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Lessons Learned Using Wi-Fi and 
Bluetooth as Means to Monitor Public 
Service Usage 

Abstract 

Facets of urban public transport such as occupancy, 

waiting times, route preferences are essential to help 

deliver improved services as well as better information 

for passengers to plan their daily travel. The ability to 

automatically estimate passenger occupancy in near 

real-time throughout cities will be a step change in the 

way public service usage is currently estimated and 

provide significant insights to decision makers. The 

ever-increasing popularity and abundance of mobile 

devices with always-on Wi-Fi/Bluetooth interfaces 

makes Wi-Fi/Bluetooth sensing a promising approach 

for estimating passenger load. In this paper, we 

present a Wi-Fi/Bluetooth sensing system to detect 

mobile devices for estimating passenger counts using 

public transport. We present our findings on an initial 

set of experiments on a series of bus/tram journeys 

encapsulating different scenarios over five days in a UK 

metropolitan area. Our initial experiments show 

promising results and we present our plans for future 

large-scale experiments. 
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Introduction 

As cities grow, a paradox results: the demand for 

personal mobility and the mobility of goods and 

services increases, but the possibilities of meeting 

those demands diminish, especially through public 

services. This occurs particularly where spatial patterns 

of growth have resulted in urban sprawl and the 

lowering of average densities, increasing average 

journey lengths and congestion on overburdened 

infrastructure [1] [2]. The per-unit costs of transport 

services (including the provision of roads) increases, as 

the level of service declines. In a period of dwindling 

public funds and drastic reduction in public service 

availability, however, the provision of public services is 

likely to reduce rather than expand. There is therefore 

an urgent need to rationalise public services and 

infrastructure so to serve communities in an efficient 

and effective manner at a cost that is affordable and 

sustainable, while protecting vulnerable and 

disadvantaged communities. A major bottleneck in the 

provision of targeted public services (e.g. buses, cycle 

routes, etc.) and active traveling is the precise and 

timely quantification and understanding of 

communities’ needs or the potential take up of new 

initiatives. 

Traditionally, public transport routes and decisions have 

been made based on manual collection of passenger 

load information [3]. However, conducting such surveys 

is a highly expensive, labour intensive and time 

consuming process and hence, only conducted in 

limited numbers. This leads to weaknesses in the 

quantitative evidence base that is required to 

objectively design targeted services. While bus service 

quality is evaluated by several factors such as 

frequency, waiting times, cost, cleanliness, travel time 

etc. [4] [5], vehicle occupancy is the most commonly 

used [6]. 

In order to respond to the need for accurate real time 

bus occupancy information, there is a need for passive 

sensing approaches. Automatic passenger counting is 

gradually becoming one of the more popular solutions 

with the emergence of surveillance camera/image 

based monitoring techniques [7] [8]. Such techniques 

rely on the camera’s field of vision and hence are prone 

to be inaccurate with the presence of obstruction, poor 

light or overcrowded in the vehicle [9].Other sensing 

technologies have also been explored so far e.g. using 

doorway infrared sensor [10], RFID-sensor [11], smart 

ticket [12] etc. 

While camera/image based monitoring techniques and 

IR sensors provide means for reducing expensive 

manual surveys, they still suffer from an inability to 

accurately identify distinct individuals, and rely on 

coarse-grained spatial information. Smartphone based 

Bluetooth or Wi-Fi sensing is a promising alternative 

that can help alleviate these challenges [13] [14]. With 

an increasing adoption of Bluetooth Low Energy (LE), 

sensing can be further refined with improved higher 

coverage. 

We discuss our approach toward developing a reliable, 

non-intrusive and passive mechanism to estimate 

passenger load on public transport (bus) and 

understanding waiting time patterns at bus stops. In 

this paper, we present a system that employs a passive 



sensing approach for monitoring Bluetooth and Wi-Fi 

probe requests to estimate the number of people within 

the sensor’s vicinity. One major feature of our approach 

is the potential for application over large scale. In order 

to gather a holistic understanding of public transport 

service within wide regions and cities, hundreds of 

sensors are needed to be deployed in public spaces, 

stations and buses. Our solution is low cost, simple to 

deploy, lightweight and portable; experiments show it 

able to allow reliable user quantification. 

The paper is structured as follows: we initially present 

related work on the field; we then present the system 

we have developed. We discuss a set of experiments 

conducted as a part of a preliminary feasibility study to 

understand various aspects of our approach. We then 

present our results and conclude the paper with some 

discussions on future work. 

Related Work 

Tracking Bluetooth devices for monitoring citizens and 

public has recently seen an emerging interest [15] 

[16]. In comparison to Bluetooth, Wi-Fi passive sensing 

provides a greater coverage of the users, and has also 

been explored in the past. For example, [17] used a 

Wi-Fi based sensing solution to detect and track users. 

The authors reported achieving an accuracy of more 

than 75% in their evaluations. The system relies on 

detecting Wi-Fi probes sent by mobile phones and 

received by Wi-Fi monitors installed at different 

locations. [18] presents a low-cost Raspberry Pi-based 

Wi-Fi sensing technology to track people and simulate 

crowds at mass events. [19] estimates crowd densities 

and pedestrian flows using Wi-Fi and Bluetooth in an 

airport. [20] monitors pedestrian and cyclists travel-

time using Wi-Fi and Bluetooth. Tracking the public 

transport usage via Bluetooth and Wi-Fi passive sensing 

has also been researched in the past for e.g. counting 

the number of passengers waiting at the bus stops 

[21]. 

Several software packages or tools such as Airodump-

ng1, Tcpdump2 , Kismet3, and Wireshark4 are also 

available for capturing Wi-Fi packets. While much work 

has been done on counting people and crowd in fixed 

locations, with sensors installed in strategic locations, 

our approach is aimed at how we can understand 

occupancy within a dynamic environment with 

constantly changing geographic locations, with a high 

noise ratio of passers-by (e.g. people walking nearby, 

people waiting at bus stops for other lines, passengers 

in nearby cars, etc.) and able to work with different 

user types and devices.   

Design of the System 

Figure 1 illustrates three main modules in the designed 

systems. 1) Data collection: sensed Wi-Fi, Bluetooth, 

and Bluetooth LE timestamped, geotagged sensing are 

collected and sent to the server. 2) Data processing: 

the server aggregates data, removes noise (e.g. 

passers-by, duplicates, etc.) creating a clean segment 

based head count for each bus journey 3) Data 

visualisation: final data and estimated passenger 

counts are presented decision makers via large scale 

data visualization methodologies. 

1 https://www.aircrack-ng.org/doku.php?id=airodump-ng 

2 http://www.tcpdump.org/ 

3 https://www.kismetwireless.net/ 

4 https://www.wireshark.org/ 

Figure 1: Raspberry Pi based 

static sensor System Hardware 



Hardware 

Given the requirement of sensors to be deployed in 

hundreds of locations, the Raspberry Pi (a single-board 

Linux computer using an ARM-based system-on-a-chip) 

is an ideal option. In order to sense Wi-Fi/Bluetooth 

devices, a series of components are integrated with the 

Raspberry Pi as listed below: 

 Processor: a 900MHz quad-core ARM Cortex-A7 CPU 

 Wi-Fi Adapter: Ralink RT5370 chipset 

 Bluetooth Adapter: CSR Bluetooth 4.0 

 SD card: 16GB SD card 

 GPS Module: Adafruit Ultimate GPS Breakout – 66 

channel w/10 Hz updates 

The hardware configuration has low energy 

consumption (5V 1A power supply), and is significantly 

lower cost (under £100 including all components). 

Waterproof cases are used for securing sensors and 

protecting them from adverse weather conditions. 

Software 

We use Airodump-ng5 to enable the Wi-Fi monitor 

mode for Raspberry Pis, which provides timestamped 

MAC address of sensed Wi-Fi, number of the frames, 

and Received Signal Strength Indicator (RSSI). The 

collected information, along with the RSSI is analyzed 

to determine the number of the unique sensed devices. 

While there is no direct means of linking users’ personal 

information and MAC addresses of their Wi-Fi and 

Bluetooth devices, it is conceivable that user mobility 

information and habits could be studied to uniquely 

identify individuals. As a result, storing timestamped 

5 https://www.aircrack-ng.org/doku.php?id=airodump-ng 

and geotagged records of MAC addresses is highly 

sensitive and a privacy risk. To address this risk, all the 

collected MAC addresses from the sensors are 

transformed via a hash function for privacy issues. 

Data Processing 

It should be noted that the Wi-Fi/Bluetooth sensing is 

not a highly accurate process and hence, not designed 

to provide absolute numbers of passengers. As a result 

of the design itself, Wi-Fi and Bluetooth sensing under– 

or over-estimates real counts of people. For example, 

while monitoring passengers waiting at a bus stop, 

people who carry Wi-Fi/Bluetooth devices passing by 

will add noise to the measurement. The relation 

between the actual number of the crowd/passengers 

and the monitored number is also not known. Whilst 

passengers carrying multiple devices may have their 

Wi-Fi/Bluetooth turned on, there are commuters who 

do not carry any of these devices or keep the Wi-

Fi/Bluetooth off. As mentioned earlier, our approach 

does not attempt to count distinct passengers, but 

rather aims at understanding if a reasonable estimate 

of public transport occupancy can be achieved using 

such means. In order to overcome the aforementioned 

issues related to passer by commuters and to improve 

accuracy, we employ a RSSI and temporal filtering 

approach (more details below). We validate our results 

by deploying the sensors on bus journeys and 

comparing them against ground truth collected 

manually by counting passengers during 27 trips over 

five days in a UK metropolitan area. 

Data Aggregation & Filtering 

In order to remove noise, we employ a multi-pass 

aggregation and filtering technique to address the 

following issues: (i) duplicates, (ii) pedestrians passes-



by (iii) passengers waiting at bus stops (iv) people in 

nearby cars or buildings. 

Every time a public means of transport stops or slows 

down (e.g. at bus stops, traffic lights, traffic jams, etc.) 

there is an increased likelihood of noise being picked up 

from e.g. pedestrians walking by or passengers of 

nearby cars or even buses (particularly in the center of 

cities). In order to address such cases, we compute 

factors such as distance from sensor and presence over 

transport segments (e.g. presence over time and in 

particular between bus stops) as primary means to 

filter such noise. RSSI values beyond -90 dB are 

filtered out to only consider devices in the vicinity of 

the sensors, while detected duration < 1 min are 

filtered out. The threshold values are selected based on 

the test of relationship between the signal strength and 

distance as shown in Figure 2. The threshold value can 

vary for different use cases or by using different Wi-Fi 

adapters. 

We have designed a formula to estimate passenger 

counts. It is assumed that after filtering, the sensed 

number is smaller than the ground truth since some 

passengers may not own a smartphone or turned their 

Wi-Fi on. Therefore, a scale factor is calculated to 

compensate the filtered signals. The accurate 

calculation of the scale factor should be based on 

historical database or a large number of experimental 

datasets. 

 Calculate scale factor: 
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 Final estimate of passenger counts: 
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Figure 2: Passenger counting algorithm 

Evaluations 

Evaluation Setting 

A set of preliminary evaluations was designed to 

explore the feasibility and accuracy of the developed 

sensing system in different public transportation modes 

for example single-decker bus, double-decker bus and 

tram as well as varied scenarios, such as different 

levels of population, residential/commercial areas, 

different routes etc. The evaluation was conducted over 

a period of five days, with the experimenter making 

different trips along with the sensors. Ground truth was 

collected through manual counting of the number of the 

current passengers and the number of the passengers 

getting on or off the bus at every bus stop. The bus 

journeys were carefully chosen to cover a variety of 

scenarios. The details of the No. of journeys and the 

journey durations are shown in Table 1. 



Journey Type No. of journeys Total Journey Duration (mins) Setting 

Single- 
Decker bus 

8 270 
Trip from a dense city center area to lower 

density suburbs  

Double-
Decker bus 

16 370 

Both trips from a dense city center area to 
different lower density suburbs and trips 

within dense city areas. Sensors were either 
on either upper or lower deck. 

Tram 3 86 
Trip from a dense city center to a shopping 

mall four miles outside the city center 

Table 1: Different transport journeys were conducted to capture data, covering a variety of settings 

Data Collected 

In the five days of the evaluation, in total we collected 

6574 unique Wi-Fi MAC address, 444 unique Bluetooth 

MAC address, and 2259 unique Bluetooth LE MAC 

address. Total number of bus journeys tracked was 27, 

with 33% of trips occurring between 10AM and 12PM 

(average of 93 devices tracked per journey), 11% 

between 12PM and 2PM (average of 133 devices 

tracked per journey), 30% between 2PM and 4PM 

(average of 173 devices tracked per journey), 26% 

between 4PM and 6PM (average of 226 devices tracked 

per journey). 

Analysis 

Data analysis was conducted in two steps. An initial 

manual observation aligning device counts with 

observer notes was conducted. This was primarily to 

verify if enough sensing data had been collected and 

our sensors had provided consistent data. The next 

process involved aligning manual observations with 

geotagged timestamped device counts from the 

sensors. Following which, the raw data and manual 

observations were compared. 

Experiment Results 

Figure 3 presents a plot of the comparison between the 

raw data and the ground truth on total single-decker 

bus journeys. As expected, several examples can be 

identified where the sensor system over- and under-

estimate number of passengers. Overestimation can be 

explained as the noise from the pedestrians who have 

carried devices on the streets or from the mobile 

devices in the buildings close to the streets. A filtering 

technique (as discussed earlier) was developed to 

remove such overestimated values. Underestimation 

occurred when there are passengers who do not carry 

their mobile devices or have turned their Wi-Fi off. This 

can be corrected by applying a scale factor on the 

filtered data (as discussed earlier). Figure 4 presents 

the results achieved after running the filtering and 

estimation algorithms. As can be observed, the updated 

sensing result shows a good correlation with the 

Ground truth (Pearson correlation r=0.839, p-

value<0.01). 

While in general, the filtering mechanisms appear to 

have reduced noise significantly, performance was 

observed to vary between different locations of the city. 

For example, Figure 5 aligns the geolocation of the 

Figure 3: Comparison between 

Initial sensing results and ground 

truth 

Figure 4: Results comparison 

between the raw sensed data and 

filtered data and the ground 

truth. 
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observations with the number of detected devices. In 

the city center areas (left), we observe an over-

estimation even after filtering. We believe this may due 

to traffic congestion or slow moving traffic in the city 

center where cars and public transport may travel at 

the same speed, often also matching pedestrian speed. 

It can be seen from our initial results, the number of 

the sensed Bluetooth LE devices is about 1/3 of the 

sensed Wi-Fi devices, which shows a possibility in 

estimating the passenger counts by sensed Bluetooth 

LE devices. However, the sensed data of Bluetooth LE 

devices is sparse, and most of the sensed devices only 

appear for a few seconds. On account of the sensing 

reliability, passengers counting estimation by using 

Bluetooth LE sensing is not considered in this study. It 

will be further investigated in future. 

Discussion 

Although the estimation of passenger load has been 

improved after applying a generic method for noise 

reduction and final estimation, there is still observed 

overestimation in some results (e.g. results presented 

in Figure 5). The estimation can be further improved 

with more information (e.g. demographics and 

geolocation) considered and technologies incorporated. 

Improve estimation accuracy based on demographics 

It should be noted that the public transport occupancy 

are influenced by many demographic factors and 

economic characteristics. For example, after the rush 

hours in the morning, more elderly people are using the 

bus services, and they tend not to own a smartphone. 

A scale factor based on demographics (for example, 

60% of the elderly people own a smartphone) can help 

improve the estimation accuracy in this situation. 

Reduce noise caused by traffic jam 

As the results presented in Figure 5, traffic jam is 

causing significant over-estimation even after the 

filtering approach is applied. It dues to the fact that 

noises from other vehicles or passers-by have been 

sensed. In order to solve this issue, certain criteria can 

be added to the filter. If the device left the bus not at a 

bus stop, it can be treated as the noise in a traffic jam. 

Also in order to determine whether the bus is 

experiencing a traffic jam, a GPS module or an activity 

tracker (e.g. accelerometer) can be used to identify it. 

Reduce the noise at bus stop 

At rush hours, buses usually stop for longer time at bus 

stops for loading passengers. The sensors can pick up 

noises from the passenger who wait for other bus 

services. Therefore, identifying the bus stop and 

knowing how long the bus is stopped for the stop will 

help to eliminate this type of noise. In order to 

accurately identify the bus stop and how long the bus 

stopped at bus stop, a series of sensing techniques and 

information is needed, for example, the bus routes 

information from the Bus Company, GPS module, and 

activity tracker. The sensed device only appeared in the 

period when bus stopped at the bus stop would be 

identified as the passengers who were waiting for other 

bus services. Furthermore, these sensing results can be 

cross checked with the sensor at the bus stop (if there 

were). 

Conclusion and Future Work 

We have evaluated our monitoring system for five days 

experiment on bus journeys. Initial results are 

promising and show good correlation with ground truth 

after filtering out unwanted signals and application of a 

scale factor. 

Figure 5: Overestimation in the 

city center and underestimation 

in the suburb area. 



The observed variance based on locations pose a 

challenge to estimate passenger counts. Future work 

will address this in two major strands: first, we plan to 

exploit contextual information regarding the journeys – 

the filtering and estimation algorithms will consider the 

locations (e.g. POIs, city center, bus station areas) as 

well as time of day (e.g. office hours, lunch time) to 

automatically define thresholds. We expect this to 

significantly improve the passenger estimation. The 

next activity will focus on exploiting background 

knowledge on bus trips, timings and passenger types. 

For example, morning commuters are typically office 

goers, likely to be sensed via smartphones. However, 

many afternoon passengers are elderly citizens, likely 

not to possess smartphones and hence may not be 

sensed. Future work will also involve a large scale 

evaluation in three cities (Birmingham, Santander and 

Turin) as a part of the Seta project. 

In future, we will also evaluate the mobile version of 

our system. We have also developed a mobile version 

of sensors (see Figure 6). The mobile sensors share the 

same working principle as the Raspberry Pi based static 

sensors. The mobiles can be made available to a bus 

driver or a citizen who carries it during their bus 

journeys. The sensor can also be configured to be 

associated to public vehicles, e.g. buses, taxis, 

ambulances, hire-bicycles. The use of a mobile phone 

immensely simplifies the process of sensing – users can 

carry such sensors while conducting their daily 

activities throughout cities, using public transport and 

reports can be automatically generated for processing 

and analysis. Albeit the simplicity in this design, the 

process of developing the sensors is not straightforward 

– only a few older phones allow their Wi-Fi chipset to 

be turned into monitor mode but it can be made for 

certain firmware (e.g. HTC Desire). In addition, it can 

be potentially cheaper solution as available secondhand 

is less than £30. Also have the advantage of a screen 

and mobile network communication. 
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