand how analysis works in ways easily forgotten 

outside academia; those three spatial data daemons ʹ the Modifiable Areal Unit Problem, Spatial 

Autocorrelation, and the Ecological Fallacy ʹ still catch-out the naïve, as, in modelling, do Equifinality 

and Error Propagation. Secondly, sympathy: current solutions are driven by those with a narrow 

understanding of the world. Geocomputationalists are uniquely trained in the technical skills needed, 

but also a nuanced understanding of global systems. Thirdly, our breadth brings imagination: free 

from traditional subject boundaries, we can make unusual links and identify interesting opportunities.  

Finally, we need to detail the future, as 21 years ago, and get at it, considering where spatially sensitive 

computing can make the world a safer, sustainable, and more satisfying place. Questions surround 

data understanding and use: Comber highlights re-negotiation of significance in a Big Data world, 

while Malleson notes the potential for dynamic data (and we might note for global social modelling); 

both demand thought on the social, political, and analytical uses of data. Beck, in 1987, appositely 

noted the important question is not how we predict the future using present parameters, but how we 

pick those needed to make it a better one. We also need to think more about how we track and display 

error and uncertainty associated with dynamic systems. As Heppenstall requests, human experience 

needs centring in our work: advances are waiting in capturing the emotional and belief-centred 

relationships between society and space. We also need to help develop a new politics of public duty 

and support in a world led increasingly by individual-level data and algorithms. As Longley notes, space 

and place are still key, but need updating with work on shared virtual and augmented realities, and 

ƚŚĞŝƌ ĐƌŽƐƐŽǀĞƌƐ ǁŝƚŚ ƚŚĞ ŝŶƚĞƌŶĞƚ ŽĨ ƚŚŝŶŐƐ ĂŶĚ ƚĞůĞƉƌĞƐĞŶĐĞƐ͘ TŚĞƌĞ͛Ɛ ǁŽƌŬ ŶĞĞĚĞĚ ŽŶ ƚŚĞ ĞŵĞƌŐĞŶƚ 
features of interconnected human systems ʹ parallel economies and the influence of new and old 

media most urgently ʹ ďƵƚ ƚŚĞƌĞ͛Ɛ ĚĞĞƉ ƉŽƚĞŶƚŝĂů ŝŶ ƵŶĚĞƌƐƚĂŶĚŝŶŐ͕ ǀŝƐƵĂůŝƐŝŶŐ͕ ĂŶĚ ĞŵďĞĚĚŝŶŐ ƚŚĞ 
human experience as a node in a complex of interconnected flows. In AI, interactions with bots in 

complex social spaces, online and off, need elucidating, and geocomputation has a role to play in 

moving from machine learning to reasoning, as we attach structures and metaphors about the world 

to recognised objects. Finally, we have a place in sustainability: from resource optimisation to 

modelling planetary evolution and terraforming. In each area: human dynamics; experiences; uses of 

space; and interactions with the environment, we need those core principles: rigor, sympathy, and 

imagination, which promise insight and innovation in an exciting world of opportunities. If the last 21 

years has seen the world catching up with us, the next 21 years should, with a fair wind and a strong 

heart, see us carry the world onwards.  

Andy Evans 

International Geocomputation Conference Series Steering Group 

University of Leeds 
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