
This is a repository copy of A relevance comparison between interval and prefix labelling
schemes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/118986/

Version: Accepted Version

Proceedings Paper:
Al-Khazraji, S. and North, S.D. orcid.org/0000-0002-8478-8960 (2018) A relevance
comparison between interval and prefix labelling schemes. In: 2017 International
Conference on Engineering and Technology (ICET). International Conference on
Engineering and Technology 2017, 21-23 Aug 2017, Antalya, Turkey. IEEE . ISBN 978-1-
5386-1948-3

https://doi.org/10.1109/ICEngTechnol.2017.8308211

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Relevance Comparison between Interval and Prefix

Labelling Schemes

Samer Al-khazraji

Department of Computer Science

The Education College for Pure Science, Diyala

University

Diyala, Iraq,
samerbaq@yahoo.com

Siobhán North

Department of Computer Science

The University of Sheffield

Sheffield, United Kingdom

s.north@sheffield.ac.uk

Abstract— Improving XML database management system has

attracted researchers to consider whether the indexing system is

equivalent to a relational database management system. The

indexing system is based on labelling the nodes of the XML tree.

Different types of labelling scheme have been proposed to label

the document quickly and without consuming too much storage

space. However, most the studies focused on evaluating the

performance of new labelling schemes. The appropriateness of

various existing schemes to the particular structure an XML

document has not been addressed sufficiently. To investigate this

aspect two common XML labelling schemes were employed:

Prefix (Dewey Encoding) and Interval (Containment) to label

three different examples of XML documents with very different

structures. The time and storage space requirements were

investigated to compare the relevance of each scheme to the

structures of the documents. A number of experiments were

conducted and it was found that Dewey Encoding and

Containment techniques are relatively fast when labelling

shallow tree structures. Dewey required little storage space to

save labels of wide tree structures, however, Containment used

less storage space when storing the labels of short trees.

Keywords— XML labelling scheme, Prefix, Interval, Dewey,

Containment.

I. INTRODUCTION

Undoubtedly XML has emerged as the de facto technology for

data transmission and representation in a wide range of

domains [1; 2; 3] and the need for a qualified management

system to organise XML data storage is important [4].

XML databases are classified into two categories [5; 6]

XML-enabled databases which use a conventional database

management system such as Oracle XDK and Microsoft SQL

Server that supports XML documents [7; 6]. To store XML

data into this type of database, the data needs to be mapped into

the traditional database management system which is a costly

process. Native-XML databases NXD preserves the

hierarchical structure of the XML document and eliminates the

mapping process [7; 6] and this class of storage is the core of

this research. Data is stored in the conventional database using

tables which consist of rows and columns and accessing the

required data can be achieved through an indexing system.

However, this system cannot be used to query information

which has been stored in a tree structure as XML documents

are [4] as shown in Figure 1.

Data in an XML document tree demonstrates various kinds

of structural relationships: parent-child P-C, ancestor-

descendant A-D, and siblings’ relationships [8; 2]. An indexing

system is needed that has the ability to represent the nodes

correlations in the XML databases and guide the query to the

intended node effectively and efficiently [9]. Node labelling

schemes can be used as an indexing system in XML document.

They assign a unique label to each node that encodes the node

relationships in the tree [10]. An XML query has a similar

structure to XML documents and therefore the use of XML

labelling schemes may increase the performance of query

processing through matching the structures [11; 12].

Figure 1: XML different tree structure. (a) Deep XML Tree. (b) Wide XML

Tree.

It has been demonstrated that the time required to label XML

documents relies on the XML document size and the number

nodes [13]. However, existing work has rarely considered the

XML tree structures as can be seen in Figure 1 where the tree

in Figure 1 is deeper than that in Figure 1 and the latter tree is

wider than the former. Depending on the tree structure,

researchers have compared the performance of their schemes

for labelling the documents with previous work on each

individual XML dataset based on time and storage space.

However, they did not investigate the performance of their

approach with different tree structures.

XML labelling schemes have been categorised into: Interval

labelling scheme, Prefix labelling scheme, Multiplicative

labelling scheme, and Hybrid labelling scheme [14] cited by

[15]. In this study, the performance of the Prefix and Interval

schemes when labelling three different XML tree structures

have been analysed based on time and storage space required.

The rest of the paper is organised as follows. In Section II a

set of related work is reviewed. Section III investigates the

relevance of XML schemes. Section IV includes experimental

results as well as discussesing them and Section V concludes

the paper.

II. THE RELATED WORKS

XML documents have been adopted in different domains
for data representation and storage such as, data warehousing
[16; 17; 18] cited in [19] mathematics (Mathematics Markup
Language (MathML)) [20], healthcare [21]. The extensive use
of XML documents will lead to an increase in the data
produced. As a result, tree size will increase and this justifies
the need for a technique able to define node relationships. This
can be achieved through a labelling scheme [22; 23; 24]. XML
labelling schemes function by describing the node’s location in
the tree and its relationships by a unique identifier, its label
[22; 25].

A significant task of XML labelling schemes is to increase
the performance of XML database management by improving
query processing. A user query is written using one of the
XML languages such as, XPath and XQuery which were
designed to process the user queries in semi-structure
documents such as XML. Effective and efficient query
processing depends on the labelling scheme used to match the
relationships between the nodes in the user query and the XML
tree [9]. So, the performance of query processing depends on
the efficiency of a scheme that is able to allocate a small label
to each node in a tree quickly.

A two well-known labelling schemes will be explained in
the next section, namely Interval and Prefix. Many schemes
have been proposed based on these two fundamental
techniques.

A. interval-based labelling schemes

Interval Based labelling schemes are named because the
intervals between node labels are exploited to determine node

relationships. They define the relationships between the parent
or ancestor and its descendants nodes [26] as cited in [4]. The
earliest labelling scheme for encoding XML nodes is Interval-
Based labelling scheme designed by [27] and based on Pre and
Post tree traversal order as cited by [28]. The node label
structure of this scheme consists of two integer values
depending on the node's location in the tree during Preorder
and Postorder traversal of the tree [28]. For example, the node
Library in Figure 2 is ancestor of the node Book because 1<2
in preorder tree traversal and 3<7 in postorder tree traversal.

However, it is not obvious that the node Library is the
parent to the node Book.

To cover this drawback, an extension to this scheme was
proposed by [29]. In their scheme a label consists of: (Start,
End, Position), where, Start and End represent the range of
labels of the descendant nodes and Position is the node’s level
in the tree; its distance from the root. In this scheme, the P-C
relationship can be identified because the position of the child
is one higher than that of the parent [30; 15].

 For instance, the node Library in Figure 3 is the parent of
the node Book because the level of Book is deeper than the
level of Library. ݈݁ݒ݁ܮ ൌ	݈݁ݒ݁ܮ௬ 	1

Moreover, the labels of descendant nodes are contained in
the range of the parent label. This property called the
Containment property [13].

The approach of [29] considered relationship representation
in Interval labelling schemes. However, another group of
researchers studied the simplicity of label generation based on
interval labelling scheme as will be explained in the next
approach.

In [15], a new labelling scheme was proposed to simplify
the process of generating labels of [27]. The scheme assigns a
unique label to each node which consist of (level, ordinal, rID)
as illustrated in Figure 4. Where, Level is the node’s level in
the XML tree starting from level 0 the root’s node level.
Ordinal is a unique integer number assigned to the node during
preorder tree traversal and rID is the ordinal of the right most
sibling in its sub-tree.

Interval labelling schemes visit XML nodes twice to
produce labels for each node.

Figure 2: Preorder/Postorder-Based Labelling Scheme.

Figure 3: Containment Labelling Scheme

Figure 4: Relab Labelling Scheme

This is expensive in terms of space and is slow, furthermore
the time increases exponentially as the tree grows. There was
a need for a scheme that generates labels in linear time and
storage space as the tree grows [31]. This kind of labeling
scheme will be explained in the next subsection.

B. Prefix Labelling Scheme

Prefix labelling schemes are similar to a technique used by
librarians called Dewey Decimal Coding [31]. In [22], it was
argued that this class of scheme can represents different kinds
structural relationships between nodes. In Prefix schemes the
node’s parent label is encoded as a prefix to the node’s
individual label. These labels are generated by depth-first
search and they are separated by a delimiter, either ',' or '.' [32;
22; 33]. A popular Prefix labelling scheme proposed by [32]
and known as Dewey Encoding and will be explained in the
next section.

In [32], the labelling scheme was intended to answer order-
sensitive queries such as [32; 26] Preceding, Following,
Preceding-sibling Following-Sibling, and Position = n. The
first class excludes the ancestor or descendant of the context
nodes and is focused on if the node is before or after it. The
second class will retrieve the preceding and following elements
siblings in the XML tree. The last class of query will simply
fetch the information of the intended node.

In [32], Dewey Order labelling was designed to be
compatible with order sensitive queries. Their scheme is a
combination of two numbering approaches Global Order and
Local Order. Global Order assigns a label to each node based
on the global order of the node in the XML tree as shows in
Figure 5. Local Order allocates a label to the node based on
the node’s order among its siblings as shown in Figure 5. The
Dewey Order labelling scheme combines these values and
encodes the node’s path from the root to its location in the tree
as can be seen in Figure 5.

Figure 5: Prefix labelling scheme. (a) Global Order Labelling Scheme, (b)
Local Order Labelling Scheme, (c) Dewey Labelling Scheme.

Dewey labelling is an expressive scheme which represents
different kinds of structural relationships of XML nodes. From
the Figure 5, Book and Paper are sibling nodes because their
labels are sequential (e.g. 1 and 2) and the prefix of both is the
same. Moreover, it is clear that Library is an ancestor of
Author, where, the prefix of Author label starts with the label
of Library as can be seen in Figure 5.

Many schemes have been proposed based on Dewey
Encoding such as: ORDPATH [34], Dynamic Float-Point
Dewey DFPD [35], Labelling Scheme for Dynamic XML data
LSDX [36], Compressed Dynamic Labelling Scheme Com-D
[37], OrderedBased [22], and etc. These labeling schemes were
proposed as extensions for dynamic trees that support the
update of the XML tree without relabelling. Schemes for
dynamic labelling are outside the scope of this study and will
not be discussed.

III.RELEVANCE INVESTIGATION OF XML LABELLING SCHEMES

XML labelling schemes were exploited to represent
structural relationships whilst producing a unique label for each
node in the document [10]. Consequently, labelling schemes
can improve query processing efficiency by accessing the
labels rather than the real document [11; 12].

Many attempts have been mad to identify the best labelling
scheme, one which generates labels quickly and requires little
storage space to save them. Most research effort has been spent
in overcoming the drawbacks of previous work by suggesting
new schemes that show an improvement over previous works.
However, researchers do not analyze the applicability of their
work to different structures of XML database.

To analyze the relationship between schemes and tree
structure, two common labelling schemes were employed:
Dewey Encoding and Containment. A number of experiments
were executed to measure the performance of Dewey Encoding
(Dewey in short) and Containment based on time and storage
space. Three different real XML documents were employed:
Nasa, DBLP, and Treebank-e all of which can be found on the
Washington University website for research purpose [38]. Two
sets of experiments were executed: the first were run to
measure the time required to label each dataset using Dewey
and Containment. The shortest time for labelling time a
specific XML document structure will indicate its suitability
for that document.

Another set of experiments were carried out to investigate
the scheme which requires least storage space to store the
labels of the XML dataset. Small label size can improve the
query processing by reducing the comparison time between the
structures of query and the node labels [9].

The run time and storage space required to label the three
XML documents using these schemes were measured
independently as will be explained in the next section.

IV.EXPERIMENTS AND RESULTS ANALYSIS

A. System Setup

A number of experiments were executed using Eclipse
'Release 4.4.0RC1' as an integrated development environment
IDE to run Java code on a computer has Intel (R) Core (TM)
i5-3570t CPU 2.30 GHz, RAM 4 MB, and windows 7
Enterprise. Moreover, SPSS20 which is a common statistical
application was exploited to analyze the results. In these
experiments, Containment and Dewey Encoding labelling
schemes were employed to measure the performance with three
XML databases: Nasa, DBLP, and Treebank-e. The
characteristics of these datasets are shown in the Table 1.

B. Discussion

Figure 6 shows the statistical information in the Table 2.
The x-axis represents the type of XML scheme and y-axis
represents the time consumed for labelling the XML
documents in millisecond.

TABLE 1: XML DATABASES

XML

Database

No. of

Elements

Max Depth

(Level)
File Size

Nasa 476646 8 23MB

dblp 3332130 6 127MB

Treebank-e 2437666 36 82MB

TABLE 2:TIME CONSUMED FOR LABELLING NASA, DBLP, AND TEEBANK-E

USINGDEWEY AND CONTAINEMENT

Scheme
Nasa Dblp Treebank-e

Mean STD Mean STD Mean STD

Dewey 262.96 14.716 1488.15 29.255 1175.09 42.050

Contain. 307.07 5.883 1911.89 24.688 1362.24 17.280

The statistical information in the Table 2 showed that the
mean time to label using Dewey (1,488ms) is shorter than that
for Containment (1,912ms) when encoding DBLP as illustrated
in the Figure 6. In [28], it was explained that Containment
generates a new label for each element that is between 1 and
2n, where 'n' is the number of elements. Therefore, this
technique will require exponential time when labelling XML
trees [31]. The same figure can be seen in labelling the same
set of databases using Containment. However, the time
consumption for labelling DBLP is the greatest because it has a
largest number of nodes of all databases in the Table 1.

Another set of experiments were performed to evaluate the
relevance of Dewey and Containment for labelling the same
collection of XML documents based storage space.

Prefix produces labels sequentially and the label size
depends on the node level in the tree. The depth of Treebank-e
is 36 levels which means label of a node at the level 36 will

.

Figure 6: Time Required for Labelling XML Databases.

consist of 36 sections. The statistical information in the Table 3
shows that Treebank-e required the largest storage space
48,922 KB to store the labels generated by Dewey in
comparison to other databases. The labels generated by Dewey
are sequentially and the number of sections of the node label
depends on the depth of the node in the XML tree
[32].However, DBLP consumed 59,858 KB which is the

largest storage space required for storing labels and these were
produced by the Containment scheme as shows in the Figure 7.

To validate our results, we compared them with the results
of initial labelling of the three XML databases reported in [28].
It was observed that our results were consistent with the
published results.

V.CONCLUSION

In this study, the problem of measuring the suitability of an
XML labelling scheme for a particular XML document
structure was studied. This issue has not been sufficiently
addressed in the XML literature. It can potentially reduce effort
in proposing a new scheme by revealing weaknesses of
alternatives. This facilitates the design and optimisation of new
schemes. To this end, three real XML databases were
employed (Nasa, DBLP, Treebanck-e) and two common XML
labelling schemes (Dewey Encoding and Containment) were
used to label these databases. A set of experiments were carried
out to analyse the appropriate scheme for labelling a particular
XML document structure based on the time and storage space
requirements.

Table 3: Space Required in KB for Saving the Labels of Nasa, dblp, and

Treebank-e using Dewey and Containment Labelling Scheme.

Scheme Nasa dblp Treebank-e

Dewey 7119.90 37664.14 48921.83

Contain. 7754.21 59858.03 44368.03

Figure 7 : Space Required in KB for Labelling XML Databases.

In case of the time measurement, it was observed that
Dewey Encoding is suitable for a shallow XML tree structures
and Containment better fits deep databases. On the other hand,
both Dewey Encoding and Containment consumed little
storage when saving the labels of the deep trees. For the future

work, the relevance of other schemes to these different
structures of XML databases should be investigated.

ACKNOWLEDGMENT

This research was supported in part by the Iraq Ministry of

Higher Education and Scientific Research and the University

of Diyala.

REFERENCES

1. XML and data integration. Bertino, Elisa and Ferrari,

Elena. 2001, IEEE, pp. 75--76.

2. Element similarity measures in XML schema matching.

Algergawy, Alsayed and Nayak, Richi and Saake, Gunter.
2010, Elsevier, pp. 4975--4998.

3. XML data clustering: An overview. Algergawy, Alsayed

and Mesiti, Marco and Nayak, Richi and Saake, Gunter.
2011, ACM, p. 25.

4. Almelibari, Alaa. Labelling Dynamic XML Documents: A

GroupBased Approach. Sheffield : University of Sheffield,

2015.

5. Bellahs`ene, Z. Database and XML Technologies. Berlin :

Springer, 2003.

6. Kurt, Atakan and Atay, Mustafa. International Workshop

on Databases in Networked Information Systems: An

experimental study on query processing efficiency of native-

XML and XML-enabled database systems. s.l. : Springer,

2002. 268--284.

7. Win, Khin-Myo and Ng, Wee-Keong and Lim, Ee-Peng.

Asia-Pacific Web Conference: efficient native XML storage

system. s.l. : Springer, 2033. 59-70.

8. Wilde, Erik. Wilde's WWW: technical foundations of the

World Wide Web. s.l. : Springer Science \& Business Media,

2012.

9. Dynamic interval-based labeling scheme for efficient XML

query and update processing. Yun, Jung-Hee and Chung,

Chin-Wan. 1, s.l. : Elsevier, 2008, Vol. 81. 56--70.

10. An Analysis of Approaches to XML Schema Inference.

Mlynkov'a, Irena. s.l. : IEEE, 2008. 16-23.

11. Dynamically updating XML data: numbering scheme

revisited. Yu, Jeffrey Xu and Luo, Daofeng and Meng,

Xiaofeng and Lu, Hongjun. 1, s.l. : Springer, 2005, Vol. 8.

12. Query processing and optimization for regular path

expressions. Wang, Guoren and Liu, Mengchi. s.l. :

Springer, 2003. 30--45.

13. A dynamic labeling scheme using vectors. Xu, Liang and

Bao, Zhifeng and Ling, Tok Wang. s.l. : Springer, 2007.

130--140.

14. Data storage practices and query processing in XML

databases: A survey. Haw, Su-Cheng and Lee, Chien-Sing.

8, s.l. : Elsevier, 2011, Vol. 24. 1317--1340.

15. ReLab: A subtree based labeling scheme for efficient XML

query processing. Subramaniam, Samini and Haw, Su-

Cheng and Soon, Lay-Ki. s.l. : IEEE, 2014. 121--125.

16. Change detection in hierarchically structured information.

Chawathe, Sudarshan S and Rajaraman, Anand and

Garcia-Molina, Hector and Widom, Jennifer. 2, s.l. : ACM,

1996, Vol. 25. 493--504.

17. Comparing hierarchical data in external memory.

Chawathe, Sudarshan S and others. s.l. : VLDB, 1999, Vol.

99. 90--101.

18. Detecting changes in XML documents. Cobena, Gregory

and Abiteboul, Serge and Marian, Amelie. s.l. : IEEE, 2002.

41--52.

19. Structural similarity evaluation between XML documents

and DTDs. Tekli, Joe and Chbeir, Richard and Yetongnon,

Kokou. s.l. : Springer, 2007. 196--211.

20. Carlisle, D., Ion, P., Miner, P. Mathematical Markup

Language (MathML) Version 3.0. W3C. [Online] W3C, 4 10,

2014. [Cited: 5 21, 2016.] http://www.w3.org/TR/MathML/.

21. Semantic and structural similarities between XML

Schemas for integration of ubiquitous healthcare data. Thuy,

Pham Thu Thu and Lee, Young-Koo and Lee, Sungyoung.
7, s.l. : Springer, 2013, Vol. 17. 1331--1339.

22. Orderbased labeling scheme for dynamic XML query

processing. Assefa, Beakal Gizachew and Ergenc, Belgin.

s.l. : Springer, 2012. 287--301.

23. Dynamic labelling scheme for XML data processing.

Duong, Maggie and Zhang, Yanchun. s.l. : Springer, 2008.

1183--1199.

24. Triple Code: An Efficient Labeling Scheme for Query

Answering in XML Data. Fu, Lizhen and Meng, Xiaofeng.

s.l. : IEEE, 2013. 42--47.

25. A Dynamic Labeling Scheme Based on Logical Operators:

A Support for Order-Sensitive XML Updates. Ghaleb, Taher

Ahmed and Mohammed, Salahadin. s.l. : Elsevier, 2015.

1211--1218.

26. A prime number labeling scheme for dynamic ordered

XML trees. Wu, Xiaodong and Lee, Mong-Li and Hsu,

Wynne. s.l. : IEEE, 2004. 66--78.

27. Maintaining order in a linked list. Dietz, Paul F. s.l. :

ACM, 1982. 122--127.

28. Labeling dynamic xml documents: an order-centric

approach. Xu, Liang and Ling, Tok Wang and Wu, Huayu.

1, s.l. : IEEE, 2012, Vol. 24. 100--113.

29. On supporting containment queries in relational database

management systems. Zhang, Chun and Naughton, Jeffrey

and DeWitt, David and Luo, Qiong and Lohman, Guy. 2,

s.l. : ACM, 2001, Vol. 30. 425--436.

30. Full tree-based encoding technique for dynamic XML

labeling schemes. Zhuang, Canwei and Feng, Shaorong.

s.l. : Springer, 2012. 357--368},.

31. Prefix based numbering schemes for XML: techniques,

applications and performances. Sans, Virginie and Laurent,

Dominique. 2, s.l. : ACM, 2002, Vol. 1. 204--215.

32. Storing and querying ordered XML using a relational

database system. Tatarinov, Igor and Viglas, Stratis D and

Beyer, Kevin and Shanmugasundaram, Jayavel and

Shekita, Eugene and Zhang, Chun. s.l. : ACM, 2002. {204--

215.

33. Dynamic labeling scheme for XML updates. Liu, Jian and

Zhang, XX. s.l. : Elsevier, 2016.

34. ORDPATHs: insert-friendly XML node labels. O'Neil,

Patrick and O'Neil, Elizabeth and Pal, Shankar and Cseri,
Istvan and Schaller, Gideon and Westbury, Nigel. s.l. :

ACM, 2004. 903--908.

35. Efficient labeling scheme for dynamic XML trees. Liu,

Jian and Ma, ZM and Yan, Li. s.l. : Elsevier, 2013, Vol.

221. 338--354.

36. LSDX: a new labelling scheme for dynamically updating

XML data. Duong, Maggie and Zhang, Yanchun. s.l. :

Australian Computer Society, Inc., 2005. 185--193.

37. Dynamic labelling scheme for XML data processing.

Duong, Maggie and Zhang, Yanchun. s.l. : Springer, 2008.

1183--1199.

38. Datasets, Details, and Download. XML Data Repository.

[Online] Washington University. [Cited: 5 10, 2016.]

http://aiweb.cs.washington.edu/research/projects/xmltk/xmldat

a/www/repository.html.

