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Spectrally accurate Nyström-solver error bounds

for 1-D Fredholm integral equations of the second kind

Abigail I Fairbairn and Mark A Kelmanson∗

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

Abstract

We present the theory underlying and computational implementation of analytical predictions of error

bounds for the approximate solution of one-dimensional Fredholm integral equations of the second kind.

Through asymptotic estimates of near-supremal operator norms, readily implementable formulae for the

error bounds are computed explicitly using only the numerical solution of Nyström-based methods on dis-

tributions of nodes at the roots or extrema of diverse orthogonal polynomials. Despite the predicted bounds

demanding no a priori information about the exact solution, they are validated to be spectrally accurate

upon comparison with the explicit computational error accruing from the numerical solution of a variety of

test problems, some chosen to be challenging to approximation methods, with known solutions. Potential

limitations of the theory are discussed, but these are shown not to arise in the numerical computations.

Keywords: Fredholm integral equations, error bounds, spectral, collocation and related methods

2010 MSC: 45B05, 65L70, 65M70

1. Introduction

A large body of literature addresses the computation of approximate numerical solutions of one-

dimensional Fredholm integral equations (FIEs) of the second kind, comprehensive overviews of which

appear in [1, 2, 3, 4], each of which contains extensive theory and details of the implementation of diverse

approximation techniques predominantly based on interpolation, projection, collocation and quadrature.

Attestation to the widespread and continuing interest in the numerical solution of FIEs is reflected in the

development and/or application of a diverse range of approximation techniques including (in chronologi-

cal order of appearance) degenerate-kernel [5], multigrids [6], approximation theory [7], discrete product

integration [8], Chebyshev polynomials [9, Chs.8-9], Adomian decomposition [10], Taylor series [11, 12],

multi-FIE systems [13], Haar wavelets [14], fast matrix-vector algorithms [15] and piecewise-linear basis

functions [16].

Despite the ongoing development of approximation methods for solving the diverse FIEs emerging

in the modelling of applications in applied mathematics, engineering and fluid mechanics, practical tech-
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niques for determining computable, explicit, a priori error bounds, particularly for the spectrally accurate

and widely used Nyström method, remain relatively scarce in the literature, attention notably focussing

on only convergence rates (see, e.g., [17, §4.2.3]). The scarcity has elicited comment: in [2, p.158] it is

asserted that “these bounds will be difficult to evaluate in applications”, and in [18] it is noted that, in the

“actual numerical computation [of error bounds]”, there are “only some scattered results that apply this

approach”. Examples of such results include those for degenerate-kernel FIEs [4, p.32] and for general

FIEs [19, 20], upon the latter of which the present work builds with specific reference to spectrally accurate

and ubiquitous Nyström methods.

In [20] it is shown how a theoretical error analysis can be implemented in such a way that the com-

puted approximate solution of an FIE can be used to yield spectrally accurate a priori error predictions, in

the absence of an exact solution, by using abscissae at the Legendre roots in order to optimise quadrature

performance. However, for integro-differential equations (IDEs) augmented by end-point boundary con-

ditions, the optimal asbcissae for differentiation are well-known to be the Chebyshev extrema, and hence

an inefficient and costly interpolation between the optimal quadrature and optimal differentiation nodes is

required. This cost is fully bypassed in the present paper, in which an error analysis based on near-optimal

quadrature and differentiation using abscissae at both Radau nodes (one boundary condition) and Legendre

extrema (two boundary conditions) is presented. The extension to the full analysis for IDEs is deferred to

a companion paper.

The remainder of this paper is structured as follows. In §2.1 is presented an overview of relevant

properties of quadrature formulae for each of the above-mentioned abscissae. In §2.2 is presented a brief

overview of the well-known Nyström method in order to establish the framework for the error analysis in

§2.3. In §2.4 an asymptotic analysis is undertaken of the conditions to be satisfied when estimating “near-

suprema” functions to compute the required operator norms in the error formulae, since the true suprema are

a priori unknown. In §3.1 are introduced a series of test problems, of distinct qualitative forms, the choice

of which is motivated by consideration of examples that are well known to be challenging to approximation

methods. The operator norms for these problems are computed in §3.2, in which it is shown that the criteria

developed in §2.4 are met. In §3.3, error bounds are computed for the test problems and are shown to be

in impressive agreement with the true computational errors, thereby validating the newly presented theory.

By considering a more complex example than those considered in §3.3, the paper concludes in §4 with

a discussion of the potential limitations of the approach, which transpire not to manifest themselves in

practice.

2. Theory

2.1. Spectrally accurate numerical quadrature

The tools required to perform spectrally accurate numerical quadrature, implemented in §2.2, are first

established. The canonical form, scaled into the interval [−1, 1], of the linear Fredholm integral equation
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of the second kind (FIE) for the unknown function y(x) is

y(x)− λ

∫ 1

−1

K(x, ξ) y(ξ) dξ = g(x), x ∈ [−1, 1] , (1)

in which the source function g : [−1, 1] → R and kernel K : [−1, 1] × [−1, 1] → R are prescribed

functions, and λ ∈ R is a constant. In symbolic form, (1) is

y − λK y = g , (2)

in which y, g ∈ C = C[−1, 1], the Banach space, with supremum norm ||·||, on which K is a compact

linear integral operator whose action on y is defined by

K y = (K y)(x) ≡

∫ 1

−1

K(x, ξ) y(ξ) dξ . (3)

It is assumed here, and throughout the rest of the paper, that λ is not a characteristic value of (1), which

therefore [2] has the unique solution y(x).

In the Nyström method, the action of K on y is approximated by KN , the finite-rank quadrature oper-

ator on C defined as the discrete counterpart of (3),

KN y = (KN y)(x) ≡ kN(x)
Ty , (4)

in which

{kN(x)}j = wj,NK(x, ξj,N) and {y}j = y(ξj,N) , j = 1, . . . , N , (5)

wherein wj,N and ξj,N are respectively the weights and abscissae of the rule, which is Gaussian since

the integral in (3) has unit weight function. Mindful of concurrent related work on integro-differential

FIEs (IDEs) with unit weight function, the present work develops error bounds based on not only the

more commonly encountered Gauss-Legendre (hereafter Legendre) quadrature but also, because of the

end-point boundary conditions augmenting the IDEs, on formulae with assigned abscissae at x = ±1 such

as Legendre Gauss-Radau (hereafter Radau) quadrature and Legendre-Gauss-Lobatto (hereafter Lobatto)

quadrature.

Relevant standard results (see, e.g., [21, Ch.8]) for the different quadrature formulae are now collected

for convenience. To simplify subsequent presentation, define the quadrature error QN for x ∈ [−1, 1] by

QN ≡ ||K y −KN y|| , (6)

in which here and subsequently the supremum norm of the Banach space C = C[−1, 1] is implied. Also

define the auxiliary value KM by

KM ≡ max
x,ξ∈[−1,1]

∣∣∣∣
∂M

∂ξM

(
K(x, ξ) y(ξ)

)∣∣∣∣ , (7)

which is recognised as the supremum norm of the factor occurring in the remainder of mean-value-theorem

error term: it merits attention that this will overestimate the error because the correct ξ ∈ [−1, 1] cannot be

determined a priori.
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In Table 1 is presented a summary of the results (some standard, some presently derived) needed for

implementing the theoretical error analysis in §2.3 for the three quadrature methods listed above. If the

convention is henceforth adopted that bracketed superscripts denote the number of assigned abscissae in

the rule, the last two rows of Table 1 reveal that the asymptotic bound β̃
(ν)
N as N → ∞ on all three

quadrature errors QN is given by the single formula

QN ≡ ||(K−KN) y|| ≤ β̃
(ν)
N ∼

π Nν
K2N−ν

4N−ν(2N)!
, ν = 0, 1, 2 , (8)

in which ν = 0, 1 and 2 correspond respectively to Legendre, Radau and Lobatto quadrature, and in which

the coefficient of K2N−ν is exact for ν = 1 and in error by less than 10−10 for N ≥ 6 when ν = 0, 2.

The predicted bound (8) is validated on a test example, fully summarised in Figure 1, which demon-

strates the spectral convergence to zero of QN on all three nodal distributions. For completeness, in Figure

2 are presented complex equipotentials of the monic polynomials associated with the nodal distributions;

the sub-figure relating to Lobatto nodes is presented in [22, p.130], but those relating to the Legendre, left-

and right-Radau nodes have not, to the authors’ knowledge, appeared elsewhere.

2.2. Nyström method

The approximate solution yN(x) of (1) is given by the Nyström method as the solution of

yN(x)− λkN(x)
TyN = g(x), x ∈ [−1, 1] , (9)

in which kN(x) is defined in (5) and {yN}j = yN(ξj,N) for j = 1, . . . , N . The symbolic form of (9) is

(cf. (2))

yN − λKN yN = g . (10)

Collocating (9) at the N nodes x = ξi,N , i = 1, . . . , N , yields an N ×N linear system for the vector yN

of nodal values yN(ξj,N), j = 1, . . . , N , namely

(I− λKN)yN = gN , (11)

wherein the elements, for i, j = 1, . . . , N , are given by the explicit formulae

{yN}i = yN(ξi,N) , {gN}i = g(ξi,N) , {KN}i,j = wj,NK(ξi,N , ξj,N) .

Solution of the system (11) provides the vector yN in the Nyström inversion formula (cf. (9))

yN(x) = g(x) + λkN(x)
TyN , x ∈ [−1, 1] , (12)

for the approximation yN(x) of y(x) which, via (7) and (8), will agree to machine precision if the product

K(x, ξ)u(ξ) in (1) is a polynomial in ξ of degree less than or equal to 2N − 1− ν.
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2.3. Error analysis framework

Subtracting (10) from (2) yields the error

y − yN = λ (K y −KN yN) = λK (y − yN) + λ (K−KN) yN ,

hence the error can be expressed in terms of (only) the approximate solution yN as

y − yN = λ (I− λK)−1(K−KN) yN , (13)

in which I is the identity operator and the existence and boundedness of (I − λK)−1 is guaranteed [2,

Thm. 3.4] by y being the unique solution of (2), equivalently (I − λK) y = g. It is well known that

standard error analyses, based upon the convergence with N of ||K −KN ||, cannot be similarly conducted

for the Nyström method, since the pointwise convergence ||K yN −KN yN || → 0 asN → ∞ is not reflected

in norm convergence; specifically (see, e.g., [2, Thm. 12.8]1),

||K −KN || ≥ ||K|| , N → ∞ ,

so that one must utilise the auxiliary results [4, (4.1.19)]

||(K−KN)K || → 0 , ||(K−KN)KN || → 0 , N → ∞ ,

using which a bound FN on the inverse operator in (13) can be determined as in, e.g., [3, (4.7.17b)]). Since

the quadrature scheme (4) is (by (6), (7) and the information in the last row of Table 1) convergent for all

continuous functions on C then, for sufficiently large N , (I−λKN)
−1 exists and is uniformly bounded [4,

Thm. 4.1.2], and

∣∣∣∣(I− λK)−1
∣∣∣∣ ≤ FN ≡

1 + |λ|
∣∣∣∣(I− λKN)

−1
∣∣∣∣ ||K||

1− λ2 ||(I− λKN)−1|| ||(K−KN)K||
, (14)

which defines the factor FN and in which the denominator is by construction positive [23]. Then (13) yields

a bound on the error norm EN given by

EN ≡ ||y − yN || ≤ FN ||λ (K−KN) yN || , (15)

from which (10) yields the Nyström error bound in the form [20, (10.20)]

EN ≤ BN ≡ FN ||yN − λK yN − g|| , (16)

which both defines the bound BN and expresses the approximation error in terms of only the numerical

solution yN and has the advantage that it can be used to compute the error explicitly without the need for

the intermediate calculation of KN yN .

1Consider, e.g., yN (x) to be unity everywhere except forN inverted “spikes” of unit height and infinitesimal width at the quadra-

ture abscissae, so that yN (ξj,N ) = 0, j = 1, . . . , N and hence ||KN || = 0.
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2.4. Asymptotic error analysis

Attention now turns to the computation of the three sub-bounds in FN defined in (14). Although FN

is established (albeit in a different form) in [3, 4], is not developed therein into a computable quantity (see

motivating remarks from [2, 18] in §1). Rewrite (14) in supremum form,

FN =

1 + |λ| sup
u∈C

∣∣∣∣(I− λKN)
−1u

∣∣∣∣
||u||

sup
v∈C

||K v||

||v||

1− λ2 sup
u∈C

∣∣∣∣(I− λKN)
−1u

∣∣∣∣
||u||

sup
w∈C

||(K−KN)Kw||

||w||

, (17)

and let the a priori unknown functions ũ, ṽ, w̃ ∈ C yield the required suprema in (17), so that

FN =
(||ũ|| ||ṽ||+ |λ|

∣∣∣∣(I− λKN)
−1ũ

∣∣∣∣ ||K ṽ||) ||w̃||

(||ũ|| ||w̃|| − λ2 ||(I− λKN)−1ũ|| ||(K−KN)K w̃||) ||ṽ||
. (18)

It is clear that further progress on the development of a computable bound demands estimation of the

unknown ũ, ṽ, w̃ ∈ C on the assumption that near-suprema functions, u, v, w ∈ C respectively, can be

chosen. Moreover, Table 1 reveals that the term ||(K−KN)K w̃|| in the denominator of FN will decay

exponentially2 with N because of its error factor ψ
(ν)
N associated with the action of the operator K −KN .

Computation of FN therefore admits two levels of approximation.

An asymptotic analysis can be conducted by first defining a small positive parameter 0 < ǫ ≪ 1 and

O(1) constants α, β, γ ∈ R such that

∣∣∣∣(I− λKN)
−1
∣∣∣∣ ≡

∣∣∣∣(I− λKN)
−1ũ

∣∣∣∣
||ũ||

=

∣∣∣∣(I− λKN)
−1u

∣∣∣∣
||u||

+α ǫ , ||K|| ≡
||K ṽ||

||ṽ||
=

||K v||

||v||
+β ǫ (19)

and

||(K−KN)K|| ≡
||(K−KN)K w̃||

||w̃||
=

||(K−KN)Kw||

||w||
+ γ ǫ . (20)

For sufficiently large N , (8) reveals that

||(K−KN)Kw|| ∼ W
(ν)
N ≡

π Nν
M2N−ν

4N−ν(2N)!
, ν = 0, 1, 2 , (21)

in which, by extension of (7), the constant M2N−ν is found using

MM ≡ max
x,ξ∈[−1,1]

|MM(x, ξ)| where MM(x, ξ) ≡
∂M

∂ξM

(
K(x, ξ)

∫ 1

−1

K(ξ, η)w(η) dη

)
. (22)

Thus for sufficiently large N , say N ≥ Nǫ, (21), (22) and Stirling’s formula reveal that, in (20),

||(K−KN)K|| = O(ǫ) provided W
(ν)
N = o(ǫ) , (23)

which is true for all ǫ > 0 provided that the growth-rate of M2N−ν is less than O
(
NαN

)
. Large-N

asymptotics applied to W
(ν)
N defined in (21) reveal that condition (23) is met providing

α < 2 + (4 ln 2− 2)
(
(lnN)−1 − (lnN)−2

)
+ o

(
(lnN)−2

)
, N → ∞ . (24)

2This assertion is demonstrated to be true in §3.3.
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Hence, if M2N−ν ≤ O
(
N 2N

)
, condition (23) is satisfied and (18)–(23) yield

FN = 1 +
|λ|

∣∣∣∣(I− λKN)
−1u

∣∣∣∣ ||K v||

||u|| ||v||
+ O(ǫ) , N ≥ Nǫ . (25)

The event that the condition M2N−ν ≤ O
(
N 2N

)
is potentially not met requires a more detailed analysis;

for clarity this is considered separately in §4.

The practical choice of norm-maximisation functions u, v ∈ C in the leading-order term on the right-

hand side of (25) is addressed in §3; these shall henceforth be termed “trial” functions. With u chosen, let

UN ∈ C be the solution of (cf. (10))

UN − λKN UN = u . (26)

The function UN can be computed cheaply in parallel with yN because the discretised form of (26) can be

solved simultaneously with (11) to give, in an obvious notation, the N ×N partitioned linear system

(I− λKN) (yN

∣∣UN) = (gN

∣∣uN) , (27)

for the nodal values of both yN and UN . An adapted form of (12) now yields the inversion formula

UN(x) = u(x) + λkN(x)
TUN , x ∈ [−1, 1] . (28)

With u and v chosen, the computable leading-order bound FN on the inverse in (14) is finally derived using

(25) and (26) as

FN = 1 +
|λ| ||UN || ||K v||

||u|| ||v||
(29)

which, together with (16), allows computation of the required bound BN on the Nyström error EN .

3. Implementation, results and discussion

3.1. Motivation of test problems

The theory of §2 is now implemented on four test problems with known solutions of qualitatively

different form. For each problem, the source function g(x) is readily generated directly from (1) from

the known solution y(x), parameter λ and kernel K(x, ξ), and hence their (cumbersome) forms are not

reproduced here.

3.2. Computation of operator norms

The need to compute the norm ||K v|| in (29) arises through the manipulation of (14), which defines FN

in terms of both ||K|| and ||(K−KN)K||. It is worthy of note that the former norm has previously been

defined [4, (1.2.21)] as

||K || ≡ max
x∈[−1,1]

∫ 1

−1

|K(x, ξ)| dξ (30)
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which differs from the standard form

||K|| ≈
||K 1||

||1||
= max

x∈[−1,1]

∣∣∣∣
∫ 1

−1

K(x, ξ) dξ

∣∣∣∣ . (31)

That is, (30) implicitly assumes the choice of trial function v ≡ 1 in (29); it also portends evaluation

of a looser bound than (31) because of the modulus signs on the integrand instead of the integral. For

completeness, it is recorded that, in deriving ||(K−KN)K || in [4, (4.1.13)–(4.1.17)], w ≡ 1 has similarly

been chosen in [4, (4.1.14)].

In all results pertaining to the test problems, computations have been performed using the “external”

form

||K v|| = max
x∈[−1,1]

∣∣∣∣
∫ 1

−1

K(x, ξ) v(ξ) dξ

∣∣∣∣ , (32)

whose alternative “internal” form suggested by (30) is

||K v|| = max
x∈[−1,1]

∫ 1

−1

|K(x, ξ) v(ξ)| dξ . (33)

The ratio ||K v|| / ||v|| appearing in FN is computed using (32) and (33) and compared in Table 3, in which

can be seen that the choice of trial function has a marked effect on the magnitude of ||K v|| / ||v|| (upon which

the error estimate depends linearly). Guided by (31), v = 1 is chosen as one trial function; two other natural

candidates are v = g and v = y. As expected, and as seen in Table 3, the external formula gives the tighter

bound; in those cases where there are end-point maxima, the internal and external computations yield

identical results. Moreover, ||K v|| / ||v|| is in all cases maximised when using the trial function v = 1, i.e.

when ||K|| is computed using (31): this supports the use of (30) (i.e. [4, (1.2.21)], which is presented without

discussion) which, for the reasons outlined above, would give looser error bounds than (31). Therefore, the

trial function v = 1 is used hereafter to estimate ||K|| as the supremum of ||K v|| / ||v||.

3.3. Results for test problems

With v = 1 chosen, the remaining required norm in (29) is ||UN || / ||u||, i.e.
∣∣∣∣(I− λKN)

−1u
∣∣∣∣ / ||u||,

in which UN is determined numerically via (26) upon specification of the trial function u. However, since

in the numerical experiments the exact solution y is deemed to be unknown, the (available) numerical

solution u = yN computed using (12) is now chosen as one of the trial functions on the basis of the

expected convergence of yN to y with increasing N . The two trial functions u = 1 and u = g tested in

Table 3 are also used. Computed values of ||UN || / ||u||, now dependent upon N , are presented in Table

4. Now evident is that, for a given u, the values of ||UN || / ||u|| all converge with N , and again evident is

that the maximal values occur for u = 1. Hence the trial function u = 1 is used hereafter to estimate
∣∣∣∣(I− λKN)

−1
∣∣∣∣ as the supremum of

∣∣∣∣(I− λKN)
−1u

∣∣∣∣ / ||u||.
For clarity, the error-estimation procedure so far developed is now summarised: (a) trial functions

u = 1 and v = 1 are chosen; (b) ||K v|| / ||v|| is computed using (32); (c) UN is computed using (26)–(28);

(d) FN is computed using (29); (e) the required error bound BN is computed using (16) and compared with
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the true numerical error EN computed using (15). Before this comparison is made, it remains only to check

that condition (23) is satisfied, without which the estimate of FN in (29) is not justified.

Via (21), (22) and Table 2, W
(ν)
N is, independently of ν and trial function w, identically zero for Prob-

lems 1, 2 and 3 when N > 3. For Problem 4, W
(ν)
N exhibits spectral convergence with N irrespective of

ν, and hence there exists an Nǫ such that (23) is satisfied. Figure 3 depicts this spectral convergence for

ν = 0 and w = 1, w = g and w = yN ; results for ν = 1, 2 exhibit qualitatively identical behaviour.

A preliminary comparison of BN and EN is effected in Table 5, which summarises the results of the

numerical experiments. It is evident that the ratio BN/EN for u = v = 1: converges with increasing N ;

exceeds unity throughout, and; is always strictly of order O(1). Hence for the four test problems, three

of which are challenging to approximation methods, the present theory yields tight predictions of error

bounds, extremely so for Problem 4. A different approach used by the authors in [20, (10.24)] implicitly

fixes the choice u = g, in which case UN = yN via (27) and v = yN , although this may yield (for the

reasons evident in Table 3) “bounds” satisfying BN/EN < 1.

A full comparison of predicted bounds and actual computational errors is presented in Figure 4, in

which attention is drawn to the disparate vertical scales in the sub-plots. As expected, the error convergence

rate for the “smooth” problem is by far the most rapid, so that the largest relative factors in Table 5 are in a

sense mitigated by acting upon the smallest values of ||yN − λK yN − g|| in (16), as quantified in Table 6.

The “Runge” problem has the largest error magnitudes because of the behaviour of the higher derivatives

of the solution implicit in (7); even so, the error-to-bound relative ratios are no worse than for the “smooth”

problem, as Table 5 confirms. The error magnitudes in the “steep” and “highly oscillatory” problems are

similar, although the latter is noticeably larger for smaller values of N ; this is an expected feature of the

inability to resolve the oscillations in yN for the low-N spatial discretisations; for both problems, the error

bounds are accurately predicted for sufficiently large N .

4. Potential limitations of the error analysis

The caveat raised immediately after (25) is now addressed. When the denominator of FN defined in

(14) is negative, the conditions of the theorem [4, Thm. 4.1.2] that underlies (14) are not met. This may

possibly occur if, via (23), ||(K−KN)K || grows at a rate faster than N 2N . Since (see caption of Figure

3) the meeting of condition (23) is effectively dependent upon only K(x, ξ) and the quadrature nodes, it is

sufficient to consider a potentially problematic “Runge” kernel, an example of which is

K(x, ξ) =
ξ − x

1 + α2 ξ2
, x, ξ ∈ [−1, 1] , (34)

and for which (22) gives

M0(x, ξ) =
2 (x− ξ) ξ tan−1α

α (1 + α2 ξ2)
, (35)

whose successive partial derivatives with respect to ξ grow exponentially for sufficiently large α. It is

possible to show that the suprema of MM(x, ξ) are at x = ±1 for all M , and that the MM(x, ξ) can be
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normalised to µM(x, ξ) using the scaling

µM(x, ξ) =
α2−M

2M ! tan−1α
MM(x, ξ) , ||µM || ≤ 1 , M ∈ N . (36)

Via (21), (22) and (36) it follows that

W
(0)
N =

π

2

(α
2

)2N−2

tan−1α , W
(1)
N =

2

α
W

(0)
N and W

(2)
N =

4N

(2N − 1)α
W

(1)
N , (37)

and hence the maximal estimate W
(ν)
N of ||(K−KN)K || portends a breakdown of the theory when α > 2

on all node distributions considered. However, this transpires not to be the case in practice when, as Figure

5 reveals, ||(K−KN)K || (computed using w = 1) converges to zero spectrally with increasing N and α

despite (37) predicting exponential divergence when α > 2. Clearly evident in Figure 5 is not only this

spectral convergence with N to zero of the numerically computed ||(K−KN)K ||, but also the unexpected

independence upon α for α ≫ 1. That is, in practice, the theory presented in §2 holds for even the

ostensibly problematic-by-construction “Runge” kernel (34).

In order to explain the apparent convergence-divergence discrepancy portrayed in Figure 5, it is nec-

essary to examine not the bound MM in (22), but rather the (normalised) function µM(x, ξ) in (36) upon

which the bound is based. Figure 6 depicts |µ6(x, ξ)| (alongside its logarithm) in order to show that

its suprema are highly localised; specifically, it is straightforward to show that the leading-order large-α

asymptotic behaviour of the mean of µM(x, ξ) is µ
M

∼
(
(−1)M+1−1

)
/(2αM+3), which confirms that the

norm-to-mean discrepancy of µM increases exponentially withM and algebraically with |α| (see Figure 7).

Hence, although the bound MM is used in the error estimate, the true error term associated with Nyström

integration requires the evaluation of µM(x, ξ) at an a priori unknown location (x∗, ξ∗), say. As can be

seen from Figure 6, it will be the case (following denormalisation) that |MM(x∗, ξ∗)| ≪ MM , thereby

explaining the observation ||(K−KN)K || ≪ W
(0)
N evident in Figure 5. Finally, Figure 7 evidences the

increasing localisation, alluded to above, of the suprema of |µM(x, ξ)| with increasing |α|.

In summary, the theoretical method proposed herein, and its computational implementation, has been

fully validated via the results presented on a qualitatively diverse set of test problems. Its potential lim-

itations have been discussed and demonstrated not to be realised in practice. The authors have recently

extended the proposed method to the case of first-order Fredholm integro-differential equations of the sec-

ond kind. The extended analysis, incorporating a detailed investigation of discrete spectral differentiation

on orthogonal-polynomial node sets, is the subject of a forthcoming companion paper.
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Quadrature Legendre Radau Lobatto

Assigned ξj,N None ξ1,N = −1 ξ1,N = −1, ξN,N = 1

Weights — w1,N = 2
N2 w1,N = wN,N = 2

N(N−1)

Free ξj,N PN(ξj,N) = 0
PN−1(ξj,N )+PN(ξj,N )

1+ξj,N
= 0

P ′

N−1(ξj,N )

1−ξ2
j,N

= 0

Weights wj,N
−2

(N+1)P ′

N
(ξj,N )PN+1(ξj,N )

1−ξj,N

N2

(
PN−1(ξj,N )

)2
2

N(N−1)
(
PN−1(ξj,N )

)2

Range j = 1, . . . , N j = 2, . . . , N j = 2, . . . , N − 1

Error factor ψ
(0)
N = 22N+1(N !)4

(2N+1)
(
(2N)!

)3 ψ
(1)
N =

22N−1N

(
(N−1)!

)4

(
(2N−1)!

)3 ψ
(2)
N =

22N−1N(N−1)3
(
(N−2)!

)4

(2N−1)
(
(2N−2)!

)3

Asymptotic rate ψ̃
(0)
N ∼ π

22N (2N+1) (2N−1)!
ψ̃
(1)
N ∼ π

22N−1 (2N−1)!
ψ̃
(2)
N ∼ (2N−1)π

22N−2 (2N−2) (2N−2)!

Bound on QN β
(0)
N = ψ

(0)
N K2N β

(1)
N = ψ

(1)
N K2N−1 β

(2)
N = ψ

(2)
N K2N−2

Table 1: Quadrature results required for conducting and implementing the error analysis in §2.3. The presented Radau abscissae ξj,N ,

weights wj,N and bound on the quadrature error QN are for so-called left-Radau quadrature; those for right-Radau quadrature, in

which the assigned node is ξ̃N,N = 1, satisfy ξ̃j,N = −ξN+1−j,N , w̃j,N = wN+1−j,N and QN = Q̃N . The theoretical bounds

β
(ν)
N (which utilise (7)) on QN are validated on a test problem in Figure 1.

Problem name solution y(x) kernel K(x, ξ) λ

1 smooth sinx+ 3x4 xξ3 + x2ξ + 4 1
10

2 Runge 1
1+25x2 (x+ ξ)(5x− 2ξ) 1

5

3 steep e−12x 2x3 + 4x2ξ + ξ2 1
2

4 oscillatory cos 15x cosx+ sin 2ξ 1
3

Table 2: Test problems with solutions of four qualitatively distinct forms. The Runge phenomenon [24, 25], extreme gradient and

high-frequency oscillations, in the solutions of problems 2, 3 and 4 respectively, offer well-documented challenges to approximation

methods.

Trial function v = 1 v = g v = y

Norm type External Internal External Internal External Internal

Problem 1 8.000 8.000 0.526 1.869 1.499 1.748

Problem 2 8.667 8.667 1.408 2.967 2.631 2.631

Problem 3 4.667 5.105 0.387 0.470 0.324 0.324

Problem 4 2.000 2.000 3.882×10−2 1.270 8.761×10−2 1.247

Table 3: Comparison of the error-factor component ||K v|| / ||v|| computed using (32) and (33), respectively the external- and internal-

modulus norm formulae. Comparisons are for three trial functions, the “standard” v = 1, the source function v = g and the

exact solution v = y. For all problems, ||K v|| / ||v|| is maximised using the trial function v = 1, which is accordingly used in the

subsequent computation of error-bound suprema. For this norm, the “outlier”, in terms of magnitude, is the highly oscillatory solution

of Problem 4.
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N = 10 N = 20 N = 30

Trial function u = 1 u = g u = yN u = 1 u = g u = yN u = 1 u = g u = yN

Problem 1 5.000 1.176 2.949 5.000 1.176 3.166 5.000 1.176 3.211

Problem 2 3.144 0.9812 0.9929 3.144 0.9774 0.9788 3.144 0.9773 0.9787

Problem 3 457.5 0.8328 335.2 457.5 0.8328 422.2 457.5 0.8328 441.7

Problem 4 2.518 0.9916 1.678 2.518 0.9725 2.023 2.518 0.9725 2.082

Table 4: Comparison of the error-factor component ||UN || / ||u||, equivalently
∣∣∣∣(I− λKN )−1u

∣∣∣∣ / ||u||, computed using (26). Com-

parisons are for three trial functions u = 1, u = g and the numerical solution u = yN . For all problems, ||UN || / ||u|| is maximised

using the trial function u = 1, which is accordingly used in the subsequent computation of error-bound suprema. For this norm, the

“outlier”, in terms of magnitude, is the steep solution of Problem 3.

BN/EN N = 10 N = 20 N = 30

Problem 1 4.190 4.162 4.157

Problem 2 4.251 4.251 4.251

Problem 3 14.18 4.162 3.382

Problem 4 1.176 1.176 1.176

Table 5: Values of the ratio BN/EN (predicted error bound to actual error in numerical solution) for ν = 0 using trial functions

u = v = 1 in the four test problems. The external bound (32) was used in the computation of ||K v|| in (29). Results for ν = 1, 2

are qualitatively similar. In all cases, the ratio converges with increasing N , always exceed unity, and are strictly of order O(1). The

predicted bounds are best, in a relative sense, for Problem 4, despite the highly oscillatory nature of its solution.

N = 10 N = 20 N = 30

Problem 1 8.124× 10−22 2.038× 10−56 6.641× 10−96

Problem 2 1.929× 10−2 3.691× 10−4 6.946× 10−6

Problem 3 6.838× 10−2 7.006× 10−16 4.168× 10−34

Problem 4 8.802× 10−3 3.272× 10−14 1.596× 10−30

Table 6: Computed values of ||yN − λK yN − g|| for ν = 0 used in estimating BN via (16). This component of the predicted error

is immutable, being unaffected by any of the approximations made in §2.4. Results for ν = 1, 2 are qualitatively similar.
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Figure 1: Logarithmic plot showing the close agreement between the predicted error bounds β
(0,1,2)
N on QN (large symbols) in the

last row of Table 1, the asymptotic Legendre-error bound (8) for β̃
(0)
N (dotted line) and the actual computational errors QN (small

symbols). For illustrative purposes, the functions K(x, ξ) = 1 and u(ξ) = cos ξ + sin ξ have been chosen in (7), and hence the

excellent agreement is due to the infinite differentiability of the test function u(ξ). All calculations were performed in the algebraic

manipulator Maple in an enforced machine precision of 10−32 (dashed line), slightly above which the computational error exhibits

the typical positive-gradient round-off plateau for increasingN . The predictionsψ
(1)
N /ψ

(0)
N = 4N+2 andψ

(2)
N /ψ

(1)
N = 4N+ 1

N−1

(obtained from Table 1) are evident: before reaching the round-off plateau, the accuracy of the quadrature rule is eroded by each

addition of an assigned abscissa.
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Figure 2: Complex contour plots (cf. [26, 22]) of the monic-polynomial equipotentials |pN (x + iy)| = 10−m with roots at the (a)

Legendre, (b) Lobatto, (c) left-Radau and (d) right-Radau nodes ξj,N . Here N = 17 and m = 0(1)5, with m = 0 and m = 5

respectively corresponding to the largest and smallest (adjacent to the nodes) contours. It is the flattish “cigar-like” profiles of the

contours in the neighbourhood of x ∈ [−1, 1] that give rise [26, Ch.5] to the spectral convergence observed in Figure 1 when using

the abscissae summarised in Table 1.
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Figure 3: Logarithmic plot of W
(0)
N for Problem 4 and w = 1, w = g and w = yN on the Legendre nodes. In the interests of clarity,

the qualitatively identical and quantitatively similar results for Radau and Lobatto nodes are omitted. By (21) and (22), note that

W
(0)
N is explicitly dependent upon only N and K , the dependence on KN being implicit via the quadrature abscissae and weights.
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Figure 4: Logarithmic plots comparing theoretically predicted error bounds BN (large symbols) and numerical computational errors

EN (corresponding small symbols) for Problems (a) 1 (“smooth”), (b) 2 (“Runge”), (c) 3 (“steep”) and (d) 4 (“highly oscillatory”).

Note the disparate vertical scales on each plot, the Runge problem displaying the slowest convergence with N ; the “steep” and

“oscillatory” errors are of comparable magnitude. Note that, for a given N , the magnitudes of the computed errors do not necessarily

increase monotonically with ν for all test problems, as suggested by the isolated asymptotic rates in Table 1.
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Figure 5: Logarithmic plot of ||(K−KN )K || computed usingw = 1 (symbols) and its theoretical bound W
(0)
N given by (37) (lines)

for different values of α. Numerical results confirm spectral convergence of ||(K−KN )K || to zero with N , whereas exponential

divergence of W
(0)
N is predicted for α > 2. Note also the near-independence of this phenomenon on the value of α ≫ 1. The

conclusion is that the theory of §2 remains valid for all α.

Figure 6: Plot (left) and logarithmic plot (right) of |µ6(x, ξ)|, with α = 4, showing both the highly localised suprema (independent

of M ) at x = ±1 discussed after (35), and the near-global small magnitude discussed in the main body of the text.
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Figure 7: Plots in ξ ∈ [0, 1] of the normalised function µM (1, ξ) given by (36) for M = 1 to M = 8 and (a) |α| = 1, (b) |α| = 2,

(c) |α| = 4 and (d) |α| = 8. Solid/dashed lines correspond to odd/even values of M , and local maxima away from ξ = 0 decrease

with increasing M . Curves for ξ ∈ [−1, 0] are given by symmetry/antisymmetry for M even/odd. Clearly evident is the increasing

localisation, discussed in the text, of the suprema with increasing |α|.
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