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a  b  s t  r a  c t

EQ-5D  is used in  cost-effectiveness  studies  underlying many  important health policy decisions.  It  com-

prises  a survey instrument  describing health states  across five  domains,  and  a system of utility values

for  each state.  The original  3-level  version  of EQ-5D  is being  replaced with  a more  sensitive  5-level  ver-

sion but  the  consequences  of this change  are  uncertain. We  develop  a multi-equation  ordinal  response

model  incorporating  a  copula  specification  with  normal  mixture  marginals to analyse joint  responses

to  EQ-5D-3L  and  EQ-5D-5L  in a survey  of people  with  rheumatic disease,  and use  it to  generate map-

pings  between  the  alternative  descriptive  systems. We revisit  a major cost-effectiveness  study  of  drug

therapies  for  rheumatoid arthritis,  mapping the  original  EQ-5D-3L  measure  onto a 5L  valuation  basis.

Working within  a comprehensive,  flexible  econometric  framework,  we find that  use of simpler restricted

specifications  can make  very  large changes to cost-effectiveness  estimates  with  serious  implications  for

decision-making.

©  2017 The Authors.  Published  by  Elsevier B.V. This is an open  access article  under  the  CC  BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction: EQ-5D-3L and EQ-5D-5L

The quality-adjusted life year (QALY) is one of the most widely

used health benefit measures in economic evaluations of inter-

ventions, services or programmes designed to improve health. The

QALY reflects concerns for both quality and length of life and allows

health care decision makers to use a consistent approach across a
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broad range of disease areas, treatments, and patients. QALY esti-

mation is based on patient-reported outcome measures (PROMs),

of which EQ-5D is  a  leading example. EQ-5D is  recommended by

the English National Institute for Health and Care Excellence (NICE)

for its technology appraisals, but it has wider international signifi-

cance: public bodies in  at least ten other countries also recommend

EQ-5D as a  basis for cost-effectiveness analysis.1 It is  also increas-

ingly used as a  measure of performance in  wider economic contexts,

and as a  generic health measure in population surveys (Devlin and

Brooks, 2017). There is continuing debate about the basis of  eco-

nomic appraisal in health policy, with interest in  wider outcome

measures based on wellbeing or capabilities, income-variation val-

uations, and the use of weights for different aspects of disease such

as burden of disease or rarity (Brazier and Tsuchiya, 2015). Nev-

1 Including Belgium, Colombia, Egypt, Estonia, Ireland, Latvia, Lithuania, the

Netherlands, New Zealand and Sweden. See the pharmacoeconmics guidelines

maintained by  the International Society for Pharmacoeconomics and Outcomes

Research (https://www.ispor.org/PEguidelines/COMP3.asp).
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dx.doi.org/10.1016/j.jhealeco.2017.06.013
http://www.sciencedirect.com/science/journal/01676296
http://www.elsevier.com/locate/econbase
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhealeco.2017.06.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:steve.pudney@sheffield.ac.uk
https://www.ispor.org/PEguidelines/COMP3.asp
https://www.ispor.org/PEguidelines/COMP3.asp
https://www.ispor.org/PEguidelines/COMP3.asp
https://www.ispor.org/PEguidelines/COMP3.asp
https://www.ispor.org/PEguidelines/COMP3.asp
https://www.ispor.org/PEguidelines/COMP3.asp
https://www.ispor.org/PEguidelines/COMP3.asp
dx.doi.org/10.1016/j.jhealeco.2017.06.013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


140 M. Hernández-Alava, S. Pudney / Journal of  Health Economics 55 (2017) 139–152

ertheless, for the foreseeable future, it seems inevitable that cost

per QALY will continue to be the main driver of decisions in many

public health services around the world.

EQ-5D measures patient outcomes across five dimensions:

mobility, self-care, usual activities, pain/discomfort, and anxi-

ety/depression. The original version of EQ-5D, which has been used

in a large number of cost-effectiveness evaluations, measures each

domain on a scale with three severity levels (no problems, some

or moderate problems, extreme problems). Up to 35 = 243 states of

health can be described in this way, and each has been assigned a

utility score on the basis of an analysis of preferences over length

and quality of life using data from the general public (Dolan, 1997);

full health is assigned a  utility score of 1, 0 is equivalent to death,

and negative values indicate health states worse than death.

Concerns about (lack of) sensitivity and floor/ceiling effects in

the standard version recently led to the development of a new ver-

sion, the EQ-5D-5L. The descriptive system covers the same five

dimensions but the number of levels within each dimension has

been extended from three to  five (no problems, slight problems,

moderate problems, severe problems, extreme problems). In addi-

tion, some of the wording has been modified to aid consistency

and understanding.2 The maximum number of health states that

can be described with the new version is  55 =  3125. Several studies

have reported better measurement properties in  moving from the

EQ-5D-3L to EQ-5D-5L in both specific patient and general popu-

lation samples (Pickard et al., 2007; Janssen et al., 2013; Scalone

et al., 2013; Agborsangaya et al., 2014; Jia et al., 2014). Utility value

sets for EQ5D-5L have been proposed for England (Devlin et al.,

2016), Japan (Ikeda et al., 2015), Canada (Xie  et al., 2016), Uruguay

(Augustovski et al., 2016), Netherlands (Versteegh et al., 2016) and

Korea (Kim et al., 2016) and similar work is underway in  many other

countries. Many studies now include EQ-5D-5L instead of the stan-

dard version. Since these studies will form part of the evidence in

future economic evaluations, it is  important to  assess the likely con-

sequences for economic evaluation decisions of moving across the

two different versions of EQ-5D, and to develop a  basis for using

the very large stock of existing evidence based on the 3L version.

If both variants of the EQ-5D instrument are observed in the

same dataset and a utility score is  available for each, it is possi-

ble to use a conditional statistical model to map  directly from the

3L utility score to the 5L score or vice versa. However, that  direct

approach has three major disadvantages. First, utility scores have

highly irregular empirical distributions and the most widely used

mapping methods often fit poorly (Hernández-Alava et al., 2012).

Second, use of a single utility score to summarise the 5-dimensional

observed response fails to exploit all of the information contained

in the observed EQ-5D responses. Third, the direct approach is  nec-

essarily specific to the particular scoring system used to  construct

utility values for the 3L and 5L health descriptions, making it hard

to explore sensitivity to  variations in the choice of scoring system.

The alternative approach known as ‘response mapping’ (Gray et al.,

2006) models the statistical relationship between the 3L and 5L

responses and only brings utility scoring in at the final stage. By

separating the logically distinct components of health state mea-

surement and utility scoring, response mapping gives (in our view)

a more natural way to  proceed.

Although statistical mapping is often treated as a routine and

arcane statistical task, it can have a  critical impact on the outcome of

economic decision-making, and the econometric assumptions used

for mapping between alternative PROMs need to  be examined very

carefully. Those assumptions include: the choice of covariates for

2 See the EuroQol website http://www.euroqol.org/eq-5d-products/how-to-

obtain-eq-5d.html for examples of the question wording used in EQ-5D-3L and

EQ-5D-5L.

the mapping model, distributional specification, and independence

or  dependence of responses across the five domains of EQ-5D.

Various statistical specifications appear in  the small existing lit-

erature. Some authors have assumed conditional independence

between the five domains of EQ-5D, estimating a separate model

for each domain. Using this approach, van Hout et al. (2012) devel-

oped a  mapping between EQ-5D-3L and EQ-5D-5L to construct

an interim scoring system for EQ-5D-5L derived from the Dolan

(1997) scores for EQ-5D-3L. However, independence is an implau-

sible assumption: medical conditions may  simultaneously affect

multiple aspects of life – for instance severe pain may be accom-

panied by depression and curtailment of activities. Also, there may

be individual-specific styles of questionnaire response which affect

responses in all domains – some people tend to  look on  the bright

side, while others do  not.  The conventional normality assumption

built into the univariate or multivariate ordered probit model is also

a  strong one,  and consistent estimation is  not achieved in general

if error distributions are non-normal, even if the model is correctly

specified in all other respects. In Section 3 of the paper, we develop

a multi-equation model that allows for the discrete EQ-5D response

scales and uses a  flexible mixture-copula specification of the error

distributions. Importantly, we do not impose the assumption that

responses in the five domains of EQ-5D are statistically indepen-

dent. In Section 4, we  apply the model to investigate the consistency

of the responses to the two descriptive systems and the implied dif-

ferences in  the utility values. We  derive the appropriate mapping

technique in  Section 5 and compare the results from mapping in

both directions between the two  variants of the EQ-5D instrument.

To explore the implications of modelling strategy for real-world

policy decisions, we report an application to cost-effectiveness of

treatments for rheumatoid arthritis (RA). We focus on RA partly for

its inherent importance – among the 291 medical conditions cov-

ered by the 2010 Global Burden of Disease Study (Murray, 2012), RA

ranked as the 42nd greatest contributor to global disability, mea-

sured in  Years Lived with Disability (YLD), ranking immediately

after malaria. It is also a rapidly growing problem; between 1990

and 2010, the estimated global burden of RA (adjusted for popu-

lation growth and ageing) grew 15% in terms of YLD  and 44% in

terms of disability-adjusted life years (Cross et al., 2014). But data

availability is  another advantage; we  have access to the National

Data Bank for Rheumatic Diseases (NDB), which provides a unique

RA-specific reference dataset that observes both versions of EQ-5D

and also contains detailed clinical outcome measures. This allows

us to explore one of the most important features of the mapping

process, by varying the information provided by the covariates of

the mapping model.

In  Section 6, we  re-visit the important CARDERA cost-

effectiveness study (Choy et al., 2008; Wailoo et al., 2014)

comparing four drug therapies for RA. We use statistical mapping

to convert EQ-5D-3L responses into EQ-5D-5L QALYs, and find a

large impact of the choice of statistical assumptions on the evalua-

tion results. Our evidence suggests that the potential to move from

EQ-5D-3L to  EQ-5D-5L will pose significant methodological ques-

tions and may  raise questions about some past decisions. We  begin

in Section 2 by describing the NDB data that we use for the EQ-5D-

3L and EQ-5D-5L comparison – one of the few datasets available

in  which both variants of the instrument are carried in  the same

questionnaire.

2.  The NDB dataset

The NDB is  a  register of patients with rheumatoid disease, pri-

marily recruited by referral from US and Canadian rheumatologists.

Information supplied by participants is  validated by direct refer-

http://www.euroqol.org/eq-5d-products/how-to-obtain-eq-5d.html
http://www.euroqol.org/eq-5d-products/how-to-obtain-eq-5d.html
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http://www.euroqol.org/eq-5d-products/how-to-obtain-eq-5d.html
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Fig. 1. Response histograms for EQ-5D-3L and EQ-5D-5L (Jan 2011 wave of NDB,

n  = 5192).

ence to records held by hospitals and physicians.3 Full details of

the recruitment process are given by  Wolfe and Michaud (2011).

The EQ-5D responses and other patient-supplied data are collected

by various means, primarily postal and web-based questionnaires

completed directly by patients. Data collection began in 1998 and

continues to the present, in  waves administered in January and July

of each year. In  2011, there was a switch from 3L to  the 5L version

of EQ-5D and both versions were collected in parallel during the

January 2011 wave, to  allow the effects of the switch to  be accom-

modated in analyses spanning the whole period. Our principal aim

is  to use data from that wave of the survey to estimate a  joint model

of the 3- and 5L responses, which can then be used to map  from

3- to 5L EQ-5D during the pre-2011 period and from 5- to 3L EQ-

5D after January 2011. It then becomes possible to investigate the

consistency of the two versions of EQ-5D and assess the impact of

mapping between them.

2.1. EQ-5D response distributions

Fig. 1 shows histograms of the NDB sample response distribu-

tions for the 3- and 5L versions of each domain of EQ-5D. There are

clear differences between the distributional shapes for different

domains: self-care and anxiety/depression have a  dominant mode

at the first category; the mobility and usual activities domains also

3 A minority of cases come by self-referral, with medical details obtained by

NDBRB in the same way.

Fig. 2. Smoothed empirical distributions of EQ-5D-3L and EQ-5D-5L (Jan 2011 wave

of  NDB, n =  5192).

have a  decreasing profile but with a heavier central section, while

the pain/discomfort domain shows a  strong mode in  the centre

of the distribution. This  variation in the shape of the component

distributions underlines the need to  use a suitably flexible model

specification to  analyse the relationship between variants of  EQ-5D.

2.2. Utility scores

For each possible combination of EQ-5D responses, there is  a

utility value which allows overall health-related quality of life to

be  estimated and compared across individuals and conditions. We

use the value sets produced by Dolan (1997) and Devlin et al. (2016)

for the 3- and 5L versions of the instrument which, at present,

are the standard choices for QALY measurement in England. Dolan

(1997) used data from a  representative sample of the UK popula-

tion (2977 respondents). Each respondent valued 13 hypothetical

health states using the time trade-off (TTO) method, generating

valuations for a  subsample of 42 of the 243 health states described

by  the EQ-5D-3L. The data were then modelled using regression

methods to impute utility values for the remaining health states.

Devlin et al. (2016) used a  sample of the English population (996

respondents) who valued ten health states using a composite TTO

approach, and seven paired comparisons of health states via dis-

crete choice experiment tasks. The model selected for the EQ-5D-5L

value set for England was  a hybrid model using both sets of  data

(Feng et al., 2016).

Fig. 2 shows kernel density estimates of the distributions of  util-

ity scores in the NDB data, aggregated across all five domains. The

distribution is smoother for the 5L version, particularly towards

the top of the range, and this finer structure is a  major reason for

its adoption in practice. The distribution of utility scores for the

3L version of EQ-5D has two particularly worrying features. There

are ranges with probability mass at or close to zero, particularly

around 0.8–1.0 and 0.3–0.45. Consequently, methods for mapping

to  and from EQ-5D-3L which implicitly assume a  smooth positive

density can give very poor results (Hernández-Alava et al., 2012).

The second striking feature of the distribution for EQ-5D-3L is the

large group of cases with utility values close to zero, implying that

a non-negligible proportion of patients with rheumatoid arthritis

(RA) are  in a  state comparable to, or worse than, death. The out-

comes of evaluation studies often rest on the ability of  a  therapy

to improve quality of life for patients in  very poor health, so the

(perhaps implausibly) large frequency of such cases is a  potential

source of bias in NICE recommendations.

Table 1 summarises the January 2011 NDB data on the value

scores for the two variants of EQ-5D in terms of their correlation
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Table  1

Spearman correlations of 3- and 5L EQ-5D (Jan 2011 wave of NDB, n = 4856).

Variable EQ-5D-3L EQ-5D-5L

EQ-5D-3L 1.000 0.845

EQ-5D-5L 0.845 1.000

Female −0.054 −0.074

Age  0.030 0.060

HAQ score (0–3) −0.735 −0.758

Pain  scale (0–10) −0.707 −0.704

Overall RADAI score −0.737 −0.746

Global  severity (0–10) −0.698 −0.721

Disease duration (months) −0.057 −0.063

Fatigue scale (0–10) −0.633 −0.669

Sleep disturbance scale (0–10) −0.506 −0.541

Arthritis activity (general) −0.611 −0.626

Arthritis activity (today) −0.672 −0.673

RADAI joints (score) −0.641 −0.648

RADAI joints (count) −0.581 −0.589

Morning stiffness (0–6) −0.538 −0.554

Co-morbidity index (0–9) −0.344 −0.360

Physical component score (SF-6D) 0.727 0.700

Mental component score (SF-6D) 0.475 0.569

Health satisfaction (0–4) −0.638 −0.671

Table 2

Means of EQ-5D-3L and EQ-5D-5L utility scores by  severity of condition (Jan 2011

wave of NDB, n  = 5192).

3L 5L Ratio

Overall  0.68 0.78 0.87

By general severity (HAQ) and pain scale category

Generala Painb 3L 5L Ratio

1  1 0.87 0.92 0.95

1  2 0.76 0.86 0.89

1  3 0.72 0.83 0.87

1  4 0.67 0.78 0.87

1  5 0.51 0.72 0.71

2  1 0.74 0.81 0.91

2  2 0.66 0.76 0.87

2  3 0.60 0.73 0.82

2  4 0.52 0.64 0.81

2  5 0.30 0.53 0.56

3  1 0.63 0.71 0.89

3  2 0.54 0.65 0.83

3  3 0.45 0.57 0.79

3  4 0.35 0.48 0.73

3  5 0.15 0.35 0.43

a Groups corresponding to HAQ scores (1) [0–1); (2) [1–2) and (3) [2–3].
b Groups corresponding to pain scores (1)  [0–2); (2) [2–4); (3) [4–6); (4) [6–8) and

(5) [8–10].

with each other, with basic demographic characteristics, and with

a set of clinical outcome measures. We use the Spearman rank cor-

relation to show the strength of monotonic, not necessarily linear,

associations, but the Pearson correlation shows a similar picture.

There is a high correlation between the two variants of EQ-5D, but

the 5L version has greater sensitivity, since correlations with demo-

graphics and clinical outcomes (in the lower panels of Table 1)  are

uniformly higher for EQ-5D-5L.

Table 2  shows that  there is  a  systematic difference in the 3L and

5L utility scores, with the old system generating utilities averag-

ing (in the NDB data) only 87% of the utility values given by the

new system. This alone could make a  significant difference to  some

evaluation results. It would be  inadvisible to address the issue with

a simple proportional adjustment, since the ratio of mean scores

is not constant but decreases as both general severity and pain

increase, so the differences are minor at the top end of EQ-5D and

much larger at the bottom. Table 2 gives means classified by lev-

els of general disability (in three groups, scores 0–1, 1–2 and 2–3)

and pain (in five groups 0–2, 2–4, 4–6, 6–8 and 8–10), as classified

by the Stanford Health Assessment Questionnaire (HAQ). The HAQ

is widely used by clinicians to measure treatment outcomes; see

Bruce and Fries (2003) for a  review.

Mapping from 3L to 5L involves two  changes: a  shift from the

3L health descriptive system to  the 5L system, made using a  pre-

dictive statistical mapping model; and a shift from the utility tariff

developed for EQ-5D-3L to the utility tariff applicable to EQ-5D-5L.

These two  changes occur jointly, so it is  not  possible to disentangle

fully the effect on cost-effectiveness calculations of mapping from

the effect of the change in utility structure. However, within a fixed

framework dictated by the given 3L and 5L utility tariffs, it is pos-

sible to compare the results produced by alternative specifications

of the mapping model. This is our strategy, implemented within a

comprehensive and flexible econometric approach.

3. A correlated copula model with mixture marginals

Our aim is to  develop an econometric model of responses to  the

ten items of the 3L and 5L instruments. The specification is guided

by six important considerations, intended to avoid unnecessarily

strong restrictions on the data. The model should:

(i)  Treat the 3L and 5L responses symmetrically so that it can be

used for 3L → 5L and 5L → 3L mapping in a mutually consistent

way.

(ii) Avoid the assumption that the 5L response scale is  simply a

more detailed categorisation than the 3L  scale of  the same

underlying concept – structural differences between the two

responses are permitted if empirically necessary.

(iii) Allow for the effects of covariates – here, age, sex and clini-

cal outcome measures, without assuming that  they necessarily

influence 3L and 5L responses in the same way.

(iv) Capture the strong association between 3L and 5L responses

within each health domain, without necessarily assuming that

the strength of the association is  the same in all parts of the

health distribution – for example, someone who has experi-

enced extreme pain may  answer the pain questions in a  more

focused and coherent way than someone without experience of

chronic pain. To achieve this, we use a copula approach (Trivedi

and Zimmer, 2005)  to specify the bivariate distribution of each

3L, 5L pair of responses.

(v) Be sufficiently flexible to fit the diverse response patterns

shown in Fig. 1, so we  generalise the usual assumption of

normally-distributed errors by allowing for a  2-part normal

mixture distribution, which can capture a  wide range of  distri-

butional shapes.

(vi) Allow dependence across the five domains of EQ-5D, reflecting

common underlying causes and individual-specific response

styles; we achieve this by incorporating a  random latent factor

influencing responses in  all domains.

In advance of the empirical analysis, there is no way of  knowing

which of these considerations is  most important, so the resulting

model is complex. Define 1 ≤ Y3id ≤ 3 and 1 ≤ Y5id ≤  5 as the reported

outcomes for the dth domain (d =  1,  . . .,  5) of the 3- and 5L forms

of EQ-5D. The model is a system of ten latent regressions, arranged

in the five domain groups, with domain d containing the equations

for Y3id and Y5id:

Y∗
3id

=  Xiˇ3d + U3id

Y∗
5id

=  Xiˇ5d + U5id

}

, d = 1, . . ., 5 (1)

where i indexes independently sampled individuals, Xi is a col-

lection of row vectors of covariates, ˇ3d, ˇ5d are  corresponding

coefficient vectors and U3id,  U5id are  unobserved errors which may

be stochastically dependent and non-normal. The latent dependent
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variables Y∗
3id
, Y∗

5id
are not observed directly but they have observ-

able ordinal counterparts, Y3id, Y5id, generated by  the following

threshold-crossing conditions:

Ykid =  q iff Ŵkqd ≤ Y∗
kid < Ŵk(q+1)d; > q = 1, . . ., Qk;  k  = 3, 5 (2)

where Qk = 3 or 5 is  the number of categories of Ykid and the Ŵkqd

are threshold parameters, with Ŵk1d = −∞ and Ŵk(Qk+1)d = +∞.

High-dimensional ordinal-variable applications present major

computational problems. Currently, there is  only a  single published

model of EQ-5D responses that relaxes independence (Conigliani

et al., 2015), using a  5-equation correlated multivariate ordered

probit model to predict EQ-5D responses from aggregate SF12

scores. Using that model in our 10-dimensional 3L-5L mapping

context would involve estimation of 45 residual covariance param-

eters, with a likelihood requiring numerical integration over a

10-dimensional rectangle. Past experience with similar maximum

simulated likelihood problems, using best-practice simulation

methods like Halton sequences, tells us that likelihood-based tests

and fit statistics are not robust enough for model comparisons to

be reliable. The conventional ordered probit model also involves

normality assumptions that are critical to its consistency property

and which we want to  relax.

Possible solutions to the dimensionality problem work by

imposing structure on the joint distribution of the latent Y∗
kid

. In

the  copula literature, the most common approach is  to build it up

from bivariate component distributions, often using vine structures

(Bedford and Cooke, 2002; Panagiotelis et al., 2012). However, that

is  most convincing when there is  a  natural ordering of the observed

variables, particularly temporal sequencing (as in  the application

by Panagiotelis et al., 2012 to  a sequence of four observations on

headache spaced through the day). In our case, although the com-

ponent items of EQ-5D-5L were asked in sequence and then the

items of EQ-5D-3L later in the questionnaire, that ordering does

not correspond at all to the natural connections between the 3L and

5L  items through their shared meaning. For that reason, we  adopt

a  different approach, using five separate bivariate copulas for the

five domains of EQ-5D, and connecting the domains via a  latent

factor V which represents common influences on the respondent’s

responses. The error Ukid is  decomposed into the latent factor Vi and

a specific error εkid correlated within but not  between domains:

Ukid =  kdVi + εkid (3)

where the  kd are a  set of ten parameters. We make the standard

assumptions that, conditional on Xi: Vi is independent of all the

εkid; the εkid are all mutually independent, except that  ε3id, ε5id are

possibly dependent within any health domain d.

We  use a copula representation to capture dependence between

the 3L and 5L responses for any domain. Suppressing the i subscript,

define Fd(ε3d, ε5d) as the distribution function (df) for domain d and

F3d(ε3d)  = Fd(ε3d, ∞)  and F5d(ε5d) =  Fd(∞,  ε5d) to be the marginals.

Their joint df for domain d is  specified as:

Fd(ε3d, ε5d)  =  cd(G3d(ε3d), G5d(ε5d); �d) (4)

where Gkd(·) is the marginal df of εkd and �d is  a  parameter con-

trolling the dependence between ε3d and ε5d. The function cd(·) is

known as a copula and, together with the marginals G3d(·), G5d(·) it

uniquely characterises the bivariate distribution of ε3d, ε5d.  It has

the properties cd(0, u) =  cd(u, 0) =  0 and cd(1, u) =  cd(u, 1) =  u for any

0 ≤ u ≤ 1 (Trivedi and Zimmer, 2005).  We consider the following

candidate forms:

Gaussian : c(ε3, ε5) = �(�−1(ε3), �−1(ε5); �)

where �(.,  .;�) is  the distribution function of the bivariate normal

with correlation coefficient −1 ≤ � ≤ 1 and �−1(·) is  the inverse of

the univariate N(0, 1) df

Clayton :  c(ε3, ε5) =

{

[

max
{

ε−�
3

+ ε−�
5

−  1, 0
}]−1/�

for 0  < � ≤ ∞

ε3ε5 for � = 0

Frank :  c(ε3, ε5)  =

⎧

⎨

⎩

−
1

�
ln

(

1 +

(

e−�ε3 − 1
)(

e−�ε5 − 1
)

e−� − 1

)

for � /=  0

ε3ε5 for � = 0

Gumbel :  c(ε3, ε5) = exp

(

−

[

(− ln  ε3)
�

+ (− ln  ε5)
�
]1/�

)

for  � ≥ 1

Joe : c(ε3, ε5) = 1 −

[

(1 − ε3)
�

+ (1 − ε5)
�

− (1 − ε3)
�
(1 − ε5)

�
]1/�

for  � ≥ 1

The Gaussian and Frank copulas are similar in  that both allow for

positive or negative dependence, symmetric in both tails, but  the

Frank form generates dependence weaker in the tails and stronger

in the centre of the distribution. The Clayton copula allows only pos-

itive dependence, with strong left tail dependence and relatively

weak right tail dependence; thus, if two  variables are  strongly cor-

related at low values but less so at high values, then the Clayton

copula is a  good choice. To show the effect of copula choice, Fig. 3

shows simulated scatter plots generated using these three copulas.4

The Gumbel and Joe copulas (not illustrated) display weak left tail

dependence and strong right tail dependence, which is stronger for

the Joe than the Gumbel copula.

The within-domain specification is  completed by a  normal mix-

ture assumption which allows any of the errors εkid to  have a

non-normal form:

G(ε) = ��(
ε − �1

�1
) + [1 − �]�(

ε −  �2

�2
) (5)

where 0 ≤  � ≤ 1 is  the mixing parameter; (�1, �2) and (�1, �2 ≥ 0)

are location and dispersion parameters constrained to satisfy the

mean and variance normalizations ��1 + (1 −  �)�2 ≡ 0 and �(�2
1

+

�2
1
)  +  (1 − �)(�2

2
+ �2

2
) =  1. These normal mixtures can capture

a  wide range of distributional shapes, including skewness and

bimodality. The mixture (5) can be implemented with various

degrees of generality, by assuming the same parameter values (�,

�1,  �2, �1,  �2)  for all error terms, or allowing them to vary with

domain d =  1,  . . .,  5 and/or EQ-5D design k  =  3,  5. We specify a  normal

mixture distribution for the latent factor V also.

Conditional on X, the probability of observing any values Y3d = q

and Y5d = r  is:

P(q, r|X, d) =  cd(Gkd(q +  1),  Gkd(r + 1)) − cd(Gkd(q + 1),  Gkd(r))

− cd(Gkd(q), Gkd(r + 1)) + cd(Gkd(q), Gkd(r))
(6)

where Gkd denotes Gkd(Ŵkqd − Xˇkd). The joint distribution of Y31,

Y51, . . ., Y35, Y55 is:

Pr(Y31, Y51, . . .,  Y35,  Y55|X)  =

∫ 5
∏

d=1

P(Y3d, Y5d|X, v)

[

p

s1
�

(

v − m1

s1

)

+
1 − p

s2
�

(

v − m2

s2

)]

dv (7)

We  use Gauss–Hermite quadrature with 15 integration points to

evaluate the integral in (7) at each observation to give the likelihood

function.

4 Samples generated by Monte Carlo simulation, from  copulas specified with

Kendall’s � ≈ 0.7.
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Fig. 3.  Pseudo-random samples drawn from three alternative copulas.

4. Modelling results

Our aim is to estimate the joint distribution of the responses

to the 3L and 5L variants of the EQ-5D survey instrument, condi-

tional on demographic characteristics (age and gender), and clinical

measures of the severity of the underlying rheumatic condition. We

use seven covariates: age, gender, the HAQ disability score, the pain

scale, and the squares and product of the HAQ and pain scales.

The HAQ is based on patient self-reporting of the degree of dif-

ficulty experienced over the previous week in  eight categories:

dressing and grooming, arising, eating, walking, hygiene, reach,

grip, and common daily activities. It is widely used by  clinicians

to measure health outcomes. It is scored in increments of 0.125

between 0 and 3 (although it is standard to consider it fully continu-

ous), with higher scores representing greater degrees of functional

disability. The HAQ instrument also includes separately a patient

self-report of pain scored on a  Visual Analogue Scale (0–10).

4.1. Domain-specific modelling

We  start by examining each of the five domains of EQ-

5D separately using a bivariate approach, implemented in the

Hernández-Alava and Pudney (2016) Stata bicop routine. There

are several reasons for this: it is computationally easier to make the

choice of copula for each domain separately, and the process gener-

ates good parameter starting values for likelihood optimisation for

the full model. Also, although conditional independence between

domains is rather implausible, if independence is not rejected, or

if it turns out to have little adverse impact on cost-effectiveness

applications, then domain-specific modelling offers a simple and

effective approach.

Table 3 summarises the sample fit of alternative copula func-

tions for the 3L- and 5L variants for each of the five domains, where

we retain the standard assumption of Gaussian marginals. There

is no single best choice of copula: the Gaussian form fits best for

dimensions 1 and 3 (mobility and usual activities), the Frank copula

fits best for dimensions 2 and 5 (self-care and anxiety/depression)

while the Gumbel copula fits best for the pain/discomfort dimen-

sion. This coincides with differences in  the empirical distributions

of Fig. 1 between these three groups of domains. The Frank copula

(which allows weaker dependence in  the tails than the centre of

the distribution) works better than the Gaussian copula when the

tails of the response distribution are relatively heavy. The Gum-

bel copula which has asymmetric dependence in  the tails (stronger

dependence at higher values) fits better when there is a central

mode and implies different patterns of dependence in both tails of

the distribution.

Table 3 also gives the results of the Wald test of the null hypoth-

esis that the coefficient vectors relating the (latent) response to  age,

gender and disease severity are identical in the 3- and 5L variants.

The hypothesis is  clearly rejected for the domains of mobility and

pain. This finding shows that the effect of the move to 5 levels is

not  simply a uniform re-alignment of the response level.5

The assumption of normal marginals for the errors εkd was

acceptable in  terms of the Akaike (AIC) and Bayesian (BIC) infor-

mation criteria for the mobility, self-care and anxiety/depression

domains, but there was significant evidence of modest depar-

tures from normality for the usual activities and pain/discomfort

domains. Table 4 summarises the preferred specifications for those

two domains, comparing them with the simpler Gaussian-marginal

models. Note that  the conclusions about the equality of coefficients

are  not affected by non-normality.

Fig.  4 plots the estimated distributions for the two domains

where we  find significant non-normality, and compares them to

the N(0, 1) form. The distributions for the usual activities domain

and for the EQ-5D-5L pain/anxiety domain are similar, both with a

slightly fatter right tail of the distribution. The distribution for the

EQ-5D-3L pain/anxiety dimension departs from normality with a

much bigger central mode, consistent with its unique distributional

shape in  Fig. 1.

4.2. Joint modelling of all domains

We now examine the joint model. Table 5 summarises the sam-

ple fit of alternative joint models. All of them are  based on the best

fitting copulas for each dimension found in  Section 4.1: Gaussian

for mobility and usual activities; Frank for self-care and anxi-

ety/depression; and Gumbel for pain/discomfort. Model (a) is  the

baseline model with no mixtures in ε; model (b) allows a  common

mixture, constrained to be the same for the errors in all ten equa-

tions; and model (c) allows for one common mixture for the usual

activities domain and different mixtures for the 3L and 5L equa-

tions for pain/discomfort, following the pattern in Table 3.  The joint

log-likelihood, AIC and BIC for the model with independent EQ-5D

dimensions are −29,958.431, 60,144.86 and 60,892.12 respectively,

indicating that the joint model provides a  better fit to the data. The

joint model with a  common mixture, model (b), gives the best fit

to  the data according to  AIC and BIC. The conclusions about the

equality of coefficients are not affected by the choice of error distri-

butions and are in line with the conclusions of the domain-specific

bivariate models. The estimated coefficients of the domain-specific

bivariate and joint models are shown in  Appendix Table A1.

5 Note that these are formally tests of the hypothesis that the coefficient vectors

are  equal after each error variance is normalised to  unity. Since the extreme points

on  the 3L and 5L scales are (mostly) given the same verbal labels to act as anchors, the

assumption seems reasonable. Also, where differences are statistically significant,

the 3L and 5L coefficient vectors are clearly not scalar multiples of each other.
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Table  3

Sample fit of domain-specific models for alternative copula functions with Gaussian marginals.

Copula

Gaussian Frank Clayton Gumbel Joe

Mobility domain

Log-likelihood −6656.54 −6665.73 −6727.46 −6669.82 −6736.73

�2(7) for H0: ˇ3 = ˇ5 29.02*** 29.49*** 23.82*** 33.64*** 37.14***

Self-care domain

Log-likelihood −4221.35 -4212.35 −4248.89 §  §

�2(7) for H0: ˇ3 = ˇ5 8.31 5.98 5.35

Usual activities domain

Log-likelihood −6772.96 −6796.04 −6866.11 −6785.64 −6829.65

�2(7) for H0: ˇ3 = ˇ5 10.87 10.22 10.89 11.23 11.53

Pain/discomfort domain

Log-likelihood −6148.63 −6148.07 −6190.84 −6147.80 −6199.63

�2(7) for H0: ˇ3 = ˇ5 29.75*** 30.26*** 32.71*** 29.09*** 26.82***

Anxiety/depression domain

Log-likelihood −6243.59 −6238.86 −6300.55 −6244.72 −6302.70

�2(7) for H0: ˇ3 = ˇ5 12.05* 8.56 5.10 10.66 11.86

Best-fitting models in bold type  (all models have 15 parameters).
* Statistical significance: 10%.

*** Statistical significance: 1%.
§ No convergence.

Table 4

Estimated non-normal error distributions.

Domain Gaussian marginals Non-Gaussian marginals

AIC BIC Preferred mixture specification AIC BIC Coefficient equality test: �2(7)

Usual activitiesa 13587.9 13725.5 Equal 13550.5 13707.8 8.39

Pain/discomfortb 12337.6 12475.3 Unequal 12252.9 12429.9 40.91***

a Gaussian copula.
b Gumbel copula.

*** Statistical significance: 1%.

Fig. 4.  Estimated error distributions for the usual activities and pain/discomfort domain.

Fig. 5 illustrates the effect of the differences in  the distribu-

tion functions (df) of the latent variables Y∗
ikd

, evaluated at the

sample mean values of the indexes Xi ˆ̌ kd. These dfs calculated

for the 3L and 5L equations are similar for the self-care, anxi-

ety/depression and (to a lesser degree) usual activities domains.

Moreover, the two threshold parameters for the 3L model fall

respectively between the bottom two, and top two  thresholds in

the 5L model (Ŵ̂52d < Ŵ̂32d < Ŵ̂53d and Ŵ̂54d < Ŵ̂33d < Ŵ̂55d), which

is consistent with the idea of a  simple re-alignment of responses.

However, for the mobility and pain/discomfort domains, the dif-

ferences between dfs are sizeable and statistically significant, with

the pain/discomfort domain displaying the largest difference. For

both mobility and pain/discomfort, one of the 3L threshold param-

eters lies outside the range covered by the 5L threshold parameters,

which is inconsistent with the simple realignment hypothesis.

5. Mapping

The best method of mapping between alternative preference-

based measures depends on the nature of the cost-effectiveness

study in  which the measure is  to be used. Suppose, for example,

that the study is to be done on the new 5L basis, but the available

evidence comes from a clinical trial in which the older EQ-5D-

3L scale is  measured. The key concept is the mean QALY, which

should be constructed as E{Q(�5(Y5))}, where E{ ·  } is the expecta-

tion with respect to whatever population is potentially affected by

the treatment.

There are  two technical issues to be considered in mapping from

3L evidence to  5L-based evaluation. First, the form of  the function,

Q(·), which maps utilities into QALYs. In  most evaluation studies,

the QALY calculation Q(·) is a  linear function of the utilities, so that



146 M. Hernández-Alava, S. Pudney / Journal of  Health Economics 55 (2017) 139–152

Table  5

Sample fit of joint copula models.

Type of mixture in ε

(a) None (b) Equal (c) Unequal

Log-likelihood −29197.46 −29136.23 −29132.50

Number of parameters 115 118 124

AIC  58624.91 58508.46 58513.00

BIC 59378.73 59281.93 59325.80

Coefficient equality

Mobility domain

Equality of  ̌ �2(7) 26.59*** 26.53*** 25.69***

Equality of   �2(1) 0.18 0.29 0.00

Equality of  ̌ and   �2(8) 28.59*** 26.53*** 28.73***

Self-care domain

Equality of  ̌ �2(7) 4.14 3.50 3.99

Equality of   �2(1) 3.02* 3.37* 4.17**

Equality of  ̌ and   �2(8)  9.60 8.91 10.80

Usual activities domain

Equality of  ̌ �2(7) 8.81 7.93 9.39

Equality of   �2(1) 0.33 0.21 0.45

Equality of  ̌ and   �2(8)  12.77 10.82 11.88

Pain/discomfort domain

Equality of  ̌ �2(7) 31.64*** 30.19*** 36.58***

Equality of   �2(1) 18.80*** 21.42*** 29.27***

Equality of  ̌ and   �2(8)  46.98*** 50.65*** 66.01***

Anxiety/depression domain

Equality of  ̌ �2(7) 9.27 8.70 9.36

Equality of   �2(1) 2.68 2.75* 3.75*

Equality of  ̌ and   �2(8) 11.07 10.54 11.99

* Statistical significance: 10%.
** Statistical significance: 5%.

*** Statistical significance: 1%.

Fig. 5. Estimated distribution functions and cutpoints for Y∗

3
and Y∗

5
(joint model, evaluated at covariate sample means).

E{Q(�5(Y5))} = Q(E{�5(Y5)}). In other words, we can simply predict

the utility outcome �(Y5)  and use that prediction in calculating

QALYs. If the predictor is  an unbiased (or consistent) estimator

of E[�(Y5)], it will give an unbiased (consistent) evaluation of the

expected QALY.

The second issue is the choice of predictor for �(Y5). We  have

argued here that a  predictor based on a  full model of Pr(Y5|Y3,

X) uses more information and is  capable of giving better results

than the alternative approach to  mapping, which attempts to

model E(�5(Y5)|�3(Y3), X) directly – often using methods like linear

regression which are  not well suited to  the non-standard distribu-

tions involved. When using our approach, it is important to realise

that the utility scales �(·)  are nonlinear functions of the vector Y, so

E(�5(Y5)) /= �5(E[Y5]).  We  should not map  the observed 3L health
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Fig. 6. Cross-mapping based on  independent domain-specific bivariate models.

description Y3 into the 5L descriptive system Y5 and then apply

the utility scale �5(·). Instead, the appropriate method is  to use

the model estimated from NDB data to evaluate the probability of

each possible configuration of Y5 conditional on Y3, X and use those

probabilities as weights to evaluate the conditional expectation of

�. The conditional df of the valuation �5 is:

Pr(�5(Y5) ≤ ϒ|Y3, X) =

∑

Y5 ∈ Uϒ

Pr(Y5|Y3, X) (8)

where Uϒ is  the set {Y5:�5(Y5) ≤ ϒ} and ϒ is any given constant.

The mean is:

E(�5(Y5)|Y3, X) =

∑

Y5 ∈ S5

�5(Y5)Pr(Y5|Y3, X) (9)

where S5 is the set of 3125 possible values that the vector Y5 might

take.6

The choice of covariates is  critical here. Mapping from Y3 rather

than direct observation of �5(Y5) introduces no bias in  the calcula-

tion of mean QALYs if the conditional mean function E(�5(Y5)|Y3,

X) in the population represented by the reference sample used for

mapping is identical to E(�5(Y5)|Y3,  X) in the population repre-

sented by the trial subjects. In general, reference samples and trial

samples are drawn in quite different ways, and there is always a

possibility that the statistical relationship between Y3 and Y5 could

differ substantially between the two populations, leading to  map-

ping bias. The use of covariates can reduce this risk by allowing

for factors which might cause the Y3, Y5 association to differ across

samples. Thus, even if E(�5(Y5)|Y3)  differs between the reference

and trial samples, E(�5(Y5)|Y3,  X) may  not, for a  judicious choice of

covariates. We explore this in the next section.

Several authors have commented on the loss of variation

induced by mapping (Brazier et al., 2010; Longworth and Rowen,

2011; Fayers and Hays, 2014). The sample variance of the mean pre-

dictor (9) will always be lower than the variance of the unknown

true �5(Y5), because the modelling process can only predict vari-

ation in �5(Y5) arising from Y3 and X, not  the other “unexplained”

components of variation. In  standard cases where the QALY cal-

culation is linear in  utilities, this does not matter, since only the

conditional mean of �5(Y5) is  required. If the aim were to  estimate

the variance of �5(Y5),  one would not  do it by  using the variance

of the predictor (9); instead, the appropriate method is  to calculate

directly the variance of the distribution (8),  which gives a consistent

6 Hernández-Alava and Pudney (2017) provide a  Stata command eq5dmap that

implements variants of this mapping operation.

estimate of var(�5(Y5)) if the mapping model is correctly specified

and estimated.

If we evaluate (8) and (9) at each observation Yi3,  Xi, and then

average over the sample, the result is a  consistent estimator of

the distribution of �5(Y5)  or its mean E[�5(Y5)]. This can be done

empirically for the pre-January 2011 waves of the NDB dataset and

in  reverse (predicting Y3 conditional on Y5)  for the post-January

2011 waves. Fig. 6a  uses the set of domain-specific bivariate models

(assuming independence across domains) to compare the predic-

tive df n−1
∑n

i=1
Pr(�5(Y5) ≤ ϒ|Yi3, Xi)  and the directly-observed

empirical df n−1
∑n

i=1
1(�3(Yi3) ≤ ϒ) for the Jan 2010 wave of NDB,

where 1(  · ) is  the indicator function. Fig. 6b makes the reverse com-

parison of the predictive df for �3(Y3) with the empirical df of

�5(Y5) for the Jan 2012 wave. Fig. 7 makes the same comparisons

for the joint model allowing for between-domain correlation.

There are two  striking features of Figs. 6 and 7,  with important

implications for the economic evaluations carried out for public

bodies like NICE. First, the predictive and actual distributions of

the 5L variant of EQ-5D are similar and much smoother than the

corresponding distributions for the 3L variant. This is  an encour-

aging finding: if a decision maker elects to recommend the use of

the new 5L instrument and associated scoring, it may  be possible to

continue to use older 3L-based evidence with appropriate mapping

to 5L. Second, there is  a large difference between the 3L and 5L dis-

tributions of EQ-5D scores, whether directly observed or mapped.

Utility scores tend to be systematically higher under the 5L scor-

ing scheme, so the df for EQ-5D-3L lies entirely to the left of the df

for EQ-5D-5L. If no other adjustment were made, this alone might

be enough to change many evaluation results, in the absence of

offsetting adjustments to  the evaluation methodology.

Table 6 shows average values of directly-measured �3(Y3) and

the prediction E[�5(Y5)|Y3, X] for the 2010 wave of NDB, and of

the prediction E[�3(Y3)|Y5, X]  and directly-measured �5(Y5) for

the 2012 wave using the joint model. Results are given for the

whole sample and subgroups defined in terms of disease sever-

ity and demographic characteristics; sample standard deviations of

the measured and predicted utilities are also shown. As  expected,

there are higher mean values and smaller standard deviations for

the EQ-5D-5L scores (whether predicted or directly observed) than

for EQ-5D-3L, resulting from the different scoring of  poor health

states by the two  value sets. Another consequence of this is the

much steeper severity gradient for the mean EQ-5D-3L utilities than

for EQ-5D.

There is  a slight tendency for both the 3L and 5L utilities to

decline over time as the health states of those individuals who

appear in both waves tend to worsen. However, the means of
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Fig. 7. Cross-mapping based on the joint model with between-domain correlation.

Table 6

Means and standard deviations of actual and predicted (joint model) EQ-5D-3L and EQ-5D-5L by  severity of condition, age and gender (NDB. January 2010 wave n = 3877;

January 2012 wave n = 3911).

January 2010 January 2012

EQ-5D-3L EQ-5D-5L EQ-5D-3L EQ-5D-5L

(actual) (predicted) (predicted) (actual)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Overall 0.70 0.79 0.69 0.78

(0.25) (0.16) (0.21) (0.19)

Severity group

Mild 0.88 0.92 0.87 0.92

(HAQ group 1, Pain group 1)  (0.12) (0.04) (0.08) (0.07)

Medium 0.62 0.71 0.61 0.73

(HAQ group 2, Pain group 3)  (0.15) (0.09) (0.11) (0.11)

Severe 0.12 0.38 0.12 0.30

(HAQ group 3, Pain group 5)  (0.29) (0.16) (0.19) (0.23)

Female <65 0.69 0.78 0.68 0.77

(0.26) (0.17) (0.23) (0.20)

Male<65 0.71 0.80 0.67 0.77

(0.25) (0.16) (0.24) (0.21)

Female 65–79 0.71 0.79 0.69 0.79

(0.24) (0.15) (0.20) (0.18)

Male 65–79 0.73 0.82 0.73 0.83

(0.22) (0.14) (0.18) (0.14)

Female ≥ 80 0.65 0.76 0.66 0.76

(0.25) (0.17) (0.20) (0.18)

Male ≥ 80 0.74 0.83 0.70 0.80

(0.17) (0.12) (0.17) (0.16)

predicted and directly-observed versions of each measure are

remarkably close both overall and in terms of their severity and

demographic profiles.

We  also see the anticipated smaller standard deviations of the

predicted than directly-observed utilities as a consequence of the

use of expected value prediction. This is  of no importance for the

evaluation described in the next section (since the criterion is based

on the mean QALY), but it would be a  concern for any evaluation

that  aims to investigate the distributional pattern of QALY gains

within each population group. In that case, appropriate measures

constructed from the full distribution (8) would need to  be used.

6.  The impact on cost-effectiveness analysis

We  now use a published cost-effectiveness study to examine the

potential consequences of moving from EQ-5D-3L to  EQ-5D-5L as

a basis for economic evaluation. We first replicate the economic

evaluation results in  Wailoo et al. (2014),  which use EQ-5D-3L

data collected as part of a  trial. Then we repeat the analysis using

EQ-5D-5L obtained using the mapping models developed in this

paper. Wailoo et al. (2014) estimate the cost-effectiveness of  com-

binations of disease-modifying anti-rheumatic drugs (DMARDs)

and short-term administration of the steroid prednisolone (PNS),

using data from the 2-year CARDERA trial which involved 467

adult patients with early active RA (less than two  years of disease

duration) in a placebo-controlled factorial design. Two DMARDS

were used in  the trial, methotrexate (MTX) and ciclosporin (CS). All

patients received MTX, half received step-down PNS7 and half CS,

generating four treatment groups: (1) monotherapy (MTX only), (2)

combination DMARDs (MTX and CS), (3) DMARD and steroid (MTX

and PNS) and (4) triple therapy (MTX, CS and PNS). Further details

of the methods and clinical effectiveness can be found in Choy et al.

(2008).

The key criterion used in  cost-effectiveness analysis is the Incre-

mental Cost-Effectiveness Ratio (ICER), defined as the difference in

costs between two different treatment strategies, expressed as a

7 Initially dosed at  60 mg/day, reducing to  7.5 mg/day at 6 weeks and stopped by

34  weeks.
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Table  7

Mean costs, QALYs and incremental cost-effectiveness ratios for the CARDERA trial.

Monotherapy Combination therapies

MTX  MTX+CS MTX+PNS MTX+CS+PNS

Total costsa £7503 £6829 £6323 £6203

EQ-5D-3L from trial data

Total QALYs 1.238 1.093 1.152 1.320

ICER  (for col therapy vs. row therapy)

MTX  only – £4648 £13,714 –£15,929

MTX+CS  £4648 – –£8597 -£2765

MTX+PNS  £13,714 –£8597 – –£714

EQ-5D-5L  mapped from 3L trial data (full joint copula-mixture model)

Total  QALYs 1.450 1.351 1.382 1.513

ICER  (for col therapy vs. row therapy)

MTX  only – £6,755 £17,264 –£20,728

MTX+CS  £6755 – –£ 16,140 –£3,857

MTX+PNS  £17,264 –£  16,140 – –£917

EQ-5D-5L  mapped from 3L trial data for restricted models

Demographic covariates only

Total QALYs 1.437 1.326 1.359 1.480

ICER  (for col therapy vs. row therapy)

MTX  only – £6054 £15,137 –£30,466

MTX+CS  £6054 – –£15,198 –£4070

MTX+PNS  £15,137 –£15,198 – –£996

Independent domains

Total QALYs 1.462 1.376 1.404 1.531

ICER  (for col therapy vs. row therapy)

MTX  only – £7851 £20,361 –£18,696

MTX+CS  £7851 – –£18,179 –£4033

MTX+PNS  £20,361 –£18,179 – –£942

Joint  Gaussian model

Total QALYs 1.453 1.353 1.384 1.514

ICER  (for col therapy vs. row therapy)

MTX  only – £6818 £17,409 –£20,708

MTX+CS  £6,818 – –£16,324 –£3877

MTX+PNS  £17,409 –£16,324 – –£920

a Present value of treatment costs over  the 2-year experimental period.

ratio to the difference in the QALYs that  they achieve. Treatments

with ICERs below a certain threshold are usually considered cost-

effective. In the UK, NICE guidance on technology appraisal refers to

a specific range £20,000–£30,000 (NICE, 2013), but see also Claxton

et al. (2015) who argue for a lower threshold.

Resource use (prescription drugs, hospitalizations, tests, imag-

ing, surgical procedures and community care visits) was directly

observed over the two years of the trial and costed using 2011–2012

figures. The mean discounted cost of each treatment strategy is

shown in the first row of Table 7, based on the sample of patients

with complete data (n =  241). QALY estimates were derived from

EQ-5D-3L responses observed at baseline and 6, 12, 18 and 24

months and the discounted QALY total was estimated as the

area under the linear interpolation of the five points. We then

repeated the QALY estimation using EQ-5D-5L predicted from the

full mixture-copula model presented in Section 4.2,  conditional on

the demographic and clinical covariates and EQ-5D-3 responses

observed in the trial. Note that, since this construction is  a  linear

function of the EQ-5D responses Y, our use of E(Y5|Y3, X) as a pre-

dictor does not introduce bias into the QALY evaluation, as it would

for a nonlinear function of Y.

The cost-effectiveness results are presented in  the first two pan-

els  of Table 7.8 Of the four treatment strategies, triple therapy is the

least costly and most effective, thus dominating all other strate-

8 Note that there are minor differences between the numbers reported in Table 7

and those in Wailoo et al. (2014) due to  missing data in the variables used to  predict

EQ-5D-5L for one patient, but results are unaffected.

gies. Among the remaining three treatment strategies, the MTS+CS

combination is dominated by MTX  plus steroid, being more costly

and less effective. Monotherapy is  more costly but also more effec-

tive than MTX  plus steroid, with an ICER of £13,714 which lies

comfortably below a conventional cost-effectiveness threshold of

£20,000 per QALY. The effect of mapping is to increase the esti-

mated dominance of the triple therapy over all others and also

the dominance of MTX+PNS over MTX+CS. The ICER for monother-

apy versus MTX+PNS increases from £13,714 to £17,264, which

remains below the conventional threshold. Thus, mapping has

increased the magnitude of estimated ICERs, but without changing

any of the decisions that would be likely to  follow.

The mapped EQ-5D-5L QALYs are larger (by 15–24%) than the

directly-measured EQ-5D-3L QALY estimates; but critically, they

also vary less proportionately – the range of QALYs is  20% of the

smallest for EQ-5L-3L but 12% for mapped EQ-5D-5L. Because the

QALY is  in the ICER denominator, the six ICERs for pairwise compar-

isons of the therapies increase in  magnitude – by more than 100%

in some cases. This result is partly due to the significant response

differences to  the mobility and pain questions, but also to the large

negative values built into the Dolan (1997) utility scoring system

which tends to increase the coefficient of variation of  3L scores rel-

ative to 5L scores. Thus a substantial part of the increase in ICERs

when using mapping is attributable not  to  mapping per se,  but to

the different structures of the 3L and 5L scoring systems. This sug-

gests that we can expect to see similar results if we adopt EQ-5D-5L

in  many other evaluation settings – perhaps warranting a  future

reassessment of the cost-effectiveness threshold by bodies such as
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NICE. Preliminary work by  Hernández-Alava et al. (2017) tends to

support this view.

We  can explore the impact of mapping in  the remainder of

Table 7 by showing the effects on cost-effectiveness results of using

three alternative simplified versions of the mapping model. It is

common practice in  economic evaluation to use very limited sets

of covariates in mapping models; the first restricted model investi-

gates this by dropping from the model the five (highly significant)

covariates based on the HAQ and pain scale clinical measures. Sim-

plifying the covariate list  has the effect of greatly increasing the

apparent dominance of the triple therapy over all others, with the

ICER relative to monotherapy rising by  almost 50% in  magnitude.

Again, it is unlikely that cost-effectiveness decisions would differ

from those made with direct measurement of EQ-5D-3L.

The  second simplified version of the mapping model retains the

full set of covariates but  imposes the restriction of independence

across health domains by  eliminating the random effect V through

the parameter restrictions  kd =  0,  which are strongly rejected by

direct tests. Relative to  the full mapping model, most ICERs increase

in magnitude under the independence restriction and, in  the case

of monotherapy versus the MTX/steroid combination, the increase

takes the ICER beyond the £20,000 threshold, which would bring

the cost-effectiveness of monotherapy into question in a  compar-

ison between the two. That ICER is almost 50% greater than the

estimate derived from direct observation of EQ-5D-3L.

The third simplified model retains the full covariate vector and

cross-domain correlation, but imposes normality on the error dis-

tributions by eliminating all mixture parameters and imposing the

Gaussian copula in  all of the five domains. Here the ICER results are

similar to those of the full model and consequent cost-effectiveness

decisions.

The differences between cost-effectiveness estimates derived

from different versions of the mapping model are potentially large

enough to alter policy decisions. For example, the ICER comparing

monotherapy with combination DMARD + steroid rises by  18% from

£17,264 to £20,361 when we switch to the independent domains

model. If we were to  use a cost-effectiveness threshold of £20,000,

this would question the decision that  monotherapy is  cost-effective

relative to the DMARD +  steroid combination therapy. Using the

joint model, the ICER rises to  £17,264, not large enough to  reverse

the decision but a substantial rise nonetheless.9 Since the ICER is  the

ratio of a cost difference to a  QALY difference, it is  particularly sen-

sitive to changes in the denominator when alternative treatments

have similar impacts on QALYs.

7. Conclusions

There are three clear conclusions. First, econometric modelling

based on a flexible mixture-copula specification has revealed sig-

nificant differences between the 3L and 5L versions of the EQ-5D

descriptive system for health states. These differences are partic-

ularly striking for the mobility and pain domains, where the two

versions of the instrument give significantly different pictures of

the relationship between individual health states and their demo-

graphic and clinical determinants.

Second, we have developed a  new and powerful technique for

modelling and mapping between the 3L and 5L health descrip-

tions provided by the two variants of EQ-5D, using a  conditional

expectation approach. In this framework, we map  between health

descriptive systems before applying utility scores, and this mapping

procedure reproduces the directly-observed distributional shape

quite faithfully. On  the basis of the evidence presented here, NICE

9 The first published version of the value set (Devlin and van Hout, 2015) produced

higher ICERs, £21,476 and £18,100 respectively.

could move to  the new 5L version of EQ-5D as the basis for its

decision-making, and use flexible mapping techniques where nec-

essary to convert old 3L evidence to  the new basis. The alternative

approach of direct mapping between utility scores can reproduce

distributional features accurately if a  sufficiently flexible model is

specified (Hernández-Alava et al., 2012), but  that approach ignores

the richer information available in the health descriptions Y31, . . .,
Y35 and Y51, . . .,  Y55 and does not  allow comparisons to be made

across domains. Perhaps most importantly, the direct approach

conflates the effect of the redesigned health description and the

revised utility tariff and does not  offer a natural way of comparing

alternative utility tariffs.

Third, our re-examination of evidence from a  trial of combina-

tion drug therapies for rheumatoid arthritis shows that switching to

the newer 5L version of EQ-5D and using the utility scoring system

recently proposed by Devlin et al. (2016) can make a  substantial dif-

ference to the conclusions from cost-effectiveness studies. This is

partly a  consequence of the different utility tariffs developed for EQ-

5D-3L and EQ-5D-5L which itself may  call for some adjustment to

the way that such studies are translated into funding decisions. But,

working within a  comprehensive and flexible framework that mod-

els 3L and 5L jointly, we have shown that econometric specification

can also have a  separate large impact. In particular, making the

simplifying assumption of independence across health domains, or

using a  restricted set of covariates that  excludes clinical informa-

tion, may  cause large shifts in cost-effectiveness ratios –  of  up  to

50% in  our application to rheumatic disease.

Appendix A. Full parameter estimates

Table A1

Estimated coefficients of the domain-specific bivariate and joint models.

Domain-specific model Joint model

Coefficient Std. error Coefficient Std. error

Mobility domain – 3 levels

Male 0.4601 0.0543 0.5125 0.0637

Age/10 −0.0117 0.0169 −0.0067 0.0197

Pain/10 2.4178 0.3205 2.8928 0.3826

HAQ 1.2370 0.1092 1.3765 0.1347

HAQ2 −0.9591 0.3880 0.0987 0.0627

Pain2 0.0593 0.0522 −1.2067 0.4554

HAQ × pain −0.3067 0.1603 −0.3134 0.1907

  0.6494 0.0416

Ŵ1 1.8996 0.1244 2.2583 0.1547

Ŵ2 5.6557 0.1634 6.7752 0.2465

Mobility domain – 5 levels

Male 0.3390 0.0430 0.3839 0.0504

Age/10 0.0506 0.0137 0.0612 0.0159

Pain/10 1.9446 0.2525 2.4359 0.2964

HAQ 1.2235 0.0841 1.4009 0.1010

HAQ2 −0.4122 0.3099 0.0610 0.0470

Pain2 0.0458 0.0397 −0.6556 0.3606

HAQ × pain −0.3969 0.1283 −0.4656 0.1527

  0.6279 0.0317

Ŵ1 1.5939 0.0982 1.8964 0.1184

Ŵ2 2.9367 0.1032 3.4302 0.1321

Ŵ3 4.2711 0.1093 4.9911 0.1511

Ŵ4 5.5625 0.1303 6.5589 0.1920

Dependency � 0.7074 0.0139 0.5956 0.0203

Self-care domain –  3 levels

Male 0.6103 0.0662 0.6438 0.0688

Age/10 −0.1067 0.0204 −0.1096 0.0210

Pain/10 1.0591 0.4462 1.4948 0.4722

HAQ 1.8555 0.1966 1.9641 0.2226

HAQ2 −0.6821 0.4457 −0.0444 0.0790

Pain2 −0.0314 0.0729 −1.0048 0.4603
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Table  A1 (Continued)

Domain-specific model Joint model

Coefficient Std. error Coefficient Std. error

HAQ × pain 0.0428 0.2036 0.0040 0.2144

  0.3163 0.0347

Ŵ1 2.7358 0.1960 2.9350 0.2235

Ŵ2 5.7598 0.2142 6.1590 0.2565

Self-care domain – 5 levels

Male 0.6366 0.0536 0.6779 0.0569

Age/10 −0.0949 0.0167 −0.1006 0.0175

Pain/10 1.2139 0.3390 1.7335 0.3669

HAQ 1.5870 0.1270 1.7245 0.1432

HAQ2 −0.7787 0.3644 0.0097 0.0561

Pain2 0.0182 0.0519 −1.1726 0.3852

HAQ × pain 0.0764 0.1583 0.0276 0.1686

  0.3806 0.0289

Ŵ1 2.0816 0.1350 2.3131 0.1524

Ŵ2 3.4855 0.1399 3.7768 0.1627

Ŵ3 4.9402 0.1512 5.3745 0.1825

Ŵ4 5.6903 0.1729 6.3115 0.2176

Dependency � 6.0530 0.3145 5.5022 0.3051

Usual activities domain – 3 levels

Male 0.2409 0.0539 0.3278 0.0781

Age/10 −0.0582 0.0168 −0.0751 0.0240

Pain/10 2.6254 0.3175 4.1937 0.4879

HAQ 1.7515 0.1164 2.6488 0.1936

HAQ2 −1.3382 0.3756 −0.3058 0.0709

Pain2 −0.1891 0.0503 −2.1676 0.5438

HAQ × pain 0.0196 0.1594 −0.1170 0.2237

  1.0333 0.0819

Ŵ1 1.7532 0.1278 2.7194 0.2159

Ŵ2 4.7465 0.1520 6.9414 0.3559

Usual activities domain – 5 levels

Male 0.1923 0.0440 0.2462 0.0625

Age/10 −0.0751 0.0139 −0.0961 0.0195

Pain/10 2.4151 0.2616 3.7146 0.3862

HAQ 1.6059 0.0925 2.2971 0.1437

HAQ2 −1.3418 0.3149 −0.1997 0.0581

Pain2 −0.1386 0.0416 −2.0802 0.4497

HAQ × pain 0.0367 0.1325 −0.0395 0.1881

  0.9943 0.0616

Ŵ1 1.0144 0.0997 1.5766 0.1490

Ŵ2 2.4708 0.1074 3.6049 0.1854

Ŵ3 3.9116 0.1188 5.6372 0.2345

Ŵ4 4.8488 0.1342 6.8882 0.2712

Dependency � 0.5560 0.0172 0.1019 0.0541

Common mixture

� 0.0621 0.0461

1 − � 0.9379 0.0461

�1 0.2841 0.4314

�2 −0.0188 0.0217

�2
1

3.0482 0.8537

�2
2

0.8587 0.0665

Pain/discomfort domain – 3 levels

Male 0.1737 0.0472 0.2130 0.0562

Age/10 0.0332 0.0156 0.0274 0.0181

Pain/10 6.3976 0.4445 7.1520 0.4037

HAQ 0.6059 0.0908 0.7806 0.1046

HAQ2 −2.3849 0.4493 −0.1176 0.0551

Pain2 −0.1296 0.0488 −3.0418 0.4349

HAQ × pain 0.4015 0.1796 0.1717 0.1849

  0.3705 0.0325

Ŵ1 0.8379 0.1132 0.9465 0.1241

Ŵ2 5.1633 0.1728 5.4769 0.1890

� 0.5871 0.0787

1 − � 0.4129 0.0787

�1 −0.0936 0.0528

�2 0.1331 0.0771

�2
1

0.2850 0.0824

�2
2

1.9866 0.2359

Pain/discomfort domain – 5 levels

Male 0.1085 0.0424 0.1278 0.0484

Age/10 −0.0504 0.0137 −0.0605 0.0155

Pain/10 6.0189 0.2887 6.9250 0.3362

Table A1 (Continued)

Domain-specific model Joint model

Coefficient Std. error Coefficient Std. error

HAQ 0.6694 0.0819 0.7903 0.0936

HAQ2 −2.6218 0.3451 −0.1119 0.0460

Pain2 −0.1042 0.0402 −3.0565 0.3848

HAQ × pain 0.3632 0.1391 0.3352 0.1563

  0.5364 0.0301

Ŵ1 −0.3351 0.0939 −0.3981 0.1061

Ŵ2 2.0121 0.1049 2.3200 0.1212

Ŵ3 4.1984 0.1174 4.7505 0.1437

Ŵ4 5.3824 0.1280 6.0899 0.1616

�  0.1075 0.0745

1 − � 0.8925 0.0745

�1 0.1204 0.1985

�2 −0.0145 0.0195

�2
1

2.6886 0.7068

�2
2

0.7948 0.0830

Dependency �  1.7094 0.0474 1.5660 0.0452

Anxiety/depression domain – 3 levels

Male 0.0387 0.0491 0.0469 0.0495

Age/10 −0.1350 0.0148 −0.1355 0.0152

Pain/10 1.2087 0.2829 1.3453 0.2894

HAQ 0.4322 0.0904 0.4549 0.0923

HAQ2 −0.2623 0.3495 −0.0663 0.0440

Pain2 −0.0580 0.0436 −0.4026 0.3550

HAQ × pain  0.1788 0.1471 0.1903 0.1478

  0.3257 0.0259

Ŵ1 0.4435 0.1033 0.4901 0.1055

Ŵ2 2.2668 0.1086 2.3920 0.1164

Anxiety/depression domain – 5 levels

Male −0.0137 0.0453 −0.0071 0.0462

Age/10 −0.1456 0.0137 −0.1482 0.0142

Pain/10 1.2094 0.2554 1.3614 0.2640

HAQ 0.3731 0.0826 0.4139 0.0855

HAQ2 −0.4111 0.3179 −0.0526 0.0410

Pain2 −0.0387 0.0401 −0.5557 0.3251

HAQ × pain  0.2730 0.1354 0.2818 0.1377

  0.3554 0.0240

Ŵ1 0.1154 0.0945 0.1625 0.0979

Ŵ2 1.0888 0.0953 1.1589 0.0999

Ŵ3 2.0811 0.0998 2.2051 0.1076

Ŵ4 2.6195 0.1098 2.8087 0.1227

Dependency �  14.4849 0.5894 13.9413 0.5912

Common mixture – joint model

� 0.0250 0.0127

1  − � 0.9750 0.0127

�1 −0.5004 0.2528

�2 0.0128 0.0072

�2
1

5.6660 1.6944

�2
2

0.8739 0.0286
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