
lable at ScienceDirect

Journal of Cleaner Production 166 (2017) 910e938
Contents lists avai
Journal of Cleaner Production

journal homepage: www.elsevier .com/locate/ jc lepro
Review
Metrics for optimising the multi-dimensional value of resources
recovered from waste in a circular economy: A critical review

Eleni Iacovidou a, *, Costas A. Velis a, *, Phil Purnell a, Oliver Zwirner b, Andrew Brown b,
John Hahladakis a, Joel Millward-Hopkins a, Paul T. Williams c

a School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
b Economics Division, Leeds University Business School, University of Leeds, Leeds LS2 9JT, UK
c School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
a r t i c l e i n f o

Article history:
Received 6 December 2016
Received in revised form
11 July 2017
Accepted 13 July 2017
Available online 17 July 2017

Keywords:
Metrics
Circular economy
Material flow analysis
Resource recovery
Sustainability assessment
Solid waste management
Sustainability indicators
Multi-dimensional value
* Corresponding authors.
E-mail addresses: iacovidou.e@gmail.com (E. Ia

(C.A. Velis).

http://dx.doi.org/10.1016/j.jclepro.2017.07.100
0959-6526/© 2017 The Authors. Published by Elsevie
a b s t r a c t

Established assessment methods focusing on resource recovery from waste within a circular economy
context consider few or even a single domain/s of value, i.e. environmental, economic, social and
technical domains. This partial approach often delivers misleading messages for policy- and decision-
makers. It fails to accurately represent systems complexity, and obscures impacts, trade-offs and prob-
lem shifting that resource recovery processes or systems intended to promote circular economy may
cause. Here, we challenge such partial approaches by critically reviewing the existing suite of environ-
mental, economic, social and technical metrics that have been regularly observed and used in waste
management and resource recovery systems' assessment studies, upstream and downstream of the point
where waste is generated. We assess the potential of those metrics to evaluate ‘complex value’ of ma-
terials, components and products, i.e., the holistic sum of their environmental, economic, social and
technical benefits and impacts across the system. Findings suggest that the way resource recovery
systems are assessed and evaluated require simplicity, yet must retain a suitable minimum level of detail
across all domains of value, which is pivotal for enabling sound decision-making processes. Criteria for
defining a suitable set of metrics for assessing resource recovery from waste require them to be simple,
transparent and easy to measure, and be both system- and stakeholder-specific. Future developments
must focus on providing a framework for the selection of metrics that accurately describe (or at least
reliably proxy for) benefits and impacts across all domains of value, enabling effective and transparent
analysis of resource recovery form waste in circular economy systems.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and decision-makers, failing to cut through the systemic
complexity, poorly accounting for undesirable effects in other
Current initiatives promoting a ‘circular economy’ build upon
preceding research into resource efficiency (Ashby, 2016;
Butterworth and Bleriot, 2014; EC, 2015; Ghisellini et al., 2016;
Gregson et al., 2015; Haas et al., 2015; Murray et al., 2015), and
provide an imperative to reconsider our approach to resource re-
covery fromwaste (RRfW). This should aim to resolve RRfW system
inefficiencies, and transform waste management practices into
systems that ‘manufacture’ secondary resources of high value.
There is a need both to remove structural barriers within the in-
dustry and reform existing policy and legislation, in order to
empower interventions that transform currently unsustainable
practices (Gregson et al., 2015; Silva et al., 2016; UNEP and ISWA,
2015). Transformation requires a shift in thinking such that RRfW
is conceptualised and operationalised on the basis of preserving the
value of materials, components and products (MCPs) by retaining
their functionality for as long as possible, as underpinned by the
rationale of a circular economy (Ellen MacArthur Foundation, 2012;
Ghisellini et al., 2016).

Ideally, this concentrates on the direct reuse of products and
components; but often the degree to which this can be achieved is
limited owing to aging, design, performance (including environ-
mental and resource efficiency performance), or recovery con-
straints. In such cases, repair, reconditioning, remanufacturing,
recycling (closed- and open-loop recycling) or energy recovery
fromMCPs are considered to be the next best option for recovering
the value embedded in and/or associated with MCPs (Benton and
Hazell, 2013; Huysman et al., 2015; Thormark, 2000). The estab-
lished EU guidance for recovering resources from waste mandates
e via the “waste hierarchy” of the Waste Framework Directive
(European Union, 2008) e that in principle reuse is better for the
environment than materials recycling, recycling is better than en-
ergy recovery, and energy recovery is better than disposal. In re-
ality, efficient and environmentally sound recovery of value from
waste is far more complex than just following a ranked description
of generically preferred management options. Hence, the option to
modify the waste hierarchy, e.g. by taking a case-by-case life cycle
assessment (LCA), is endorsed in the Waste Framework Directive
(European Union, 2008). However, even these slightly more so-
phisticated options have little to say about the prevention of
dissipation of value into waste; the transition to a resource efficient
circular economy requires approaches that allow a more holistic
analysis and evaluation of value creation, appropriation and dissi-
pation within the systems in question.

The term ‘value’ herein has a wide meaning, referring to
measurable benefits (creation of positive value) and impacts (cre-
ation of negative value, or loss of value) in the environmental,
economic, social and technical domains (Iacovidou et al., under
review). Considering all these domains e and potentially more
e.g. governance e in the evaluation of interventions, allows for a
more holistic analysis of options needed towards the overarching
objective of sustainable development, as required by the “Agenda
21” (UNCED, 1992). Nested within these four generic domains of
value are multiple specific dimensions of value that are associated
with the production, use, recovery and disposal of MCPs, from their
beginning of life (BoL) towards their end-of-use (EoU) and end-of-
life (EoL) stage, and subsequent redistribution (circulation, looping,
cascading) back into the anthropogenic system or disposal into the
biosphere (final sinks). At present, established assessments
focusing on the recovery of value from waste are based on di-
mensions of value from few e in fact typically a single e domain/s
of value; for example, the waste hierarchy or LCA are preoccupied
only with dimensions of value from the environmental domain.
This partial approach often delivers misleading messages for policy
sectors and/or domains of value, and obscuring as such impacts,
trade-offs and problem shifting that some RRfW processes or sys-
tems may cause (Lyytim€aki et al., 2013; Ulgiati et al., 2011). In
addition, this partial approach might hinder the exploitation of
hidden beneficial synergies along the supply chain.

To elaborate, studies have shown that 46% (wt.) of the post-
consumer plastic waste collected for recycling in the EU is expor-
ted, the bulk of it to the Far East (Velis, 2014, 2015), where in the
near past it may have been reprocessed in facilities with deficient
environmental protection, by poorly-paid workers in unhealthy
conditions (Puckett et al., 2002); a hidden social and health impact.
Other studies have shown that co-firing biomass and/or partly
biogenic solid recovered fuels (SRF) with coal in power plants,
while beneficial in reducing the use of fossil fuels and mitigating
climate change, may influence the operation and performance of
the boilers used, increase trace element emissions, and render
certain by-products (e.g. pulverised fly ash) chemically unsuitable
for previously established applications (e.g. concrete manufacture);
all leading to unassessed hidden technical, economic and envi-
ronmental impacts (Iacovidou et al., 2017a). A meaningful way of
measuring the multiple dimensions of value embedded in and
associated with all the MCPs in a system, would allow investigators
to concurrently analyse and weigh up all these factors.

In such holistic evaluations, the selection of appropriate metrics
(quantitative or semi quantitative descriptors) (Tanzil and Beloff,
2006) that accurately describe (or at least reliably proxy for) ben-
efits and impacts, is critical. Simple ways of measuring value can
facilitate a transparent assessment process, and allow for compar-
isons between various options for recovering resources fromwaste
under different scenarios to be made. Meanwhile, a balance be-
tween simplification in measurement and comprehensiveness in
addressing systemic complexity has to be reached. As such, the
metrics selected for optimising the value of recovered MCPs should
be useful and informative, but at the same time simple, transparent
and measurable based on characteristics common to all processes,
MCPs and services (Allegrini et al., 2015; Atlee and Kirchain, 2006;
Ingwersen et al., 2014; Schmidt-Bleek, 2008), and amenable to
evaluation. Prior to selecting metrics, consideration of the suite of
metrics that currently exist and of the way these can be used in
ensuring an effective and transparent analysis of entire systems,
while retaining simplicity and comprehensiveness, is a gap that
needs to be addressed in order to facilitate sound decision-making
processes.

Therefore, this paper aims to address this gap by providing a
critical review of the existing metrics suggested and used by the
literature on RRfW and sustainable resource management for
measuring the benefits and impacts in environmental, economic,
social and technical dimensions of value associated with MCPs
lifecycle management. A methodology as to how this literature was
processed is presented in Section 2, where we provide an overview
of the evolution of metrics used in supporting decision-making in
this field with particular reference to MCPs production, consump-
tion and management, and of how we examined all the methods
and tools and the metrics used therein in order to aid evaluation
and optimisation of the RRfW systems. Also in Section 2, we explain
the importance of mass balance analysis in enabling a compre-
hensive appraisal of the system under examination, the problem
that is to be solved, and as a consequence of the importance of
assigning metrics to mass flows and stocks. In Section 3 we outline
the metrics that have been widely used for evaluating environ-
mental aspects associated with the use of MCPs and their recovery
from waste. Given the relatively large number of environmental
metrics that have been developed over the past decades, it was
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considered prudent that these were distinguished by the scope
they aim to serve, including amongst others, carbon emissions,
pollutant emissions, energy and non-energy related categories. The
metrics used for evaluating economic, social and technical aspects
are presented in Sections 4, 5 and 6, respectively. The identified
metrics and their ability to support systems analysis and decision-
making for promoting the complex value recovery from resources/
wastes and optimisation, are then discussed in Section 7. Section 8
presents the final conclusions of this study.

2. Methodology

Metrics can be established as standalone items or defined
within frameworks, methods, complex tools and composite met-
rics. To identify the metrics that are regularly observed and used in
waste management and resource recovery systems' assessment
studies a considerable array of publications from peer reviewed
journals and other sources (mainly from industry and public sector
guidance) that catered mainly to the assessment and evaluation of
RRfW systems and the evolution of these frameworks, methods and
tools over the years were identified and selected for analysis. These
publications included an important number of decision-support
frameworks that differed widely depending on their:

� Scope: whether they are aimed at the optimisation of a given
waste management system, such as an energy fromwaste (EfW)
plant, or at comparing different alternatives (e.g. EfW vs. ma-
terials recycling);

� Scale: whether they define their system boundaries at a single
unit operation (e.g. a near infrared (NIR) technology), an entire
plant (e.g. a material recovery facility), or a waste management
system at awider geographic unit (e.g. local, regional or national
level);

� Focus: whether they are focused on traditional solid waste
management (SWM) (Bj€orklund et al., 1999; Clift et al., 2000;
Finnveden, 1999; Powell, 2000); integrated sustainable waste
management (ISWM) (Ness et al., 2007; Seadon, 2010; Wilson
et al., 2015); or the so called ‘zero waste’ management
(Zaman, 2014); and,

� Specific method or tool: whether they are referring to the
practical choices in translating the framework into an opera-
tional act of measurement.

Review and analysis of the above frameworks, reported and/or
used in both theoretical and empirical literature, revealed that the
metrics used or proposed for the assessment and evaluation pro-
cedures were often repeated in the different decision-making
frameworks, or were very similar, pointing to their potential use-
fulness. The metrics selected in this paper ideally meet three
generic criteria as follows:

(1) Have the potential to provide evidence for, or to support,
evaluate and optimise RRfW systems;

(2) Are relevant for the environmental, economic, social and
technical evaluation of RRfW processes and systems, with
specific reference to MCPs production, consumption and EoL
management;

(3) Have the potential to be measurable (quantitatively or
qualitatively).

Metrics that fulfil these criteria were included in the analysis.
Many of these metrics emerged from environmental analysis
techniques such as LCA; whereas others derived from studies in
economics, engineering and social science (Chong et al., 2016;
Ingwersen et al., 2014; Morrissey and Browne, 2004; Ness et al.,
2007; Pires et al., 2011; Zurbrügg et al., 2014). Here, we focused
at the more complex analytical and decision support frameworks
that containedmetrics mainly associated with resource production,
consumption and EoL management. A comprehensive review of
such complex entities in terms of their analytical, evaluation or
decision-support power was not intended for this study and can be
found elsewhere e indicatively at Ness et al. (2007), Allesch and
Brunner (2014), Morrissey and Browne (2004), Zurbrügg et al.
(2014), and Pires et al. (2011).

2.1. Development and use of metrics in emerged and emerging
decision-support frameworks, methods and tools for SWM and/or
RRfW evaluation

Frameworks, methods and tools commonly used to support
decision-makers when evaluating SWM and/or RRfW processes
and systems include, amongst others, the LCA, cost-benefit analysis
(CBA) (Begum et al., 2006; Clift et al., 2000; da Cruz et al., 2014;
Djukic et al., 2016; Varouchakis et al., 2016; Wang et al., 2016),
lifecycle costing (LCC) (Gluch and Baumann, 2004; Woodward,
1997), social life cycle assessment (sLCA) (Dreyer et al., 2006;
Guin�ee et al., 2011), input-output analysis (IOA), environmentally
extended IOA (EE-IOA), strategic environmental assessment (SEA),
environmental impact assessment (EIA), environmental risk
assessment (ERA), multi-criteria decision making (MCDM), cost-
effectiveness analysis (CEA) (Allesch and Brunner, 2014;
Gasparatos et al., 2009a, b; Morrissey and Browne, 2004; Ness
et al., 2007; Singh et al., 2012; Wilson et al., 2015); and purpose-
built optimisation models.

Whereas many approaches customarily include an optimisation
stage, a distinct category of optimisation tools stand for the
mathematical modelling techniques originally developed to deal
with the cost-effectiveness of municipal solid waste (MSW)
collection, treatment and disposal infrastructure and operation.
These models focused on technical application aspects: for
example, on the vehicle routing network used for the collection and
transportation of MSW (Nuortio et al., 2006; Sonesson, 2000;
Tavares et al., 2009; Truitt et al., 1969); on the selection of the
type, size and location of waste facilities; and on the distribution of
waste streams (municipal, commercial, etc.) to the treatment fa-
cilities within a specific geographical region (Badran and El-Haggar,
2006; Chang and Davila, 2007; Esmaili, 1972; Wilson, 1977). The
strength of these optimisation models is that they can optimise
aspects of technical performance against minimising the overall
system cost, taking, for instance, into account transportation costs
to transfer stations, landfills, incinerators, composting facilities,
material recovery facilities, and the operational and fixed costs of
these facilities (Chang and Davila, 2007; Wilson, 1977).

Such optimisation approaches, however, may not account for
other important considerations. For example, disposal in sanitary
landfills may be the preferred waste management option regarding
minimisation of hazards, but may also result in high environmental
impacts, and might conflict with adopted policies (Najm et al.,
2002). Subsequently, as environmental and socio-economic con-
cerns around SWM and the need to promote RRfW have gained
importance, new assessment frameworks were developed, capable
of including environmental and socio-economic metrics into the
decision-making of SWM systems (e.g. waste recycling, facilities
siting, and system operation), promoting a more sustainable
management of waste (Chang and Davila, 2007; Pires et al., 2011).
For instance, Fuertes et al. (1974) adapted an optimisation model to
take into account the trade-offs between system costs and social
aspects, such as aesthetics, size and number of regional facilities
(Fuertes et al., 1974). In a number of other studies (Chalkias and
Lasaridi, 2009; Chang et al., 2008), geographical information
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system (GIS) modelling was used in conjunction with environ-
mental, biophysical, ecological, and socio-economic variables to
provide an advanced modelling framework for decision-makers to
simulate and analyse spatial waste management challenges. In
other works, linear programming was integrated with a life cycle
perspective to assess economic, environmental and other associ-
ated impacts (e.g. solid waste generation rate, solid waste compo-
sition and characteristics, time and transport distance, generation
sources, capacity) (Chalkias and Lasaridi, 2009; Ekvall et al., 2007;
Eriksson et al., 2003; Najm et al., 2002; Sudhir et al., 1996), all of
which are important in long-term planning, and suitable in
providing a realistic representation of SWM practices (Kondili,
2005; Morrissey and Browne, 2004; Najm et al., 2002; Pires et al.,
2011).

Because it is now well established that sustainable waste
management requires a comprehensive analytical approach, com-
binations of assessment methods and tools that combine metrics
from different domains of value are also increasingly endeavoured
(Chong et al., 2016; Finnveden et al., 2005). For example, amal-
gamations of environmental with technical (eco-design) (Knight
and Jenkins, 2009) or economic aspects (eco-efficiency analysis,
optimisation models), and of methods such as LCC with LCA
(Carlsson Reich, 2005; Gu et al., 2008; Heijungs et al., 2012; Norris,
2001; Ristim€aki et al., 2013) or IOA with LCA (Joshi, 1999; Junnila,
2008; Ochoa et al., 2002) have gained recognition. Even the
development of new methods that incorporate metrics previously
coined for use in LCA, LCC and sLCA, such as the newly developed
life cycle sustainability assessment (LCSA) have emerged (Chong
et al., 2016; Finkbeiner et al., 2010; Gencturk et al., 2016;
Giannakis and Papadopoulos, 2016; Guin�ee et al., 2011; Kl€opffer,
2003).

Amethod used to assess the sustainability of organisations is the
accounting framework called the triple bottom line (TBL). TBL goes
beyond the traditional measures that organisations use to assess
their profits to also include environmental and social elements
(Dao et al., 2011; Elkington, 2004; Saavalainen et al., 2015; Slaper
and Hall, 2011). However, no universal standard method, or an
accepted standard for the metrics that comprise each of the three
TBL categories currently exists, while the metrics included are
difficult to measure (Slaper and Hall, 2011). As such, this method is
not considered further herein. A number of sustainability assess-
ment methods that evaluate the performance of industrial facilities
have been developed, e.g. by the World Business Council for Sus-
tainable Development (WBCSD, 2000), the Global Reporting
Initiative (GRI, 2013), the American Institute of Chemical Engineers
(AIChE) and the Institution of Chemical Engineers (IChemE)
(IChemE, 2001). These approaches provide the metrics organisa-
tions need to use to measure and report their economic, environ-
mental, and social performance (Saavalainen et al., 2015).

More explicitly, GRI has developed an environmental, social, and
governance (ESG) reporting framework used by many industries
worldwide (GRI, 2013; Saavalainen et al., 2015), whereas WBCSD
have developed the eco-efficiency indicators successfully used in
many studies (WBCSD, 2000). The AIChE has developed the sus-
tainability index (SI) to measure the sustainability performance of
representative companies in the chemical industry, using seven key
metrics including: environmental performance that measures the
‘greenness’ of the companies through assessing material intensity,
energy intensity, water consumption, toxics release, and pollutant
effects (Saavalainen et al., 2015; Tanzil and Beloff, 2006), product
stewardship, sustainability innovation, value chain management,
social responsibility, safety performance and strategic commitment
(Saavalainen et al., 2015). Similarly, in the IChemEmethodology the
sustainable development progress metrics (environmental, eco-
nomic, and social) have been fashioned to measure the
sustainability of operations within the process industry for
enhancing their sustainability performance (IChemE, 2001;
Labuschagne et al., 2005; Saavalainen et al., 2015).

The strength of the above methods and tools in supporting
decision-making in complex, interdependent systems, such as
RRfW, lies on their ability to adopt a whole system approach that
reflects their complexity (Blengini et al., 2012; Turner et al., 2016).
To handle the increased complexity of RRfW systems, Turner et al.
(2016) proposed to combine assessment methods and tools with
material flow analysis (MFA). In these combinations, MFA provides
valuable information about the flows and transformations of MCPs
as they move through the economy at different system levels (e.g.
regional, national or economy-wide systems) (Brunner and
Rechberger, 2004; Hotta and Visvanathan, 2014), while the
assessment methods and tools provide the valuable information on
the performance of the RRfW systems via the use of metrics. The
combination of MFA with metrics for ‘value’ analysis and assess-
ment tools, can help in evaluating existing RRfW processes, and
most importantly support stakeholders in identifying optimal
future RRfW strategies. Details about the use of MFA are outlined in
the following section.
2.2. The importance of MFA in systemic analysis

Material flow analysis is a tool that has been widely used for
analysing the flows and stocks of economic entities (‘goods’). It
looks specifically into the flows in and out of a system (Ness et al.,
2007), and provides an insight into the fate of ‘goods’ (in the form of
MCPs and residues) from their BoL towards their EoU and EoL stage,
and their subsequent management and treatment as presented in
Fig. 1. MFA is often represented in the form of detailed flow dia-
grams that invokes the mass balance principle, in line with the law
of conservation of matter, to get an integrated view of resource
flows, comparing all inputs, outputs, stock growth or sinks, and
hidden flows (e.g. mining overburden, harvest losses, waste
generated upstream).

In contrast to MFA, substance flow analysis (SFA) is widely used
for analysing the substances that flow in a system; where sub-
stances are defined as uniform entities consisting of uniform units
(e.g. chemical elements (atoms) or chemical compounds (mole-
cules)) (Brunner and Rechberger, 2004; Stanisavljevic and Brunner,
2014). SFA provides an essential insight into the characteristics of
MCPs, with a focus on their hazardousness, technical performance,
lifecycle transformation and exchanges with the environment. MFA
and SFA are linked by the fact that SFA can be defined as a detailed
level application of the basic MFA concept tracing the flow of
selected chemical substances or compounds - e.g. potentially toxic
elements (PTEs) such as, mercury, lead, chromium, arsenic, etc.;
nitrogen; and phosphorous e that are contained in the goods
analysed by MFA (Stanisavljevic and Brunner, 2014). This said, SFA
can be extremely useful at various levels of the RRfW system
(Antikainen et al., 2005; Asmala and Saikku, 2010; Ness et al.,
2007), offering important metrics that can describe technical di-
mensions of value. This level of information, which is essential for
the optimal recovery of resources at their EoU and EoL stage, can be
used as the backbone onto which to ‘attach’ the multi-dimensional
values. In addition, there is inherently a certain degree of uncer-
tainty in the data used to calculate the metrics. This will be
explicitly and transparently tackled, inter alia carried through as
metadata.

The following sections provide a critical analysis of the useful-
ness, robustness and strength of environmental, economic, social
and technical metrics discussed in the literature for SWM and/or
RRfW assessments that fall under the four domains of value.



Fig. 1. Simplified RRfW system representation. Releases to biosphere (air, water, soil) at all stages of supply chain are for sake of simplicity not included in the figure.
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3. Environmental metrics

Understanding the environmental benefits and impacts of all
processes, including those associated with RRfW, is important for
ensuring the protection of human health and ecosystems. LCA is the
best known and commonly used tool for assessing the environ-
mental impacts of a product's life from raw material extraction to
EoU, disposal and EoL management, making capable and useful
comparisons between products, processes and systems (Allegrini
et al., 2015; Finnveden et al., 2009; Guin�ee et al., 2011; Hellweg
and Mil�a i Canals, 2014; Laurent et al., 2014; Parkes et al., 2015;
Rigamonti et al., 2013a, 2013b). In essence, LCA creates a model of
the flow of MCPs through processes in a system and examines the
environmental impact of each one of the processes and how they
should be allocated to products and co-products. LCA is similar to
MFA, but in practice often simplified especially with respect to
system boundaries and the functional complexity of many pro-
cesses in the RRfW systems and sub-systems (Turner et al., 2016).
The wide and versatile nature of LCA in capturing the environ-
mental benefits and impacts of RRfW systems is exemplified in its
use to:

� assess the environmental and energetic performance of waste
management systems (Al-Salem et al., 2009; Antonopoulos
et al., 2012; Arena et al., 2003; Blengini et al., 2012; Bovea
et al., 2010; Buttol et al., 2007; Eriksson et al., 2005;
Finnveden et al., 2005; Giugliano et al., 2011; Kirkeby et al.,
2006; Rigamonti et al., 2013a, 2013b);

� assess the environmental and energetic performance of indus-
trial processes (Azapagic and Clift, 1999; Brentner et al., 2011;
Burgess and Brennan, 2001; Jacquemin et al., 2012;
Sonnemann et al., 2003; World Steel Association, 2010);

� compare different waste management processes and/or energy
recovery strategies (Abduli et al., 2010; Astrup et al., 2009;
Blengini, 2008a, 2008b; Bovea and Powell, 2006; Cherubini
et al., 2009; Chong et al., 2016; Christensen et al., 2009; den
Boer et al., 2007; Eriksson et al., 2005; Finnveden et al., 2005);
and

� evaluate component and product performance used in different
applications (Azapagic, 1999; Joshi, 1999; Junnila, 2008).

LCA classifies environmental impacts into a number of impact
categories (in our terminology: dimensions of value from the
environmental domain) of which number varies depending on the
LCA methodology framework used (Stranddorf et al., 2005).
Amongst the different frameworks, the impact categories that are
most widely used, and for which there is international consensus,
include global warming; stratospheric ozone depletion; acidification;
terrestrial eutrophication; aquatic eutrophication; photochemical
ozone formation; human toxicity; ecotoxicity; and resource depletion
(Acero et al., 2015). The first one is the topic of sub-section 3.1 while
the others are presented and discussed in sub-sections 3.2, 3.3 and
3.4. All these metrics are aggregates composed of more specific
ones, e.g. the acidification metric aggregates metrics on the emis-
sions of various substances with an acidifying property.

Furthermore, metrics can be distinguished between direct and
indirectmetrics based on theway they are measured. Direct metrics
refer to the on-site and/or internal measurements that occur during
a specific process whether this is the production, use, collection and
management of a functional unit (i.e. a material, component or
product); whereas indirect metrics refer to the off-site, external,
upstream or downstream measurements that are not physically
related to the functional unit, but are associated with it (Lee, 2011;
Peters, 2010; Wiedmann and Minx, 2008; WRI/WBCSD, 2011). LCA
methods aim to account for both direct and indirect environmental
impacts, and this is especially prevalent in the case of emissions
and resource consumption (Zhang et al., 2010). There is no estab-
lished term to label the sum of direct and indirect emissions/
resource consumption. The term ‘total’ should be avoided as full
completeness is impossible to achieve. Most of the metrics used in
LCA have also been used in other assessment methods or as sus-
tainability indicators, demonstrating further their usefulness,
robustness and informative character. Other metrics, widely used
in a number of assessment methods including GRI, WBCSD eco-
efficiency analysis, green design, eco-design, and sustainability
assessment methods include, amongst others, the recycled content
or renewability feedstock, energy efficiency, landfill use, which are
presented in Section 3.5 (GRI, 2013; UNEP and SETAC, 2011;
WBCSD, 2000; Zurbrügg et al., 2014).

Section 3 is organised as follows: the first 4 sub-sections look at
environmental metrics from a thematic perspective (carbon,
pollution, resource depletion); sub-section 3.5 looks transversal at
all those environmental dimensions from an efficiency perspective,
while 3.6 presents metrics that integrate several dimensions of
environmental benefits and impacts.
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3.1. Carbon emission metrics

Perhaps the most widely known and used metric in environ-
mental assessment of RRfW systems is that related to greenhouse
gas (GHG) emissions (e.g. carbon dioxide (CO2), methane (CH4),
nitrous oxide (N2O)). GHGs are substances which absorb and re-
emit heat, thereby warming up the globe's atmosphere; hence
the global warming potential (GWP)metric (Fuglestvedt et al., 2001).
GWP is known by many names including GHG emissions, carbon
emissions, or carbon footprint (Christensen et al., 2009). Carbon
footprint has emerged from ecological economics and has been
widely used in EE-IOA (Fang et al., 2014; Heijungs, 2011; Minx et al.,
2009; Ridoutt et al., 2015; Wiedmann, 2009). Nonetheless, some
uncertainty still governs its definition, meaning and measurement
(Peters, 2010; Wiedmann and Minx, 2008). For example, in a large
volume of studies carbon footprint is used interchangeablywith the
GWP or carbon emissions, as ameasure of the ‘total’ amount of GHG
emissions that are directly and indirectly caused by an activity or
accumulated over the lifecycle of a product (Fang et al., 2014;
Heijungs, 2011; Hertwich and Peters, 2009; Hoekstra and
Wiedmann, 2014; Schulz, 2010). In other studies carbon footprint
is used to account for only some of the GHGs, most often CO2
emissions, generated by an activity or accumulated over the life-
cycle of MCPs (Matthews et al., 2008; Wiedmann and Minx, 2008).
Evidently, the term ‘carbon’ is used in a variety of ways to express
GHG emissions, which tends to be ambiguous and potentially
confusing.

The World Resources Institute (WRI) and WBCSD, in an effort to
provide guidance to businesses for measuring direct and indirect
carbon emissions associated with the entire lifecycle of MCPs, have
developed the GHG protocol. In this protocol carbon emissions
include only the Kyoto Protocol GHGs (i.e. CO2, N2O, CH4, hydro-
fluorocarbons (HFCs), perfluorocarbons (PFCs), and sulphur hexa-
fluoride (SF6)) (Lee, 2011; Matthews et al., 2008; Peters, 2010; WRI/
WBCSD, 2011). However, in the waste sector, carbon emissions are
reported based on the Entreprises pour l'Environnement (EpE)
protocol that was developed to provide guidance for waste man-
agement activities, and includes only the gases most relevant to the
sector which are CO2, CH4 and N2O (EpE, 2013; Gentil et al., 2009;
UNEP, 2010). Essentially this means that so far no approach has
looked at the full range for GHGs when it comes to RRfW systems,
let alone other impacts of resource use and recovery on climate
change, such as forest clearance or albedo change (Gentil et al.,
2009).

The literature contains a considerable body of work on how to
account for carbon emissions. Carbon emissions can be directly
and/or indirectly generated at each process of the RRfW system,
including emissions from energy (e.g. electricity and/or fuel use)
and non-energy related activities (Gentil et al., 2009; Machado
et al., 2001; Nishimura et al., 1997; US EPA, 2006) (e.g. process
and fugitive emissions, such as CH4 released from digesters and
composting technologies used in mechanical biological treatment
plants) (Amlinger et al., 2008; Flesch et al., 2011). Based on the GHG
protocol direct carbon (or GHG) emissions are those arising on-site
by the process considered as ‘central’ and fall into scope 1 (direct
GHG emissions generated on-site) and 2 (GHG emissions from
consumption of purchased electricity, heat or steam on-site) (WRI/
WBCSD, 2011).

Indirect carbon emissions refer to the off-site, external, up-
stream or downstream emissions and are also known as embodied
carbon (EC). These emissions are categorised into scope 3 and
include emissions associated with the extraction and production of
purchased materials and fuels, transport-related activities,
electricity-related activities not covered in Scope 2, outsourced
activities, waste disposal, etc. (WRI/WBCSD, 2011). This metric has
gained increase popularity over the last decades due to its potential
to account for the carbon embedded in MCPs through their whole
lifecycle (Cabeza et al., 2013; Ecorys, 2014; Lee, 2011; Peters, 2010;
Purnell, 2012; Schulz, 2010) (Table 1). EC is heavily dependent on
the system boundaries applied, which can lack transparency.
Moreover, conversion factors for many MCPs are only very roughly
estimated by both LCA and EE-IOA.

In waste management systems direct carbon (DC) emissions are
usually related to the processes of collection, transportation,
management (i.e. incineration, reprocessing, composting, rema-
nufacturing) and transboundary movement of waste resources,
whereas carbon emitted during the upstream processes of
manufacturing, including extraction and processing, trans-
portation, use and international trade of MCPs, are accounted for as
indirect or embodied carbon (EC) (Table 1) (Bernstad and la Cour
Jansen, 2012; Clift et al., 2000; N€ass�en et al., 2007; Schulz, 2010).
This points to an important aspect concerning the system bound-
aries of an assessment study: direct or indirect emissions depends
on the ‘central’ system looked at, and on what are direct emissions
from the producer's perspective and indirect emissions from the
waste manager's perspective.

The emissions of the various GHGs (whether direct or
embodied) are aggregated to carbon emissions based on the
warming potential of each single GHG over a given period of time
(normally a time-horizon of 100 years is adopted) as specified in
the Kyoto Protocol, using CO2 as the reference gas (IPCC, 2007;
Peters, 2010; UNEP, 2010); hence the measurement unit in tonnes
CO2 equivalent (tCO2e). For example, 1 kg of CH4 causes 25 times
more warming over a 100 year period than 1 kg of CO2.

The avoided carbon (AC) emissions, presented in Table 1, are
important in carbon accounting strategies. These may represent
the: i) emissions saved from the avoided landfilling of waste; ii) the
reduced input of raw materials and other resources when these are
replaced by reusable, repaired, or recycled materials (e.g. reuse of
construction components in new buildings, redistribution of edible
food, replacement of fertiliser by compost, plastic bottles recycled
into plastic bottles, use of solid recovered fuels for energy genera-
tion) (EpE, 2013; Gentil et al., 2009; Scheutz et al., 2009; Smith
et al., 2001; UNEP, 2010; US EPA, 2006); or iii) those that occur
when energy is produced as a co-product in waste treatment pro-
cesses (e.g. electricity and/or heat produced out of landfill gas,
biogas, incinerator), that replaces partially or fully the energy
generated from fossil fuels (UNEP, 2010). In the latter case AC
emissions are difficult to estimate due to the uncertainty related to
what is being replaced (e.g. operating patterns, energy content,
energy mix) (Smith et al., 2001). For material resources the energy
content is usually determined based on their net calorific value.
Differences in AC emissions are thus expected, especially when
taking into account local circumstances (US EPA, 2006). Usually,
assumed emission factors per unit of energy recovered are used,
which for the European context can be estimated using a number of
variables including energy mix and heat generation efficiencies
(Smith et al., 2001). Conceptually, AC emissions are significantly
different from DC and EC emissions. For DC and EC emissions one
estimates the emissions from one process (with different system
boundaries), while for AC emissions one must estimate the emis-
sions for two alternative processes and calculate the difference (for
the same system boundaries).

The real hurdle when it comes to accounting for carbon emis-
sions is in regards to biogenic carbon (BCe) emissions (see def. in
Table 1) (US EPA, 2014). In a vast number of studies it is implicitly
assumed that the BCe of biodegradable materials (e.g. organic waste
contained in food and gardenwaste, paper and cardboard) released
in the atmosphere after combustion, is in equilibrium to that
absorbed by the biogenic pool (i.e. during the growth of plants);



Table 1
Key carbon emission metrics used in RRfW assessment methods.

Metric Description Unit References

Direct carbon emissions
(DC)

Sum of carbon emissions released on site or from a specified process, due to direct consumption of
energy (fuels or electricity) by the process considered as ‘central’ (independent of whether generated
on-site or purchased, e.g. engines, motors, power plants, buildings, appliances, electronics, lighting), and
direct use of GHGs and/or products that contain or form GHGs that are emitted during use (e.g.
refrigeration and air-conditioning equipment, industrial gases, fertilizers).

tCO2e (WRI/WBCSD,
2011)

Indirect or embodied
carbon emissions (EC)

Emissions associatedwith upstream and/or downstream (off-site) processes associated withMCPs. They
may also include emissions from the generation of purchased electricity, steam, heating and cooling
consumed by any process not considered as ‘central’, measured based on the sum of units input
upstream and/or units output downstream (e.g. in kg), multiplied by the process-specific unit emission
factor (e.g. kgCO2e/kg).

tCO2e (WRI/WBCSD,
2011; Schwarz
et al., 2002)

Avoided carbon
emissions (AC)

For MCPs: EC savings accruing from reductions in quantity and quality of primary materials, measured
based on the sum of avoided units input (in kg), multiplied by the process-specific input emission factor
(e.g. kgCO2e/kg).
For energy: EC savings from energy substitution by renewable energy, measured based on the difference
of the emissions calculated from e.g. the amount of gas recovered, calorific value, conversion efficiency
and assumed emission factors for the replaced alternative energy source.

tCO2e (Smith et al., 2001)

Biogenic carbon
emissions (BC)

Emissions related to the natural carbon cycle, as well as those resulting from the production, harvest,
combustion, digestion, fermentation, decomposition, and processing of biologically based materials by
humans.
A common measurement method has not yet been agreed.

tCO2bioe (US EPA, 2014)

Carbon capture and
sequestration (CCS)

It is the carbon stored in a processed material output that is not released in the atmosphere.
A common measurement method has not yet been agreed.

tCO2e (Gentil et al., 2009;
UNEP, 2010; WRAP,
2010a,b; Levasseur
et al., 2012)
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hence it is purported that it should not be accounted for as
contributing to the global warming effect (Boldrin et al., 2009;
Giugliano et al., 2011; Gunn et al., 2012; Smith et al., 2001).
Contrariwise, other studies suggest that BCe released from activities
such as permanent deforestation, burning of a tropical forest or
combustion of forest biomass for energy, is not entirely absorbed by
biomass systems (Gunn et al., 2012; Rabl et al., 2007). The basis of
their argument is that the lower heating value (LHV) (or net calorific
value) of carbon is the same regardless of its source, and as such BCe
that is released in the atmosphere can also contribute to the global
warming effect, measured using a unit-based index called GWPbio
or CO2biogenic emissions (Blengini, 2008a; Cherubini et al., 2011;
Christensen et al., 2009; Gentil et al., 2009; Parkes et al., 2015).

Nonetheless, there is not yet a common measurement method
for BCe and this is also due to the fact that not all of the carbon from
organic materials entering treatment, is returned to the atmo-
sphere. In fact some of it remains stored in the material after the
treatment process, reducing BCe emissions. This carbon is accoun-
ted using the carbon capture and sequestration (CCS)metric (see def.
in Table 1) (Rabl et al., 2007; Smith et al., 2001;WRAP, 2010b). If the
CCS is in a form unavailable to the natural carbon cycle over a
sufficiently long time period, then it could be argued that a ‘sink’ for
carbon has been created. The twomain routes for carbon storage in
waste management systems are via landfills (e.g. where anaerobic
conditions inhibit the decomposition of lignin based materials) and
compost applications to soil (e.g. where carbon is converted to
stable humic substances that may persist for hundreds of years)
(Smith et al., 2001; WRAP, 2010a).

The stability of such sinks is difficult to assess, and may have
different time scales between CCS and BCe for different MCPs due to
degradation rates (Rabl et al., 2007; Smith et al., 2001). For
example, wood used in buildings, furniture and wood-based ma-
terials can have CCS for decades or centuries, but eventually much,
or all of it, will be re-emitted to the atmosphere (Rabl et al., 2007).
Similarly, the rate by which the compost will re-emit CCS depends
largely on how the soil is managed (e.g. cropping, tillage, irrigation,
compost application rate), the climate, the composition of the soil,
and the time-period that the compost is applied to land, as carbon
releases (in the form of N2O) are likely if vegetation is not taking up
the nitrogen at the time of application (Boldrin et al., 2009; Smith
et al., 2001). What makes BCe accounting different from the ac-
counting of other metrics is the time dimension. To measure BCe
adequately one must consider the distribution of GHG emissions,
storage and sequestration along the time axis, as any delay in the
release of GHG emissions by temporal storage in products or waste,
is important in terms of slowing down climate change (Cherubini
et al., 2011; Hellweg and Mil�a i Canals, 2014).

This raises the issue of how this carbon should be accounted
especially when comparing the treatment options of different
MCPs. Given the complex dynamics of CCS, and the high degree of
uncertainty related to its measurement, discussions on how to
measure CCS in landfills and soils amended with compost, or ex-
changes with the energy industry and the wood, pulp and paper
industries, are still ongoing (Gentil et al., 2009; Levasseur et al.,
2012; UNEP, 2010). In the case of BCe the U.S. Environmental Pro-
tection Agency (US EPA) has developed a framework for accounting
BCe from stationary sources (US EPA, 2014). Notwithstanding its
potential to account for carbon emissions, this framework mea-
sures EC, AC and CCS emissions all in the same formula, thus does
not provide insights into specific carbon emissions. In spite of that,
the controversy around the carbon neutrality of BCe is ongoing, and
further clarifications on how to measure it are highly desirable in
the resource and waste management sectors, as this would shed
some light on the environmental assessment process of waste
management options. For example, if BCe is disregarded, emissions
from the incineration of organic wastes are unaccounted for,
making incineration to always look better than landfill as CH4
emissions from landfill are in fact accounted for (WRAP, 2010a).
3.2. Pollutant emissions to air, water and soil

Other gases and compounds critical to the environment and as a
consequence to human health are also emitted during RRfW pro-
cesses. These include (Acero et al., 2015; Azapagic et al., 2003) the
release of:

� ozone-depleting gases such as chlorofluorocarbons (CFCs),
hydrochlorofluorocarbons (HCFCs) and halons that contribute to
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the damage of the stratospheric ozone layer, measured by the
ozone depletion potential (ODP) metric;

� volatile organic compounds (VOCs) and other substances that
contribute to photochemical ground-level ozone formation,
measured by the photochemical ozone formation potential (POFP)
metric;

� gases that contribute to air, water and soil acidification,
measured based on their acid formation ability (ability to form
Hþ ions), measured by the acidification potential (AP) metric;

� ammonia, nitrates, nitrogen oxides and phosphorous that
contribute to the eutrophication of marine, freshwater and
terrestrial ecosystems, measured by the eutrophication potential
(EuP) metric; and

� other substances, such as PTEs, particulate matter (PM), poly-
cyclic aromatic hydrocarbons (PAHs) and persistent organic
pollutants (POPs) that contribute to human and ecotoxicity,
measured by the human toxicity potential (HTP) and ecotoxicity
potential (ETP) metrics.

These metrics, which are perhaps the most widely known
metrics for assessing the environmental impact of various pollut-
ants, are described in detail in Supplementary Material (Table S1).
All these metrics can be summed in a single metric called the
pollutant emissions metric (Allegrini et al., 2015; Schwarz et al.,
2002). However, such an aggregation can provide no insights into
the specific pollutants nor their effects on the environment and
human health; hence, this metric is not further considered herein.
Air pollution control technologies and processes, such as wet-
scrubbing, desulphurization, ammonia removal, acid dry neutrali-
zation, fabric fly ash filtration, tar cracking and dioxin absorption
are often implemented to meet emission requirements (Chong
et al., 2016). These measures aim at reducing the release of these
pollutants to the atmosphere and their subsequent impacts to the
environment and human health, linking the social (Section 5) and
technical (see Section 6) with the environmental domain of value.

Some additional forms of pollution that have not yet been
(extensively) used to assess the environmental damage caused by
RRfW processes, have been identified. Because of the little discus-
sion around these forms of pollutions, there are currently no spe-
cific metrics used to describe them, regardless the fact that are
widely accepted by the science community. Even so, these forms of
pollution are gaining increased momentum and could not be
ignored. These include the:

� emerging organic contaminants (EOCs) such as pharmaceuticals,
hormones, and bisphenol A (e.g. those found in consumer
Table 2
Key energy related metrics used in RRfW assessment methods.

Metric Description

Primary energy consumption (PEC) Sum of ‘raw’ or ‘gross’ energy input (per proces
calorific value of fuels used. For energy not base
a variety of e partly inconsistent e convention

Specific energy consumption Sum of final energy consumed per unit of outp
Cumulative energy demand (CED); or

Gross energy requirement (GER)
Sum of all the material and energy inputs to th
multiplied by appropriate oil equivalent factors
inputs) and then converted to SI energy units by
standard crude oil equivalency factor of 41.860

Renewable energy generation Sum of (potential) renewable energy generatio
MCPs per unit input.

Exergy Sum of the hEx of useful exergy from the proces
to the process based on the exergetic value of a
resources in the process.

Emergy Sum of the emergy value of all characterized re
product system, using the solar emjoules (sej).

a If energy in different forms (e.g. fuels, steam and electricity) is used, then these are
products or over the counter prescription medications) (Boxall,
2004; Kleywegt et al., 2011; Kümmerer, 2003);

� black carbon (BC) emissions, which constitute the main
component of soot produced due to incomplete combustion of
fossil fuels, biomass and/or SRF;

� waste heat losses to the environment that occur during most
industrial processes and in power plants, which can significantly
increase the temperature of the environment, leading to waste
heat pollution or thermal pollution; and

� nanoparticle emissions.

The latter (i.e. nanoparticle emissions) is relatively new (Acero
et al., 2015; Hellweg and Mil�a i Canals, 2014). Although nano-
sized particles are common in nature (e.g. proteins, enzymes,
DNA), this form of pollution in the RRfW context refers particularly
to the engineered nano-sized particles that are intentionally
designed to serve a specific purpose (e.g. carbon black and fumed
silica for applications in plastic fillers and car tyres, silver nano-
particles coated onto polymers like polyurethane) (Albrecht et al.,
2006; Hoet et al., 2004; Jain and Pradeep, 2005). A detailed
description of this, and of the other three metrics can be found in
Supplementary Material.

What is worth noticing herein is that discussions around the
potential consequences of these forms of pollution in the envi-
ronment and associated measurements are still unclear. Further
research is thus required into accounting for their effects on human
health and ecosystems.

3.3. Resource depletion: energy related metrics

The resource depletion metric used in LCA studies includes the
consumption of resources such as fossil fuels, metals and minerals.
This sub-section concentrates mostly on fossil fuels, but nuclear
and biogenic fuels, wind, water, geothermal and solar energy are
also considered as they are gaining increased momentum as
energy-related resources.

Fossil and other fuels are used for energy generation (e.g. elec-
tricity, motion and heat) of which consumption is one of the most
widely documented metrics in the literature (alongside carbon
emissions with which it is associated). The list of energy metrics in
use is extensive, and can be found in the reports of IAEA, UNDESA,
IEA, EUROSTAT and EEA, 2005 (Kemmler and Spreng, 2007), EEA,
2006, and DECC 2015 (DECC, 2015). LCA, IOA and sustainability
assessment indicators include energy use as one of the most basic
metrics to describe a production or recycling system. The basic
energy consumption metric known as direct energy consumption,
Unit References

s), based on the
d on ‘burnable’ fuels
s exist.

kWh (N€ass�en et al., 2007; IEA, 2014)

uta. kWh/t output (Siitonen et al., 2010)
e analysed system
(g oil eq./unit of
multiplying by the
J/g.

kWh/unit of inputs (Cherubini et al., 2009)

n from recovered kWh/t input (Bernstad and la Cour Jansen 2012;
Perkoulidis et al., 2010)

s to the total exergy
ll characterized

MJ (Gundersen, 2009; Ayres et al.,
1998)

sources in the sej/t (Ingwersen et al., 2014; Giannetti
et al., 2010)

accounted for in the final energy consumption.
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refers to the energy extracted or purchased and consumed directly
by any sector of the economy (e.g. transport fuels, electricity, gas for
heating). It includes both primary and secondary energy con-
sumption. Primary energy consumption (Table 2) is the energy
produced from coal, crude oil, natural gas, nuclear materials and
renewable sources (including solar energy, wind energy, bioenergy,
hydropower, marine energy, geothermal) (Liu et al., 2014; N€ass�en
et al., 2007), of which conversion to electricity, heat and other
human induced transformation (e.g. refinery gas, diesel, naphtha,
ethane, gasoline) represents the secondary energy produced (OECD/
IEA, 2005; Øvergaard, 2008). As opposed to direct energy con-
sumption, indirect energy consumption refers to the energy
consumed to produce the energy, goods or services used in a spe-
cific process in the RRfW system called as ‘central’ (Baynes et al.,
2011). In an IO consumption analysis, indirect energy refers to en-
ergy embodied in the production, storage and transport of goods
and services consumed (Baynes et al., 2011), for which more details
are provided further down in this section.

To gain some scrutiny into the energy used per unit of MCP
produced, used, collected, sorted, repaired and reprocessed the
energy intensity metric was proposed in the studies of Sz�ekely and
Knirsch (2005), Schwarz et al. 2002, Bernard and Côt�e 2005. This
metric can be used to measure the energy consumed to provide the
heat and power requirements for the process per tonne of product
produced, and thus it can provide information on the process op-
erations, focusing on environmental performance and process im-
provements. However, energy intensity has a dual function as
besides its ability to express the energy use per mass unit of output,
it can also be used to express the energy use per unit of monetary
value (Schwarz et al., 2002; Sz�ekely and Knirsch, 2005). In the study
of Bernard and Côt�e (2005) this was indicated as amoremeaningful
way of measuring industry outputs and assessing process im-
provements, such as enhanced energy recovery or higher produc-
tion capacity (Bernard and Côt�e, 2005).

This is in line with other studies, indicatively Liu et al. (2014),
Krajnc and Glavic (2003), where the energy intensity metric was
only associated with economic terms (e.g. the prices of compo-
nents/products sold or value added), whereas Reddy and Ray (2011)
and N€ass�en et al., 2007) made a distinction between physical and
economic energy intensity, with the first accounting for the final
energy use per physical unit of output, and the latter for the final
energy use per monetary value of unit of output sold (N€ass�en et al.,
2007; Reddy and Ray, 2011). Reddy and Ray (2011) state that im-
plications in economy (e.g. fluctuations in the price of materials,
monopsonistic industries that control a significant share of the
price of specific materials, and monopolistic industries that control
a significant share of the produced goods and/or have a better
image), as well as a number of other factors (e.g. energy mix
changes, energy input mix changes and energy-for-labour substi-
tution processes) (Patterson, 1996), can result in variations in the
energy intensity which may not reflect or even negatively affect
changes in (technical) energy efficiency (more on energy efficiency
on Section 3.5).

As such, for defining physical energy intensity, Reddy and Ray
(2011) have used the specific energy consumption and the adjusted
energy consumption metrics. The latter was defined as the total
energy consumption adjusted to the weight of unit process output,
whereas specific energy consumption was defined as the ratio of
total energy consumption to total unit (MCPs) production. The
specific energy consumption metric was also used in the study of
Krajnc and Glavic (2003) and Siitonen et al. (2010) to express the
amount of energy used per unit output. As such, to retain consis-
tency, the specific energy consumption metric was used herein to
express the energy used per unit output (Table 2).

It is important to keep the energy consumption metrics and
energy efficiencymetrics distinct; while the consumption compares
energy used to produce a unit of MCP, energy efficiency (gain)
compares energy input and output of a process. Such a comparison
provides the ability to assess the effectiveness of a process in
recovering resources from waste as for example, by reducing the
amount of resources used in production e consumption processes
or by increasing the amount of resources recovered (in a variety of
forms) during collection, reuse, recycling, recovery after their
disposal as wastes. Further details on the use of efficiency metrics
are found in Section 3.5.

Cumulative energy demand (CED), also known as lifecycle
embodied energy (LEE) or gross energy requirements (GER) are met-
rics originating from the Embodied Energy Analysis method that
deals with the direct and indirect energy consumption required
across the entire lifecycle of MCPs (Table 2) (Cherubini et al., 2009;
Patel et al., 2000; Ulgiati et al., 2011; Worrell et al., 1994). The
different forms of energy (renewable or non-renewable) consumed
throughout the system are converted back to their primary energy
sources including crude oil, natural gas, anthracite, lignite, uranium
ore, hydropower, biomass and others, taking into account conver-
sion losses from electricity and heat generation (Arena et al., 2003;
Bengtsson, 2004; Kaufman et al., 2010; WBCSD, 2000). As such,
when using these metrics, different system boundaries and
geographic location can pose a constraint in getting a certain value
for a certain product and as such, deviations can be relatively high.
A prerequisite when using CED or GER is to retain consistency in the
way data are collected and used. These metrics have been widely
used in the evaluation of the environmental and energy impacts of
several sectors. The CED is frequently employed to determine en-
ergy payback periods for alternative generation technologies such
as solar and wind; and to evaluate the efficacy of efforts to produce
energy from biomass (Kaufman et al., 2010).

Energy recovered frommaterial landfilling (i.e. biogas) and from
the digestion and combustion of bio- and other wastes with energy
recovery (EfW), can be accounted for as contributing to renewable
energy generation measured using the renewable energy generation
metric (Table 2). This metric is a measure of the renewable energy
generated from MCPs in the form of biogas and syngas that are
often combusted to produce electrical energy and heat via a CHP
engine, or alternatively are converted to liquid fuel such as, gasoline
and liquefied biomethane (Belgiorno et al., 2003).

Meanwhile, to account for all the energy flows in an economy
based on the first law of thermodynamics, the energy analysis tool
has emerged. The key principle of this tool is that energy is constant
and cannot be created nor destroyed, but it can only be converted
into different types or ‘qualities’ of energy measures, such as exergy
and emergy (Finnveden and Moberg, 2005; Hovelius, 1997). Both
the exergy and the emergy form of analyses are more advanced
than the previously mentioned energy related metrics as they
consider both the quality and quantity of energy consumed (Dincer
and Rosen, 2012). Exergy, or else ‘useful’ energy, is the maximal
amount of mechanical or ideal work (or the work content of a va-
riety of streams, e.g. mass, heat, work, that flow through a system)
that can be obtained from a system that moves from a particular
state to a state of equilibrium with the environment, based on the
second law of thermodynamics (Table 2) (Bejan, 2002; Gundersen,
2009; Wall, 1977; Wall et al., 1986, 1994). It is not only a measure of
inputs, but also a measure of outputs (Ayres et al., 1998).

As such an exergy analysis gives an overview of the effectiveness
of resource utilisation, indicating where losses occur (i.e. where
exergy is destroyed), and where technological improvements can
be made to increase energy efficiency. Losses can be in the form of
low temperature heat, but also in the form of chemically or phys-
ically reactive materials that are dissipated into the environment
(Ayres et al., 1998). These losses (i.e. waste heat andwaste products)



E. Iacovidou et al. / Journal of Cleaner Production 166 (2017) 910e938920
can drive undesired environmental impacts, as for example the
insertion of nano- and micro-scale chemical species (e.g. toxins,
nanoparticles, etc.), increasing the entropy of the system that has
the potential to disrupt delicately balanced ecosystems and life
processes far from equilibrium (Ayres et al., 1998).

Exergy, based on the second law of thermodynamics, is always
destroyed when energy is converted, either partially or totally, and
its destruction is proportional to entropy production and the
reduction of products quality. This is the reason why exergy has
been suggested as a measure of assessing the thermodynamic ef-
ficiency and resource depletion of a system (Finnveden and
€Ostlund, 1997). In order to perform an exergy analysis the exer-
getic values of any occurring energy form (e.g. electrical or me-
chanical work, heat and material streams) have to be calculated
(Fony�o et al., 1999). A detailed list of thermodynamic properties of
materials and a mathematical apparatus associated with defining
and calculating the exergies of various products can be found
elsewhere (Bejan, 2002; Gundersen, 2009). Examples of using the
exergy metric include the regional exergy analyses for Japan (Wall,
1990), Norway (Ertesvåg and Mielnik, 2000), Brazil (Schaeffer and
Wirtshafter, 1992), Italy (Wall et al., 1994), Sweden (Wall, 1977),
and the United States (Ayres et al., 2003). In the context of RRfW,
exergy analysis has been reported to be a suitable way of contrib-
uting to measuring the sustainability of industrial metabolisms of
MCPs (Amini et al., 2007; Dewulf and Van Langenhove, 2002).

Emergy is defined as the quantity of direct and indirect solar
energy required to obtain all resources and goods used and pro-
duced by a given process, which is estimated by converting energy
inputs and other flows into their solar equivalent, using the solar
transformities (Table 2) (Giannetti et al., 2010; Odum and Peterson,
1996). Odum and Peterson (1996) have created a methodology for
Regional Emergy Analysis where the environmental and economic
values associated with the use of MCPs are represented in a com-
mon energy unit (Giannetti et al., 2010). Specifically, they have
created four indices for emergy that aim to capture the environ-
mental, economic and social aspects associated with the use of
resources, including the environmental yield ratio (EYR); the envi-
ronmental investment ratio (EIR); the environmental load ratio (ELR),
and the environmental sustainability indices (ESI), for which further
information can be found elsewhere (Daley, 2013; Giannetti et al.,
2010).

3.4. Resource depletion: non-energy related metrics

Depletion of resources other than energy based ones is also of
concern in RRfW systems. One could consider this to be the most
important aspect as all efforts to recover, reuse, repair, recycle
materials from wastes aims at reducing the depletion of primary
natural material resources, and the environmental degradation as a
consequence thereof. Whereas the importance of these metrics in
assessing RRfW systems is outlined herein, a description of how
these metrics are measured can be found in Table S2 Supplementary
Material.

Water consumption, orwater footprint or blue water footprint as it
is known in the IOA, is a measure of the volume of surface and
groundwater consumed by the production of, or incorporated into a
MCP. It is one of the most widely used environmental metrics in
many assessmentmethods and tools related to RRfW systems (Fang
et al., 2015b). Mining, oil refineries, manufacturing industries (e.g.
chemical producers, pulp and paper industry, food and beverage
industry) and power plants use large amounts of water either as a
cooling/heating medium, a cleaning agent, or a reaction solvent
(Krajnc and Glavic, 2003). As such, the water consumption metric
includes evaporation and misting losses from cooling water, water
vapour vented to the atmosphere, water lost through waste
treatment or disposal, and water lost through deep-well injection
(Schwarz et al., 2002). Water consumption is important not only
because its abstraction can create problems associated with low
riverine flows, lowering of ground water tables, and salt-water
intrusion in coastal areas, but also due to water scarcity, soil qual-
ity and biodiversity impacts in the long term in many areas around
the globe (EEA, 2008; FAO, 2009; Thames Water, 2016). In areas
where water scarcity constitutes a problem, production and waste
treatment processes that require large amounts of water (e.g. food
production, incineration, etc.) might be unsustainable.

The loss of water quality due to its use in RRfW systems is
especially important because it reduces the availability of water as a
resource, leading to water resource depletion. For example, the use
of water for the removal of hazardous substances from the flue gas
stream during incineration (Oppelt, 1987), or the leachate produced
during composting and anaerobic digestion requires special treat-
ment in order to ensure its secure discharge, and avoidance of
uncontrolled leaks of leachate (Krogmann and Woyczechowski,
2000). The use of water in industrial processes results in the gen-
eration of wastewater, the recovery and recycling of which is
important in ensuring the removal of nutrients, metals, and POPs
for meeting environmental protection regulatory standards (Renou
et al., 2008). This is critical not only for the protection of water, soil
and air from pollutants emission, but also of human health, of
which metrics are discussed in Section 3.2. In this section, the
description of the loss ofwater qualitymetric is not straightforward.
It requires a series of tests that measure the physical properties of
the waste water including its temperature and turbidity, as well as
its chemical (e.g. pH, salinity, oxygen dissolved, total dissolved
solids) and biological (e.g. algae, bacteria, etc.) parameters (APHA,
1992; UNEP/WHO, 1996).

Non-energy raw materials (e.g. minerals and metals) are
essential inputs to all industries across all supply chain stages. For
example, 50 different kinds of metals are used to produce a
smartphone, all of which are needed to give it its light weight and
user-friendly small size (Benton and Hazell, 2014). Evidently, the
amount of raw materials used for the production of components
and products is growing in importance due to pressures related to
their future availability, the environmental damage caused by their
extraction, as well as their wastage per MCP output. In the study of
Schwarz et al. (2002) the amount of material used in a component/
product was measured by the amount of material wasted (not
converted to desirable product) per unit output, using the material
intensity metric (Schwarz et al., 2002). However, the use of this
metric in the study of Krajnc and Glavic (2003), has been associated
with economic terms (e.g. value of component or value added per
product sold), and the specific material consumption metric was
used instead to express the amount of material wasted per unit
output. To retain consistency with the terminology used, the spe-
cific material consumption metric was also used herein.

Special reference must also be made to critical raw materials
(CRMs) (e.g. rare earth elements, cobalt, niobium, scandium, etc.)
which in the EU have gained increased momentum over the last
decade due to the need to secure reliable and unhindered access to
these critical reservoirs in the coming years (European
Commission, 2016). Therefore, critical raw materials use is an
important metric in capturing the amount of these materials used
and disposed during the entire lifecycle of MCPs. Criticality is an
important element to be accounted for because it may vary be-
tween the different levels of the infrastructure system (e.g., mate-
rials, component, technology), as well as due to the
implementation of more technically specific engineering solutions
(Dawson et al., 2014).

Other metrics related to the measurement of resource depletion
include the recycled/reused content or feedstock renewability, which
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are widely used in the GRI, WBCSD eco-efficiency analysis, green
design, eco-design, and sustainability assessment methods
amongst others (GRI, 2013; UNEP and SETAC, 2011; WBCSD, 2000;
Zurbrügg et al., 2014). Recycled/reused content, or feedstock renew-
ability, is an important metric that indicates the circularity of ma-
terials, components or parts of a product that are being repaired,
reused, returned and recycled, displacing primary raw material use
in new products, and providing a measure of waste diversion from
incineration and/or landfill (Atherton, 2007; Broadbent, 2016;
Steenkamer and Sullivan, 1997).

Land use is increasingly thought to be important over recent
years, and is appearing in the metrics list of many assessment
methods and tools (Tanzil and Beloff, 2006). This is because in
RRfW systems, land has been widely used for the construction of
landfill sites and other facilities that produce and manage re-
sources, taking up space that could be used for other applications
(agriculture, house building, etc.) or natural land/wilderness (Acero
et al., 2015; Bengtsson, 2004; Stranddorf et al., 2006; US EPA, 2006).
In addition, recovery of biotic resources can reduce the pressure on
land (and sea) areas to produce ever more crops and other mate-
rials. Demolition and decommissioning of facilities and landfill sites
on the one hand, will have implications to the physical character-
istics and land use of the site. By their nature, such projects have the
potential to change the land and landscape completely; soils may
be compacted or may become contaminated with toxic materials
(e.g. leachate) or they may be reduced in quality by mixing with
demolitionwaste, such as bricks and concrete (EA, 2002); hence the
land use metric. On the other hand, the construction of new plants
will also change land use impact on agricultural production, and as
a result in the societal opportunities provided by the specific piece
of land. From an environmental point of view, land degradation as a
result of land-use change constitutes an important threat to eco-
systems, and may lead to natural habitat loss and alterations of the
Table 3
Key efficiency metrics used in RRfW assessment methods.

Metric Description

Energy efficiency (Eeff) Estimated by converting energy from one fo
sum of the useful energy output of a process
specified energy conversion process or syste
Expressed using the Greek letter h.

Energy efficiency index Measured using the specific energy consump
value based on the best available technology
product in question, or a specified reference
energy consumption of the process or system

R1 formula Measured based on the ratio of the energy c
electricity and heat) to the energy content (ca
used for energy recovery.

Resource conservation efficiency (RCE) Measured based on the energy savings of dif
material input in each option, divided by the
management practice.

Upstream material efficiency Sum of material output of full upstream pro
material input in the full production process
NOTE: this metric can also be based on the diffe
with less materials over the density of the sam
material providing the same physical and func

Downstream material efficiency Sum of material output of recycling process d
the recycling process.

Recycled material fraction Sum of recycled material input divided by the

Weight recovery (for product recovered) Measured based on the difference between t
material waste as output from recovery proc
product.

Weight recovery (for product recycled) Measured based on the difference between t
material waste generated and quantities of m
from recovery process x, divided by the mas
landscape (EEA, 2010). However, land degradation cannot be
assessed by a single metric, but requires a series of observations
and measurements related to the land condition, including soil
erosion by water and wind, soil fertility decline, loss of vegetation
cover and increased desertification, amongst others (Dent et al.,
2007).
3.5. Efficiency metrics

This category includes a number of important metrics that aim
to assess the efficiency of a process or system based on information
concerning the same resource or energy flow from two specific
points of the system (i.e. usually the input and output sides of a
process) (Brunner and Ernst, 1986), or for two different resources
(usually a secondary and primary resource) that flow at the same
specific process.

Based on the second law of thermodynamics, energy conversion
is never 100% efficient; it always leads to energy ‘losses’ (more
correctly, e.g. downgrade of high-value mechanical or chemical
energy into unusable low-temperature waste heat). As such, the
energy efficiency gain (or loss) is one of the most widely used effi-
ciencymetrics in the literature. It is used to express the reduction in
the energy consumption of a process, while delivering same unit
output, or the use of same energy input for a higher output (OECD/
IEA, 2005).

Although, there is no one unequivocal quantitative measure of
energy efficiency (gain/improvement) (Patterson, 1996), in general,
energy efficiency is the ratio of energy unit output to energy input
(Herring, 2006), and thereby influences the amount of useful en-
ergy required to produce a unit of MCPs (Table 3). It is also used as a
proxy for the energy lost to the environment as waste energy (e.g.
waste heat; see Section 3.2). In a number of studies it is indicated
that the use of energy efficiency is not representative of the unit
Unit References
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(BAT), a benchmark value of the
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.
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% (on J) (CIWM, 2017)

ferent waste management options per
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% (on MJ/t) (Kaufman et al., 2010)

duction process divided by the sum of
for a specific MCP.
rence in the density of the product made
e product that was made with more
tional characteristics.

% wt. (Tabone et al., 2010)

ivided by the sum of material input in % wt. (Bartl, 2015;
Graedel and Allenby,
2003)

rawmaterial input for a specific MCP. % wt. (Krajnc and Glavic,
2003; Azapagic and
Perdan, 2000)

he mass of the product and the sum of
ess x, divided by the mass of the

% wt. (Mathieux et al., 2008)

he mass of the product and the sum of
aterials diverted into energy recovery
s of the product.

% wt. (Mathieux et al., 2008)
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output per energy input. In these studies, it is reported that ther-
modynamic or thermal efficiency indicators, physical-
thermodynamic indicators, economic-thermodynamic indicators
(sometimes also referred to as energy intensity index, i.e. energy
input in thermodynamic terms and output enumerated in mone-
tary terms), and economic indicators (i.e. where both the energy
input and unit/service output are enumerated in monetary terms)
could be used instead to measure gross energy efficiency of a
process or system (Bunse et al., 2011; Giacone and Manc�o, 2012;
Patterson, 1996).

Thermodynamic or thermal efficiency indicators measure effi-
ciency in terms of the heat content of the inputs and outputs of a
process. They make no distinction between high- (e.g. electricity)
and low-quality (e.g. solar energy) energy sources, and as such,
these efficiency metrics are often limited in their use because they
do not allow for the comparison of energy efficiency across pro-
cesses that have different energy inputs and outputs (Patterson,
1996). The quality aspect is a fundamental problem across all en-
ergy efficiency indicators, especially when trying to compare pro-
cesses with different quality inputs and outputs. Despite the quality
aspect limitation, the physical-thermodynamic indicators are
considered to be good general measures of energy efficiency.
Physical-thermodynamic indicators measure the energy input in
thermodynamic units, but the output is measured in physical units
in terms of mass (e.g. tonnes of butter, bricks, aluminium) or vol-
ume (e.g. litres of milk, cubic metres of timber) (Patterson, 1996).
However, due to the variety of types of products produced in the
same industry, allocating one energy input to several outputs in an
industry (e.g. steel and slag in steel production) can make the
measurement of energy efficiency a challenging and uncertain
process.

The use of an energy efficiency index has been presented in the
study of Siitonen et al. (2010). This metric is expressed as the ratio
between the optimum specific energy consumption of a process
based on the best available technology (BAT) (e.g. EfW with
advanced flue gas treatment, landfills with methane collection,
etc.) (Table 3) (Kaufman et al., 2010). The benchmark value of the
unit output or a specific period of time and the specific energy
consumption (see def. in Table 2) of the process, were developed to
monitor and evaluate the progress in achieving energy efficiency
(Siitonen et al., 2010). A yet another energy related efficiencymetric
of great importance in the waste management sector the so called
‘R1 formula’ (Table 3). This formula is used to assess the efficiency of
EfW recovery processes. For being accepted as ‘high efficiency’ the
R1 formula outcome must be equal to or higher than 65% for
recently constructed plants (European Commission, 2008;
European Union, 2008). This formula is only dedicated to the
treatment of MSW in EfW plants and its use must be based on the
functional incineration unit. Use of this formula enables the clas-
sification of EfW plants treating MSW to be considered as recovery
rather than disposal operations (CIWM, 2017).

A metric that focuses specifically on evaluating the energy bal-
ance of RRfW systems has been developed by Kaufman et al. (2010),
in order to assess and compare different waste management op-
tions based on their energy savings. This metric, called the resource
conservation efficiency (RCE) metric, uses the CED and energy sav-
ings from the recycling of different materials and applies them to
identify which management option gives the higher energy savings
(see definition of CED in Table 2) (Kaufman et al., 2010). The
development of this metric is based on the fact that any material
being considered for resource recovery can result to an amount of
energy savings under current resource recovery technologies, such
as the energy recovered from material landfilling (i.e. landfill gas);
from energy recovery options (e.g. from EfW); and from the energy
saved by recycling, in order to indicate which process gives the
maximum (energy) savings (Kaufman et al., 2010; Klinghoffer and
Castaldi, 2014). For example, energy savings from recycling is the
difference between the energy required to manufacture a new
product minus all of the energy required to transport and reprocess
the product in the recycling phase (Klinghoffer and Castaldi, 2014).
The use of technical metrics (Section 6) can provide clarity to the
use of RCE, indicating the strong linkages between different do-
mains of value.

In some studies, the substitution effect in the energy use, has
been accounted using the RCE metric (Bernstad and la Cour Jansen,
2012; Perkoulidis et al., 2010). In the study of Kaufman et al. (2010),
it was suggested that if the difference in energy savings for a
recyclable material is greater than the energy that would be
attained from the combustion of that material with energy recov-
ery, or the recovery of methane from its landfilling, then recycling is
considered the best option. For non-recyclable materials or those
materials that have energy recovery (either from EfWor landfilling)
values higher than their energy saving value, then the best option is
considered to be the one that offers the highest energy recovery
value (Kaufman et al., 2010; Klinghoffer and Castaldi, 2014). The
major drawback of this metric is that it indicates the best man-
agement option from a pure energy conservation perspective, but
not from a wider environmental or even sustainability perspective
(Table 3).

In regards to thematerial efficiencymetric we distinguished this
into upstream and downstream material efficiency. Upstream mate-
rial efficiency provides an insight into how efficient the design
processes can bewhen it comes to rawmaterial use at the upstream
part of the RRfW (i.e. production of MCPs) (Tabone et al., 2010).
Downstream material efficiency, also known as material recyclability
(Azapagic and Perdan, 2000), denotes the amount of material
recovered by the recycling facilities for reprocessing into new
materials (i.e. at the downstream part of the RRfW system) (Bartl,
2015; Graedel and Allenby, 2003). This is one of the most impor-
tant metrics for measuring the efficiency of waste management
systems, but it generates variable results, based upon the definition
of the system, i.e. what counts as input to be recycled and what is
actually recycled. Whereas recycling of many materials is certainly
preferable, recycling rate alone is not suitable as a measure of the
overall wastemanagement quality, efficiency or even sustainability.

There are several reasons for this, but a couple stand out as
being the most significant. First, it does not account for the differ-
ences between landfilling and EfW for non-recycled wastes as the
potential alternative EoLmanagement options. Second and perhaps
more importantly, it omits materials that are not recyclable by the
contemporary technologies (e.g. many plastics, contaminated
wood, novel composites), and therefore not even collected for
recycling, and does not accurately account for the inevitable ‘re-
jects’ during processing and reprocessing for recycling. In other
words, by default, the maximum possible recycling rate, based on
all possible definitions of ‘recycling’, is well below 100%. Intrinsi-
cally, downstream material efficiency should be interpreted with
care, as it only allows to get an estimate of the potential for recy-
cling, and not of the actual amount of material that will be recycled.
Especially, for multiple-material products, of which dismantling
and subsequent material separation may present numerous diffi-
culties, this metric must be used in combination with technical
metrics (Section 6) in order to avoid any major misestimating, and/
or double counting.

An additional metric that could be included to show the actual
proportion of the recycled materials used as input in MCP pro-
duction, is the recycled material fraction, presented in the study of
Krajnc and Glavic (2003). The recycled material fraction metric, also
known as recycled content, attempts to provide information on the
intensity of secondary (recycled) material used in the production of
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newMCPs, by using the ratio of recycled material over rawmaterial
content (Table 3). The recycled material fraction of new MCPs has
been reported in many studies (Allacker et al., 2014; Ardente and
Mathieux, 2014; Ardente et al., 2013). In the study of Allacker
et al. (2014), it was reported that there are different allocation
approaches related to recycled material fractions including the
market-based approached suggested by Ekvall (2000), the eco-cost
and value-ratio (EVR) model suggested by Vogtl€ander et al. (2001)
and the material-quality-based approach suggested by Kim et al.
(1997), for which more information can be found in the respec-
tive studies. What must be highlighted herein, is that the recycled
material fraction of a MCP is independent of its original use, as this
might differ widely, especially when materials and components fall
into the cascade recycling system (more on cascading on Section 6)
(Allacker et al., 2014; Kim et al., 1997); therefore, this metric does
not provide any insights into the so called ‘closed’ vs. ‘open’ loop or
‘upcycling’ vs. ‘downcycling’ debate.

Focusing on the EoL of components and products and their
recoverability potential, Mathieux et al. (2008) have developed a
method to enable designers to produce better recoverable prod-
ucts. This method, using the results of multi-criteria and multi-
scenario recoverability assessments, has generated the weight re-
covery indicatorwhich differentiates between theweight of product
recovered and the weight of product that is actually recycled in
proportions as shown in Table 3 (Mathieux et al., 2001).

3.6. Integrated metrics

Integrated metrics, often in the form of composite metrics,
combine multiple aspects of system performance into a single
measurement, based on a common scientific or economic principle,
with the aim to address a broad number of aspects (Atlee and
Kirchain, 2006; Ingwersen et al., 2014). Over the last two de-
cades, a large number of integrated metrics have made their
appearance as a way to measure sustainability in a single
measurement.

A specific aspect that must be emphasised in assessing the
sustainability of a process, and of RRfW systems in general, is the
geographic and socio-demographic environment in which a
manufacturing or a waste management plant is located. Thus, a
pulp and paper plant isolated in the Canadian forest, making
extensive use of forest products and discharging waste water into a
large river, may turn out to be sustainable because ecosystems are
only locally affected and within their ecological limits, and as such
long-term equilibria remain intact. On the contrary, the same plant,
using the same resources and with the same polluting activities but
located in a heavily populated area, will not be as sustainable; it
would deplete the limited local natural resources (forest, water)
posing negative impacts on the nearby communities and
ecosystems.

A metric that can account for these spatial characteristics is
critical. The concept of environmental space has evolved to account
for the environmental pressures that a given space can handle
without incurring any damages to the existing ecosystems, and
affecting the biota they support. In essence environmental space
refers to the space available for the water, energy, land, materials
(renewable and non-renewable) that can be exploited, including
stocks and sinks (i.e. capacity to absorb waste and pollution)
(Callens and Tyteca,1999; Hille, 1997). The per capita environmental
space available in EU has been calculated and reported in an EEA
report (1997) as a way to promote reduction in the use of pri-
mary resources (Hille, 1997). But controversy over its potential to
properly account for the resources available per capita, and the
differing needs according to spatial, economic and socio-political
aspects, has undermined its use to promote sustainability.
Ametric developed in the same lines as the environmental space
is the ecological footprint (EF). EF aims to measure how much of the
biosphere's annual regenerative capacity is required to renew the
natural resource demand of a defined population in a given year
(see Table S3 in Supplementary Material) (Monfreda et al., 2004;
Venetoulis and Talberth, 2008). It intends to cover all relevant
components of a population's resource consumption and waste
production (Monfreda et al., 2004; Wackernagel and Rees, 1998),
however in its current version it only captures renewable material
resources (e.g. food, fuel, fiber) and carbon emissions. This is done
by identifying all the individual items, and amounts thereof, and
then assessing their EF using lifecycle data (Monfreda et al., 2004).

The EF - although used widely as an integrated metric for
assessing environmental sustainability (Barrett and Scott, 2001;
Wiedmann and Barrett, 2010) - is also used as a tool for bench-
marking environmental performance and monitoring progress to-
wards sustainability (Monfreda et al., 2004; Venetoulis and
Talberth, 2008). However, there is still controversy when it comes
to its usefulness in decision- and policy-making (Giampietro and
Saltelli, 2014; Wiedmann and Barrett, 2010), despite its ability to
be used as a stand-alone tool for communicating over-consumption
and its wider issues. Nevertheless, research around its potential use
is ongoing with recent investigations suggesting that the EF does
not provide a meaningful modelling of sustainability (Giampietro
and Saltelli, 2014).

Other integrated metrics that are directly related to MCPs pro-
duction, distribution, use, EoU and EoL management, include the:

� Environmentally weighted material consumption (EMC);
� Environmental impact recoverability indicator (EIRI);
� Cleaner treatment index;
� Material input per service unit (MIPS);
� Material recovery indicator (MRI);
� Energy recovery indicator (ERI);
� MSW management self-sufficiency indicator (wsx);
� Net recovery index; and
� Transport intensity index.

A description of these metrics can be found in Supplementary
Material. The last five metrics have so far only been used to assess
waste management performance at a regional or country level, and
have largely to do with demographics, collection and management
practices used for specific waste streams, e.g. MSW, construction
and demolition waste (CDW), or SRF. It must be emphasised that
the use of integrated metrics must come with some caution by
taking the specific strengths and limitations of this type of metrics
into account. For instance, the significant differences in the
resource requirements of a variety of components and products,
and the way these are produced, distributed, used, disposed and
recovered at their EoU and EoL stage needs to be kept in mind. This
often makes integrated metrics less versatile and useful in making
comparisons across products, industries or processes. To deal with
this the product environmental footprint (PEF) and the organisation
environmental footprint (OEF) have been established by the Euro-
pean Commission (European Commission, 2013), to measure the
environmental performance of products, services, and organisa-
tions (e.g. from extraction of rawmaterials, through production and
use, to final waste management) based on a LCA-based multi-
criteria measure (Finkbeiner, 2014; Lehmann et al., 2015; Manfredi
et al., 2012). However, due to “applicability of the data quality
assessment scheme, the suitability of the provided allocation approach
for recycling, and weighting or the identification of appropriate
measures to communicate PEF/OEF results [..]” the use of PEF/OEF is
currently unclear (Lehmann et al., 2015). In addition, benchmarks
and performance classes that enable comparisons between
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products are not yet clearly defined practically, nor theoretically,
and as such the use of PEF/OEF has not been fully established
(Lehmann et al., 2015).

Nonetheless, the process of detecting all factors of a composite
metric and analysing their respective demands has heuristic value,
judging from the hundreds of projects replicating this approach
worldwide (Schwarz et al., 2002). Essentially, one could see inte-
grated metrics already as a formalised evaluation method, espe-
cially when these metrics are used to rank RRfWoptions in terms of
environmental impact or overall net benefit.

4. Economic metrics

The consideration of the economic performance of a RRfW
system is critical not only for ensuring its financial viability, but also
for fulfilling wider economic objectives at local, regional or national
levels such as the provision of employment or contribution to
sustainable prosperity (Jackson, 2016). Economic impacts have to
be considered alongside environmental, social and technical as-
pects in order to ensure the overall viability of any proposed
resource recovery strategy or intervention, and to justify the de-
cisions made to support them via investments, subsidies and
taxation.

Cost-benefit analysis (CBA) that collapses all costs and benefits
into monetary terms, is a well-known tool for assessing positive
and negative impacts of RRfW projects in monetary terms (Begum
et al., 2006; da Cruz et al., 2014; Djukic et al., 2016; Finnveden et al.,
2005; Varouchakis et al., 2016; Wang et al., 2016). Proponents of
CBA argue that this procedure provides a transparent, clear and
systematic assessment, whereas critics say that this method can
create false comparability due to: methodological bias towards
recognising only what can be monetised; (often) inconsistent re-
sults (Pickin, 2008); ethically questionable monetisation of human
life (Ackerman and Heinzerling, 2002) and life-sustaining
ecosystem services (G�omez-Baggethun and Ruiz-P�erez, 2011).
Others point to some principle conceptual incompatibilities of CBA
and sustainability (Anderson et al., 2015). In conclusion it seems
that the core result of any CBA, the net present value (NPV)metric, is
not very suitable for complex value assessment of RRfW systems.

CBA in the waste management literature largely falls into two
categories: those which try to capture ‘externalities’ and those
which do not; externalities being “the effect(s) of production or
consumption of goods and services imposes costs or benefits on others
which are not reflected in the prices charged for the goods and services
being provided” (OECD, 2003). Cost-benefit studies dealing mainly
with prices, which are reflected in market transactions, can be
found throughout the waste management literature (Farel et al.,
2013; Keeler and Renkow, 1994; Leu and H. Lin, 1998). More
recent studies have endeavoured to price externalities (Dijkgraaf
and Vollebergh, 2004; Yuan et al., 2011). CBA without regard to
externalities canmap to purely commercial or financial analysis (an
analysis of cost and benefits from the perspective of one private
commercial entity), whereas CBA taking fully into account exter-
nalities involves taking the perspective of society as a whole (the
original intent of CBA as developed for Government), albeit subject
to the criticisms of CBA listed above.

Despite ignoring externalities, even determining the financial or
‘internal’ costs and benefits of waste management options is a
complex process. The financial costs and benefits of a RRfW system
in a given area may include regulatory tax, investment, capital and
operational costs related to waste management practices (e.g.
collection, transportation, processing), and revenues created from
the sale of secondary resources. For recovered MCPs to be viable
from a business perspective, there must be a demand for them in
the market place, and their price must be competitive with the
price of the primary (raw) materials. This can be achieved via
subsidies, as is common with energy generation systems, or via
environmental taxation (inwhich case the justification requires the
relevant externalities to be included in the CBA). Additional aspects
related to the operational economic viability of resource recovery
systems are:

� the ability to acquire feedstock at their full capacity (Choy et al.,
2004; Kothari et al., 2010), as well as the availability of existing
waste infrastructure to meet capacity demands (Najm et al.,
2002; Ristim€aki et al., 2013);

� the strategic location of recovery facilities that can render the
recovery of resources economically viable (Chong et al., 2016;
Ghose et al., 2006; Najm et al., 2002; Tavares et al., 2009; Wu
et al., 2002); and

� the longevity of assets, land and building (Longden et al., 2007;
Ristim€aki et al., 2013).

Measures that can be taken to improve the economic viability of
RRfW include technical innovation and optimal configuration av-
enues (Chong et al., 2016). These can improve the quality of sec-
ondary MCPs recovered, which is critical in building confidence in
the remanufacturing/reprocessing industry and in creating the
space for higher demand (Iacovidou and Velenturf, 2016); leading
to expanding and upgrading process operations that can take in
advantage the amount of secondary materials available. Until now,
metrics capturing those aspects are rarely used or proposed in
RRfW system assessments (Table 4).

The need for economic, social and environmental externalities
to be included in CBA is an aspiration across infrastructure
assessment; an aspiration that has been the norm in transport
scheme assessment for some time, albeit the fact that difficulties of
such incorporation remain formidable (Hanley and Spash, 1993;
MacKie, 2010). However, a recent review found very few interna-
tional examples of socially and environmentally extended CBA in
the resource recovery sector that attempt to cost externalities for
which there is not already a secondary market (Allesch and
Brunner, 2014). The externalities that can be included in CBA of
RRfW systems are varied, but fall into the following categories:
direct health impacts, local and global pollutants (see Section 3),
ecosystem services, and local economic impacts. Reporting each
measure in monetary terms requires a related valuation method.
There is substantial debate over the selection and refinement of
monetisation methods across ecological and environmental eco-
nomics (G�omez-Baggethun and Ruiz-P�erez, 2011). Importantly,
whether the externalities associated with resource recovery pro-
jects are assigned to the category of ‘economic metric’ depends on
whether or not an attempt at monetisation has been made. For
instance, metrics in health, environmental quality or climate sta-
bility can be assigned to various domains of value.

In Table 4 metrics used in different valuation methods are
included with example studies which have deployed these ap-
proaches in resource recovery or infrastructure related projects
(Chong et al., 2016; Davis et al., 2005; den Boer et al., 2007; Ferr~ao
et al., 2014; Hofstetter and Müller-Wenk, 2005; Quiggin, 1997;
Rodrigues et al., 2016; Strobant, 2015; WBCSD, 2000; Weinstein,
2006).

5. Social metrics

Materials, components and products (MCPs) may have been
largely linked with environmental and economic impacts, but in
reality their impacts are far-reaching, affecting all levels of the so-
ciety, not only within the physical scope of their manufacturing
processes and the impacts thereof, but over the entire lifecycle of



Table 4
Key economic metrics used in RRfW assessment methods.

Metric Description Unit References

Cost of raw materials and intermediates Sum of costs of material input per unit output (MCP). % (£ on £) or £/t (WBCSD, 2000; Chong
et al., 2016; IChemE
2001)

Net sales Sum of recorded sales minus the sales discounts and sales returns and
allowances per unit output (MCP).

£/t (WBCSD, 2000)

Net profit/loss Estimated based on net sales minus all expenses for the period including:

� cost of goods sold;
� general and administrative expenses;
� technology expenses;
� R&D costs;
� amortization and adjustment of intangible assets;
� restructuring and special charges;
� interest expenses;
� other expenses;
� income tax.

£ (WBCSD, 2000; Chong
et al., 2016)

Net present value (NPV) The difference between the present value of cash inflows (and the positive
monetary value of externalities) and the present value of cash outflows (and the
negative monetary value of externalities).

£ (Weinstein, 2006;
Strobant, 2015)

Capital cost Sum of costs including:
� planning costs - costs for planning activities, e.g. engineering design and

environmental impact assessment;
� investment costs e costs for providing the infrastructure or services, e.g. bins
� land costs - land acquisition and site footprints;
� equipment purchase - cost of equipment needed in the different waste/

resource treatment facilities;
� setup - site development and equipment installation costs, e.g. civil work,

access roads, electrical distribution network, piping and assembly work.

£ (Chong et al., 2016)

Operational & maintenance cost Sum of costs including:
� depreciation of installations, based on expected lifespan (using

manufacturing data);
� running and extraordinary repairs, and inspection costs - may be calculated as

percentage of equipment cost;
� unit cost of working hour requirement e.g. in operation, supervision, training;
� insurance costs calculated as a percentage of fixed capital cost;
� transportation cost.

£ (Chong et al., 2016)

Utilities costs Energy costs: sum of the cost of energy consumed per unit output (MCP).
Non-energy costs: sum of the cost of:

� domestic water and sewer service;
� collection of residuals, and/or landfilling or transport elsewhere.

£/t (Davis et al., 2005;
Chong et al., 2016)

Revenue from secondary resource sale Sum of the cash inflow made from the sale of:
� electricity/heat generated from the treatment of waste;
� biofuels generated from the treatment of waste;
� earth conditioner and fertiliser produced in organic waste treatment

facilities;
� heat captured from energy from waste activities that can also be used on

onsite applications (e.g. in dehumidification and heating);
� secondary materials (e.g. paper and cardboard, glass, metals and plastic),

components (e.g. steel and timber beams, concrete slabs) and products (e.g.
electrical and electronic equipment, furniture).

£ (Chong et al., 2016)

Taxation Sum of the tax based on
� national/local tax rate (e.g. on profit);
� energy sales tax (electricity and biofuel);
� landfill tax;
� carbon tax.

£ (Chong et al., 2016)

Subsidy and incentives Sum of the amount received e.g. for the:
� planning and operating new and existing facilities;
� generating and/or using renewable energy;
� carbon credit offset;
� renewable energy tax credits;
� other price support.

£ (Chong et al., 2016; den
Boer et al., 2007)

Health costs Measured by various methods. £ (Hofstetter and Müller-
Wenk, 2005)

Ecosystem services Measured by various methods. £ (Peh et al., 2013)
Economic spillover effects Measured by various methods, including gross value added uplift calculation,

IOA modelling, or net jobs additions.
£ or jobs (Ferrao et al., 2014;

Rodrigues et al., 2016)
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components and products distributed into the supply chain (UNEP
and SETAC, 2009). These impacts are often a result of the social
interactions and relationships created in the context of resource
extraction, processing, manufacturing, assembly, marketing, sale,
use, recycling, and disposal, amongst others, as well as between the
key stakeholder groups involved in the lifecycle of MCPs (e.g.
workers, employees, consumers, local communities, waste man-
agers, policy makers, value chain actors) (UNEP and SETAC, 2009).
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This, as suggested by UNEP and SETAC (2009), indicates that social
impacts of the lifecycle of MCPs are a result of three basic aspects,
presented in Fig. 2.

The elements shown in Fig. 2 are also interlinked, which means
that the roots of social impacts can be more complex than it seems,
as often socio-economic processes can affect behaviours, and be-
haviours (and decisions made by individuals or groups at sectoral
level) can affect socio-economic processes and alter the cultural
and human capital (UNEP and SETAC, 2009). For example, “pressure
for low prices (socio-economic processes) may draw suppliers to allow
illegal child labour (behaviour), a practice that may be accepted in a
given society because of systemic poverty (capital)” (UNEP and SETAC,
2009).

The study of these interrelationships is necessary in order to get
some clarity on the way social impacts are created and evolved
based on the geographic locations, the impact of processes carried
out (mines, factories, roads, rails, harbours, shops, offices, recycling
firms, disposal sites), and the shared, separate or conflicting in-
terests of all stakeholders involved in the supply chain, and how
these impact the environment and economic landscape. To that
end, it is recommended to start the assessment of social impacts
with the identification and analysis of stakeholders (UNEP and
SETAC, 2009; Zurbrügg et al., 2014).

Based on the individual behaviour sphere (Fig. 2), it becomes
clear that the acceptance and participation of citizens or pro-
fessionals to processes and measures that aim at resource recovery
at source, is critical in creating of positive human, social and cul-
tural capital, but also in enabling socio-economic decision-making
(Chong et al., 2016). Acceptance of a resource recovery practice by
stakeholders is increasing the likelihood of its implementation and
thus to changes in social-cultural considerations (Balkema et al.,
2002). Social participation can be invigorated by education and
awareness campaigns, which on turn can enable behaviour and
mind-set change into realising the benefits participation can bring
in the community, but it can also be supported and enforced by
legislation. For example, in Japan the ‘Food Recycling Law’ requires
food waste producers to report the amount of food waste recycled,
whereas in the US the ‘Good Samaritan Law’ supports the redis-
tribution of food that would otherwise be wasted into other uses,
such as for charities or food banks (Chong et al., 2016; Zurbrügg
Fig. 2. Elements that affect social impacts associated with the lifecycle of MCPs.
Adapted from: UNEP and SETAC (2009).
et al., 2014). In both cases, acceptance can be largely driven by
the social and cultural perception around the positive impact of
resource recovery processes and facilities in the community. If they
are perceived to promote climate change mitigation, and address
local deficiencies or inefficiencies, including employment, energy
and fertiliser shortages, these are highly accepted by the commu-
nity (especially in rural areas where jobs and energy supply are of
greater concern) further enhancing socio-economic processes and
improving the human, social and cultural capital (Achillas et al.,
2011; Chong et al., 2016).

In fact, community-owned projects, for example run by
community-based organisations (CBOs) or associations and co-
operatives, have been stated as promoting deeper social involve-
ment and increasing the success rate of resource recovery projects
(Chong et al., 2016). In urban environments, where community
cohesion may be lacking, educational and information dissemina-
tion programmes can aid the acceptance of resource recovery
technologies and processes (Achillas et al., 2011). Taking reference
from past studies, other types of social factors that affect the sus-
tainability of RRfW systems is the interaction between private
sector stakeholders and social capital (Zurbrügg et al., 2014). These
interactions might influence the fair distribution of RRfW system
benefits and impacts between citizens, affecting as such the
acceptability of facilities planning and setup, and the collection and
recovery systems used. In order to gain positive results, participa-
tion rate in the implemented schemes needs to be high, as well as
participation in the community decision-making processes that
govern the measures taken and imposed to the community.
Collaboration, gender equity, employment, motivation, interest,
and influence (power) are other important attributes that must be
taken into account when assessing social impacts related to
resource recovery systems (Zurbrügg et al., 2014).

The importance of socio-economic considerations becomes
even more crucial in low-income countries. In these countries the
RRfW systems are mainly operated by the informal recycling sector
(IRS), typically by marginalised urban poor (waste pickers) (Velis
et al., 2012; Wilson et al., 2015) where such activities constitute
their main source of livelihood. Systems analysis tools that assess
the waste and resource management at city level, such as the
‘Wasteaware’ benchmarking indicators (Wilson et al., 2015), and
those that provide guidance on how to socially include and inte-
grate the informal waste pickers into formalised legitimate opera-
tions (‘InteRa’) (Velis et al., 2012; Wilson et al., 2015), already
explicitly include and try to quantify socio-economic dimensions.

The recently developed social LCA (sLCA) sets out key social
phenomena relevant to the assessment of positive and negative
social impacts of a MCP over its lifecycle (for example, on human
rights, working conditions, and health and safety) (Hellweg and
Mil�a i Canals, 2014; Kl€opffer, 2003). Public health and safety are
important factors within the society, with a close link to the
economy and environment. In regards to the workforce necessary
per each unit of MCP produced, collected, recovered and/or
reprocessed there is a need to account for the working hours, the
wage, as well as the employment conditions (job quality) (Table 5)
(Gregson and Crang, 2015). The worker-hours needed in each
process associated with the MCPs lifecycle is useful in under-
standing where data needs to be collected on-site, and where
generic information might be sufficient to support the analysis of
the added value offered by the workforce. However, working hours
alone, cannot provide insightful views on the potential social im-
pacts arising fromworker-hours put into each process of the supply
chain. The specific context inwhich the work is undertaken, as well
as the country and condition of the facility where the work is car-
ried out, might provide more input in relation to working hourly
wage rates, unpaid labour, child labour, forced labour and informal



Table 5
Key social metrics used in RRfW assessment methods.

Criterion/Metric Description Unit References

Acceptability Acceptability of a RRfW policy, intervention or action to local/regional community and/
or overall population; needs to be further researched.

Unspecified (potentially semi-
quantified or qualitative)

(Chong et al., 2016; Balkema et al., 2002; UNEP
and SETAC 2009)

Participation rate (in RRfW) Level of involvement/participation in resource recovery, distribution, use, separation
and collection; householders׳ and professionals willingness to separate waste at source.

% (on population) (Chong et al., 2016; Balkema et al., 2002; UNEP
and SETAC 2009)

Participation (in decision making) Level of involvement of local (and regional) residents in the RRfW projects: from
attending town hall meetings to community-led projects.

Various (Chong et al., 2016)

Social function and equity Equitable distribution of system's benefits and impacts within a community and social
function provided by the RRfW system (including a range of social aspects such as time
requirement, convenience, prestige, gender, vulnerable groups).

Unspecified (potentially semi-
quantified or qualitative)

(Chong et al., 2016; UNEP and SETAC 2009; den
Boer et al., 2007; Zurbrugg et al., 2014)

Child labour Employment of children, esp. when in a dangerous or unsuitable environment for them
in the RRfW system which depends on the child's age, the type and hours of work
performed and the conditions under which it is performed.

Unspecified
(potentially semi-quantified or
qualitative)

(UN 2016; Wu et al., 2014)

Working hours Measured based on the worker-hours required at each stage of the RRfW system. hours (UNEP and SETAC 2011; Wu et al., 2014)
Working hourly wage Measured based on the number of working hours by taking into account, e.g. the living

wage in the country, minimum wage in the country, and average wage in the sector.
% (paid wage/minimum or liveable
wage)

(UNEP and SETAC 2009)

Health and safety (of workers) Safety: Measured based on the number of reportable injuries by the average number of
people employed per year.
Health:Measured by the days sick leave by the average number of people employed per
year (also in comparison with national/regional average across sectors).

Number of accidents at work per
100,000 workers
Days sick leave per worker

(HSE 2016; Cameron et al., 2008)

System safety As perceived by the neighbours as regards e.g. risk of accidents or malfunctions with
increased release of (toxic) emissions and subsequent impacts on health.

Unspecificed (potentially semi-
quantified or qualitative)

(Chong et al., 2016)

NIMBY syndrome Opposition by residents in regards to their proximity to a RRfW facility, measured based
on the fraction of citizens in support and against the siting of a new facility nearby
(while in principle accepting the technology or need for RRfW).

% (on local residents) (Kikuchi and Gerardo, 2009)

Job creation Number of jobs created from the RRfW system. No. of jobs or FTE (UNEP, 2010)
Employment or job quality Working and employment conditions. Unspecified

(potentially semi-quantified or
qualitative)

(den Boer et al., 2007; Gregson and Crang 2015)

Local deficiencies Addressing local requirements for resources (e.g. fertiliser) or energy (e.g. district
heating).

Various (Chong et al., 2016)

Noise pollution Noise generated during each stage of the RRfW system. Number of people exposed to
unhealthy noise levels (day/night)

(den Boer et al., 2007)

Odour Unpleasant odours caused by the degradation of materials (e.g. food waste, biomass)
during resource recovery and management processes.

Number of people exposed to odours (den Boer et al., 2007)
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work conditions (UNEP and SETAC, 2009). Incidents at work that
are used to reflect the health and safety metrics can be accounted
based on the number of people in theworking environment usually
using 100,000 people as a reference (Table 5) (Cameron et al., 2008;
HSE, 2016).

Child labour in several parts of the supply chain (e.g. in agri-
culture, mining, manufacturing, construction, waste picking (IRS),
and processing) constitutes an important metric in RRfW systems
assessment, because it can radically change the value of the
recovered resources. There are many forms of child labour world-
wide including forced labour and debt bondage (to pay off debts
incurred by parents and grandparents) (UN, 2016; Wu et al., 2014).
Child labour, which tends to be more pronounced in the informal
sector can be dangerous and harmful, morally reprehensible, and
can violate the child's freedom and human rights (UN, 2016;
UNICEF, 2005). For resource recovery to be appropriately valued
it must be decoupled from unethical processes of recovery based on
child labour.

When public decisions are made on the location of a waste
management facility the so-called NIMBY (not in my backyard)
syndrome can be of concern (Table 5). NIMBY reflects the pro-
pensity of local citizens and officials to obstruct action regarding
the siting of necessary but unwanted waste facilities and other
locally unwanted land uses (LULUs) in their own community
(Kikuchi and Gerardo, 2009). This syndrome is largely an effect of
community perceptions on resource recovery and disposal facil-
ities; specifically on the perception of the visual impact, noise,
hygiene, safety, handling, transport and land space requirements of
such facilities, on which most people are opposed to (den Boer
et al., 2007; Kikuchi and Gerardo, 2009; Morrissey and Browne,
2004). Education and awareness raising campaigns could alter
this opposition, and provide a better community cohesion when it
comes to implementing strategies for resource recovery improving
as such the human and cultural capital (Chong et al., 2016).

Odour and insects problems created by inappropriate resource
extraction (e.g. mine tailing polluting ecosystems), disposal and
collection (e.g. collection regime followed and types of collection)
as well as noise pollution are additional metrics that can be taken
into account in assessing RRfW systems (den Boer et al., 2007). The
Fig. 3. The interconnection between upstream and downstream MCPs cycles in promoting
disposal method used, as well as the proximity of a treatment fa-
cility to a community, can be an important factor contributing to
the augmentation of odour and noise pollution impacts (Table 5)
(CECED, 2003). Hygiene aspects associated with resource recovery
options are decisive to their successful implementation (Defra,
2007), as well as the annoyance caused by unpleasant odours or
noise during the implementation thereof (Bottero et al., 2011).

The literature signifies the infancy of assessing the social impact
of RRfW systems also by listing social and societal dynamics, phe-
nomena or criteria to be taken into account in social impact
assessment and decision support rather than proposing concrete
and tested metrics and methods of measurement. Table 5 follows
this state-of-the-art and presents either a proposed metric or a
social criterion for the assessment. The unit of measurement is
sometimes ‘unspecified’. Generally, quantified metrics are desir-
able, but the social reality is often not as ‘countable’ as the envi-
ronmental, technical and economic aspects, and therefore also
semi-quantitative and qualitative metrics are to be considered for
the assessment of social aspects.

A further hint that social aspects of RRfW are to be further
researched and expanded is that the emerging concerns and met-
rics of subjective well-being and quality of life and their more
objective drivers have not been taken up (Bache, 2015; Stiglitz et al.,
2009).
6. Technical metrics

Materials, components and products (MCPs) are used because of
the technical properties they possess: steel is strong; poly-
propylene films can be food-safe, lightweight and airtight; copper
is conductive and malleable; light bulbs produce light, etc. The
maintenance and retention of these properties extends the lifecycle
of the components/products; whereas the degradation of these
properties by aging, use, contamination, or changes in the service
for which MCPs are purposed for, may determine whether they
have reached their EoU or EoL status. Even so, materials contained
within components/products that reached their EoL, can still
independently maintain their full or considerable part of their
potential value as technical engineered materials (metals, paper,
their recovery after their EoU and EoL stages. Adapted from: Iacovidou et al. (2017b).
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plastics). As such, technical metrics related to theMCPs lifecycle are
prerequisites in conveying valuable information about how the
physical and functional properties e and, as a consequence e the
value of MCPs changes across the RRfW system (Tanzil and Beloff,
2006).

There is a variety of metrics associated with MCPs that range
from those used in the manufacturing/engineering sectors (e.g.
product yield, productivity, throughput; but also size, Young's
modulus, melting point, load capacity, fracture resistance, density,
toughness, modular design, corrosion resistance properties)
(Wernick and Ausubel, 1995), to those used in green chemistry (e.g.
atom economy, E-factor, effective mass yield) (Constable et al.,
2002; Henderson et al., 2010) of which detailed description can
be found elsewhere (Askeland and Phul�e, 2003; Constable et al.,
2002; Henderson et al., 2010). Even more interestingly, there can
be multiple pathways to recover technical value starting from the
same (engineered) used material. For example, paper can be re-
pulped to produce new paper (if of suitable quality) and remain
in the technosphere; it can incorporated to a degree in composting,
returning some organic matter back to the biosphere; or it can be
combusted in EfW to produce electricity and heat. In each of these
resource recovery operations, a different set of metrics is relevant
and applicable.

When components and products reach their EoU stage, they
may still contain significant technical value that can be captured;
hence, decisions made at this stage are important and may be
affected by many factors (i.e. engineering, business, environmental,
and societal factors) (Ziout et al., 2014). Accordingly, component/
product recovery has come into increasing prominence in the in-
dustry and estimating the residual technical value of MCPs at their
EoU and EoL stage is an essential prerequisite of promoting their
reusability (Robotis et al., 2012), remanufacturability (Fang et al.,
2015a; Hatcher et al., 2011, 2013), recyclability and recoverability
potential. For clarification, EoU stage is usually followed by a quality
control stage, at which reusability leads to a second or n-th cycle of
a MCP's service life (Iacovidou et al., 2017b), whereas EoL stage
means that the component/product can no longer be used and thus,
Table 6
Key technical metrics used in RRfW management assessment methods.

Metric Description

Reusability Amount of MCPs that retain their functionality and physical
end of their primary life, on a weight or item basis.

Remanufacturability Potential to restore a component/product to like-new cond
measuring, disassembly, cleaning, inspection and sorting, p
refurbishment/replacement, reassembly and final testing, o
basis.

Mass recyclability Amount of MCPs collected and/or sorted for recycling, on a

Technical recyclability Proportion of the material, or component made of only one
for recycling that will be recycled for producing high qualit

Mass recoverability Amount of MCPs, and/or proportion of the material in the c
that is captured after the EoU stage.

Energy recoverability Energy embodied in thematerials, components (made of onl
component's and product's parts recovered by the EfW pla
electricity and heat.

Lower heating value
(LHV) or net calorific
value

Amount of heat released by combusting a specified quantity
25 �C) and returning the temperature of the combustion pr
which assumes the latent heat of vaporization of water in th
is not recovered.

Technical recoverability
of components and
products

Relates to components (made of more than one material) a
Assessed based on the component's and product's weight s
extracted for reuse, recycling, energy recovery and disposa
design principles.

Technological
advancement

Process based: Advances in technology that improve the effi
technologies used in the processing steps of the RRfW syste
MCP based: advances in the designed characteristics of exis
MCPs.
remanufacturing, recycling and energy recovery are the optimal
routes, as shown in Fig. 3. Component/product features and char-
acteristics may govern the selection and feasibility of the above
practices, and therefore have an effect upon the profitability of
these strategies, and the environmental and social aspects associ-
ated with them.

The reusability or reuse potential refers to the ability of a
component or product to retain its functionality after the end of its
primary life (i.e. EoU stage) (Iacovidou and Purnell, 2016). To
‘measure’ the reusability of a component/product, static informa-
tion on the physical and engineered characteristics (e.g. designed
lifetime, usage period, etc.) and the way components and products
are made and/or fixed together, needs to be available (Table 6). In
addition to that, dynamic information that governs the trans-
formation of their functional/physical characteristics during their
use, must also be made available in order to generate the knowl-
edge required for determining the durability of a component/
product over a specific service and ability to continue providing this
service after their primary EoU stage (Iacovidou et al., 2017b). These
characteristics may vary depending on cultural, historical and
organisational aspects (Iacovidou and Purnell, 2016), and therefore,
this metric should be used with care when assessing the reusability
of components/products in a specific RRfW systems. Moreover, the
selection of technology and/or process available for the application
and/or recovery of the component/product are also important in
promoting and retaining their reusability (Park and Chertow, 2014).
For example, the reusability for bricks can be somewhere between
50% and 95% contingent on the time allowed for dismantling, the
care taken and the materials used for binding (e.g. cement based
mortar vs. lime based mortar) (Leal et al., 2006; WRAP, 2008a, b).

Remanufacturability complements reuse in that it promotes the
restoration of durable used products back into the manufacturing
process with low investment costs (Gutowski et al., 2011; Hatcher
et al., 2011; Ijomah et al., 2007; Ramoni and Zhang, 2012). This
process involves the complete disassembly of a product, during
which each component is cleaned, inspected for damage, sorted,
reconditioned and/or reprocessed to its original equipment
Unit References

attributes after the t (or item)/t (or item)
input into the system

(Ardente and Mathieux, 2014)

ition through
art repair/
n a weight or item

% wt. or item (Bras and Hammond 1996a, b,
Amezquita et al. 1995)

weight basis. t/t input into the
system

(Ardente and Mathieux, 2014)

material collected
y recycled MCPs.

% wt. (Ardente and Mathieux, 2014;
Cerdan et al., 2009)

omponent/product t or % wt. Adapted term based on Council
Directive 2005/64/EC

y onematerial), and
nts in the form of

kWh/t input (Ardente and Mathieux, 2014)

of MCPs (initially at
oducts to 150 �C,
e reaction products

J/kg or kWh/t (Allacker et al., 2014)

nd products only.
hare that can be
l, using the eco-

% wt. (Mathieux et al., 2008; Cerdan
et al., 2009)

ciency of
m.
ting and/or new

Unspecified
(potentially quantified
or semi-quantified)

Ijomah et al. 2007
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manufacturer specifications (if feasible). It is then reassembled e

often together with new parts e into a new product that can offer
functionality as good as, or better than, that of a brand new product
(Asif et al., 2012; Hatcher et al., 2011; Ismail et al., 2014). This series
of industrial processes, i.e. disassembly, cleaning, inspection and
sorting, part repair/refurbishment/replacement, reassembly and
final testing represents the key elements of the remanufacturability
metric (Table 6) (Amezquita et al., 1995; Bras and Hammond,
1996a,b); methods proposed for measuring each one of these ele-
ments can be found elsewhere (Amezquita et al., 1995; Bras and
Hammond, 1996a,b). This list of elements is in accordance with
those suggested by Fang et al. (2015a), which include fastener
accessibility, disassembly complexity, disassemblability, and
recoverability (Fang et al., 2015a). As recoverability constitutes a
metric with a wider meaning herein, it is not considered further in
the context of remanufacturability alone. Nonetheless, it must be
emphasised that for remanufacturing to be meaningful the product
lifetime, rate of technical innovation, and failure rate of compo-
nents have to also be taken into account as they influence the re-
turn rate of products from their EoU to their EoL stage (€Ostlin et al.,
2009). At the same time the efficiency and effectiveness of the
remanufacturing process depends largely on decisions made dur-
ing the design process (Ijomah et al., 2007); hence, indicating the
importance of linking upstream and downstream cycles of the
production-consumption-disposal system, as shown in Fig. 3.

It is widely speculated that remanufacturing, due to the avoided
resource use, energy, and emissions associated with new compo-
nent and product production, can offer greater economic and
environmental savings than recycling (Gutowski et al., 2011;
Hatcher et al., 2011; Lund and Mundial, 1984; Ramoni and Zhang,
2012). This is because recycling may require additional labour,
energy, and machinery, resulting in additional costs, energy con-
sumption and carbon emissions (Ramoni and Zhang, 2012).
Nevertheless, recycling is the most widely known resource recov-
ery process practiced worldwide, both in the formal and informal
recycling sectors, reducing energy consumption, GHG emissions
and pollution when recycled materials are substituting primary
feedstock and suitable pollution control is applied. As such ‘recy-
clability’ metrics are of great importance in RRfW systems.

Hitherto, recyclability is also affected by the features and char-
acteristics of MCPs, as well as on the existence of viable recycling
processes and suitable technologies thereof. Factors such as, the
number of different materials used in components and products
(e.g. use of plastics of the same or compatible types increase
recyclability), the way materials are fixed together (the degree of
liberation: e.g. welding metallic parts together with plastic parts
might minimise its recyclability), the use of substances, laminated
materials or compounds (e.g. paint, pigments and marks) that may
lead to contamination (Cerdan et al., 2009), can largely affect the
recyclability of components and products. In that regards, attaining
the right information from the upstream cycle of MCPs supply
chain system (as shown in Fig. 3) can prove beneficial in addressing
these issues. For this purpose various metrics have been proposed
for recyclability - indicatively: i) mass recyclability (e.g. amount of
MCPs sorted for recycling on a weight basis); and ii) technical
recyclability (e.g. maximum capture of value from recyclates via
producing high quality recycled products) (Table 6) (Ardente and
Mathieux, 2014).

To elaborate, concrete's mass recyclability can be affected by its
composition (mix design), strength, purity (e.g. based on the
presence of pollutants found in paint and plaster), and form (e.g.
cast-in-situ, pre-cast, or in unit materials such as blocks, tiles and
stair units) (Iacovidou and Purnell, 2016). The technical recyclability
of concrete however, can be affected by the use of paint, whereas
paint is regarded as a remedial solution in rust problems associated
with steel used in bridges (Horvath and Hendrickson, 1998), pro-
longing the lifetime of steel components without affecting as much
their technical recyclability.

In regard to the technical recyclability, the allocation of second-
ary materials in new MCPs production represents an important
step in closing the material loops (Allacker et al., 2014). This allo-
cation is largely affected by the quality of secondary materials, as
well as their mass flow. The designed features of the primary ma-
terial produced, and the waste management and recycling pro-
cesses followed in a given RRfW system, may greatly influence the
conservation or degradation of the quality of a material. Degrada-
tion of a material's quality will determine whether the material is
suitable for ‘closed’ or ‘open-loop’ recycling. In the strict, narrow
definition of closed-loop recycling, the recycled materials can
replace their primary counterparts for the original use within one
(or n-th, depending on the type of material) lifecycle, given that
their quality has remained high (i.e. no significant degradation has
occurred). On the contrary, in open-loop recycling the recycled
material cannot replace the primary material for the original use
due to quality degradation during or after primary use. Notably,
these terms may be used in a much wider way, with for example
the mixing (via compatibilisers) of different packaging plastic
polymers to a new polymer being also perceived as closed loop
recycling, regardless of the fact that it is a form of ‘cascading’.
Where quality degradation occurs then cascading of the recycled
material to a different (lower) quality product may be the optimal
option for recovering its value. This is often called a cascade recy-
cling system, and is based on the sequential use of materials for the
production of new MCPs (different from the original use), of which
quality continues to be degraded over successive lifecycles, until it
becomes too low for the MCP to be used any further as a raw ma-
terial in another lifecycle (Bartl, 2015; Kim et al., 1997). Detailed
information around the cascading of materials/components can be
found elsewhere (Bartl, 2015; Kim et al., 1997). Besides quality, the
quantity of the recycledmaterial is another factor that may affect its
technical recyclability. If there is no economic value, the recyclable
material is no longer used and is diverted into other waste man-
agement options. Therefore, in a cascade recycling system, the
quality, the quantity, and the economic aspect of the recyclable
material should be considered (Kim et al., 1997).

In all cases, ‘quality’ would be defined relatively, deepening on
fit for purpose for the intended new use, and critically affected by
the fundamental feature of waste, that of heterogeneity at different
scales (spatial, material, temporal), as for example is defined in the
theory of sampling (TOS) (Esbensen and Wagner, 2014a, 2014b).
Regarding spatial variability, the degree of concentration of re-
sources (or reversely dispersion) over geographies and compo-
nents/products, should also be a critical factor of any theoretical
and/or operational definition of recyclability. However, such aspects
are seldom considered by the current definitions, at least directly:
there is still need to resort to fundamental concepts and invent
new, strictly defined metrics capturing critical aspects of what
recyclability could mean. And the same applies to recoverability.

Recoverability can refer to physical (mass) recoverability, called
here mass recoverability (e.g. the potential for recovering
(capturing) components, parts of products or materials at their EoU
stage; as adapted from guidance on the type-approval of motor
vehicles with regard to their reusability, recyclability and recover-
ability based on European Directive 2005/64/EC (European Union,
2005)) (Table 6); and the recoverability that is based on energy
recovery, thus named here as energy recoverability (e.g. the energy
embodied in the component/product's parts that is recovered
though EfW plants in the form of electricity and heat) (Table 6)
(Ardente and Mathieux, 2014). Mathieux et al. (2001, 2008) in their
studies have also defined recoverability as the ability of the
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component, product (or its components) and the constitutive ma-
terials to be captured, and which may evolve during the compo-
nent/product's lifecycle, as the available technologies andmaterials
change with time (Mathieux et al., 2001, 2008). They assessed
recoverability based on the use of the technical recovery indicator
(TRI), which for consistency was named here as technical recover-
ability of components and products, that expresses the component
and/or product weight share that is captured for reuse, remanu-
facture, recycling or energy recovery (Fang et al., 2015a; Mathieux
et al., 2001). Technical recoverability of components and products
can be assessed based on the 11 eco-design principles suggested in
the study of Cerdan et al. (2009) which include, reusable parts,
recyclable materials, reversible joints, same material joints, parts
with label, tools for disassembling, time for disassembly, intelligent
material, time for battery changing, laminated or compound ma-
terials and painted, stained or pigmented surfaces (Table 6) (Cerdan
et al., 2009).

In general, technical metrics are highly controlled by a specific
MCP and its features, whereas the availability of appropriate
technologies for its recovery can be a prevailing factor of the
implementation of best practice. As such, technology advancement
can be a metric that captures both the technological advances in
MCPs design (MCP based), and of the technologies used at indus-
trial level (process based) (Table 6). The process based technological
advancement metric refers to the capacity of existing technologies
used in a facility to provide maximum efficiency when it comes to
the recovery and processing of resources (Ijomah et al., 2007). For
example, a less environmentally sound technology in
manufacturing facilities can have a negative impact on the rema-
nufacturability of its output, as well as on the environmental and
logistic aspects associated with it; whereas the efficiency of screen
sorting and eddy current in removing paper and cardboard, and
aluminium, respectively, in combination with the efficiency of NIR
technologies to sort plastics, may affect their mass recyclability in
the material recovery facilities (MRFs). However, at the MCP level,
technology advancement should in theory progress alongside MCPs
redesign and development, so that when new MCPs become
available, their reusability, remanufacturability, recyclability and
recoverability potential remains plausible (Ijomah et al., 2007). For
example, because of rapid software and hardware innovation,
mobile phones are often so outdated by their EoU stage, that their
reusability (if possible) could be meaningless in certain socio-
Fig. 4. Frameworks, methods and tools used for the appraisal of aspects from the domains o
points of overlap.
economic contexts. Table 6 lists key generic technical metrics in
assessing the value of recovery of resources, as reported in the
literature.
7. Discussion

The study highlights that there are many frameworks, methods
and tools suitable for assessing RRfW systems. Notwithstanding the
potential for most of them to support decision-making processes in
RRfW systems, a number of shortcomings (e.g. lack of transparency,
large number of assumptions, consideration of only one process or
sub-system of the supply chain system) limit their potential for
adopting a whole systems approach. This is because most of these
frameworks, methods and tools concentrate on a single domain of
value, usually environmental or economic, neglecting to account
for value (impacts or benefits) in other domains. Moreover, they
often also collapse multiple dimensions of value onto a few or even
one metric, losing detail and clarity. Nonetheless, a holistic valua-
tion of the RRfW systems is necessary in capturing all benefits and
impacts relevant and important to all stakeholders, as well as the
trade-offs and synergies associated with MCPs. For example tech-
nical aspects referring to the physical properties of MCPs will ul-
timately determine their reusability and/or recyclability, while
social aspects will determine the viability and acceptability of an
RRfW processes; hence, must be included in any analysis.

As illustrated in Fig. 4, the concurrent consideration of di-
mensions of value from each of the four domains (i.e. environ-
mental, economic, social and technical), has been largely
overlooked. However, a holistic resource recovery system's evalu-
ation for complex value optimisation requires input from all four
domains of value.

Measuring concurrently dimensions of value from the four value
domains as they evolve along with the flows and the trans-
formations of materials within a system is critical, not only because
of the need to grasp the complexity of RRfW systems, but also of the
need to demonstrate their viability, sustainability and compatibility
with upstream design, manufacture and distribution systems. A
holistic description (with metrics), evaluation and assessment of
RRfW systems enables sound decision-making that increases the
potential for MCPs to be properly designed, produced, used, and
managedwhen they reach their EoU and EoL status (as presented in
Fig. 3, Section 6).
f resource value. Methods and tools which combine different domains are linked to the
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In this paper, we critically examined the multitude of metrics
embedded within various frameworks, methods and tools and
classified them into four domains: environmental, economic,
technical and social. We found that:

- Environmental metrics are more extensively used than others;
to the point where some dimensions of environmental value
(e.g. carbon footprint) have multiple conflicting metrics associ-
ated therewith. This reflects where the development focus of
decision-making frameworks, and of assessment methods and
tools has been placed over recent decades. This focus is not
unjustified considering that environmental metrics provide an
important measure of the ability to meet sustainability princi-
ples associated with MCPs lifecycle, aligned with the planet's
ecological capacity.

- Economic metrics are focussed on creation/loss of monetary
value and often neglect wider economic issues. CBA is essen-
tially a ‘partial equilibrium’ tool ill-suited to system-wide, long
run (i.e. holistic) assessment. Furthermore, the need to decouple
materials consumption from economic development means
moving yet further away from conventional economic thinking.
There is widespread appetite for improved economic assess-
ment frameworks, not least given more general recognition of
the system-wide and long-run impacts of infrastructure,
including waste treatment infrastructure.

- Social metrics are the least used of the four, and yet the benefits
and impacts of RRfW on our society are ultimately the most
important. These metrics depend on many interlinked re-
lationships that make their targeted selection and assessment
within the RRfW system a challenging task. Nonetheless a suf-
ficient number of social metrics exist across multiple assess-
ment techniques that, if collated and selected correctly, could
provide a basis for useful advances in tackling the problem of
social value accounting. The low number and low level of
operationalisation of social metrics also mirrors the usually
quite low level involvement of social scientists in assessments of
RRfW systems, pointing to the need to establish a truly inter-
disciplinary practice of such assessments.

- Technical metrics are generally specific to a given MCP or pro-
cess, but a general subset of technical dimensions relevant to
RRfW can be identified; but technical metrics are often insuffi-
ciently defined in the literature. Key aspects such as, variability
and dispersion are not extensively considered. Such technical
metrics are set to reflect and capture the functionality of MCPs; a
product, component or material is technically functional if its
relevant technical properties, e.g. strength, purity, plasticity and
operability, have not deteriorated to the point where it no longer
fulfils any valuable function. Technical value also depends on the
intended pathway through which value is to be recovered, and
the available know-how and skills to recover this value in the
most beneficial way, invoking interaction between upstream
and downstream cycles of supply chains as well as the inter-
dependence between technical and social metrics. Gaining an
understanding of the MCPs physical and technical characteris-
tics and properties and their relevance to the function provided
is an essential step towards determining the optimal way of
recovering this function at their EoU and EoL stage.

Wider political aspects are not neglected herein; they are re-
flected in and analysed via the interconnections between the
environmental, economic, social and technical domains of value.
Yet these have an important role to play; given the geopolitical
landscape, leadership changes and regulatory constraints the
benefits and impacts of RRfW and the decisions derived from a
holistic assessment and evaluation, will differ widely from one
region to another.
Whereas there are metrics that are well known and developed

(e.g. direct carbon emissions, costs of raw materials, net profit), there
are others that are less developed (e.g. reusability, mass recover-
ability, technical recoverability) or less flexible for wider use by
many stakeholders (e.g. embodied carbon, child labour, NIMBY syn-
drome). This raises concerns around the practicality of using met-
rics that some stakeholders either may not be in a position to
understand, or are unable to gather the data required for the
incorporation of such metrics in their evaluation process. Where
the associated data are (made) available, metrics that are simple,
transparent, and easy to understand and measure will be most
useful for evaluating the environmental, economic, social and
technological dimensions of resource value, and ideally the foun-
dations of sound decision and policymaking in the area of resource
management (Krajnc and Glavic, 2003; Singh et al., 2012; Tanzil and
Beloff, 2006).

It must be highlighted that the metrics listed in this study are
only those that have been regularly observed and used in waste
management and resource recovery systems' assessment studies. It
is likely that somemetrics have been overlooked, and others are yet
to be developed. Not all metrics are relevant to all stakeholders
involved in the RRfW system; selection of metrics must be specific
to the system under investigation (i.e. the type of material,
component or product, and their pathways to value recovery), and
the issues that the assessment aims to address. Our future research
work aims to improve the lists of metrics and provide guidance for
the selection of metrics for evaluating a RRfW system under a
specific context. Development of this guidance will be based on
multi-criteria decision analysis (MCDA) and the ‘systems of provi-
sion’ approach (Fine and Leopold, 1993), which can explicitly and
straightforwardly bring together the various domains of value
(Brooks, 2015; van Kempen, 2003). Each system of provision in-
volves a particular valuable economic good or service, integrally
connected to specific agents and groups (e.g. private business,
consumers, workers, state actors) in processes of production, ex-
change, distribution and consumption, usually for profit (Brown
and Robertson, 2014).

Our approach will first aim to establish, for each resource re-
covery system, what are the relevant actors, groups, processes, and
structures involved in the provision of the relevant goods and
services. This will facilitate the identification of the multiple values
flowing through the system, and the various interests (goals) of
different groups and agents within the system. Such an approach
nurtures a realistic narrative framework within which to con-
textualise the RRfW system under study aiding the modelling
process and the interpretation of results. For example, the identi-
fication of appropriate system boundaries and metrics will be
greatly aided by this framework, in a way that is not possible were
the system is conceptualised in terms of the fiction of homo eco-
nomicus found in standard CBA approaches.

8. Conclusions

The transition to a circular economy requires materials, com-
ponents and products (MCPs) to be retained in the economy for
longer. This presumption requires the assessment and evaluation of
resource recovery from waste (RRfW) systems, upstream and
downstream of the point where wastes are generated, in order to
enable sound policy and decision-making processes. To make a
significant step towards achieving this, a holistic evaluation of
RRfW systems based on MCPs multi-dimensional ‘complex value’,
i.e., the holistic sum of their environmental, economic, social and
technical benefits and impacts and how these are distributed across
the system over time, is increasingly required. This evaluation
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would provide insights into the sustainability of retaining the
functionality and value of MCPs, and how to enable this to become
realised. This study reveals that existing frameworks, methods and
tools currently used for assessing waste management and resource
recovery systems do not adequately account for the complex value
of MCPs across supply chain systems; this is because of the lack of
accounting for all domains of value simultaneously. It highlights
that there is a diverse range of useful and informative metrics
extant in the literature that could be combined for assessing the
complex value of MCPs, but the need for them to be simple,
transparent and easy to measure must be an important pre-
condition in selecting the suite of metrics that are best able to
assess the RRfW system under investigation. The gap between the
need for multi-dimensional evaluation of RRfW systems and the
lack of coherence in the pool of metrics that currently exists in this
field (as well as those that have perhaps been overlooked) needs to
be urgently addressed. Future developments should focus on
closing this gap to provide the foundations for a new approach that
can address complex value and properly evaluate the trade-offs,
synergies and problem shifting that interventions in resource re-
covery processes or systems intended to promote a circular econ-
omy may cause.
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