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DERIVED A-INFINITY ALGEBRAS AND THEIR HOMOTOPIES

JOANA CIRICI, DANIELA EGAS SANTANDER, MURIEL LIVERNET, AND SARAH WHITEHOUSE

Abstract. The notion of a derived A-infinity algebra, considered by Sagave, is a generalization of the
classical notion of A-infinity algebra, relevant to the case where one works over a commutative ring
rather than a field. We initiate a study of the homotopy theory of these algebras, by introducing a
hierarchy of notions of homotopy between the morphisms of such algebras. We define r-homotopy, for
non-negative integers r, in such a way that r-homotopy equivalences underlie Er-quasi-isomorphisms,
defined via an associated spectral sequence. We study the special case of twisted complexes (also known
as multicomplexes) first since it is of independent interest and this simpler case clearly exemplifies the
structure we study. We also give two new interpretations of derived A-infinity algebras as A-infinity
algebras in twisted complexes and as A-infinity algebras in split filtered cochain complexes.
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1. Introduction

The homotopy invariant version of an associative algebra, known as an A∞-algebra, has become an
important idea in many areas of mathematics, including algebra, geometry and mathematical physics.
An introduction to these structures and a discussion of various applications can be found in Keller’s
survey [Kel01]. Kadeishvili’s work on minimal models used the existence of A∞-structures in order to
classify differential graded algebras over a field up to quasi-isomorphism [Kad80].

The homotopy theory of these algebras has been studied by several authors, including Prouté,
Grandis and Lefèvre-Hasegawa [Pro11], [Gra99], [LH03]. Grandis gave a notion of homotopy between
morphisms of A∞-algebras via a functorial path construction. Working over a field, Lefèvre-Hasegawa
establishes the structure of a “model category without limits” on the category of A∞-algebras.

In order to formulate a generalization of Kadeishvili’s work over a general commutative ground ring,

Sagave considered the notion of derived A∞-algebra [Sag10]. This is related to the notion of D
(s)
∞ -

differential A∞-algebra considered by Lapin in [Lap02]. Sagave establishes the existence of minimal
models for differential graded algebras (dgas) by showing that the structure of a derived A∞-algebra
arises on some projective resolution of the homology of a differential graded algebra. Furthermore,
the dga can be recovered up to quasi-isomorphism from this data.

In [LRW13] an operadic description of derived A∞-algebras was developed, working with non-
symmetric operads in the category vbCR of bicomplexes with zero horizontal differential. There is
an operad dAs in this category encoding bidgas, which are simply monoids in bicomplexes. Derived
A∞-algebras are precisely algebras over the operad

dA∞ = (dAs)∞ = Ω((dAs)¡).

Here (dAs)¡ is the Koszul dual cooperad of the operad dAs, and Ω denotes the cobar construction.
Further development of the operadic theory of these algebras was carried out in [ALR+15]. The recent
PhD thesis of Maes [Mae16] studies derived P∞-algebras, replacing the associative operad As with a
suitable operad P .

A derived A∞-algebra has an underlying twisted complex, also known as a multicomplex or D∞-
module. Twisted complexes arise as a natural generalization of the notion of double complex by
considering a family of “differentials” indexed over the non-negative integers. These objects were first
considered by Wall [Wal61] in his work on resolutions for extensions of groups and subsequently they
have arisen in the work of many authors. They were studied by Gughenheim and May [GM74] in
their approach to differential homological algebra. Meyer [Mey78] introduced homotopies between
morphisms of twisted complexes and proved an acyclic models theorem for these objects. More
recently, twisted complexes have proven to be an important tool in homological perturbation theory
(see for example [Lap01], [Hue04]). Saneblidze [San07] introduced projective twisted complexes and
showed that every (possibly unbounded) chain complex over an abelian category A is weakly equivalent
to a projective multicomplex, provided that A has enough projectives and countable coproducts. This
result provides a good description of the derived category of A. The work of Sagave on minimal models
for differential graded algebras can be thought of as a multiplicative enhancement of Saneblidze’s
result [San07].

In this paper, we initiate a study of the homotopy theory of derived A∞-algebras, by introducing
a hierarchy of notions of homotopy between the morphisms of such algebras. We define r-homotopy
for r ≥ 0 and consider a related notion of Er-quasi-isomorphism. Denoting the set of r-homotopy
equivalences by Sr and the set of Er-quasi-isomorphisms by Er, we have the following inclusions.

S0 ⊂ S1 ⊂ . . . ⊂ Sr ⊂ Sr+1 ⊂ . . .
∩ ∩ ∩ ∩
E0 ⊂ E1 ⊂ . . . ⊂ Er ⊂ Er+1 ⊂ . . .

We treat the special case of twisted complexes first, since it is of independent interest and the theory
is simpler in this case. Every twisted complex has an associated spectral sequence, defined via the
column filtration of its total complex. In fact, the totalization functor gives rise to an isomorphism of
categories between the category of twisted complexes and the full subcategory of filtered complexes
whose objects have split filtrations (Theorem 3.8). The class of Er-quasi-isomorphisms is given by those
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morphisms of twisted complexes inducing a quasi-isomorphism on the r-th stage of their associated
spectral sequences. The notion of r-homotopy for twisted complexes that we consider corresponds
to the notion of homotopy of order r introduced in [CE56] and further developed in [CG16] in the
context of filtered complexes. We study the localized category of twisted complexes with respect
to r-homotopies (Theorem 3.26). We present several equivalent formulations of r-homotopy: via a
functorial path, via explicit formulas and an operadic approach (Theorem 3.37).

A substantial part of the paper is devoted to developing new interpretations of derived A∞-algebras.
As well as being interesting in themselves, these new viewpoints are used in establishing properties
of homotopy and they provide a key idea for the proof of the equivalence of the various formulations
of r-homotopy in the derived A∞ case. Firstly, we show that derived A∞-algebras can be interpreted
as A∞-algebras in twisted complexes (Theorem 4.50). This formulation has the potential to be a
very useful tool for the future development of different aspects of the theory of derived A∞-algebras.
Secondly, under suitable boundedness conditions, we show that derived A∞-algebras can be viewed as
split filtered A∞-algebras (Theorem 4.56). This result allows one to transfer known constructions in
the category of A∞-algebras to the category of derived A∞-algebras, by checking compatibility with
filtrations.

The context for these new interpretations is the theory of operadic algebras for monoidal categories
over a base, as developed by Fresse [Fre09]. We endow the categories of twisted complexes and filtered
complexes with a monoidal structure over the category of vertical bicomplexes and use this to enrich
them over vertical bicomplexes. This allows us to formulate these algebra structures by means of an
enriched endomorphism operad. The totalization functor extends to the enriched setting and gives
an isomorphism between the vertical bicomplexes-enriched categories of twisted complexes and split
filtered complexes (Theorem 4.39). We use this isomorphism to show that, under certain boundedness
conditions, the different intepretations of derived A∞-algebras are equivalent.

We then turn to r-homotopy for derived A∞-algebras. Here, the class of Er-quasi-isomorphisms
is defined by lifting Er-quasi-isomorphisms of the underlying twisted complexes. The notion of r-
homotopy that we consider arises as a combination of the notion of r-homotopy for twisted complexes
and the classical notion of homotopy between morphisms of A∞-algebras. We again present different
approaches: via a functorial path construction, via explicit formulas and in operadic terms. For
the operadic description we formulate the general notion of a (g, f)-coderivation for morphisms g, f
of cofree coalgebras over a (non-symmetric) operad. In Theorem 5.31, we show that the different
approaches are equivalent.

The results of this paper set up the foundations for a homotopy theory of derived A∞-algebras,
contextualizing the ad-hoc notion of homotopy introduced by Sagave in a very particular case and
generalizing the work of Grandis on functorial paths for A∞-algebras. We expect that both the new
descriptions of derived A∞-algebras and the properties of homotopies developed here will allow us to
endow the category of derived A∞-algebras with the structure of a model category without limits in
the future, with weak equivalences being Er-quasi-isomorphisms.

The paper is organized as follows. Section 2 covers background material introducing some of the
categories we work with. The notion of r-homotopy for twisted complexes is covered in Section 3.
Our new interpretations of derived A∞-algebras are presented in Section 4. Finally, Section 5 studies
r-homotopy for derived A∞-algebras.

Acknowledgements. The authors would like to thank the Banff International Research Station and
the organizers of the Women in Topology workshop in April 2016 for bringing us together to work
on this paper. We would also like to thank Gabriel Drummond-Cole, Fernando Muro, Emily Riehl,
Agust́ı Roig and Sinan Yalin for helpful conversations. Further thanks go to the anonymous referee
for his/her careful report and helpful suggestions.

2. Preliminaries

We first set up some notation which we will use throughout this paper.
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Notation 2.1. Throughout this paper R will denote a commutative ring with unit. Unless stated
otherwise, all tensor products will be taken over R. Let C be a category and let A,B be arbitrary
objects in C. We denote by HomC(A,B) the set of morphisms from A to B in C. If (C,⊗, 1) is
symmetric monoidal closed, then we denote its internal hom-object by [A,B] ∈ C in which case we
have by definition a bijection

HomC(A⊗B,C) ∼= HomC(A, [B,C])

which is natural in A,B and C.

2.1. Filtered modules and filtered cochain complexes. We collect some algebraic preliminaries
about filtered R-modules and filtered complexes of R-modules. Our complexes are cochain complexes
and our filtrations are increasing.

Definition 2.2. A filtered R-module (A,F ) is given by a family of R-modules {FpA}p∈Z indexed by
the integers such that Fp−1A ⊆ FpA for all p ∈ Z and A = ∪FpA. A morphism of filtered modules is a
morphism f : A→ B of R-modules which is compatible with filtrations : f(FpA) ⊂ FpB for all p ∈ Z.

Definition 2.3. The tensor product of two filtered R-modules (A,F ) and (B,F ) is a filtered R-
module, with

Fp(A⊗B) :=
∑

i+j=p

Im(FiA⊗ FjB −→ A⊗B).

This makes the category of filtered R-modules into a symmetric monoidal category, where the unit is
given by R with the trivial filtration 0 = F−1R ⊂ F0R = R.

Denote by CR the category of cochain complexes of R-modules. The standard tensor product
endows this with a symmetric monoidal structure, with unit R concentrated in degree zero.

Definition 2.4. A filtered complex (K, d, F ) is a complex (K, d) ∈ CR together with a filtration F of
each R-module Kn such that d(FpK

n) ⊂ FpK
n+1 for all p, n ∈ Z.

We denote by fCR the category of filtered complexes of R-modules. Its morphisms are given by
morphisms of complexes f : K → L compatible with filtrations: f(FpK) ⊂ FpL for all p ∈ Z. It
is a symmetric monoidal category, with the filtration on the tensor product defined as above. The
symmetry isomorphisms are inherited from the standard ones on cochain complexes.

We next recall the notion of homotopy of order r due to Cartan and Eilenberg.

Definition 2.5. [CE56, p321] Let f, g : (K,F ) −→ (L,F ) be two morphisms of filtered complexes
and let r ≥ 0 be an integer. A homotopy of order r from f to g is a map of graded R-modules
H : K∗ → L∗−1 such that dH +Hd = g − f and H(FpK

n) ⊂ Fp+rL
n−1 for all p, n ∈ Z.

Remark 2.6. Every filtered complex (K, d, F ) has an associated spectral sequence {Er(K), δr} and
this assignment is functorial. Given a homotopy of order r between morphisms of filtered complexes
f, g : (K,F )→ (L,F ), the induced morphisms at the k > r stages of the spectral sequences coincide:
f∗
k = g∗k : Ek(K) → Ek(L) for all k > r (see [CE56, Proposition XV.3.1]). This result indicates
how the notion of homotopy of order r is suitable for studying the r-derived category defined by
inverting those morphisms of filtered complexes which induce an isomorphism at the Er+1-stage of
the associated spectral sequences (see [Par96], [CG16]).

2.2. Bigraded modules, vertical bicomplexes, sign conventions. We consider (Z,Z)-bigraded

R-modules A = {Aj
i}, where elements of Aj

i are said to have bidegree (i, j). We sometimes refer to i

as the horizontal degree and j the vertical degree. The total degree of an element a ∈ Aj
i is |a| = j − i.

A morphism of bidegree (p, q) maps Aj
i to Aj+q

i+p . The tensor product of two bigraded R-modules A
and B is the bigraded R-module A⊗B given by

(A⊗B)ji :=
⊕

p,q

Aq
p ⊗Bj−q

i−p .
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We denote by bgModR the category whose objects are bigraded R-modules and whose morphisms
are morphisms of bigraded R-modules of bidegree (0, 0). It is symmetric monoidal with the above
tensor product.

We introduce the following scalar product notation for bidegrees: for x, y of bidegree (x1, x2), (y1, y2)
respectively, we let 〈x, y〉 = x1y1 + x2y2.

The symmetry isomorphism

τ
bgModR
A⊗B : A⊗B → B ⊗A

is given by

a⊗ b 7→ (−1)〈a,b〉b⊗ a.

We follow the Koszul sign rule: if f : A → B and g : C → D are bigraded morphisms, then the
morphism f ⊗ g : A⊗ C → B ⊗D is defined by

(f ⊗ g)(a⊗ c) := (−1)〈g,a〉f(a)⊗ g(c).

Definition 2.7. A vertical bicomplex is a bigraded R-module A equipped with a vertical differential
dA : A −→ A of bidegree (0, 1). A morphism of vertical bicomplexes is a morphism of bigraded modules
of bidegree (0, 0) commuting with the vertical differential.

We denote by vbCR the category of vertical bicomplexes. The tensor product of two vertical
bicomplexes A and B is given by endowing the tensor product of underlying bigraded modules with
vertical differential dA⊗B := dA ⊗ 1 + 1 ⊗ dB : (A ⊗ B)vu → (A ⊗ B)v+1

u . This makes vbCR into a
symmetric monoidal category.

The symmetric monoidal categories (CR,⊗, R), (bgModR,⊗, R) and (vbCR,⊗, R) are related by
embeddings CR →֒ vbCR and bgModR →֒ vbCR which are monoidal and full.

Definition 2.8. Let A,B be bigraded modules. We define [A,B]∗∗ to be the bigraded module of
morphisms of bigraded modules A → B. Furthermore, if A,B are vertical bicomplexes, and f ∈
[A,B]vu, we define

δ(f) := dBf − (−1)vfdA.

Lemma 2.9. If A,B are vertical bicomplexes, then ([A,B]∗∗, δ) is a vertical bicomplex.

Proof. A direct computation gives that δ2 = 0. �

This gives an internal hom on vbCR, making it symmetric monoidal closed. It restricts to give the
standard internal hom on the categories bgModR and CR.

We denote by vbCR, CR, and bgModR, the categories of vertical bicomplexes, complexes, and
bigraded modules respectively, enriched over themselves via their symmetric monoidal closed structure.

We will use a standard (vertical) shift S of bigraded modules, following Sagave’s conventions, as
in the first part of [Sag10, Section 4]. So S is the shift of bidegree (0, 1); it is an endofunctor on the

category of bigraded R-modules with morphisms of arbitrary bidegree, where S(A)ji = Aj+1
i and on

morphisms Sf = (−1)vf , if f has bidegree (u, v).
We write σ for the corresponding natural transformation from S to the identity; this means that

fσA = σBS(f) = (−1)vσBf.

For every bigraded R-module A, σA is an isomorphism of bidegree (0, 1). Then Ψk is the induced
isomorphism from morphisms on a k-fold tensor power:

Ψk : Hom(A⊗k, B)→ Hom((SA)⊗k, SB),

where σBΨk(f) = (−1)〈Ψk(f),σ〉fσ⊗k
A . If the bidegree of f is (u, v), then the bidegree of Ψk(f) is

(u, v + k − 1), and then since that of σ is (0, 1), we have 〈Ψk(f), σ〉 = v + k − 1.
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3. Twisted complexes and r-homotopy

In this section, we recall some key properties of the category of twisted complexes, also called
multicomplexes in the literature. We define the totalization functor from twisted complexes to filtered
cochain complexes and show that it induces an isomorphism of categories onto its image. We then
introduce r-homotopies between morphisms of twisted complexes, consider their interplay with spectral
sequences and study the localized category tCR[S

−1
r ].

3.1. The category of twisted complexes (or multicomplexes).

Definition 3.1. A twisted complex (A, dm) is a bigraded R-module A = {Aj
i} together with a family

of morphisms {dm : A −→ A}m≥0 of bidegree (−m,−m+ 1) such that for all m ≥ 0,
∑

i+j=m

(−1)ididj = 0. (Am1)

Definition 3.2. A morphism of twisted complexes f : (A, dAm) → (B, dBm) is given by a family of
morphisms of R-modules {fm : A −→ B}m≥0 of bidegree (−m,−m) such that for all m ≥ 0,

∑

i+j=m

dBi fj =
∑

i+j=m

(−1)ifid
A
j . (Bm1)

The composition of morphisms is given by (g ◦ f)m :=
∑

i+j=m gifj . A morphism f = {fm}m≥0 is
said to be strict if fi = 0 for all i > 0. The identity morphism 1A : A → A is the strict morphism
given by (1A)0(x) = x. A morphism f = {fi} is an isomorphism if and only if f0 is an isomorphism of
bigraded R-modules. Indeed, an inverse of f is obtained from an inverse of f0 by solving a triangular
system.

Denote by tCR the category of twisted complexes. Also, denote by bgMod∞R the full subcategory
of tCR whose objects are twisted complexes with trivial structure i.e., dm = 0 for all m ≥ 0.

The following construction endows tCR with a symmetric monoidal structure.

Lemma 3.3. The category (tCR,⊗, R) is symmetric monoidal, where the monoidal structure is given
by the bifunctor

⊗ : tCR × tCR → tCR

which on objects is given by ((A, dAm), (B, dBm)) 7→ (A ⊗ B, dAm ⊗ 1 + 1 ⊗ dBm) and on morphisms is
given by (f, g) 7→ f ⊗ g, where (f ⊗ g)m :=

∑
i+j=m fi ⊗ gj. In particular, by the Koszul sign rule we

have that (fi⊗ gj)(a⊗ b) = (−1)<gj ,a>fi(a)⊗ gj(b). The symmetry isomorphism is given by the strict
morphism of twisted complexes

τ tCR

A⊗B : A⊗B → B ⊗A

defined by

a⊗ b 7→ (−1)〈a,b〉b⊗ a.

This functor describes a symmetric monoidal structure on bgMod∞R by restriction.

Proof. We check that (A⊗B, ∂m = dAm ⊗ 1 + 1⊗ dBm) is a twisted complex: for all m ≥ 0 we have
∑

i+j=m

(−1)i∂i∂j =
∑

i+j=m

(−1)i(dAi d
A
j ⊗ 1 + 1⊗ dBi d

B
j + dAi ⊗ dBj + (−1)ij+(1−i)(1−j)dAj ⊗ dBi ) = 0.

Similarly, one checks that f ⊗ g is a morphism of twisted complexes. It only remains to see that this
construction is functorial. A direct computation shows that

((f ⊗ g) ◦ (f ′ ⊗ g′))m = (f ◦ f ′ ⊗ g ◦ g′)m. �

We extend the internal hom on bigraded modules to twisted complexes.

Lemma 3.4. Let A,B be twisted complexes. For f ∈ [A,B]vu, setting

(dif) := (−1)i(u+v)dBi f − (−1)vfdAi ,

for i ≥ 0, endows [A,B]∗∗ with the structure of a twisted complex.
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Proof. It is a matter of calculation that
∑

i(−1)
i(didm−if) = 0, for all m ≥ 0. Thus the maps

di : [A,B]vu → [A,B]v−i+1
u−i make [A,B]∗∗ into a twisted complex. �

This construction gives an internal hom and we denote by tCR the category of twisted complexes
enriched over itself via this symmetric monoidal closed structure.

Definition 3.5. Let r ≥ 0 be a non-negative integer. An r-bigraded complex is a twisted complex
(A, dm) such that dm = 0 for all m 6= r.

Note that in this case, we have drdr = 0. For r = 0, this coincides with the notion of vertical
bicomplex. Denote by r-tCR the full subcategory of tCR whose objects are r-bigraded complexes. The
prototypical example of such an object is given by the r-th term of the spectral sequence associated
with a twisted complex, as we will see in Section 3.3.

3.2. Total cochain complex of a twisted complex.

Definition 3.6. The total graded R-module Tot(A) of a bigraded R-module A = {Aj
i} is given by

Tot(A)n :=
∏

i≤0

An+i
i ⊕

⊕

i>0

An+i
i .

The column filtration of Tot(A) is the filtration given by FpTot(A)n :=
∏

i≤pA
n+i
i for all p, n ∈ Z.

We will show that, via the totalization functor, the category of twisted complexes is isomorphic to
a full subcategory of that of filtered complexes. We use the following.

Definition 3.7. A filtered complex (K, d, F ) is said to be split if K = Tot(A) is the total graded

module of a bigraded R-module A = {Aj
i} and F is the column filtration of Tot(A). We denote by

sfCR the full subcategory of fCR whose objects are split filtered complexes.
Given a twisted complex (A, dm), define a map d : Tot(A)→ Tot(A) of degree 1 by letting

d(a)j :=
∑

m≥0

(−1)mndm(aj+m), for a = (ai)i∈Z ∈ Tot(A)n,

where ai ∈ An+i
i denotes the i-th component of a, and d(a)j denotes the j-th component of d(a). Note

that, for a given j ∈ Z there is a sufficiently large m ≥ 0 such that aj+m′ = 0 for all m′ ≥ m. Hence
d(a)j is given by a finite sum. Also, for j sufficiently large, one has aj+m = 0 for all m ≥ 0, which
implies d(a)j = 0.

Given a morphism f : (A, dm) → (B, dm) of twisted complexes, let Tot(f) : Tot(A) → Tot(B) be
the map of degree 0 defined by

(Tot(f)(a))j :=
∑

m≥0

(−1)mnfm(aj+m), for a = (ai)i∈Z ∈ Tot(A)n.

Theorem 3.8. The assignments (A, dm) 7→ (Tot(A), d, F ), where F is the column filtration of Tot(A),
and f 7→ Tot(f) define a functor Tot : tCR −→ fCR which is an isomorphism of categories when
restricted to its image sfCR.

Proof. Let (A, dm) be a twisted complex and let a = (ai)i∈Z ∈ Tot(A)n. To see that (Tot(A), d) is a
complex it suffices to note that:

(dd(a))j =
∑

p≥0

∑

m≥0

(−1)p(n+1)+mndp(dm(aj+m+p)) =
∑

l≥0

(−1)ln
∑

m,p≥0,
m+p=l

(−1)pdpdm(aj+l) = 0.

One easily verifies that Fp−1Tot(A)
n ⊂ FpTot(A)

n and that d(FpTot(A)n) ⊂ FpTot(A)
n+1.

Let f : (A, dAm)→ (B, dBm) be a morphism of twisted complexes. If a = (ai) ∈ Tot(A)n then

(Tot(f) ◦ d(a))j =
∑

m≥0

∑

p+q=m

(−1)p(n+1)(−1)qnfpdq(aj+m) =

∑

m≥0

(−1)mn
∑

p+q=m

dqfp(aj+m) =
∑

m≥0

∑

p+q=m

(−1)(q+p)ndqfp(aj+m) = (d ◦ Tot(f)(a))j .
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Note that Tot(f) is compatible with the filtration F and that Tot(fg) = Tot(f)Tot(g). This proves
that Tot is a functor with values in the category of split filtered complexes.

We next define a functor Tot−1 : sfCR → tCR inverse to the restriction of Tot onto its image. Let

(Tot(A), d, F ) be a split filtered complex, where A = {Aj
i} is a bigraded R-module. For all m ≥ 0, let

dm : A → A be the morphism of bidegree (−m,−m + 1) defined by dm(a) = (−1)nmd(a)i−m, where

a ∈ An+i
i and d(a)k denotes the k-th component of d(a), which lies in An+1+k

k . Since d is compatible
with the filtration F , we have di = 0 for i < 0. Then (A, dm) is a twisted complex and its filtered
total complex is (Tot(A), d, F ). Lastly, let f : (Tot(A), d, F )→ (Tot(B), d, F ) be a morphism of split
filtered complexes. For all m ≥ 0, let fm : A→ B be the morphism of bidegree (−m,−m) defined by
fm(a) = (−1)nmf(a)i−m, where a ∈ An+i

i and f(a)k denotes the k-th component of f(a), which lies

in Bn+k
k . Since f is compatible with the filtration F , we have that fi = 0 for i < 0. Then the family

{fm}m≥0 is a morphism of twisted complexes whose total morphism is f . It is straightforward to see
that the above constructions define an inverse functor to the restriction of Tot. �

Remark 3.9. Strict morphisms of twisted complexes correspond, via the above isomorphism of cat-
egories, to strict morphisms of split filtered complexes, that is, morphisms preserving the splittings.

We will also consider the following bounded versions of our categories, since the totalization functor
has better properties when restricted to these.

Definition 3.10. We let tCb
R, vbCb

R, bgModbR be the full subcategories of (N,Z)-graded twisted

complexes, vertical bicomplexes and bigraded modules respectively. We let fModbR, sfModbR, fCb
R,

sfCb
R be the full subcategories of (split) non-negatively filtered modules, respectively complexes, i.e.

the full subcategories of objects (K,F ) such that FpK
n = 0 for all p < 0. We refer to all of these as

the bounded subcategories of tCR, vbCR, bgModR, fModR, sfModR, fCR and sfCR respectively.

In the following proposition, we show that the monoidal structures of twisted complexes and filtered
complexes are compatible under the totalization functor.

Proposition 3.11. The functors Tot : bgModR → fModR and Tot : tCR → fCR are lax symmetric
monoidal, with structure maps

ǫ : R→ Tot(R) and µA,B : Tot(A)⊗ Tot(B)→ Tot(A⊗B),

given by ǫ = 1R and for a = (ai)i ∈ Tot(A)n1 and b = (bj)j ∈ Tot(B)n2,

(µA,B(a⊗ b))k :=
∑

k1+k2=k

(−1)k1n2ak1 ⊗ bk2 .

When restricted to the bounded case, the functors Tot : bgModbR → fModbR and Tot : tCb
R → fCb

R are
strong symmetric monoidal functors.

Proof. Clearly ǫ is a map of filtered complexes and a direct computation shows that the same is true
for µA,B. We now show that µA,B respects the symmetric structure i.e., that Diagram (1) commutes.

Tot(A)⊗ Tot(B) Tot(A⊗B)

Tot(B)⊗ Tot(A) Tot(B ⊗A)

µA,B

τ fCR

A,B

µB,A

Tot(τ tCR

A,B )

Tot(A)⊗ Tot(B) Tot(A⊗B)

Tot(A′)⊗ Tot(B′) Tot(A′ ⊗B′)

µA,B

Tot(f)⊗ Tot(g)

µA′,B′

Tot(f ⊗ g)

(1) (2)
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Let a⊗ b ∈ Tot(A)n1 ⊗ Tot(B)n2 , with n1 + n2 = n. Then

(Tot(τ tCR

A,B )µA,B(a⊗ b))k =
∑

k1+k2=k

(−1)k1n2+k1k2+(k1+n1)(k2+n2)bk2 ⊗ ak1

=
∑

k1+k2=k

(−1)n1n2+k2n1bk2 ⊗ ak1

= (µB,Aτ
fCR

A,B (a⊗ b))k.

The commutativity of Diagram (2) is obtained from the following computation. Let a ⊗ b ∈
Tot(A)n1 ⊗ Tot(B)n2 , with n1 + n2 = n. Calculating one composite we get

(Tot(f ⊗ g) ◦ µA,B)(a⊗ b))
j
=
∑

m≥0

(−1)mn(f ⊗ g)m((µA,B(a⊗ b))j+m)

=
∑

m1,m2≥0
k1+k2=j

(−1)mn+(k1+m1)n2+m2n1fm1(ak1+m1)⊗ gm2(bk2+m2),

where m = m1 +m2. On the other hand, evaluating the other composite we get

(µA′,B′ ◦ Tot(f)⊗ Tot(g))(a⊗ b))j =
∑

k1+k2=j

(−1)k1n2Tot(f)(a)k1 ⊗ Tot(g)(b)k2

=
∑

m1,m2≥0
k1+k2=j

(−1)k1n2+m1n1+m2n2fm1(ak1+m1)⊗ gm2(bk2+m2),

showing that the equality holds.
The coherence axioms are left to the reader. In the bounded case Tot is strong symmetric monoidal

since ⊗ distributes over ⊕, therefore the natural transformation µ is a natural isomorphism. �

We summarize the categories we study and their relations in the following commutative diagram.

CR vbCR

bgModR

tCR

bgMod∞R

bgMod∞R

fCRsfCR fModR sfModR

∗ U

Tot ∗ Tot∗

U

∗ ∗ 1bgMod∞R

∗ ∗

∼= ∼=

All hooked arrows are embeddings; arrows with a ∗ are full embeddings. We embed bigraded modules in
vertical bicomplexes and twisted chain complexes by assigning them trivial differentials. The forgetful
functors U forget the differential structure. All functors are strong symmetric monoidal, except for
Tot. This is strong symmetric monoidal when restricted to the full subcategories of bounded objects;
it is only lax symmetric monoidal otherwise.

3.3. Spectral sequence associated to a twisted complex. Every twisted complex (A, dm) has
an associated spectral sequence

E∗,∗
r (A, dm) := E∗,∗

r (Tot(A, dm)),

which is functorial for morphisms of twisted complexes. Denote by δr the differential of the r-th term.
We choose the bigrading in such a way that for all r ≥ 0, the pair (Er(A, dm), δr) is an r-bigraded
complex, so we have a functor Er : tCR −→ r-tCR. With this choice we have Ep,q

0 (A, dm) = Aq
p and
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δ0 = d0. For r ≥ 1, we have Ep,q
r (A, dm) = H∗(Ep,q

r−1(A, dm), δr−1) and the map δr depends on the
maps dm for m ≤ r.

The map δr is induced by dr only on those classes that have a representative a ∈ Aj
i for which

dk(a) = 0 for all k < r. In particular, for r = 1 we have

Ep,q
1 (A, dm) = Hq(A∗

p, d0) =
Aq

p ∩Ker(d0)

d0(A
q−1
p )

and δ1 = Hd0(d1).

The morphism of spectral sequences

Er(f) := Er(Tot(f)) : E
∗,∗
r (A, dAm)→ E∗,∗

r (B, dBm)

associated with a morphism of twisted complexes f : (A, dAm) → (B, dBm) is given by E0(f) = f0 and
Er(f) = H(Er−1(f), δr−1) for r ≥ 1. In particular, for r = 1 we have E1(f) = Hd0(f0). We refer to
[Boa99] and [Hur10] for further properties of the spectral sequence associated to a twisted complex.

For the rest of this section, let r ≥ 0 be an integer. We shall consider the following notion of weak
equivalence in the category of twisted complexes.

Definition 3.12. A morphism of twisted complexes f : A → B is called an Er-quasi-isomorphism
if the morphism E∗,∗

r (f) : E∗,∗
r (A) → E∗,∗

r (B) at the r-stage of the associated spectral sequence is a
quasi-isomorphism of r-bigraded complexes (that is, E∗,∗

r+1(f) is an isomorphism).

Denote by Er the class of Er-quasi-isomorphisms of tCR. This class is closed under composition
and contains all isomorphisms of tCR. Denote by

Hor(tCR) := tCR[E
−1
r ]

the r-homotopy category of twisted complexes defined by inverting Er-quasi-isomorphisms. Since
Er ⊂ Er+1 for all r ≥ 0, we have a chain of functors

Ho0(tCR) −→ Ho1(tCR) −→ · · · −→ Hor(tCR) −→ · · ·

Remark 3.13. The class E1 of E1-quasi-isomorphisms corresponds to the class of weak multiequiva-
lences defined by Huebschmann [Hue04] and the class of E2-equivalences considered by Sagave [Sag10].

3.4. r-homotopies and r-homotopy equivalences. We next define a collection of functorial paths
indexed by an integer r ≥ 0 on the category of twisted complexes, giving rise to the corresponding
notions of r-homotopy.

Definition 3.14. The r-path of a twisted complex (A, dm) is the twisted complex given by

Pr(A)ji := Aj
i ⊕Aj+r−1

i+r ⊕Aj
i ,

with the maps Dm : Pr(A)→ Pr(A) of bidegree (−m,−m+ 1) given by

Dr :=




dr 0 0
−1 −dr 1
0 0 dr


 and Dm :=



dm 0 0
0 (−1)m+r+1dm 0
0 0 dm


 for m 6= r.

For all m ≥ 0 we have
∑

i+j=m(−1)iDiDj = 0. Hence (Pr(A), Dm) is indeed a twisted complex.
We have strict morphisms of twisted complexes

A
ιA // Pr(A)

∂+
A //

∂−

A

// A ; ∂±
A ◦ ιA = 1A,

given by ∂−
A (x, y, z) = x, ∂+

A (x, y, z) = z and ιA(x) = (x, 0, x). We will denote by ∂0
A : Pr(A) → A

the map of bidegree (r, r − 1) given by (x, y, z) 7→ y. We will often omit the subscripts of these maps
when there is no danger of confusion. These maps make the r-path of a twisted complex into a path
object in the standard sense of homotopical algebra (see Lemma 3.25 below).
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Definition 3.15. The r-path of a morphism f : (A, dAm) → (B, dBm) of twisted complexes is the
morphism of twisted complexes Pr(f) : (Pr(A), DA

m)→ (Pr(B), DB
m) given by

Pr(f)m := (fm, (−1)mfm, fm).

The above definitions give rise to a functorial path Pr : tCR → tCR in the category of twisted
complexes. This gives a natural notion of homotopy.

Definition 3.16. Let f, g : A → B be two morphisms of twisted complexes. An r-homotopy from f
to g is given by a morphism of twisted complexes h : A→ Pr(B) such that ∂−

B ◦h = f and ∂+
B ◦h = g.

We use the notation h : f ≃
r

g.

Remark 3.17. Let Λr be the r-bigraded complex generated by e−, e+ in bidegree (0, 0) and u in
bidegree (−r, 1− r), with the differential δr(e−) = −u, δr(e+) = u and δi(e±) = 0 for all i 6= r. Then
the assignment (x, y, z) 7→ e− ⊗ x+ u⊗ y + e+ ⊗ z defines a strict isomorphism of twisted complexes
from the r-path (Pr(A), Dm) of a twisted complex (A, dm) to the twisted complex (Λr ⊗A, ∂m) where
∂m = δm ⊗ 1 + 1⊗ dm.

Proposition 3.18. Let f, g : (A, dAm) → (B, dBm) be two morphisms of twisted complexes. Giving

an r-homotopy h : f ≃
r

g is equivalent to giving a collection of morphisms ĥm : A → B of bidegree

(−m+ r,−m+ r − 1) such that for all m ≥ 0,

∑

i+j=m

(−1)i+rdBi ĥj + (−1)iĥid
A
j =

{
0 if m < r,
gm−r − fm−r if m ≥ r.

(Hm1)

Proof. Let h : f ≃
r

g. For every m ≥ 0 we may write hm(x) = (fm(x), ĥm(x), gm(x)), where ĥm =

∂0
Bhm. It is a matter of verification to see that the family {ĥm}m≥0 satisfies (Hm1) for all m ≥ 0.

Conversely, one may check that given a family {ĥm}m≥0 satisfying (Hm1), then the family hm(x) :=

(fm(x), ĥm(x), gm(x)) satisfies ∑

i+j=m

(−1)ihid
A
j =

∑

i+j=m

DB
i hj . �

Remark 3.19. For r = 1 we recover the notion of homotopy between morphisms of twisted complexes
first introduced by Meyer [Mey78], also considered by Saneblidze [San07] and Huebschmann [Hue04].
Up to signs and forgetting bigradings, our notion of r-homotopy is also related to the notion of

(r)-homotopy between morphisms of D
(r)
∞ -modules introduced by Lapin in [Lap01].

Lemma 3.20. Let f, g : (A, dAm)→ (B, dBm) be morphisms of twisted complexes. Giving an r-homotopy

h : f ≃
r

g is equivalent to giving a homotopy of order r, Ĥ : Tot(A)∗ → Tot(B)∗−1, from Tot(f) to

Tot(g), that is, Ĥ(FpTot(A)) ⊂ Fp+r(Tot(B)), where F is the column filtration.

Proof. Given an r-homotopy h : A→ Pr(B) from f to g, we obtain a morphism of filtered complexes
Tot(h) : Tot(A) −→ Tot(Pr(B)). Since Fp(Tot(Pr(B)))n = FpTot(B)n⊕Fp+rTot(B)n−1⊕FpTot(B)n,

we may write Tot(h)(a) = (Tot(f)(a), Ĥ(a),Tot(g)(a)), where Ĥ : Tot(A)∗ → Tot(B)∗−1 satisfies the
desired conditions.

Conversely, given Ĥ : Tot(A)∗ → Tot(B)∗−1 such that dĤ + Ĥd = Tot(g)−Tot(f) and Ĥ(FpA) ⊂
Fp+rB we define a morphism of filtered complexes H : Tot(A) → Tot(Pr(B)) by letting H(a) :=

(Tot(f)(a), Ĥ(a),Tot(g)(a)). By Theorem 3.8, there is a morphism h : A → Pr(B) of twisted com-
plexes such that Tot(h) = H. By construction, h is an r-homotopy from f to g. �

Proposition 3.21. The notion of r-homotopy defines an equivalence relation on the set of morphisms
between two given twisted complexes, which is compatible with the composition.

Proof. The homotopy relation defined by a functorial path is reflexive and compatible with the com-
position (see for example [KP97, Lemma I.2.3]). Symmetry is clear. We prove transitivity. Let

h : f ≃
r

f ′ and h′ : f ′ ≃
r

f ′′. Using the equivalent notion of r-homotopy of Proposition 3.18 we get

an r-homotopy h′′ by letting ĥ′′ = ĥ+ ĥ′. �
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Definition 3.22. A morphism of twisted complexes f : A → B is called an r-homotopy equivalence

if there exists a morphism g : B → A satisfying f ◦ g ≃
r

1B and g ◦ f ≃
r

1A.

Denote by Sr the class of r-homotopy equivalences of tCR. This class is closed under composition
and contains all isomorphisms.

Proposition 3.23. For all r ≥ 0, we have Sr ⊂ Sr+1.

Proof. Using the equivalent notion of homotopy of Proposition 3.18, it is straightforward to see that

given an r-homotopy h from f to g, we obtain an (r + 1)-homotopy h′ from f to g by letting ĥ′0 = 0

and ĥ′m = ĥm−1 for m > 0. �

Proposition 3.24. For all r ≥ 0, we have Sr ⊂ Er.

Proof. By Lemma 3.20, an r-homotopy from f to g in tCR gives a chain homotopy H from Tot(f) to
Tot(g) satisfying H(Fp) ⊂ Fp+r. By [CE56, Proposition XV.3.1], we have Er+1(f) = Er+1(g). �

Lemma 3.25. Let (A, dm) be a twisted complex. The strict morphism ιA : (A, dm) −→ (Pr(A), Dm)
given by ιA(x) = (x, 0, x) is an r-homotopy equivalence.

Proof. Since ∂−
A ιA = 1A, it suffices to define an r-homotopy from 1Pr(A) to ιA∂

−
A . Consider the

morphisms ĥm : Pr(A)→ Pr(A) of bidegree (−m+ r,−m+ r− 1) defined by ĥ0(x, y, z) = (0, 0, y) and

ĥi = 0 for all i > 0. It only remains to verify condition (Hr1) of Proposition 3.18. We have

(Drĥ0 + ĥ0Dr)(x, y, z) = Dr(0, 0, y) + ĥ0(drx,−x− dry + z, drz)

= (0, y, dry) + (0, 0,−x− dry + z) = (0, y,−x+ z)

= (1Pr(A) − ιA∂
−
A )(x, y, z). �

Theorem 3.26. The localized category tCR[S
−1
r ] is canonically isomorphic to the quotient category

πr(tCR) := tCR/ ≃r .

Proof. Denote by γr : tCR → tCR[S
−1
r ] the localization functor. It suffices to show that if h : f ≃

r
g

then γr(f) = γr(g) (see [GNPR10, Proposition 1.3.3]). Consider the following diagram of morphisms
of twisted complexes.

B

A

f
<<yyyyyyyyy h //

g
""E

EE
EE

EE
EE

Pr(B)

∂−

B

OO

∂+
B

��

B
ιBoo

EEEEEEEEE

EEEEEEEEE

yy
yy
yy
yy
y

yy
yy
yy
yy
y

B

By Lemma 3.25 the morphism ιB is an r-homotopy equivalence. Hence the above diagram is a
hammock between the Sr-zigzags f and g in the sense of [DHKS04]. This gives f = g in tCR[S

−1
r ]. �

3.5. The r-translation and the r-cone. The r-path construction is related to a translation functor
depending on r (see [CG16] and [CG14] for similar constructions in the categories of filtered complexes
and filtered commutative dgas respectively). Furthermore, the cone obtained via this translation allows
one to detect Er-quasi-isomorphisms, as we shall see next.

Definition 3.27. The r-translation of a twisted complex (A, dm) is the twisted complex (Tr(A), Tr(dm))

given by Tr(A)ji := Aj−r+1
i−r and Tr(dm) := (−1)m+r+1dm.

Definition 3.28. The r-cone of a morphism f : (A, dAm)→ (B, dBm) of twisted complexes is the twisted

complex (Cr(f), Dm) given by Cr(f)
j
i := Aj−r+1

i−r ⊕Bj
i with the maps Dm : Cr(f)→ Cr(f) of bidegree

(−m,−m+ 1) given by

Dm(a, b) := ((−1)m+r+1dm(a), (−1)m+r+1fm−r(a) + dm(b)),

where we adopt the convention that f<0 = 0.
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We have strict morphisms (B, dBm) −→ (Cr(f), Dm) and (Cr(f), Dm) −→ (Tr(A), Tr(d
A
m)) given by

b 7→ (0, b) and (a, b) 7→ a respectively. These fit into a short exact sequence

0 −→ (B, dBm) −→ (Cr(f), Dm) −→ (Tr(A), Tr(d
A
m)) −→ 0.

The following is a matter of verification.

Lemma 3.29. Let w : A→ B be a morphism of twisted complexes and X a twisted complex. Giving
a morphism τ : Cr(w)→ X of twisted complexes is equivalent to giving a pair (f, h) where f : B → X

is a morphism of twisted complexes and h : 0 ≃
r

fw is an r-homotopy from 0 to fw.

Proof. Let τ : Cr(w) → X be a morphism of twisted complexes. Define a morphism of twisted

complexes f : B → X by letting fm(b) := τm(0, b). Let ĥm : A → X be defined by ĥm(a) :=
(−1)mτm(a, 0). By Proposition 3.18 this gives an r-homotopy h from 0 to fw. Conversely, given

(f, h), we let τm(a, b) := (−1)mĥm(a) + fm(b). �

Proposition 3.30. Let r ≥ 0 and let f : (A, dAm)→ (B, dBm) be a morphism of twisted complexes. We
have a long exact sequence

· · · −→ Ep,q
r+1(A) −→ Ep,q

r+1(B) −→ Ep,q
r+1(Cr(f)) −→ Ep−r,q−r+1

r+1 (A) −→ · · · .

In particular, the morphism f is an Er-quasi-isomorphism if and only if the r-cone of f is Er-acyclic,
that is, E∗,∗

r+1(Cr(f)) = 0.

Proof. For every p we have a short exact sequence of complexes

0→ (Ep,∗
0 (B), dB0 )→ Ep,∗

0 (C0(f), D0)→ (Ep,∗
0 (A), dA0 )[1]→ 0,

which induces a long exact sequence in cohomology. This proves the result for r = 0. Assume that
r > 0. For m < r we have Dm(a, b) = ((−1)m+r+1dAm(a), dBm(b)), so the contribution of f to the

differential vanishes. This gives a direct sum decomposition Ep,q
r (Cr(f)) ∼= Ep−r,q−r+1

r (A) ⊕ Ep,q
r (B)

inducing a long exact sequence in cohomology. �

3.6. Operadic approach. In this section we recall how to view twisted complexes as algebras over
the operad D∞. We then study r-homotopy from this point of view.

Let D be the operad of dual numbers in vertical bicomplexes. Here D = R[ǫ]/(ǫ2), where the
bidegree of ǫ is (−1, 0). This has trivial vertical differential and contains only arity one operations, so
it can be thought of as simply a bigraded R-algebra.

The category of twisted complexes tCR is isomorphic to the category of D∞-algebras in vertical
bicomplexes (see [LRW13, Section 3.1] or [LV12, 10.3.17] for the singly-graded analogue). Using the
so-called Rosetta Stone [LV12], this means that twisted complexes can be studied via structure on
conilpotent cofree coalgebras over the Koszul dual cooperad D¡.

We first recall some details from [ALR+15, 3.4] about D¡-coalgebras. We then make explicit how
twisted complexes and their morphisms may be encoded via conilpotent cofree coalgebras, before
putting r-homotopies into this context.

The Koszul dual D¡ of D is again concentrated in arity one and can be thought of as just an R-
coalgebra. We have D¡ = R[x], where x = S−1ǫ, x has bidegree (−1,−1) and the comultiplication is
determined by ∆(xn) =

∑
i+j=n x

i ⊗ xj .

A D¡-coalgebra is a (left)-comodule C over this coalgebra and this turns out to just be a pair (C, f),
where C is an R-module and f is a linear map f : C → C of bidegree (1, 1). (Given a coaction
ρ : C → D¡ ⊗ C = R[x] ⊗ C, write fi for the projection onto Rxi ⊗ C; then coassociativity gives
fm+n = fmfn, so the coaction is determined by f1.) A coderivation is a linear map d : C → C of

bidegree (s, t) such that df = (−1)〈d,f〉fd, that is df = (−1)s+tfd. In particular, if d has bidegree
(0, 1) then it anti-commutes with f .

Remark 3.31. As an example, the conilpotent cofree D¡-coalgebra generated by a bigraded module
A is given by D¡(A) = R[x]⊗A with linear map dAx : R[x]⊗A→ R[x]⊗A determined by dAx (x

i⊗a) =
xi−1⊗a. A map of D¡-coalgebras h : (C, fC)→ (D, fD) of bidegree (u, v) is a map of bigraded modules
satisfying fDh = (−1)u+vhfC .



14 JOANA CIRICI, DANIELA EGAS SANTANDER, MURIEL LIVERNET, AND SARAH WHITEHOUSE

It will be useful to introduce the following basic object.

Definition 3.32. Let A,B,C be bigraded modules. We denote by bgMod
R
(A,B) the bigraded module

given by

bgMod
R
(A,B)vu :=

∏

j≥0

[A,B]v−j
u−j

where [A,B] is the inner hom-object of bigraded modules. More precisely, g ∈ bgMod
R
(A,B)vu is given

by g := (g0, g1, g2, . . . ), where gj : A → B is a map of bigraded modules of bidegree (u − j, v − j).
Moreover, we define a composition morphism

c : bgMod
R
(B,C)⊗ bgMod

R
(A,B)→ bgMod

R
(A,C)

by

c(f, g)m :=
∑

i+j=m

(−1)i|g|figj .

In the next section, we will develop this much further, in particular defining the enriched category
bgMod

R
.

We explain how structure in the world of D¡-coalgebras corresponds to the explicit twisted complex
notions. We write U for the forgetful functor from D¡-coalgebras to bigraded modules, left adjoint to
the cofree coalgebra functor D¡.

Proposition 3.33. Let A, B and C be bigraded modules.

(1) We have bijections of underlying sets
HomD¡−coalg(D

¡(A),D¡(B))vu ←→ [UD¡(A), B]vu ←→ bgMod
R
(A,B)vu

F̃ ←→ F
F ←→ f = (fn)

Here a map of bidegree (u, v) of bigraded modules F : UD¡(A) → B uniquely lifts as a

morphism of D¡-coalgebras F̃ : D¡(A)→ D¡(B), of bidegree (u, v) with formula

F̃ (xn ⊗ a) =
∑

i≥0

(−1)i(u+v)xi ⊗ F (xn−i ⊗ a).

Furthermore if B = A then F̃ is also a coderivation of D¡-coalgebras. We associate to such a
map F the collection of maps fn : A→ B given by fn(a) = F (xn ⊗ a).

(2) If d̃A : D¡(A) → D¡(A) is a square-zero coderivation of D¡-coalgebras of bidegree (0, 1), then
the corresponding collection of maps dAn makes A into a twisted complex.

(3) If d̃A and d̃B are square-zero coderivations of bidegree (0, 1) on D¡(A) and D¡(B) respectively,

and F̃ : D¡(A) → D¡(B) is a morphism of D¡-coalgebras of bidegree (0, 0) with d̃BF̃ = F̃ d̃A

then f = (fn) is a morphism of twisted complexes from (A, (dAn )) to (B, (dBn )).

(4) Composition of coalgebra morphisms of bidegree (0, 0), G̃ : D¡(A) → D¡(B) and F̃ : D¡(B) →
D¡(C), corresponds to composition of morphisms of twisted complexes.

Proof. (1) As above, let ∆ : D¡ → D¡ ◦ D¡ be the co-composition in the cooperad D¡ (which sends

xn to
∑

xi ⊗ xn−i). Then one checks easily that ∆F̃ = D¡(F̃ )∆, for F̃ to be a morphism or a
coderivation.

One obtains the map fm : A → B by setting fm(a) = πBF̃ (xm ⊗ a) and similarly for any
map from D¡(A)→ D¡(B).

(2) Considering (d̃A)2(xm ⊗ a) = 0, we read off
∑

i+j=m(−1)idAi d
A
j = 0.

(3) Considering d̃BF̃ (xm ⊗ a) = F̃ d̃A(xm ⊗ a), we read off
∑

i+j=m

dBi fj =
∑

i+j=m

(−1)ifid
A
j .

(4) One checks the statement about composition similarly. �
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Remark 3.34. The fact that the condition is the same to be a morphism of coalgebras as to be a
coderivation arises because the cooperad D¡ has only unary operations.

In order to formulate r-homotopy in this context we use a certain kind of shift operation on mor-
phisms.

Definition 3.35. Let S : bgMod
R
(A,B)vu → bgMod

R
(A,B)v+1

u+1 be the following map of R-modules.

For f = (f0, f1, f2, . . . ) ∈ bgMod
R
(A,B)vu, we define Sf ∈ bgMod

R
(A,B)v+1

u+1 by (Sf)n := fn−1, for

n ≥ 1 and (Sf)0 := 0. That is, S(f0, f1, f2, . . . ) := (0, f0, f1, f2, . . . ).
We write Sr for the r-th iterate of this operation.

Proposition 3.36. If f ∈ bgMod
R
(A,B)vu corresponds to F̃ ∈ HomD¡−coalg(D

¡(A),D¡(B))vu under the

bijection of Proposition 3.33, then Sf corresponds to F̃ dAx .

Proof. Let G̃ be the map corresponding to Sf . Then, for all n ≥ 0 and all a ∈ A,

G̃(xn ⊗ a) =
n∑

i=0

(−1)i|f |xi ⊗ (Sf)n−i(a) =
n−1∑

i=0

(−1)i|f |xi ⊗ fn−1−i(a)

= F̃ (xn−1 ⊗ a) = F̃ dAx (x
n ⊗ a). �

Now we see what r-homotopy looks like in this context.

Theorem 3.37. Let A,B ∈ tCR, with d̃A, d̃B the square-zero coderivations of bidegree (0, 1) on D¡(A)
and D¡(B) respectively encoding the twisted complex structures of A and B. Let f, g ∈ HomtCR

(A,B),

with corresponding D¡-coalgebra maps F̃ , G̃ : D¡(A) → D¡(B) of bidegree (0, 0). Then having an r-

homotopy h between f and g is equivalent to having a D¡-coalgebra map H̃ : D¡(A)→ D¡(B) of bidegree
(r, r − 1) such that

(−1)rd̃BH̃ + H̃d̃A = SrG̃− SrF̃ .

Proof. Considering ((−1)rd̃BH̃ + H̃d̃A)(xn ⊗ a) = (SrG̃− SrF̃ )(xn ⊗ a), we read off

∑

i+j=m

(−1)r+idBi hj(a) + (−1)ihid
A
j (a) =

{
gm−r(a)− fm−r(a), if m ≥ r

0, if m < r
(Hm)

which is equivalent to the r-homotopy condition, by Proposition 3.18. �

4. New interpretations of derived A∞-algebras

In this section we reinterpret derived A∞-algebras both as A∞-algebras in twisted chain complexes
and as split filtered A∞-algebras. First we recall the basic notions regarding derived A∞-algebras.
Next we endow the categories of twisted complexes and filtered complexes with a monoidal structure
over a base, in the sense of Fresse [Fre09], and explicitly describe the enrichments that these structures
induce. Then we show that the totalization functor and its properties extend to this enriched setting
and use this to prove our main results.

4.1. The category of derived A∞-algebras. We begin by recalling the basic definitions for derived
A∞-algebras, also known as dA∞-algebras.

Definition 4.1. A (non-unital) dA∞-algebra (A,mij) is a (Z,Z)-bigraded R-module A = {Aj
i}

equipped with morphisms {mij : A⊗j −→ A}i≥0,j≥1 of bidegree (−i, 2 − i − j) such that for all
u ≥ 0 and all v ≥ 1, ∑

u=i+p,v=j+q−1
j=1+r+t

(−1)rq+t+pjmij(1
⊗r ⊗mpq ⊗ 1⊗t) = 0. (Auv)
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Definition 4.2. A morphism f : (A,mA
ij) → (B,mB

ij) of dA∞-algebras is given by a family of mor-

phisms {fij : A
⊗j → B}i≥0,j≥1 of bidegree (−i, 1− i− j) such that for all u ≥ 0 and all v ≥ 1,

∑

u=i+p,v=j+q−1
j=1+r+t

(−1)rq+t+pjfij(1
⊗r ⊗mA

pq ⊗ 1⊗t) =
∑

u=i+p1+···+pj ,
v=q1+···+qj

(−1)σmB
ij(fp1q1 ⊗ · · · ⊗ fpjqj ), (Buv)

where σ = u+
j∑

t=1
(pt + qt)(j + t) + qt

j∑
w=t+1

(pw + qw).

Proposition 4.3. Let g = (gij) : A→ B and f = (fij) : B → C be two morphisms of dA∞-algebras.
Then the composite morphism fg : A→ C of dA∞-algebras has components

(fg)uk =
∑

i+p=u

∑

r

∑

p1+···+pr=p
q1+···+qr=k

(−1)σfir (gp1q1 ⊗ · · · ⊗ gprqr) ,

where σ =
r∑

t=1
(pt + qt)(r + t) + qt

r∑
w=t+1

(pw + qw).

Proof. This is a direct consequence of Equations (4) and (5) in [LRW13, Theorem 2.8]. �

A morphism f = {fij} is said to be strict if fij = 0 for all i > 0 and all j > 1. The identity
morphism 1A : A→ A is the strict morphism given by (1A)01(x) = x.

Lemma 4.4. A morphism f = {fij} of dA∞-algebras is an isomorphism if and only if f01 is an
isomorphism of bigraded R-modules.

Proof. If fg = 1, then f01g01 = 1, so f01 is an isomorphism and g01 = f−1
01 . Then the equation giving

the (uk) component of the composite has a “top term” f01guk, with all other summands involving
components gij with i < u or j < k. Thus we can successively solve for each guk if and only if
f01 is an isomorphism. This gives a right inverse g for f if and only if f01 is an isomorphism. The
same argument shows that g also has a right inverse, and this must be f , so f and g are two-sided
inverses. �

Denote by dA∞(R) the category of dA∞-algebras over R.

Example 4.5 (A∞-algebras). The category A∞(R) of A∞-algebras is a full subcategory of dA∞(R).

Indeed, if a dA∞-algebra (A,mij) is concentrated in horizontal degree 0, that is, Aj
i = 0 and mij = 0

for all i > 0, then (A,m0j) is an A∞-algebra.

Example 4.6 (Underlying twisted complex). There is a forgetful functor U : dA∞(R) −→ tCR

defined by sending a dA∞-algebra (A,mij) to the twisted complex (A,mi1) and a morphism f = {fij}
of dA∞-algebras to the morphism of twisted complexes given by U(f) = {fi1}.

We define Er-quasi-isomorphism for dA∞-algebras via their underlying twisted complexes.

Definition 4.7. Let r ≥ 0. A morphism f = {fij} of dA∞-algebras is said to be an Er-quasi-
isomorphism if the corresponding map U(f) := {fi1} of twisted complexes is an Er-quasi-isomorphism.

Denote by Er the class of Er-quasi-isomorphisms of dA∞(R) and by Hor(dA∞(R)) := dA∞(R)[E−1
r ]

the r-homotopy category defined by inverting Er-quasi-isomorphisms. Note that Er = U−1(EtCR
r ).

The forgetful functor induces a functor U : Hor(dA∞(R)) −→ Hor(tCR).

4.2. Monoidal categories over a base. In the following sections, all our notions of enriched category
theory follow [Bor94] and [Rie14]. Our new descriptions of dA∞-algebras will use certain enriched
categories coming from monoidal categories over a base as defined in [Fre09]. We recall this notion
first.

Definition 4.8. Let (V ,⊗, 1) be a symmetric monoidal category and let (C,⊗, 1) be a monoidal
category. We say that C is a monoidal category over V if we have an external tensor product ∗ :
V × C → C such that we have natural isomorphisms:
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• 1 ∗X ∼= X for all X ∈ C,
• (C ⊗D) ∗X ∼= C ∗ (D ∗X) for all C,D ∈ V and X ∈ C,
• C ∗ (X ⊗ Y ) ∼= (C ∗X)⊗ Y ∼= X ⊗ (C ∗ Y ) for all C ∈ V and X,Y ∈ C.

Remark 4.9. If we have, in addition, a bifunctor C (−,−) : Cop × C → V such that we have natural
bijections

HomC(C ∗X,Y ) ∼= HomV (C,C (X,Y )) (1)

(for example, if ∗ preserves colimits on the left and certain smallness conditions hold) we get a V -
enriched category C with the same objects as C and with hom-objects given by C (−,−). The unit
morphism uA : 1 → C (A,A) corresponds to the identity map in C under the adjunction and the
composition morphism is given by the adjoint of the composite

(C (B,C)⊗ C (A,B)) ∗A
∼=
−→ C (B,C) ∗ (C (A,B) ∗A)

id∗evAB

−−−−→ C (B,C) ∗B
evBC

−−−−→ C,

where evAB is the adjoint of the identity C (A,B) → C (A,B). Note that by construction, the un-
derlying category of C is C. Furthermore, C is a monoidal V -enriched category, namely we have an
enriched functor

⊗ : C × C → C

where C × C is the enriched category with objects Ob(C )×Ob(C ) and hom-objects

C × C ((X,Y ), (W,Z)) := C (X,W )⊗ C (Y, Z).

In particular we get maps in V

C (X,W )⊗ C (Y, Z)→ C (X ⊗ Y,W ⊗ Z),

given by the adjoint of the composite

(C (X,W )⊗ C (Y, Z)) ∗ (X ⊗ Y )
∼=
−−−→ (C (X,W ) ∗X)⊗ (C (Y, Z) ∗ Y )

evXW⊗evY Z

−−−−−−−→ W ⊗ Z.

We will assume the setup above holds throughout the paper. It is assumed in [Fre09] and holds in
a fairly general setting. In particular, it holds in all the cases we study here. One of its useful features
is that constructions on the level of ordinary categories which respect the external monoidal structure
extend to the enriched setting.

Definition 4.10. Let C and D be monoidal categories over V . A lax functor over V consists of a
functor F : C → D together with a natural transformation

νF : − ∗D F (−)⇒ F (− ∗C −)

which is associative and unital with respect to the monoidal structures over V of C and D. (See [Rie14,
Proposition 10.1.5] for explicit diagrams stating the coherence axioms.) If νF is a natural isomorphism
we say F is a functor over V (or preserves external tensor products).

Let F,G : C → D be lax functors over V . A natural transformation over V is a natural transfor-
mation µ : F ⇒ G such that for any C ∈ V and for any X ∈ C we have

νG ◦ (1 ∗D µX) = µC∗CX ◦ νF .

A (lax) monoidal functor over V is a triple (F, ǫ, µ), where F : C → D is a lax functor over V ,
ǫ : 1D → F (1C) is a morphism in D and

µ : F (−)⊗ F (−)⇒ F (−⊗−)

is a natural transformation over V satisfying the standard unit and associativity conditions. If νF
and µ are natural isomorphisms then we say that F is monoidal over V .

When restricted to the case of functors over V , the first part of the following statement is Proposition
1.1.15 in [Fre09]. The second part is implicit in the same text. However, both results and their proofs
extend to the case of lax functors over V as we describe below.
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Proposition 4.11. Let F,G : C → D be lax functors over V . Then F and G extend to V -enriched
functors

F ,G : C → D

where C and D denote the V -enriched categories corresponding to C and D as described in Remark
4.9. Moreover, any natural transformation µ : F ⇒ G over V also extends to a V -enriched natural
transformation

µ : F ⇒ G.

In particular, if F is (lax) monoidal over V , then F is (lax) monoidal in the enriched sense, where
the monoidal structure of C × C is the one described in Remark 4.9.

Proof. For any X,Y ∈ C the functor F extends to an enriched functor F where F (X) := F (X) and
where the morphism on hom-objects

C (X,Y )→ D(F (X), F (Y ))

is given by the adjoint of the composite

C (X,Y ) ∗D F (X)
νF−→ F (C (X,Y ) ∗C X)

F (evXY )

−−−−−−−→ F (Y ).

The coherence axioms and the fact that F is the underlying functor of F follow formally. See for
example the proof of Proposition 10.1.5 in [Rie14].

To show the second statement recall that a V -enriched natural transformation µ : F ⇒ G is given
by maps

µ
X

: 1→ D(FX,GX),

such that a naturality conditions holds (see [Rie14, Definition 3.5.8]). In our setup, we set µ
X

to be
the adjoint of µX : FX → GX. Since F and G are lax over V and µ is a natural transformation over
V , for any C ∈ V and X,Y ∈ C, Diagram (2) commutes. Here ηF (f) := F (f) ◦ νF and ηG is defined
in the same way.

HomC(C ∗X,Y ) HomD(C ∗ FX,FY )

HomD(C ∗GX,GY ) HomD(C ∗ FX,GY )

ηF

ηG

− ◦ µX

µY ◦ −

(2)

Then by adjunction Diagram (3) commutes, showing that µ is a V -enriched natural transformation.

HomV (C,C (X,Y )) HomV (C,D(FX,FY ))

HomV (C,D(GX,GY )) HomV (C,D(FX,GY ))

HomV (C,FXY )

HomV (C,GXY )

HomV (C, µ∗)

HomV (C, µ∗)

(3)

The last statement of the proposition follows from the above together with two formal facts. Firstly,
if C is monoidal over V then so is C × C. Secondly, if (F, ǫ, µ) is a lax monoidal functor over V , then
F (−)⊗ F (−) and F (−⊗−) are lax functors over V and µ is a natural transformation over V . �

The monoidal structures of vertical bicomplexes and twisted complexes are compatible. More
precisely, we can use the tensor product in twisted complexes to define monoidal structures over a
base by restriction.
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Lemma 4.12. The category tCR is a monoidal category over vbCR and the category bgMod∞R is a
monoidal category over bgModR. In both cases, the external tensor product is given by restricting the
tensor product in twisted complexes. We use the notation ⊗ instead of ∗ since the external tensor
product coincides with the internal tensor product in tCR.

Proof. The axioms of Definition 4.8 hold because ⊗ is a symmetric monoidal structure on tCR and
the vertical arrows in the following diagram are monoidal embeddings.

⊗ : tCR × tCR tCR

⊗ : vbCR × tCR tCR

⊗ : bgModR × bgMod∞R bgMod∞R �

We can also endow filtered complexes with a monoidal structure over vbCR. We use the following.

Definition 4.13. The totalization with compact support of a vertical bicomplex A is the filtered
complex given by

Totc(A)n :=
⊕

i∈Z

An+i
i

with the column filtration and with differential as for the totalization functor. Given a morphism of
vertical bicomplexes f : A→ B we get a morphism of filtered complexes Totc(f) : Totc(A)→ Totc(B)
constructed analogously to Tot(f).

Remark 4.14. Note Totc is well-defined since vertical bicomplexes have only one differential and the
category vbCR has only strict morphisms. Moreover, for any A we have a natural map Totc(A) →
Tot(A) which is the identity if A is bounded.

Lemma 4.15. The category fCR is monoidal over vbCR with external tensor product given by

∗ : vbCR × fCR → fCR

(A,K) 7→ A ∗K := Totc(A)⊗K.

On morphisms it is given by the assignment (f, g) 7→ Totc(f) ⊗ g. This induces by restriction a
monoidal structure on fModR over bgModR.

Proof. The assignments define a bifunctor since Totc : vbCR → fModR is a functor. Furthermore,
the axioms of Definition 4.8 hold since ⊗ is a symmetric monoidal product in fCR and Totc is strong
symmetric monoidal since ⊗ distributes over ⊕. Finally, since fModR →֒ fCR and bgModR →֒ vbCR

are full embeddings, this construction induces by restriction a bifunctor ∗ : bgModR×fModR → fModR
which gives a monoidal structure on fModR over bgModR. �

4.3. Enrichments from monoidal structures over a base. We now explain how to give en-
richments to the categories of bigraded modules, filtered modules, twisted complexes and filtered
complexes, using their monoidal structure over a base. This will give the vbCR-enriched categories
tCR and fC

R
and bgModR-enriched categories bgMod

R
and fMod

R
. We emphasize that bgMod

R
is

different from its standard enrichment coming from its symmetric monoidal closed structure.
Recall from Definition 3.32 that for bigraded modules A,B,C, we have already defined a bigraded

module bgMod
R
(A,B) and a composition

c : bgMod
R
(B,C)⊗ bgMod

R
(A,B)→ bgMod

R
(A,C).

Lemma 4.16. The composition morphism respects the identity and is associative.
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Proof. For f, g, h,

c(c(f, g), h))m =
∑

i+j+k=m

(−1)i(|g|+|h|)+j|h|figjhk = c(f, c(g, h)). �

Definition 4.17. Let (A, dAi ), (B, dBi ) be twisted complexes, f ∈ bgMod
R
(A,B)vu and consider dA :=

(dAi )i ∈ bgMod
R
(A,A)10 and dB := (dBi )i ∈ bgMod

R
(B,B)10. We define

δ(f) := c(dB, f)− (−1)<f,dA>c(f, dA) ∈ bgMod
R
(A,B)v+1

u , (4)

where < f, dA > is the scalar product for the bidegrees (as in subsection 2.2) and c is the composition
morphism described in Definition 3.32. More precisely,

(δ(f))m :=
∑

i+j=m

(−1)i|f |dBi fj − (−1)v+ifid
A
j .

Lemma 4.18. The following equations hold

c(dA, dA) = 0,

δ2 = 0,

δ(c(f, g)) = c(δ(f), g) + (−1)vc(f, δ(g)), (5)

where the bidegree of f is (u, v). Furthermore, f ∈ bgMod
R
(A,B) is a map of twisted complexes if and

only if δ(f) = 0. In particular, f is a morphism in tCR if and only if the bidegree of f is (0, 0) and
δ(f) = 0. Moreover, for f, g morphisms in tCR, we have that c(f, g) = f ◦ g, where the latter denotes
composition in tCR.

Proof. One has

c(dA, dA)m =
∑

i+j=m

(−1)idAi d
A
j = 0,

so that

δ2(f) =c(dB, δ(f))− (−1)<δ(f),dA>c(δ(f), dA)

=c(dB, c(dB, f))− (−1)<f,dA>c(dB, c(f, dA)) + (−1)<f,dA>c(c(dB, f), dA)− c(c(f, dA), dA)

=0.

The last equation follows from the associativity of c. �

Since δ is of bidegree (0, 1), Lemma 4.18 allows us to make the following definition.

Definition 4.19. For A,B twisted complexes, we define tCR(A,B) to be the vertical bicomplex
tCR(A,B) := (bgMod

R
(A,B), δ).

Proposition 4.20. If B,C are twisted complexes, then the construction of the vertical bicomplex
tCR(B,C) := (bgMod

R
(B,C), δ) extends to a bifunctor

tCR(−,−) : tC
op
R × tCR → vbCR,

where for f : C → C ′ in tCR we set

tCR(B, f) : tCR(B, C) → tCR(B,C ′) and tCR(f,B) : tCR(C
′, B) → tCR(C,B)

g 7→ c(f, g) g 7→ c(g, f).

Moreover, the functor − ⊗ B : vbCR → tCR is left adjoint to the functor tCR(B,−) : tCR → vbCR,
i.e., for all A ∈ vbCR, B, C ∈ tCR we have natural bijections

HomtCR
(A⊗B,C) ∼= HomvbCR

(A, tCR(B,C)), (6)

given by f 7→ f̃ where for a ∈ Av
u, f̃(a)m is given by b 7→ (−1)m|a|fm(a⊗ b).
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Proof. If f is a map in tCR then it is of bidegree (0, 0) and δ(f) = 0 and thus by (5)

δ(c(f, g)) = c(δ(f), g) + (−1)vc(f, δ(g)) = c(f, δ(g)),

showing that tCR(B, f) is a map of vertical bicomplexes. A similar argument shows that tCR(f,B)
is a map of vertical bicomplexes. Finally, the fact that tCR(−,−) is a bifunctor follows directly from
Lemmas 4.16 and 4.18. Now, to see the adjointness property we describe a map HomtCR

(A⊗B,C)→
HomvbCR

(A, tCR(B,C)), which sends a map of twisted complexes f = (fm) : A⊗B → C , to the map

f̃ : A→tCR(B,C)

a 7→{f̃(a)m : b 7→ (−1)m|a|fm(a⊗ b)}m≥0.

It is clear that f̃ is a bidegree (0, 0) map of bimodules. To show that it is a map of vertical bicomplexes

we will show that δf̃ = f̃dA. Let a ∈ Av
u, then f̃(a) has bidegree (u, v) so that

δ(f̃(a)))m =
∑

i+j=m

(−1)i|a|dCi (f̃(a))j − (−1)v+i(f̃(a))id
B
j .

Applying this to b ∈ Bv′

u′ one gets

(δ(f̃(a)))m(b) =
∑

i+j=m

(−1)i|a|+j|a|dCi fj(a⊗ b)− (−1)v+i+i|a|fi(a⊗ dBj (b))

=
∑

i+j=m

(−1)m|a|+jfj(d
A
i (a)⊗ b) +

∑

i+j=m

(−1)m|a|+j+i|a|+vfj(a⊗ dBi (b))

−
∑

i+j=m

(−1)v+j+j|a|fj(a⊗ dBi (b))).

Since A is a vertical bicomplex we have that dAi (a) = 0 for i > 0. Thus,

(δ(f̃(a)))m = (−1)m|a|+mfm(dA(a)⊗ b) = f̃(dA(a))m(b).

The inverse map is constructed in a similar fashion. �

Definition 4.21. We define bgMod
R
(−,−) to be the restriction of the bifunctor tCR(−,−) to the full

subcategories bgMod∞,op
R × bgMod∞R .

Proposition 4.22. The image of bgMod
R
(−,−) factors through bgModR. Therefore it defines a

bifunctor
bgMod

R
(−,−) : bgMod∞,op

R × bgMod∞R → bgModR

and −⊗ B : bgModR → bgMod∞R is left adjoint to the functor bgMod
R
(B,−) : bgMod∞R → bgModR,

i.e., for all A ∈ bgModR, B, C ∈ bgMod∞R we have natural bijections

HombgMod∞R
(A⊗B,C) ∼= HombgModR(A, bgMod

R
(B,C)).

Proof. This follows directly from the facts that if B,C ∈ bgMod∞R then tCR(B,C) has trivial differ-
ential and that the functors bgModR →֒ vbCR and bgMod∞R →֒ tCR are full embeddings. �

This construction gives us our different enrichments of twisted complexes and bigraded modules,
which we describe now.

Definition 4.23. The vbCR-enriched category of twisted complexes tCR is the enriched category
given by the following data.

(1) The objects of tCR are twisted complexes.
(2) For A,B twisted complexes the hom-object is the vertical bicomplex tCR(A,B)
(3) The composition morphism c : tCR(B,C)⊗ tCR(A,B)→ tCR(A,C) is given by Definition 3.32.
(4) The unit morphism R→ tCR(A,A) is given by the morphism of vertical bicomplexes sending

1 ∈ R to 1A : A→ A, the strict morphism of twisted complexes given by the identity of A.

Definition 4.24. We denote by bgMod
R

the bgModR-enriched category of bigraded modules given

by the following data.
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(1) The objects of bgMod
R
are bigraded modules.

(2) For A,B bigraded modules the hom-object is the bigraded module bgMod
R
(A,B).

(3) The composition morphism c : bgMod
R
(B,C) ⊗ bgMod

R
(A,B) → bgMod

R
(A,C) is given by

Definition 3.32.
(4) The unit morphism R → bgMod

R
(A,A) is given by the morphism of bigraded modules that

sends 1 ∈ R to 1A : A→ A, the strict morphism given by the identity of A.

Lemma 4.25. The enriched categories tCR and bgMod
R
are well-defined and their enrichments are the

ones induced by the external tensor products ⊗ : vbCR × tCR → tCR and ⊗ : bgModR × bgMod∞R →
bgMod∞R . Therefore, these are also monoidal enriched categories and their underlying categories are
tCR and bgMod∞R respectively.

Proof. This follows directly from Propositions 4.20 and 4.22. Notice in particular that in the case
of tCR, the fact that the composition morphism c is a map of vertical bicomplexes is equivalent to
equation (5) in Lemma 4.18. �

Remark 4.26. There is an interpretation of bgMod∞R and bgMod
R

via a standard categorical con-

struction, the co-Kleisli category for a comonad. Recall that D¡ denotes the cofree D¡-coalgebra
functor from bgModR to the category of D¡-coalgebras, with left adjoint the forgetful functor U . Then
bgMod∞R is the co-Kleisli category of bgModR for the comonad UD¡. And this construction enriches.
Namely, recall that bgModR denotes the category of bigraded modules enriched over itself via its

symmetric monoidal closed structure. Then bgMod
R
is the enriched co-Kleisli category of bgModR for

the enriched comonad UD¡. To see this, note that the objects are the same, Proposition 3.33 gives
the isomorphism on morphisms or hom-objects and this isomorphism respects the composition.

We can describe the monoidal structures of tCR and bgMod
R
explicitly.

Lemma 4.27. The monoidal structure of tCR is given by the following map of vertical bicomplexes.

⊗̂ : tCR(A,B)⊗ tCR(A
′, B′) −→ tCR(A⊗A′, B ⊗B′)

(f, g) 7→ (f⊗̂g)m :=
∑

i+j=m(−1)ijfi ⊗ gj

The monoidal structure of bgMod
R
is given by the restriction of this map.

Proof. The same argument as in the proof of Proposition 4.20 shows that this is indeed a map of
vertical bicomplexes. To see that this is indeed the enriched monoidal structure induced by the
monoidal structure of tCR over vbCR, one can follow closely Remark 4.9. �

Next we introduce enriched structures on filtered modules and filtered complexes. We enrich filtered
modules over bigraded modules in the following way.

Definition 4.28. The bgModR-enriched category of filtered modules fMod
R
is the enriched category

given by the following data.

(1) The objects of fMod
R
are filtered modules.

(2) For filtered modules (K,F ) and (L,F ), the bigraded module fMod
R
(K,L) is given by

fMod
R
(K,L)vu :=

{
f : K → L | f(FqK

m) ⊂ Fq+uL
m+v−u, ∀m, q ∈ Z

}
.

(3) The composition morphism is given by c(f, g) = (−1)u|g|fg, where f has bidegree (u, v).
(4) The unit morphism is given by the map R→ fMod

R
(K,K) given by 1→ 1K .

We denote by sfMod
R
the full subcategory of fMod

R
whose objects are split filtered modules.

Lemma 4.29. The above definition gives a well-defined bgModR-enriched category, fMod
R
.

Proof. Let f ∈ fMod
R
(L,M)vu and g ∈ fMod

R
(K,L)v

′

u′ , where (K,F ), (L,F ) and (M,F ) are filtered

modules. For all q ∈ Z one has

c(f, g)(FqK
m) ⊂ f(Fq+u′Lm+v′−u′

) ⊂ Fq+u+u′Mm+v−u+v′−u′

,
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so c(f, g) ∈ fMod
R
(K,M)v+v′

u+u′ showing that the composition morphism is a map in bgModR and

1K ∈ fMod
R
(K,K)00. It is a short computation to show that the associativity and unit axiom hold. �

Remark 4.30. Notice that morphisms f ∈ fMod
R
(K,L)v0 correspond precisely to degree v morphisms

of filtered modules which respect the filtration.

We will enrich filtered complexes over vertical bicomplexes analogously.

Definition 4.31. Let (K, dK , F ) and (L, dL, F ) be filtered complexes. We define fC
R
(K,L) to be the

vertical bicomplex whose underlying bigraded module is fMod
R
(K,L) with vertical differential

δ(f) := c(dL, f)− (−1)<f,dK>c(f, dK) = dLf − (−1)v+ufdK = dLf − (−1)|f |fdK

for f ∈ fMod
R
(K,L)vu.

Note that dK ∈ fMod
R
(K,K)10 and dL ∈ fMod

R
(L,L)10. So δ(f) has bidegree (u, v+1). Also δ2 = 0

and thus fC
R
(K,L) is indeed a vertical bicomplex.

Remark 4.32. Notice that f ∈ fC
R
(K,L)vu is a map of complexes if and only if δ(f) = 0. In particular,

f is a morphism in fCR if and only if f ∈ fC
R
(K,L)00 and δ(f) = 0.

Definition 4.33. The vbCR-enriched category of filtered complexes fC
R
is the enriched category given

by the following data.

(1) The objects of fC
R
are filtered complexes.

(2) For K,L filtered complexes the hom-object is the vertical bicomplex fC
R
(K,L).

(3) The composition morphism is given as in fMod
R
in Definition 4.28.

(4) The unit morphism is given by the map R→ fC
R
(K,K) given by 1 7→ 1K .

We denote by sfC
R
the full subcategory of fC

R
whose objects are split filtered complexes.

Lemma 4.34. The above definition gives a well-defined vbCR-enriched category, fC
R
.

Proof. To see that the composition and unit maps are maps of vertical bicomplexes note that for
(K, dK , F ) and (L, dL, F ) filtered complexes, f ∈ fMod

R
(K,L)vu and g ∈ fMod

R
(L,M)v

′

u′

δ(c(f, g)) = c(δ(f), g) + (−1)|f |c(f, δ(g)).

The associativity and unit axiom hold, because they hold in fMod
R
. �

Lemma 4.35. The enrichment of filtered complexes and filtered modules is the one induced by the
external tensor products ∗ : vbCR × fCR → fCR and ∗ : bgModR × fModR → fModR. Therefore,
the enriched categories fC

R
and fMod

R
are also monoidal enriched categories and their underlying

categories are fCR and fModR respectively.

Proof. Since fC
R
is a well-defined vbCR-enriched category we have a bifunctor

fC
R
(−,−) : fCop

R × fCR −→ vbCR.

It is left to show that we have natural bijections HomfCR
(A ∗K,L)∼=HomvbCR

(A, fC
R
(K,L)). In one

direction we have a map

HomfCR
(Totc(A)⊗K,L)−→HomvbCR

(A, fC
R
(K,L))

f 7→ f̃ : a 7→ (k 7→ f(a⊗ k)).

In the inverse direction we have a map

HomvbCR
(A, fC

R
(K,L)) −→HomfCR

(Totc(A)⊗K,L)

g̃ : a 7→ ga 7→ g : (ai)⊗ k 7→
∑

gai(k).

These constructions are inverse to each other and natural. �
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We can define the monoidal structure of fC
R
explicitly.

Lemma 4.36. The monoidal structure of fMod
R
is given by the following map of vertical bicomplexes.

⊗̂ : fC
R
(K,L)⊗ fC

R
(K ′, L′) → fC

R
(K ⊗K ′, L⊗ L′),

(f, g) 7→ f⊗̂g := (−1)u|g|f ⊗ g

where f has bidegree (u, v).

Proof. A direct computation using the Koszul rule gives

c(f, f ′)⊗̂c(g, g′) = (−1)uf |f
′|+ug |g′|+(uf+uf ′ )(|g|+|g′|)ff ′ ⊗ gg′

= (−1)<g,f ′>c(f⊗̂g, f ′⊗̂g′),

which shows that the construction is functorial. To see that this is indeed the enriched monoidal
structure induced by the monoidal structure of fCR over vbCR, one can follow closely Remark 4.9. �

4.4. Enriched totalization. The totalization functor and its properties extend to the enriched set-
ting. In this section we describe this structure explicitly.

Lemma 4.37. The totalization functors

Tot : bgModR → fModR and Tot : tCR → fCR

are lax monoidal functors over bgModR and vbCR respectively. When restricted to the bounded case
they are monoidal functors over bgModR and vbCR respectively.

Proof. For the case of tCR, we have a natural transformation ι : Totc(−) ⇒ Tot(−) given by the
inclusion. From Proposition 3.11 we also have a natural transformation

µ : Tot(−)⊗ Tot(−)⇒ Tot(−⊗−).

Thus, we have a natural transformation νTot given by the composite

νTot : − ∗ Tot(−) := Totc(−)⊗ Tot(−)
ι⊗1
⇒ Tot(−)⊗ Tot(−)

µ
⇒ Tot(−⊗−).

The coherence conditions follow from the coherence conditions for µ together with the fact that ι is
the inclusion. The case of bgModR follows by restriction. In the bounded case these are all natural
isomorphisms. �

In order to describe the enriched totalization functors we first extend the definition of Tot to
morphisms of any bidegree.

Definition 4.38. Let A,B be bigraded modules and f ∈ bgMod
R
(A,B)vu we define

Tot(f) ∈ fMod
R
(Tot(A),Tot(B))vu

to be given on any a ∈ Tot(A)n by

(Tot(f)(a))j+u :=
∑

m≥0

(−1)(m+u)nfm(aj+m) ∈ Bj+n+v
j+u ⊂ Tot(B)n+v−u.

Let K = Tot(A), L = Tot(B) and g ∈ fMod
R
(K,L)vu we define

f := Tot−1(g) ∈ bgMod
R
(A,B)vu

to be f := (f0, f1, . . .) where fi is given on each Am+j
j by the composite

fi : A
m+j
j →֒

∏

k≤j

Am+k
k = Fj(Tot(A)m)

g
−→Fj+u(Tot(B)m+v−u)

=
∏

l≤j+u

Bm+v−u+l
l

×(−1)(i+u)m

−−−−−−−−→→ Bm+j+v−i
j+u−i ,

where the last map is a projection and multiplication with the indicated sign.
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Theorem 4.39. Let A,B be twisted complexes. The assignments Tot(A) := Tot(A) and

TotA,B : tCR(A,B) −→ fC
R
(Tot(A),Tot(B))

f 7→ Tot(f)

define a vbCR-enriched functor Tot : tCR → fC
R

which restricts to an isomorphism onto its image

sfC
R
. Furthermore, this functor restricts to a bgModR-enriched functor

Tot : bgMod
R
→ fMod

R

which also restricts to an isomorphism onto its image sfMod
R
.

Proof. We show first that this assignment defines a vbCR-enriched functor Tot. By Lemma 4.37 Tot
is a lax functor over vbCR. Thus, it is enough to show that Tot arises as the extension of Tot as
described in the proof of Proposition 4.11.

Let A,B be twisted chain complexes. Let K denote the vertical bicomplex tCR(A,B). Let evAB

denote the adjoint of the identity through the bijection (6)

HomtCR
(K ⊗A,B) ∼= HomvbCR

(K,K),

of Proposition 4.20. Explicitly

(evAB)m(f ⊗ a) = (−1)m|f |fm(a), f ∈ tCR(A,B), a ∈ A.

The map TotA,B : K → fC
R
(Tot(A),Tot(B)) is obtained as the adjoint through the bijection

HomfCR
(K ∗ Tot(A),Tot(B))∼=HomvbCR

(K, fC
R
(Tot(A),Tot(B))),

of Lemma 4.35 of the composite

K ∗ Tot(A) = Totc(K)⊗ Tot(A)
µK,A // Tot(K ⊗A)

Tot(evAB)
// Tot(B)

as in Proposition 4.11.
For f ∈ tCR(A,B)vu, a = (ak)k ∈ Totn(A) one has

µK,A(f ⊗ a)k = (−1)unf ⊗ ak−u,

(Tot(evAB) ◦ µK,A(f ⊗ a))j+u =
∑

m≥0

(−1)m(n+v−u)(evAB)m(µK,A(f ⊗ a)j+u+m)

=
∑

m≥0

(−1)m(n+v−u)+un(evAB)m(f ⊗ aj+m)

=
∑

m≥0

(−1)m(n+v−u)+un+m(v−u)fm(aj+m).

As a consequence

(Tot(f)(a))j+u =
∑

m≥0

(−1)(m+u)nfm(aj+m).

To see that Tot restricts to an isomorphism onto its image we construct a vbCR-enriched functor
which is inverse to the restriction of Tot onto its image. Let K,L be split filtered complexes, then we
define Tot

−1 to be given by the assignments Tot−1(K) := Tot−1(K) and

Tot
−1
K,L : fC

R
(K,M) −→ tCR(Tot

−1(K),Tot−1(L))

f 7→ Tot−1(f).

A computation shows that this is indeed a map of vertical bicomplexes. Furthermore, we have that
Tot(Tot−1(K)) = K and Tot−1(Tot(A)) = A.
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Now we check that Tot−1(Tot(f)) = f . Write πl for the projection
∏

l≤j+uB
m+v−u+l
l ։ Bm+v−u+l

l

(without a sign). For f of bidegree (u, v) and aj ∈ Am+j
j one has that

(Tot−1 ◦ Tot(f))i(aj) = (−1)(i+u)mπj+u−i(
∑

k≥0

(−1)(k+u)mfk(aj−i+k)) = fi(aj),

showing that Tot−1(Tot(f)) = f .
To see that Tot(Tot−1(g)) = g, let g : (Tot(A))n → (Tot(B))n+v−u be a map of bidegree (u, v).

For (a) ∈ (Tot(A))n we write g(a) = (gk(a))k∈Z, where gk(a) ∈ Bn+v−u+k
k . Recall that for all q,

we have that g(Fq((Tot(A))n) ⊂ Fq+u(Tot(B))n+v−u. Fix q ∈ Z. If (a) ∈ (Tot(A))n then write
a = αq−1 +

∑
m≥0 aq+m where αq−1 ∈

∏
r≤q−1A

n+r
r = Fq−1(Tot(A))n and

∑
m≥0 aq+m is finite. As a

consequence

gq+u(a) =
∑

m≥0

gq+u(aq+m),

Tot−1(g)m(aj+m) = (−1)(m+u)ngj+u(aj+m).

Hence

(Tot ◦ Tot−1(g))(a)j+u =
∑

m≥0

(−1)(m+u)nTot−1(g)m(aj+m) =
∑

m≥0

gj+u(aj+m) = gj+u(a),

showing that Tot(Tot−1(g)) = g.
It follows that Tot

−1 is associative and unital since it is the inverse to Tot and thus it defines a
vbCR-enriched functor Tot−1 : sfC

R
−→ tCR which is inverse to the restriction of Tot onto its image.

The statement on bgMod
R
follows by restriction. �

Proposition 4.40. The enriched functors

Tot : bgMod
R
→ fMod

R
, Tot : tCR → fC

R

are lax symmetric monoidal in the enriched sense and when restricted to the bounded case they are
strong symmetric monoidal in the enriched sense.

Proof. This follows from Propositions 3.11, 4.11 and Lemma 4.37. �

4.5. Derived A∞-algebras as A∞-algebras in twisted complexes. We reinterpret the category
of derived A∞-algebras as the category of A∞-algebras in twisted complexes. Generally, given an
operad P on a symmetric monoidal category one studies P-algebra structures on objects of the same
category. We can extend this to the case of monoidal categories over a base via the following definition
due to [Fre09].

Definition 4.41. Let C be a monoidal category over V and let P be an operad in V . A P-algebra in
C consists of an object A ∈ C, together with maps

P(n) ∗A⊗n −→ A

for which the unit and associativity axioms hold.

We can give an equivalent definition by means of an enriched endomorphism operad.

Definition 4.42. Let C be a monoidal V -enriched category and A an object of C . We define End A

to be the collection in V given by

End A(n) := C (A⊗n, A) for n ≥ 1.

Lemma 4.43. For any A ∈ C , the collection End A defines an operad in V with unit

1
uA−→ C (A,A) = End A(1)

and composition

End A(r)⊗ End A(n1)⊗ End A(n2)⊗ · · · ⊗ End A(nr)→ End A(r)⊗ C (A⊗n, A⊗r)−→End A(n),

where n = n1 + · · ·+ nr. The first morphism is given by the monoidal structure of C and the second
is the composition of the symmetry morphism of V with the composition morphism of C .
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Proof. The appropriate diagrams commute by associativity of composition in an enriched category.
We also refer the reader to [Fre09, Definition 3.4.1]. �

Example 4.44. For any twisted complex A and any filtered complex K we have operads in vertical
bicomplexes End A and End K .

The following result gives an equivalent interpretation of P-algebras in monoidal categories over a
base.

Proposition 4.45. [Fre09, Proposition 3.4.3] Let C be a monoidal category over V , let P be an operad
in V and A an object in C. Then there is a one-to-one correspondence between P-algebra structures
on A and morphisms of operads P → End A. �

Operad morphisms can be constructed from functors on ordinary categories which behave well with
respect to the monoidal structure. The result below due to Fresse is originally stated for the monoidal
case. However, all his methods extend to the lax monoidal setting as we describe below.

Proposition 4.46. [Fre09, Proposition 3.4.7] Let C and D be monoidal categories over V . Let
F : C → D be a lax monoidal functor over V . Then for any X ∈ C there is an operad morphism

End X−→End F (X).

Proof. By Proposition 4.11, F induces a V -enriched functor F which is lax monoidal in the enriched
sense. Using this one can construct the operad map for each arity n as the composite

End X(n) := C (X⊗n, X)→ D(F (X⊗n), F (X))→ D(F (X)⊗n, F (X)) = End F (X)(n),

where the first map is given by the V -enriched functor F and the second map comes from its lax
monoidal structure. Since naturality holds by construction these assemble into a morphism of operads.

�

We reinterpret dA∞-algebras as A∞-algebras in twisted complexes using the structure of tCR as a
monoidal category over vbCR.

Proposition 4.47. Let (A, dA) be a twisted complex, A its underlying bigraded module and consider
A∞ as an operad in vbCR sitting in horizontal degree zero. There is a one-to-one correspondence
between A∞-algebra structures on (A, dA) and dA∞-algebra structures on A which respect the twisted
complex structure of A. More precisely, let EndA be the operad in vbCR corresponding to the bigraded
module A. We have a natural bijection

HomvbOp(A∞,End A)
∼= HomvbOp,dA(dA∞,EndA),

where vbOp denotes the category of operads in vertical bicomplexes and HomvbOp,dA denotes the subset

of morphisms which send µi1 to dAi , i ≥ 1.

Proof. Let f : A∞ → End A be a map of operads in vbCR. Since A∞ is quasi-free, this is equivalent
to maps in vbCR

(A∞(v), ∂∞)→ (End A(v), δ)

for each v ≥ 1, which are determined by elements Mv := f(µv) ∈ End A(v) for v ≥ 2 of bidegree
(0, 2− v) such that

δ(Mv) = f(∂∞(µv)). (7)

Moreover, Mv := (m0v,m1v, . . .) where muv := (Mv)u : A⊗v → A is a map of bidegree (−u, 2− u− v).

We first compute the left-hand side of (7). Since δ(Mv) = c(dA,Mv)− (−1)vc(Mv, d
A⊗v

), we have

(δ(Mv))u =
∑

u=i+p

(−1)ivdAi (Mv)p − (−1)v
∑

u=i+p
v=1+r+t

(−1)i(Mv)i(1
⊗̂r⊗̂dAp ⊗̂1

⊗̂t)
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and

f(∂∞(µv))u = −
∑

v=r+q+t
j=r+1+t
j,q>1

(−1)rq+t
(
c(Mj , (1

⊗̂r⊗̂Mq⊗̂1
⊗̂t))

)
u

= −
∑

i+p=u
v=r+q+t
j=r+1+t
j,q>1

(−1)rq+t+iq(Mj)i(1
⊗r ⊗ (Mq)p ⊗ 1⊗t)

= −
∑

i+p=u
v=r+q+t
j=r+1+t
j,q>1

(−1)rq+t+iqm̃ij(1
⊗r ⊗ m̃pq ⊗ 1⊗t).

Then by setting the notation m̃i1 = dAi , the relation

δ(Mn)− f(∂∞(µn)) = 0

gives us the relations ∑

u=i+p
v=v+q+t
j=1+r+t

(−1)rq+t+iqm̃ij(1
⊗r ⊗ m̃pq ⊗ 1⊗t) = 0.

By setting mij = (−1)ijm̃ij one obtains the relation

∑

u=i+p
v=v+q+t
j=1+r+t

(−1)rq+t+pjmij(1
⊗r ⊗mpq ⊗ 1⊗t) = 0 (Auv)

which by [LRW13] is equivalent to giving a map dA∞ → EndA of operads in vbCR. �

Remark 4.48. Note that as in the case of A∞-algebras in CR we have two equivalent descriptions of
A∞-algebras in tCR.

(1) A twisted complex (A, dA) together with a morphism A∞ → End A of operads in vbCR, which

is determined by a family of elements MA
i ∈ tCR(A

⊗i, A)2−i
0 for i ≥ 2 for which the (A′

0i)
relations hold, where the composition is the one prescribed by the composition morphisms of
tCR.

(2) A bigraded module A together with a family of elements Mi ∈ bgMod
R
(A⊗i, A)2−i

0 for i ≥ 1 for

which the (A0i) relations hold, where the composition is the one prescribed by the composition
morphisms of bgMod

R
.

Here (A′
0i) and (A0i) are the A∞ relations for i ≥ 2 or i ≥ 1 respectively. Since the composition mor-

phism in bgMod
R
is induced from the one in tCR by forgetting the differential, these two presentations

are equivalent.

We now consider infinity morphisms and composition.

Definition 4.49. Let A,B,C be twisted complexes and (A,MA
i ), (B,MB

i ) and (C,MC
i ) be A∞-

algebra structures on them. An A∞-morphism in twisted complexes F : (B,MB
i ) → (C,MC

i ) is a

family of elements F := {Fj ∈ tCR(B
⊗j , C)1−j

0 }j≥1 for which the A∞ relations hold, i.e.,
∑

v=r+q+t
j=1+r+t

(−1)rq+tc(Fj , (1
⊗̂r⊗̂MB

q ⊗̂1
⊗̂t)) =

∑

v=q1+···+qj

(−1)σc(MC
j , (Fq1⊗̂ · · · ⊗̂Fqj )), (B0v)

where σ =
j−1∑
k=1

qk(j + k) + qk(
j∑

s=k+1

qs) and c is described in Definition 3.32.
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Let F : (B,MB
i )→ (C,MC

i ) and G : (A,MA
i )→ (B,MB

i ) be A∞-morphisms in twisted complexes.
Their composite is the A∞-morphism in twisted complexes F ◦G : (A,MA

i )→ (C,MC
i ) given by

(F ◦G)v :=
∑

v=q1+···+qj

(−1)σc(Fj , (Gq1⊗̂ · · · ⊗̂Gqj )). (C0v)

The category of A∞-algebras in twisted complexes, denoted AtC
∞ (R), is the category with objects

A∞-algebras in twisted complexes and whose morphisms are A∞-morphisms in twisted complexes.

Theorem 4.50. The construction above extends to a functor Ψ : AtC
∞ (R) → dA∞(R) which is an

isomorphism of categories.

Proof. On objects Ψ(A,MA
i ) = (A,mA

ij) takes an A∞-algebra in twisted complexes and associates to
it its corresponding dA∞-algebra as described in Proposition 4.47.

On morphisms, consider F : (A,MA
i ) → (B,MB

i ), a morphism in A∞-algs in tCR which is given

by F := {Fj ∈ tCR(A
⊗j , B)1−j

0 }j≥1, where Fj := (f̃0j , f̃1j , f̃2j , . . .). The relations (B0v) translate to
∑

u=i+p
v=r+q+t
j=1+r+t

(−1)σl f̃ij(1
⊗r ⊗ m̃A

pq ⊗ 1⊗t) =
∑

u=i+p1+···+pj
v=q1+···+qj

(−1)σrm̃B
ij(f̃p1q1 ⊗ · · · ⊗ f̃pjqj ). (B̃uv)

Multiplying the equation by (−1)(i+p)(j+q) = (−1)u(v+1) and setting fij = (−1)ij f̃ij and mpq =
(−1)pqm̃pq one obtains the equation

∑

u=i+p
v=r+q+t
j=1+r+t

(−1)σ̃lfij(1
⊗r ⊗mA

pq ⊗ 1⊗t) =
∑

u=i+p1+···+pj
v=q1+···+qj

(−1)σ̃rmB
ij(fp1q1 ⊗ · · · ⊗ fpjqj ).

Let us compute the signs modulo 2:

σ̃l = rq + t+ (i+ p)(j + q) + ij + pq + iq = rq + t+ pj,

σ̃r =

j−1∑

k=1

qk(j + k) + qk(

j∑

s=k+1

qs) + u+ uv + ij +

j∑

k=1

pkqk + i(

j∑

k=1

(qk + 1)) +

j∑

k=1

(1 + qk)(
k−1∑

s=1

ps)

=

j−1∑

k=1

qk(j + k) + qk(

j∑

s=k+1

qs) + u+ uv + iv +

j∑

k=1

qk(

k∑

s=1

ps) +

j−1∑

s=1

ps(

j∑

k=s+1

1)

=u+

j−1∑

k=1

(pk + qk)(j + k) +

j−1∑

k=1

qk(

j∑

s=k+1

ps + qs).

This gives exactly the relation defining morphisms of dA∞-algebras:
∑

u=i+p,v=r+q+t
j=1+r+t

(−1)rq+t+pjfij(1
⊗r ⊗mA

pq ⊗ 1⊗t) =
∑

u=i+p1+···+pj ,
v=q1+···+qj

(−1)σmB
ij(fp1q1 ⊗ · · · ⊗ fpjqj ), (Buv)

where σ = u+
j−1∑
k=1

(pk+ qk)(j+k)+ qk(
j∑

s=k+1

ps+ qs). Moreover, any morphism between dA∞-algebras

can be constructed in this way. Therefore this construction is a bijection on morphisms. Finally, this
construction is functorial. The relations (C0v) translate to

˜(F ◦G)uv =
∑

u=i+p1+···+pj
v=q1+···+qj

(−1)σr f̃ij(g̃p1q1 ⊗ · · · ⊗ g̃pjqj ). (C̃uv)

Setting fij = (−1)ij f̃ij , gpq = (−1)pq g̃pq, and (F ◦G)uv = (−1)uv ˜(F ◦G)uv, one obtains the equation
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(F ◦G)uv =
∑

u=i+p1+···+pj
v=q1+···+qj

(−1)σ̃
′
rfij(gp1q1 ⊗ · · · ⊗ gpjqj ),

with σ̃′
r = σ̃r + u+ uv + uv =

j−1∑
k=1

(pk + qk)(j + k) +
j−1∑
k=1

qk(
j∑

s=k+1

ps + qs), which is the composition of

morphisms of dA∞-algebras. �

4.6. Derived A∞-algebras as filtered A∞-algebras. From the fact that tC b
R and sfC b

R
are isomor-

phic vbCR-enriched monoidal categories, we now reinterpret dA∞-algebras, in the bounded case, in
terms of split filtered A∞-algebras. First we recall the definition of filtered A∞-algebras and their mor-
phisms. Filtered A∞-algebras and their associated spectral sequences have been previously studied in
[Lap03], [Lap08] and [Her16].

Definition 4.51. A filtered A∞-algebra is an A∞-algebra (A,mi) together with a filtration {FpA
i}p∈Z

on each R-module Ai such that for all i ≥ 1 and all p1, . . . , pi ∈ Z and n1, . . . , ni ≥ 0,

mi(Fp1A
n1 ⊗ · · · ⊗ FpiA

ni) ⊆ Fp1+···+piA
n1+···+ni+2−i.

Such a filtered A∞-algebra is said to be split if A = Tot(B) is the total graded module of a bigraded

R-module B = {Bj
i } and F is the column filtration of Tot(B).

Remark 4.52. Consider A∞ as an operad in filtered complexes with the trivial filtration and let K
be a filtered complex. There is a one-to-one correspondence between filtered A∞-structures on K and
morphisms of operads in filtered complexes A∞ → EndK . To see this, notice that if one forgets the
filtrations such a map of operads gives an A∞ structure on K. The fact that this is a map of operads
in filtered complexes implies that all the mis respect the filtrations.

Definition 4.53. A morphism of filtered A∞-algebras from (A,mi, F ) to (B,mi, F ) is a morphism
f : (A,mi)→ (B,mi) of A∞-algebras such that each map fj : A

⊗j → A is compatible with filtrations:

fj(Fp1A
n1 ⊗ · · · ⊗ FpjA

nj ) ⊆ Fp1+···+pjB
n1+···+nj+1−j ,

for all j ≥ 1, p1, . . . pj ∈ Z and n1, . . . , nj ≥ 0.

Denote by fA∞(R) the category of filtered A∞-algebras. Composition is given as in the unfiltered
case (this respects the filtration). We consider the following full subcategories of fA∞(R).

• sfA∞(R): the subcategory whose objects are split filtered A∞-algebras.
• fAb

∞(R): the subcategory whose objects are non-negatively filtered A∞-algebras.
• sfAb

∞(R): the subcategory whose objects are split non-negatively filtered A∞-algebras.

That is, we have full embeddings

sfA∞(R) fA∞(R) fAb
∞(R)

sfAb
∞(R)

(8)

Lemma 4.54. For any twisted complex A there is a morphism of operads

End A−→End Tot(A),

which is an isomorphism of operads if A is bounded.

Proof. The existence of the morphism of operads follows directly from Proposition 4.46 and in this
case it is given in arity n by the composite

End A(n) := tCR(A
⊗n, A)

Tot
A⊗n,A

−−−−−−−→ fC
R
(Tot(A⊗n),Tot(A)) −→fC

R
(Tot(A)⊗n,Tot(A))

= End Tot(A)(n).
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In the bounded case the first map is an isomorphism by Theorem 4.39 and the second is an isomorphism
by Proposition 4.40. �

Proposition 4.55. Let (A, dA) ∈ tCb
R be an (N,Z)-graded twisted complex and A its underlying

bigraded module. There is a one-to-one correspondence between filtered A∞-algebra structures on
Tot(A) and dA∞-algebra structures on A which respect the twisted complex structure of A. This
bijection is induced by a one-to-one correspondence between filtered A∞-algebra structures on Tot(A)
and A∞-algebra structures on (A, dA). More precisely we have natural bijections

HomvbOp,dA(dA∞,EndA) ∼= HomvbOp(A∞,End A)

∼= HomvbOp(A∞,End Tot(A))

∼= HomfCOp(A∞,EndTot(A)),

where vbOp and fCOp denote the categories of operads in vbCR and fCR respectively, and HomvbOp,dA

denotes the subset of morphisms which send µi1 to dAi . We view A∞ as an operad in vbCR sitting in
horizontal degree zero or as an operad in filtered complexes with trivial filtration.

Proof. The first isomorphism holds by Proposition 4.47. The second isomorphism follows directly from
Lemma 4.54. Finally, to see the third isomorphism let f : A∞ → End Tot(A) be a map of operads in

vbCb
R. Again, since A∞ is quasi-free, this is equivalent to maps in vbCb

R

(A∞(n), ∂∞)→ (End Tot(A)(n), δ)

which are determined by elements Mn := f(µn) ∈ End Tot(A)(n) of bidegree (0, 2− n) such that

δ(Mn) = f(∂∞(µn)).

Since A is (N,Z)-graded, Tot is symmetric monoidal, and thus we have that

δMn = c(dTot(A),Mn) + (−1)2−nc(Mn, d
Tot(A)⊗n

).

So these maps give the complex Tot(A) the structure of an A∞-algebra. Moreover, all of the Mns
respect the filtration since they have horizontal degree zero. Therefore, the map f gives Tot(A) the
structure of a split filtered A∞-algebra and it is clear that any filtered A∞-algebra structure on Tot(A)
can be described by such f . �

This construction extends to infinity morphisms.

Theorem 4.56. The totalization functor extends to a functor

Φ : AtC
∞ (R)→ fA∞(R)

which in the bounded case restricts to an isomorphism between the categories of bounded A∞-algebras
in twisted complexes and split non-negatively filtered A∞-algebras.

Before proving this result we make the following remark.

Remark 4.57. Let C and D be monoidal categories over V , let P be an operad in V and let F : C → D
be a symmetric monoidal functor over V . In [Fre09, Observation 3.2.14], Fresse shows that F extends
to a functor

F̃ : P-Alg(C)→ P-Alg(D)

from the category of P-algebras in C with P-algebra morphisms to the category of P-algebras in D
with P-algebra morphisms.

His methods extend to the case where F is lax monoidal over V . Let V = vbCR, P = A∞, C = tCR,
D = fCR and F = Tot. Then, the totalization functor extends to a functor

T̃ot : A∞-Alg(tCR)→ A∞-Alg(fCR)

between the categories of A∞-algebras in tCR with strict morphisms to the category of A∞-algebras in
fCR with strict morphisms. Our result implies that this functor extends to their respective categories
with infinity morphisms.



32 JOANA CIRICI, DANIELA EGAS SANTANDER, MURIEL LIVERNET, AND SARAH WHITEHOUSE

Proof of Theorem 4.56. The functor on objects is given as in Proposition 4.54. Here we describe
this explicitly on elements. Let (A,Mi) be an A∞-algebra in tCR, that is we have A ∈ tCR and

Mi ∈ tCR(A
⊗i, A)2−i

0 satisfying the A∞-relations
∑

v=v+q+t
j=1+r+t

(−1)rq+tc(Mi, 1
⊗̂r⊗̂Mq⊗̂1

⊗̂t) = 0. (A0v)

Following the notation of Proposition 4.40, let

µi := µA,...,A : Tot(A)⊗i → Tot(A⊗i),

µr,q,t := µA,...,A,A⊗q ,A,...,A : Tot(A)⊗r ⊗ Tot(A⊗q)⊗ Tot(A)⊗t → Tot(A⊗r+q+t)

and define
mi := c(Tot(Mi), µi) : Tot(A)⊗i → Tot(A).

Note first that for any i the map mi has horizontal degree 0 thus it respects the filtrations. Now, we
compute

∑

v=v+q+t
j=1+r+t

(−1)rq+tmi(1
⊗r⊗mq⊗1

⊗t)

=
∑

v=v+q+t
j=1+r+t

(−1)rq+tc(Tot(Mi), µi)(1
⊗r⊗c(Tot(Mq), µq)⊗1

⊗t)

=
∑

v=v+q+t
j=1+r+t

(−1)rq+tTot(Mi(1
⊗̂r⊗̂Mq⊗̂1

⊗̂t))µr,q,t(1
⊗̂r
Tot(A)⊗̂µq⊗̂1

⊗̂t
Tot(A)) = 0.

Here the first equality holds by definition, the second by naturality of µ and the third because the Mis
satisfy the relations (A0v). Thus (Tot(A),mi) is a filtered A∞-algebra. The same computation gives
the result on morphisms and this is stable under the composition of morphisms giving the functor Φ.
Furthermore, when A ∈ tCb

R this functor restricts to an isomorphism by Proposition 4.55. �

Corollary 4.58. Let Tot denote the composite

Tot : dAb
∞(R)

Ψ−1

−→ AtCb

∞ (R)
Φ
−→ fAb

∞(R).

The functor Tot restricts to an isomorphism between the category of (N,Z)-graded dA∞-algebras and
the category of split non-negatively filtered A∞-algebras. Furthermore, this functor fits into a commu-
tative diagram of categories

dAb
∞(R) tCb

R

fAb
∞(R) fCb

R

U

TotTot

U

where the horizontal arrows are forgetful functors and the vertical arrows are full embeddings.

Proof. This follows directly from Theorems 4.50 and 4.56. �

5. Derived A∞-algebras and r-homotopy

The main goal of this section is to study different but equivalent interpretations of the notion of
r-homotopy for derived A∞-algebras. We first define r-homotopy by constructing a functorial r-path
object. Then, we study some of the properties of r-homotopy. Most notably, we show that 0-homotopy
defines an equivalence relation and we study the localized category dA∞(R)[S−1

r ]. Finally, we give an
operadic interpretation of r-homotopy and show that the two notions are equivalent.
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5.1. Twisted dgas and tensor product. In general, the tensor product of two dA∞-algebras does
not inherit a natural dA∞-algebra structure giving rise to a monoidal structure on dA∞(R). The
construction works if one of the components is a twisted differential graded algebra, as we show next.

Definition 5.1. A twisted dga is a dA∞-algebra (A, µij) whose only non-zero structure morphisms
are µi1 for i ≥ 0 and µ02.

Lemma 5.2. For (A, µij) a twisted dga, the following hold.

(1) µ02 is associative.
(2) µi1(µ02) = µ02(1⊗ µi1) + µ02(µi1 ⊗ 1) for all i ≥ 0.
(3) Let µn : A⊗n → A be defined iteratively by µn = µ02(µn−1 ⊗ 1), with µ2 = µ02. Then

µi1(µn) =
∑

r+t+1=n

µn(1
⊗r ⊗ µi1 ⊗ 1⊗t) for all i ≥ 0.

Proof. It suffices to check (2). Relation (Ai2) reads:

−(µ02(1⊗ µi1) + µ02(µi1 ⊗ 1)) + µi1(µ02) = 0. �

Proposition 5.3. Let (Λ, µij) be a twisted dga and let (A,mij) be a dA∞-algebra. The bigraded
module Λ⊗A is endowed with a dA∞-algebra structure given by

m̂i1 = µi1 ⊗ 1A + 1Λ ⊗mi1 and m̂ij = (µj ⊗mij)τj for all j ≥ 2.

Here τj : (Λ⊗A)⊗j → Λ⊗j ⊗A⊗j denotes the standard isomorphism given by the symmetric monoidal
structure and µj is defined in Lemma 5.2.

Proof. For all n ≥ 0, we have
∑

i+j=n

(−1)jm̂i1m̂j1 =
∑

i+j=n

(−1)j(µi1µj1⊗1+1⊗mi1mj1+µi1⊗mj1+(−1)ij+(1−i)(1−j)µj1⊗mi1) = 0.

Note that, for j, q ≥ 2, we have

m̂ij(1
⊗r ⊗ m̂pq ⊗ 1⊗t) = (µr+q+t ⊗mij(1

⊗r ⊗mpq ⊗ 1⊗t))τr+q+t.

Using this, for all u ≥ 0 and all v ≥ 2, we have
∑

u=i+p, v=j+q−1
j=1+r+t,

(−1)rq+t+pjm̂ij(1
⊗r

Λ⊗A ⊗ m̂pq ⊗ 1⊗
t

Λ⊗A)

=
∑

u=i+p, v=j+q−1
j=1+r+t,

(−1)rq+t+pj(µv ⊗mij)(1
⊗r ⊗mpq ⊗ 1⊗t)τv +

∑

u=i+p

(−1)p(µi1 ⊗ 1A)(µv ⊗mpv)τv

+
∑

u=i+p

(−1)v+1+pv(µv ⊗miv)τv(1
⊗r
Λ⊗A ⊗ (µp1 ⊗ 1A)⊗ 1⊗t

Λ⊗A)

=
∑

u=i+p

(−1)p(µi1µv ⊗mpv)τv +
∑

u=i+p
r+t+1=v

(−1)v+1+pv+ip+(i+v)(1−p)(µv(1
⊗r ⊗ µp1 ⊗ 1⊗t)⊗miv)τv

=
∑

u=i+p

(
(−1)p(µi1µv)⊗mpv +

∑

v=r+t+1

(−1)p+1µv(1
⊗r ⊗ µi1 ⊗ 1⊗t)⊗mpv

)
τv = 0. �

Proposition 5.4. Let (Λ, µij) be a twisted dga. The above construction gives rise to a functor Λ⊗− :

dA∞(R)→ dA∞(R), sending a morphism f : A→ B of dA∞-algebras to the morphism f̂ : Λ⊗ A→

Λ ⊗ B given by f̂i1 = 1Λ ⊗ fi1 and f̂ij = (µj ⊗ fij)τj for all j ≥ 2. Furthermore, for a dA∞-algebra
(A,mij), the construction above gives rise to a functor − ⊗ A sending a strict morphism f : Λ → Λ′

to the strict morphism f ⊗ 1A : Λ⊗A→ Λ′ ⊗A.

Proof. The proof follows exactly the same lines of computation as the preceding proof. �
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5.2. r-homotopies and r-homotopy equivalences. We next define a collection of functorial paths
indexed by an integer r ≥ 0 on the category of dA∞-algebras, giving rise to the corresponding notions
of r-homotopy.

We will use specific twisted dgas defined in the following proposition whose proof is left to the
reader.

Proposition 5.5. Let r ≥ 0 be an integer. Let Λr be the bigraded module generated by e− and e+ in
bidegree (0, 0) and u in bidegree (−r, 1− r). The only non-trivial operations given by

µr1(e−) = −u, µr1(e+) = u, µ02(e−, e−) = e−, µ02(e+, e+) = e+, µ02(e−, u) = µ02(u, e+) = u,

make Λr into a twisted dga. The morphisms

R
ι // Λr

∂+
//

∂−

// R ; ∂± ◦ ι = 1R

given by ∂−(e−) = 1R, ∂+(e+) = 1R and ι(1) = e− + e+ and 0 elsewhere are strict morphisms of
twisted dgas. �

Definition 5.6. Let r ≥ 0 be an integer. The functorial r-path Pr : dA∞(R) → dA∞(R) is defined
as Pr := Λr ⊗−.

Note that for a dA∞-algebra A, one has Pr(A)ji = (Re− ⊗ Aj
i ) ⊕ (Ru ⊗ Aj+r−1

i+r ) ⊕ (Re+ ⊗ Aj
i ).

Hence we may identify Pr(A) with the bigraded R-module given by Pr(A)ji = Aj
i ⊕Aj+r−1

i+r ⊕Aj
i as in

Definition 3.14. More precisely, the triple (x, y, z) is identified with e− ⊗ x+ u⊗ y + e+ ⊗ z.
Given bigraded R-modules A and B, let

t2 : Pr(A)⊗ Pr(B) −→ Pr(A⊗B)

be the map given by

t2((x, y, z)⊗ (x′, y′, z′)) = (x⊗ x′, x⊗ y′ + y ⊗ z′, z ⊗ z′),

where x := (−1)rx1+(1−r)x2x and (x1, x2) denotes the bidegree of x. Likewise, for n ≥ 2 we let

tn : Pr(A1)⊗ · · · ⊗ Pr(An) −→ Pr(A1 ⊗ · · · ⊗An)

be the map given by

tn((x1, y1, z1)⊗· · ·⊗(xn, yn, zn)) = (x1⊗· · ·⊗xn,
∑

1≤j≤n

x1⊗· · ·⊗xj−1⊗yj⊗zj+1⊗· · ·⊗zn, z1⊗· · ·⊗zn).

Note that under the identification above, the map tn is obtained as the composite

(µn ⊗ 1) ◦ τn : (Λr ⊗A1)⊗ · · · ⊗ (Λr ⊗An)→ (Λr)
⊗n ⊗A1 ⊗ · · · ⊗An → Λr ⊗A1 ⊗ · · · ⊗An.

As a consequence, combining Propositions 5.3 and 5.4 one obtains the following.

Proposition 5.7. The r-path (Pr(A),Mij) of a dA∞-algebra (A,mij) is given by the bigraded module
Pr(A) together with the morphisms Mij : Pr(A)⊗j → Pr(A) of bidegree (−i, 2− i− j) given by

Mr1 :=



mr1 0 0
−1 −mr1 1
0 0 mr1


 and Mi1 :=



mi1 0 0
0 (−1)i+r+1mi1 0
0 0 mi1


 for i 6= r

and the morphisms

Mij :=



mij 0 0
0 (−1)rj+i+jmij 0
0 0 mij


 ◦ tj , for i ≥ 0 and j ≥ 2.

The r-path of a morphism f : (A,mA
ij)→ (B,mB

ij) of dA∞-algebras is the morphism of dA∞-algebras

Pr(f) : (Pr(A),MA
ij )→ (Pr(B),MB

ij ) given by Pr(f)ij = (fij , (−1)
(r+1)(j−1)+ifij , fij).
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The structure morphisms of the r-path

A
ιA // Pr(A)

∂+
A //

∂−

A

// A ; ∂±
A ◦ ιA = 1A

are given by ∂−
A (x, y, z) = x, ∂+

A (x, y, z) = z and ιA(x) = (x, 0, x). �

It follows directly from the above proposition that the r-path is compatible with the forgetful functor
U : dA∞(R) −→ tCR. Also, if (A,m0j) is a dA∞-algebra concentrated in horizontal degree 0, then
its 0-path P0(A) coincides with its path object as an A∞-algebra as defined by Grandis in [Gra99].
Hence the 0-path is compatible with the inclusion A∞(R) →֒ dA∞(R).

Definition 5.8. Let f, g : A→ B be two morphisms of dA∞-algebras. An r-homotopy from f to g is
given by a morphism of dA∞-algebras h : A → Pr(B) such that ∂−

B ◦ h = f and ∂+
B ◦ h = g. We use

the notation h : f ≃
r

g.

We postpone until later giving an explicit version of r-homotopy, in terms of a collection of mor-

phisms ĥij : A
⊗j → B; see Proposition 5.32.

In the category of A∞-algebras, the notion of homotopy defines an equivalence relation on the sets
of A∞-morphisms (see [Pro11], see also [Gra99]). We next prove an analogous result in the context
of dA∞-algebras, for 0-homotopies. Our proof is an adaptation of the proof given by Grandis for
A∞-algebras.

Proposition 5.9. The notion of r-homotopy is reflexive and compatible with the composition. Fur-
thermore, for r = 0 it defines an equivalence relation on the set of morphisms of dA∞-algebras from
A to B, provided A and B are (N,Z)-graded.

Proof. Since the notion of r-homotopy is defined via a functorial path, it is reflexive and compatible
with the composition. To show that 0-homotopy is symmetric we will define a natural reversion
morphism of the r-path ζ : P0(A) → P0(A) of a dA∞-algebra (A,mij) such that ∂±ζ = ∂∓. Then,

given a 0-homotopy h : f ≃
0

g we will have a 0-homotopy ζh : g ≃
0

f .

Consider the filtered A∞-algebra defined by applying Tot to P0(A). This is given by:

FpTot(P0(A))n = FpTot(A)
n ⊕ FpTot(A)n−1 ⊕ FpTot(A)n,

with structure morphisms

M1 =



Tot(mi1) 0 0
−1 −Tot(mi1) 1
0 0 Tot(mi1)


 and Mj =



Tot(mij) 0 0

0 (−1)jTot(mij) 0
0 0 Tot(mij)


 ◦ tj ,

for j ≥ 2. We will next define a morphism of filtered A∞-algebras ζ : Tot(P0(A)) → Tot(P0(A)).
Note that such a map is determined by its composition with the three maps ∂−, ∂0 and ∂+ defined
by projection to each of the direct summands of Tot(P0(A)). We let ∂−ζ1 = ∂+, ∂0ζ1 = −∂0 and
∂−ζ1 = ∂+. For j > 1, we let ∂±ζj = 0 and define ∂0ζj inductively by

∂0ζj =
∑

p+q=n+1
x+y+z=n+1

SnqxpTot(mij)((∂
+)⊗x−1 ⊗ ζq ⊗ (∂−)⊗y−1 ⊗ ζ1 ⊗ (∂+)⊗z−1,

where all indices in the sum are poisitive integers and Snqxp is a sign coefficient (see [Gra99, p56]).
By [Gra99, Theorem 7.1], the family {ζj}j≥1 is a morphism of A∞-algebras. Since for all p ∈ Z,
∂ǫ(FpTot(P0(A)) ⊂ FpP0(A) for ǫ ∈ {−, 0,+}, the morphism ζ is compatible with filtrations. Therefore
by Corollary 4.58 it gives the desired reversion of dA∞-algebras.

We next prove transitivity. Consider the pull-back of dA∞-algebras

Q(A)

yπ+

��

π−
// P0(A)

∂+

��
P0(A)

∂−
// A.



36 JOANA CIRICI, DANIELA EGAS SANTANDER, MURIEL LIVERNET, AND SARAH WHITEHOUSE

To prove transitivity it suffices to define a morphism ξ : Q(A) −→ P0(A) of dA∞-algebras such that
∂±ξ = ∂±π± (see for example [KP97, Proposition I.4.5(b)]).

Consider the filtered A∞-algebra given by applying Tot to Q(A). We will denote by ∂ǫη := ∂ηπǫ,
with ǫ = ± and η ∈ {−, 0,+}, the five projections Tot(Q(A))→ Tot(A), noting that ∂+− = ∂−+.

We next define ξ : Tot(Q(A)) −→ Tot(P0(A)). Let ξ1 be defined by ∂−ξ1 := ∂−−, ∂0ξ1 := ∂0−+∂0+

and ∂+ξ1 := ∂++. For j > 1, we let ∂±ξj = 0 and define the central components by letting

∂0ξj = (−1)jTot(mij)
∑

x+y+z=j+1
x,y,z≥1

(∂−−)⊗x−1 ⊗ ∂0− ⊗ (∂+−)⊗y−1 ⊗ ∂0+ ⊗ (∂++)⊗z−1.

By [Gra99, Theorem 6.3], the family ξ = {ξj}j≥1 is a morphism of A∞-algebras. By construction,
it is compatible with filtrations. Therefore by Corollary 4.58 it gives the desired morphism of dA∞-
algebras. �

Remark 5.10. The proof of symmetry and transitivity of 0-homotopies given above does not extend
to r-homotopies, due to the fact that for r > 0, the projection ∂0 : Tot(Pr(A)) → Tot(A) is not
necessarily compatible with filtrations. Note that we have ∂0(FpTot(Pr(A))) ⊂ Fp+r(Tot(A)).

Denote by ∼
r

the congruence of dA∞(R) generated by r-homotopies: f ∼
r

g if and only if there

is a chain of r-homotopies f ≃
r
· · · ≃

r
g from f to g or a chain g ≃

r
· · · ≃

r
f from g to f .

Definition 5.11. A morphism of dA∞-algebras f : A → B is called an r-homotopy equivalence if

there exists a morphism g : B → A satisfying f ◦ g ∼
r

1B and g ◦ f ∼
r

1A.

Denote by Sr the class of r-homotopy equivalences of dA∞(R). This class is closed under com-
position and contains all isomorphisms. Since the r-path commutes with the forgetful functor U :
dA∞(R) −→ tCR, we have Sr = U−1(StCR

r ). Note as well that Sr ⊂ Sr+1 and Sr ⊂ Er for all r ≥ 0.

Lemma 5.12. Let (A,mij) be a dA∞-algebra. The strict morphism ιA : (A,mij) −→ (Pr(A),Mij)
given by ιA(x) = (x, 0, x) is an r-homotopy equivalence.

Proof. Note first that the category of twisted dgas together with strict morphisms is a monoidal
category, hence Λr ⊗ Λr is a twisted dga. Let ∆ : Λr → Λr ⊗ Λr be the map given by

∆(e−) = e− ⊗ (e− + e+) + e+ ⊗ e−, ∆(e+) = e+ ⊗ e+, and ∆(u) = u⊗ e+ + e+ ⊗ u.

That ∆ is a strict morphism of dgas is a matter of computation. Furthermore one has

(∂+ ⊗ 1)∆ = id and (∂− ⊗ 1)∆ = ι ◦ ∂−.

Consequently ∆⊗ 1A : Pr(A)→ Pr(Pr(A)) is an r-homotopy from ιA ◦ ∂
−
A to the identity. �

Theorem 5.13. The localized category dA∞(R)[S−1
r ] is canonically isomorphic to the quotient cate-

gory πr(dA∞(R)) := dA∞(R)/ ∼
r

.

Proof. The proof is analogous to that of Proposition 3.26, using Lemma 5.12. �

5.3. Operadic approach. Since dA∞-algebras are algebras for the operad (dAs)∞, one expects to
be able to describe homotopies in terms of structure on cofree (dAs)¡-coalgebras, where (dAs)¡ is the
Koszul dual cooperad. We carry this out in this section, giving several equivalent formulations and
showing that they agree with the definition via a path object presented above.

5.3.1. (dAs)¡-coalgebras and coderivations. In this setting, a homotopy between morphisms g and
f should be a coderivation homotopy, that is, it satisfies two conditions, a usual homotopy rela-
tion together with a condition of compatibility with the comultiplication, called a (g, f)-coderivation
condition. (See [ALR+15] for the coderivation notion in an operadic context and [LH03] for (g, f)-
coderivations in the setting of A∞-algebras.)

First we recall the (g, f)-coderivation condition for coassociative coalgebras.
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Definition 5.14. Let (A,∆A), (B,∆B) be coassociative R-coalgebras and let f, g : A → B be
coalgebra morphisms. A (g, f)-coderivation is an R-linear map h : A→ B such that

(g ⊗ h+ h⊗ f)∆A = ∆Bh.

Next we define (g, f)-coderivations in a suitable operadic setting.

Definition 5.15. Let C be a non-symmetric cooperad in vertical bicomplexes. For X,Y, Z vertical
bicomplexes, the vertical bicomplex C(X;Y ;Z) is given by

C(X;Y ;Z) :=
⊕

n≥1

C(n)⊗
( ⊕

a+b+1=n

X⊗a ⊗ Y ⊗ Z⊗b
)
.

If f : X → X ′, h : Y → Y ′ and g : Z → Z ′ are maps of vertical bicomplexes, the map

C(f ;h; g) : C(X;Y ;Z)→ C(X ′;Y ′;Z ′)

is defined as the direct sum of the maps 1⊗ f⊗a ⊗ h⊗ g⊗b.

Definition 5.16. Let C be a non-symmetric cooperad in vertical bicomplexes and let A and B be
vertical bicomplexes. Let g and f be maps of C-coalgebras C(A) → C(B). For r ≥ 0, an r-(g, f)-
coderivation is a map of vertical bicomplexes h : C(A) → C(B) of bidegree (r, r − 1) such that the
following diagram commutes.

C(A) = C(A;A;A)
∆C //

h
��

// C ◦ C(A;A;A) ∼= C(C(A); C(A;A;A); C(A))

C(g;h;f)
��

C(B) = C(B;B;B)
∆C // C ◦ C(B;B;B) ∼= C(C(B); C(B;B;B); C(B))

In order to understand very explicitly what such a thing looks like in the (dAs)¡ case, we first recall
Proposition 3.2 of [ALR+15] and then extend it to (g, f)-coderivations. As there, it is slightly simpler
to use cooperadic suspension and work with the suspended cooperad Λ(dAs)¡.

Consider triples (C,∆, f) where (C,∆) is a conilpotent coassociative coalgebra and f : C → C is
a linear map of bidegree (1, 1) satisfying (f ⊗ 1)∆ = (1⊗ f)∆ = ∆f . A morphism between two such
triples is a morphism of coalgebras commuting with the given linear maps.

Proposition 5.17. [ALR+15, Proposition 3.2] Cooperadic suspension gives rise to an isomorphism
of categories between the category of conilpotent coalgebras over the cooperad (dAs)¡ and the category
of triples (C,∆, f) as above.

An operadic coderivation of bidegree (0, 1) of a (dAs)¡-coalgebra S−1C corresponds on (C,∆, f) to
a coderivation of bidegree (0, 1) of the coalgebra C, anti-commuting with the linear map f . �

Example 5.18. [ALR+15, Example 3.3] As an example we give the structure corresponding to the
cofree Λ(dAs)¡-coalgebra cogenerated by C. We have Λ(dAs)¡(C) ∼= R[x] ⊗ TC, where TC denotes
the reduced tensor coalgebra on C.

The coalgebra structure is given by

∆(xi ⊗ a1 ⊗ · · · ⊗ an) =

n−1∑

k=1

∑

r+s=i

(−1)ǫ(xr ⊗ a1 ⊗ · · · ⊗ ak)⊗ (xs ⊗ ak+1 ⊗ · · · ⊗ an),

where ǫ = rn+ ik + (s, s)(|a1|+ · · ·+ |ak|).
Let π0 denote the projection of R[x]⊗ TC onto Rx0 ⊗ TC ∼= TC. Then

∆π0 = (π0 ⊗ π0)∆

where the first ∆ is the usual deconcatenation product defined on TC.
The linear map f will be denoted dx in this cofree case and

dx : R[x]⊗ TC → R[x]⊗ TC

is determined by dx(x
n ⊗ a) = (−1)j+1xn−1 ⊗ a, for a ∈ C⊗j .
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Proposition 5.19. Let g and f be maps of (dAs)¡-coalgebras (dAs)¡(A) → (dAs)¡(B) and let h :
(dAs)¡(A) → (dAs)¡(B) be an r-(g, f)-coderivation. If f , g correspond under the above isomorphism

of categories to coalgebra morphisms f̃ , g̃ : R[x]⊗ TSA→ R[x]⊗ TSB, (commuting with dx), then h

corresponds to a (g̃, f̃)-coderivation of coalgebras h̃ : R[x]⊗ TSA→ R[x]⊗ TSB of bidegree (r, r− 1),
graded commuting with dx.

Proof. After applying cooperadic suspension, the (g, f)-coderivation condition gives the following com-
mutative diagram.

R[x]⊗ TSA
ρA //

h̃
��

// R[x]⊗ T (R[x]⊗ TSA)

(dAs)¡(g̃;h̃;f̃)
��

R[x]⊗ TSB
ρB // R[x]⊗ T (R[x]⊗ TSB)

Let C = SA and D = SB.
As in [ALR+15, Example 3.3], the structure map ρC of the cofree coalgebra on C is completely

determined by ∆ = ρ0,2 and dx = ρ1,1, where ρi,j : C → C⊗j is the following composite

ρi,j : C
ρ // R[x]⊗ TC

πi,j // // Rxi ⊗ C⊗j
∼= // C⊗j .

Post-composing the horizontal maps with π0,2 in the commutative diagram above, we find that we
obtain a commutative diagram

R[x]⊗ TC
ρA //

h̃
��

R[x]⊗ T (R[x]⊗ TC)

(dAs)¡(g̃;h̃;f̃)
��

π0,2 // // kx0 ⊗ (R[x]⊗ TC)⊗2 ∼= (R[x]⊗ TC)⊗2

g̃⊗h̃+h̃⊗f̃
��

R[x]⊗ TD
ρB // R[x]⊗ T (R[x]⊗ TD)

π0,2 // // kx0 ⊗ (R[x]⊗ TD)⊗2 ∼= (R[x]⊗ TD)⊗2

and the outer commuting square gives the r-(g̃, f̃)-coderivation condition for h̃.
Similarly, one may post-compose the horizontal maps with π1,1 and check that the resulting condi-

tion is

dDx h̃ = (−1)|h̃|h̃dCx . �

Next we want to pass from morphisms on R[x]⊗TC, commuting with dx, to families of morphisms
on TC. As in Example 3.3 of [ALR+15], given a morphism of bigraded modules f : R[x] ⊗ TC →
R[x]⊗ TC, write

f(xn ⊗ a) =
∑

i

xi ⊗ fn,i(a),

where fn,i : T (C)→ T (D) and a ∈ C⊗j . Then commuting with the map dx means that f is completely
determined by the family of maps fn,0.

Define fn : TC → TC by fn(a) = (−1)njfn,0(a) = (−1)njπ0f(x
n ⊗ a), where a ∈ C⊗j .

The correspondence gives a bijection between the subset of morphisms in bgModR(R[x]⊗TC,R[x]⊗
TD) which commute with dx and bgMod∞R (TC, TD).

Recall from [ALR+15] that under this assignment, a square-zero coderivation δ on R[x] ⊗ TC
corresponds to a twisted complex structure on TC.

Proposition 5.20. Let g̃, f̃ be coalgebra morphisms R[x]⊗ TC → R[x]⊗ TD, commuting with dx. If

h̃ is an r-(g̃, f̃)-coderivation of coalgebras h̃ : R[x]⊗TC → R[x]⊗TD, graded commuting with dx, the

corresponding family of morphisms h̃n : TC → TD satisfies

∑

j

(−1)j g̃j ⊗ h̃i−j +
∑

h̃j ⊗ f̃i−j


∆ = ∆h̃i for all i ≥ 0.
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Proof. First note that for α, β : R[x]⊗ TC → R[x]⊗ TD, a ∈ C⊗k and b ∈ C⊗l, we have

(π0 ⊗ π0)(α⊗ β)(xi ⊗ a⊗ xj ⊗ b) = (−1)i(u
′+v′)+j(a1+a2)+ik+jl(αi ⊗ βj)(a⊗ b),

Then we calculate ∆h̃i(a) for a = a1⊗ · · · ⊗ an ∈ C⊗n. The ǫ appearing in the sign in the following

calculation is given as in Example 5.18 above. We also use that |h̃| = −1 and |f̃ | = 0.

∆h̃i(a) = (−1)in∆π0h̃(x
i ⊗ a)

= (−1)in(π0 ⊗ π0)∆h̃(xi ⊗ a)

= (−1)in(π0 ⊗ π0)(g̃ ⊗ h̃+ h̃⊗ f̃)∆(xi ⊗ a)

= (−1)in(π0 ⊗ π0)(g̃ ⊗ h̃+ h̃⊗ f̃)

n−1∑

k=1

∑

s+t=i

(−1)ǫ(xs ⊗ a1 ⊗ · · · ⊗ ak)⊗ (xt ⊗ ak+1 ⊗ · · · ⊗ an)

= (−1)in
n−1∑

k=1

∑

s+t=i

(−1)sn+ik+s+sk+t(n−k)(g̃s ⊗ h̃t)((a1 ⊗ · · · ⊗ ak)⊗ (ak+1 ⊗ · · · ⊗ an))

+ (−1)in
n−1∑

k=1

∑

s+t=i

(−1)sn+ik+sk+t(n−k)(h̃s ⊗ f̃t)((a1 ⊗ · · · ⊗ ak)⊗ (ak+1 ⊗ · · · ⊗ an))

=
∑

s+t=i

(
(−1)sg̃s ⊗ h̃t + h̃s ⊗ f̃t

)
∆(a). �

We now consider an r-shifted version of the usual homotopy relation and explain how r-homotopy
of twisted complexes appears in this context.

Definition 5.21. For F : Λ(dAs)¡(C) → Λ(dAs)¡(D) a morphism of bigraded modules, let SF :
Λ(dAs)¡(C)→ Λ(dAs)¡(D) be given by SF := −FdCx .

Proposition 5.22. The corresponding sequence of maps TC → TD is given by (SF )i = Fi−1 if i ≥ 1
and (SF )0 = 0.

Proof. For a ∈ C⊗n, and setting F−1 = 0,

(SF )i(a) = (−1)inπ0(SF )(xi ⊗ a) = (−1)in+1π0FdCx (x
i ⊗ a)

= (−1)in+nπ0F (xi−1 ⊗ a) = (−1)in+n+(i−1)nFi−1(a)

= Fi−1(a). �

We defined a shift S : bgMod
R
(A,B)vu → bgMod

R
(A,B)v+1

u+1 in Definition 3.35. Proposition 5.22

shows that the one defined here corresponds to that one, hence we use the same notation.

Proposition 5.23. Let f, g : Λ(dAs)¡(C)→ Λ(dAs)¡(D) be morphisms of Λ(dAs)¡-coalgebras and let
h : Λ(dAs)¡(C)→ Λ(dAs)¡(D) be a morphism of bigraded modules of bidegree (r, r − 1) satisfying

(−1)rδDh+ hδC = Sr(g − f).

Then the corresponding family of morphisms h̃n : TC → TD gives an r-homotopy of twisted complexes.

Proof. We extract the i-th map in the families corresponding to the two sides of the given equation.
On the right-hand side, by Propostion 5.22, we obtain gi−r − fi−r for i ≥ r and 0 for i < r.

Recall from [ALR+15], that one can write δi,j(a) =
∑

l δ
i,j,l(a), with δi,j,l(a) ∈ D⊗l, and similarly for

hi,j(a). Anti-commuting with the map dx implies that δi,j,l(a) = (−1)j(n+l+1)δi−j,0,l(a) for a ∈ C⊗n,
and similarly for h.
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On the left-hand side we calculate to check the signs. For a ∈ C⊗n,
(
(−1)rδDh+ hδC

)
i
(a) = (−1)inπ0

(
(−1)rδDh+ hδC

)
(xi ⊗ a)

= (−1)in+rπ0δ
(∑

j

xj ⊗ hi,j(a)
)
+ (−1)inπ0h

(∑

j

xj ⊗ δi,j(a)
)

= (−1)in+rπ0
(∑

j,k

xk ⊗ δj,khi,j(a)
)
+ (−1)inπ0

(∑

j,k

xk ⊗ hj,kδi,j(a)
)

= (−1)in+r
∑

j

δj,0hi,j(a) + (−1)in
∑

j

hj,0δi,j(a)

= (−1)in+r
(∑

j,l

(−1)j(n+l+1)δj,0hi−j,0,l(a)
)

+ (−1)in
(∑

j,l

(−1)j(n+l+1)hj,0δi−j,0,l(a)
)
,

where δi,j(a) =
∑

l δ
i,j,l(a), with δi,j,l(a) ∈ D⊗l, and similarly for hi,j(a). Continuing the above

calculation, we obtain

(−1)in+r
(∑

j,l

(−1)j(n+1)δjh
i−j,0,l(a)

)
+ (−1)in

(∑

j,l

(−1)j(n+1)hjδ
i−j,0,l(a)

)

= (−1)in+r
(∑

j

(−1)j(n+1)+(i−j)nδjhi−j(a)
)
+ (−1)in

(∑

j

(−1)j(n+1)+(i−j)nhjδi−j(a)
)

=
∑

j

(−1)j+rδjhi−j(a) + (−1)jhjδi−j(a),

as required. �

Thus an r-shifted version of the operadic notion of coderivation homotopy corresponds to a sequence
of maps of bigraded R-modules hn : TC → TD, where hn has bidegree (r − n, r − n − 1), satisfying
both the condition in Proposition 5.20 and the condition in Proposition 5.23. We are going to show
that this is equivalent to an r-homotopy of dA∞-algebras, as defined via the path construction.

As an intermediate step, we reformulate the conditions using the composition in bgMod
R
.

5.3.2. Tensor coalgebra viewed in bgMod
R
. First we make two definitions about families of maps on

reduced tensor coalgebras. The first one is a coalgebra-morphism type condition for a family of maps;
see also [Sag10, Section 4].

Definition 5.24. Let (f̃p) ∈ bgMod
R
(TSA, TSB)00. Write f̃ j

pq for the map (SA)⊗q → (SB)⊗j coming

from f̃p. We say that (f̃p) is a coalgebra-family of morphisms if for all j, p, q, we have

f̃ j
pq =

∑

p1+···+pj=p
q1+···+qj=q

f̃1
p1q1
⊗ f̃1

p2q2
⊗ · · · ⊗ f̃1

pjqj
.

Now we consider coderivations between such families.

Definition 5.25. Let (f̃p), (g̃p) ∈ bgMod
R
(TSA, TSB)00 be two coalgebra-families of morphisms. Let

(h̃p) ∈ bgMod
R
(TSA, TSB)r−1

r . Write h̃jpq for the map (SA)⊗q, (SB)⊗j coming from h̃p. We say that

(h̃p) is an r-((g̃p), (f̃p))-coderivation-family of morphisms if for all i, k, l, we have

h̃lpk =
∑

0≤s≤l−1
p1+···+pl=p
q1+···+ql=k

(−1)p1+···+ps g̃1p1q1 ⊗ · · · ⊗ g̃1psqs ⊗ h̃1ps+1qs+1
⊗ f̃1

ps+2qs+2
⊗ · · · ⊗ f̃1

plql
.
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Notation 5.26. For A ∈ bgModR, we let T SA denote the object of bgMod
R
given by the underlying

bigraded module of the reduced tensor coalgebra on SA. We let ∆ ∈ bgMod
R
(T SA, T SA⊗ T SA)00 be

given by ∆ = (∆0,∆1, . . . ) with ∆0 := ∆, the usual deconcatenation comultiplication and ∆i := 0 for
i > 0.

Similarly, for f ∈ hombgModR(A,B), write T Sf for T Sf := (TSf, 0, 0, . . . ) ∈ bgMod
R
(T SA, T SB).

In the light of the results of the previous section, and noting Remark 4.48, one expects to be able
to describe A∞-algebras, their morphisms and so on, in terms of structure in bgMod

R
on the pairs

(T SA,∆). We give the details next.
In the following proposition, we use the natural notions of coderivations, coalgebra morphisms and

(g, f)-coderivations in bgMod
R
. For example, a coalgebra morphism T SA → T SB in bgMod

R
means

a morphism in bgMod
R
(T SA, T SB)00 satisfying

c(f⊗̂f,∆) = c(∆, f).

Proposition 5.27. (1) Let δ ∈ bgMod
R
(T SA, T SA)10. If δ is a coderivation such that c(δ, δ) = 0

then it corresponds to a collection of coderivations δi : TSA → TSA in bgModR, i ≥ 0,
together making TSA into a twisted complex. Thus, a dA∞-algebra structure on a bigraded
module A is equivalent to specifying such a square-zero coderivation δ.

(2) Let f ∈ bgMod
R
(T SA, T SB)00. If f is a coalgebra morphism commuting with given square-zero

coderivations dA, dB, it corresponds to a coalgebra-family of morphisms fi : TSA → TSB,
i ≥ 0, together making a morphism of twisted complexes. Thus, a morphism of dA∞-algebras
from A to B is equivalent to specifying such a coalgebra morphism f .

(3) Let f, g ∈ bgMod
R
(T SA, T SB)00 be coalgebra morphisms.

A (g, f)-coderivation h ∈ bgMod
R
(T SA, T SB)r−1

r corresponds to an r-((gi), (fi))-coderivation-

family of morphisms hi : TSA→ TSB.
(4) Let f, g ∈ bgMod

R
(T SA, T SB)00 be coalgebra morphisms.

A morphism h ∈ bgMod
R
(T SA, T SB)r−1

r satisfying

(−1)rc(dB, h) + c(h, dA) = Sr(g − f)

corresponds to an r-homotopy of morphisms of twisted complexes hi : TSA→ TSB, i ≥ 0.

Proof. (1) We have that c(δ, δ) = 0 if and only if the δi satisfy the twisted complex relations. And
the coderivation condition on δ translates into the coderivation condition on the individual δi.
In more detail,

c(δ⊗̂1 + 1⊗̂δ,∆) = c(∆, δ)

⇐⇒
(
c(δ⊗̂1 + 1⊗̂δ,∆)

)
i
= (c(∆, δ))i for all i ≥ 0

⇐⇒ (δ⊗̂1 + 1⊗̂δ)i∆ = ∆δi for all i ≥ 0, since ∆ = (∆, 0, 0, . . . )

⇐⇒ (δi ⊗ 1 + 1⊗ δi)∆ = ∆δi for all i ≥ 0, since 1 = (1A, 0, 0, . . .).

The final part follows from [Sag10, 4.1].
(2) We have that c(f, dA) = c(dB, f) if and only if the fi satisfy the relations to be a morphism of

twisted complexes (TSA, dAi )→ (TSB, dBi ). Then f is a coalgebra morphism means

c(f⊗̂f,∆) = c(∆, f) ⇐⇒
(
c(f⊗̂f,∆)

)
i
= (c(∆, f))i for all i ≥ 0

⇐⇒ (f⊗̂f)i∆ = ∆fi for all i ≥ 0, since ∆ = (∆, 0, 0, . . . )

⇐⇒
∑

j

(fj ⊗ fi−j)∆ = ∆fi for all i ≥ 0.

The last condition can be recursively reduced to the coalgebra-family of morphisms condition.
The final part follows from [Sag10, 4.3].
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(3)

c(g⊗̂h+ h⊗̂f,∆) = c(∆, h)

⇐⇒
(
c(g⊗̂h+ h⊗̂f,∆)

)
i
= ((∆, h))i for all i ≥ 0

⇐⇒ (g⊗̂h+ h⊗̂f)i∆ = ∆hi for all i ≥ 0, since ∆ = (∆0, 0, 0, . . . )

⇐⇒


∑

j

(−1)jgj ⊗ hi−j +
∑

hj ⊗ fi−j


∆ = ∆hi for all i ≥ 0.

The last condition recursively reduces to the coderivation-family one.
(4) We calculate:

(−1)rc(dB, h) + c(h, dA) = Sr(g − f)

⇐⇒
(
(−1)rc(dB, h) + c(h, dA)

)
i
= (Sr(g − f))i for all i ≥ 0

⇐⇒
∑

j

(−1)j+rdBj hi−j + (−1)jhjd
A
i−j =

{
gi−r − fi−r if i ≥ r,

0 if i < r.
(Hi1)

�

5.3.3. Comparison with path definition. We will show that the path definition of r-homotopy (Defini-
tion 5.8) corresponds to imposing conditions (3) and (4) in Proposition 5.27. In section 5.3.1 we have
checked that these match up with the corresponding (dAs)¡-coalgebra notions.

Let f, g : A → B be two morphisms of dA∞-algebras and let h : A → Pr(B) be an r-homotopy
from f to g. Recall that this is a morphism of dA∞-algebras satisfying ∂−

B ◦ h = f and ∂+
B ◦ h = g.

Let F,G : T SA → T SB be the coalgebra morphisms in bgMod
R

corresponding to f, g and let

H : T SA→ T SPr(B) be the coalgebra morphism in bgMod
R
corresponding to h.

We have three projection maps from Pr(B) to B, on to the left, middle and right copies of B,
denoted ∂−

B , ∂
0
B and ∂+

B respectively. We denote the corresponding maps SPr(B) to SB by πL, πM
and πR respectively. Then let π ∈ bgMod

R
(T SPr(B), T SB) be the strict map

∑

s,t

π⊗s
L ⊗ πM ⊗ π⊗t

R .

Proposition 5.28. In the situation above, c(π,H) : T SA→ T SB is a (G,F )-coderivation in bgMod
R
.

Proof. Consider the diagram

T SA

H

��

∆ // T SA⊗ T SA

H⊗̂H
��

T SPr(B)

π

��

∆ // T SPr(B)⊗ T SPr(B)

TS(πR)⊗̂π+π⊗̂TS(πL)
��

T SB
∆

// T SB ⊗ T SB

We claim that this is a commutative diagram in the category bgMod
R
. The top square is such a

commutative diagram since H is a coalgebra morphism in bgMod
R
. In the bottom square all the

morphisms are strict, so composition and tensor agree with the usual ones and we just need to see
that this commutes in the usual sense, which can be easily checked.

Finally, one can check that c(T S(∂+
B ), H) = G and c(T S(∂−

B ), H) = F , so the commuting of the

outer square reads c(G⊗̂c(π,H) + c(π,H)⊗̂F ),∆) = c(∆, c(π,H)), which is the (G,F )-coderivation
condition for c(π,H). �
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Lemma 5.29.

(
c(π, dPrB) + (−1)rc(dB, π)

)
i
=

{
(T (πR)− T (πL)) if i = r,

0 otherwise.

Proof. Since π is a strict map,
(
c(π, dPrB) + (−1)rc(dB, π)

)
i
= πdPrB

i + (−1)r+idBi π.

Now

dBi π =
∑

j,s,t

(1⊗s
B ⊗ m̃ij ⊗ 1⊗t

B )(
∑

u,v

π⊗u
L ⊗ πM ⊗ π⊗v

R ),

where, following Sagave’s conventions, m̃ij = Ψj(mij) : SB
⊗j → SB.

Thus we have

πL = S∂−1
B S−1, πR = S∂−1

B S−1, πM = S∂0
BS

−1(−1)r−1,

with πL and πR of bidegree (0, 0) and πM of bidegree (r, 1− r) and

m̃ij = Smij(S
−1)⊗j(−1)1+i, M̃ij = SMij(S

−1)⊗j(−1)1+i,

both of bidegree (−i, 1− i).
When we expand out the composition, there are three types of terms appearing, according to

whether the input to m̃ij is of the form π⊗j
L , π⊗a

L ⊗ πM ⊗ π⊗b
R or π⊗j

R .
And

πdPrB
i = (

∑

u,v

π⊗u
L ⊗ πM ⊗ π⊗v

R )(
∑

j,s,t

(1⊗s
Pr(B) ⊗ M̃ij ⊗ 1⊗t

Pr(B)),

where M̃ijΨj(Mij) : SPr(B)⊗j → SPr(B). Again there are three sorts of terms, according to whether

they involve πLM̃ij , πMM̃ij or πRM̃ij .
From the definition of the Mij for Pr(B), we have, for all (i, j),

∂−
BMij = mij(∂

−
B )

⊗j , ∂+
BMij = mij(∂

+
B )

⊗j .

And

(−1)rj+i+j∂0
BMij =

∑

a+b+1=j

mij((∂
−
B )

⊗a ⊗ ∂0
B ⊗ (∂+

B )
⊗b), for (i, j) 6= (r, 1),

∂0
BMr1 = −mr1∂

0
B + ∂+

B − ∂−
B .

Sign calculations with the suspension show that these convert to

πLM̃ij = m̃ijπ
⊗j
L , πRM̃ij = m̃ijπ

⊗j
R , for all (i, j)

and

(−1)r+i+1πMM̃ij =
∑

a+b+1=j

m̃ij(π
⊗a
L ⊗ πM ⊗ π⊗b

R ),

πMM̃r1 = −m̃r1πM + πR − πL.

Using the above, one may now check that in
(
c(π, dPrB) + (−1)rc(dB, π)

)
i
almost all terms cancel

pairwise, with the exception, when i = r, of the extra terms in c(π, dPrB) coming from the special
form of Mr1. These contribute

∑

s,t

1⊗s ⊗ (πR − πL)⊗ 1⊗t =
∑

j

π⊗j
R − π⊗j

L = (T (πR)− T (πL)). �

Proposition 5.30. The map c(π,H) : T SA→ T SB satisfies the r-homotopy condition in bgMod
R
of

part (4) of Proposition 5.27.
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Proof. Using associativity of composition (Lemma 4.16), Lemma 5.29 and the relation c(H, dA) =

c(dPr(B), H) , we have
(
c(c(π,H), dA) + (−1)rc(dB, c(π,H))

)
i
=
(
c(c(π, dPrB) + (−1)rc(dB, π), H)

)
i

= (T (πR)− T (πL))Hi−r

= Gi−r − Fi−r.

So

c(c(π,H), dA) + (−1)rc(dB, c(π,H)) = Sr(G− F ),

as required. �

We now collect everything together.

Theorem 5.31. Let f, g : A → B be two morphisms of dA∞-algebras. Then h : A → Pr(B) being
an r-homotopy from f to g in the sense of Definition 5.8 is equivalent to conditions (3) and (4) of
Proposition 5.27 on c(π,H) : T SA → T SB, where H : T SA → T SPr(B) is the coalgebra morphism
in bgMod

R
corresponding to h.

Proof. We have already seen that c(π,H) does satisfy conditions (3) and (4) of Proposition 5.27. It is
also straightforward to see that we can recover h from c(π,H). Indeed, from c(π,H) we can extract
G,F and c(πM , H1), where H1 : T SA → SPr(B) is the composite of H with the strict projection
T SPr(B) → SPr(B) and c(π,H) is uniquely determined by this data. Now H1 is also uniquely

determined by G,F and c(πM , H1) and we have h̃ij = H1
ij . �

Thus the notion of r-homotopy defined via the path construction coincides with the operadic one.

5.3.4. Explicit r-homotopy.

Proposition 5.32. Giving an r-homotopy h : A→ Pr(B) between morphisms of dA∞-algebras f, g :
A→ B is equivalent to giving a collection of morphisms hik : A⊗k → B of bidegree (r − i, r − i− k),
satisfying, for all m and k,

(−1)m−r
∑

i+p=m

(∑

l

mB
il

∑

0≤s≤l−1
p1+···+pl=p
q1+···+ql=k

(−1)p+α+
∑s

u=1 pugp1q1 ⊗ · · · ⊗ gpsqs ⊗ hps+1qs+1 ⊗ fps+2qs+2 ⊗ · · · ⊗ fplql

+
∑

l

hil
∑

q+s+t=k
q+1+t=l

(−1)β1⊗s ⊗mA
pq ⊗ 1⊗t

)

=

{
0 if m < r,
gm−r,k − fm−r,k if m ≥ r.

(Hmk)

Here the signs are given by

α =

l∑

u=1

(pu + qu)(l + u) +

l∑

u=1

qu(

l∑

v=u+1

pv + qv) + (r − 1)(l + 1 + s+

s∑

u=1

qu),

β = sq + t+ pl + r.

Proof. We have seen that the path definition of r-homotopy for dA∞-algebras agrees with the r-
coderivation-family and r-homotopy of twisted complex conditions on the corresponding families of
maps TSA→ TSB.

Suppose that the dA∞-algebra structures of A and B are encoded in families of coderivations dAi and

dBi making TSA and TSB respectively into twisted chain complexes. Suppose also that f corresponds

to the coalgebra-family of maps f̃i : TSA→ TSB, giving a morphism of twisted complexes; similarly
g corresponds to a coalgebra-family of maps g̃i : TSA→ TSB.
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The r-homotopy condition on (hi) between maps of twisted complexes is equivalent to, for all m ≥ 0,

∑

i+j=m

(−1)i+rdBi h̃j + (−1)ih̃iδ
A
j =

{
0 if m < r,

g̃m−r − f̃m−r if m ≥ r.
(Hm1)

This is an equality of maps TSA→ TSB. Here the bidegree of h̃i is (r − i, r − i− 1), that of dAi and

of dBi is (−i,−i+ 1) and that of f̃i and of g̃i is (−i,−i).
For each m ≥ 0 and for k ≥ 1, we consider the “component of equation (Hm1) from (SA)⊗k → SB”.

That is, we pre-compose with the inclusion (SA)⊗k → TSA and post-compose with the projection to
SB. We will show that this gives, after shifting, the required statement.

The various conditions on the morphisms mean that everything is determined by components.
Firstly, the coderivation condition on each dAi means that they are determined by components

(SA)⊗k → SB, corresponding to mA
ik : A⊗k → A and similarly for dBi . Secondly, since the f̃i : TSA→

TSB form a coalgebra-family of morphisms, it is determined by components f̃ik = f̃1
ik : (SA)⊗k → SB

and similarly for g̃i. And finally, recall that the r-((g̃i), (f̃i))-coderivation-family condition means that

h̃i is determined by components h̃ik = h̃1ik : (SA)⊗k → SB, where h̃lik : (SA)⊗k → (SB)⊗l is given by

h̃lik =
∑

s+1+t=l
i1+···+is+p+l1+···+lt=i
k1+···+kr+q+j1+···+jt=k

(−1)i1+···+is g̃i1k1 ⊗ · · · ⊗ g̃isks ⊗ h̃pq ⊗ f̃l1j1 ⊗ · · · ⊗ f̃ltjt .

Let fik = Ψ−1
k (f̃ik) : A⊗k → B, gik = Ψ−1

k (g̃ik) : A⊗k → B and hik = Ψ−1
k (h̃ik) : A⊗k → B and

note that the bidegree of hik is (r − i, r − i − k). We have m̃ik = Ψk(mik) = (−1)i+1σ−1mikσ
⊗k,

f̃ik = Ψk(fik) = (−1)iσ−1fikσ
⊗k and similarly for g̃ik and h̃ik = Ψk(hik) = (−1)r+i+1σ−1hikσ

⊗k.
Then it is a matter of direct calculation that the extraction of the relevant component maps from

equation (Hm1), together with removing the shifts using the isomorphism Ψk, gives the required
result. �

Remark 5.33. Sagave [Sag10, Definition 4.9] defined homotopy of morphisms from A to B of dA∞-
algebras only in the special case where A is minimal and B is a bidga. One may check that his
definition is equivalent to our 0-homotopy in that case.

Appendix A. List of notation for categories

For easy reference, we provide a list of the notation for the main categories appearing in this paper.

• (CR,⊗, R) is the category with objects cochain complexes and morphisms degree 0 chain maps.
The unit R is the cochain complex concentrated in degree zero.
• (bgModR,⊗, R) is the category with objects bigraded modules and morphisms degree (0, 0)
maps of bigraded modules. The unit R is as above.
• (vbCR,⊗, R) is the category with objects vertical bicomplexes and morphisms degree (0, 0)
maps of vertical bicomplexes. The unit R is as above. See Definition 2.7.
• (tCR,⊗, R) is the category with objects twisted complexes and morphisms degree (0, 0) maps
of twisted complexes i.e., infinity morphisms. The unit R is the twisted complex concentrated
in degree (0, 0). See Definitions 3.1 and 3.2.
• (bgMod∞R ,⊗, R) is the full subcategory of tCR whose objects are twisted complexes with trivial
structure i.e., zero differentials.
• (fModR,⊗, R) is the symmetric monoidal category with objects filtered graded modules and
morphisms degree 0 morphisms which respect the filtration. The unit is the base ring R sitting
in degree 0 with trivial filtration. See Definition 2.2.
• sfModR is the full subcategory of (fModR,⊗, R) whose objects are split filtered modules. See
Definition 3.7.
• (fCR,⊗, R) is the category with objects filtered complexes and morphisms degree 0 chain maps
that respect the filtration, the unit as above. See Definition 2.4.
• sfCR the full subcategory of (fCR,⊗, R) whose objects are split filtered complexes. See Defi-
nition 3.7.
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• tCb
R, vbC

b
R, bgModbR are the full subcategories whose objects are (N,Z)-graded twisted com-

plexes, vertical bicomplexes and bigraded modules respectively. See Definition 3.10.
• fModbR, sfModbR, fC

b
R, sfC

b
R are the full subcategories whose objects are (split) non-negatively

filtered modules respectively complexes, i.e. the full subcategories with objects (K,F ) such
that FpK

n = 0 for all p < 0. See Definition 3.10.
• A∞(R) is the category of A∞-algebras over R.
• dA∞(R) is the category of derived A∞-algebras over R. See Definitions 4.1 and 4.2.
• AtC

∞ (R) is the category of derived A∞-algebras over R in the category of twisted chain com-
plexes. See Definition 4.49.
• fA∞(R) is the category of filtered A∞-algebras over R. See Definitions 4.51 and 4.53.
• sfA∞(R), fAb

∞(R) and sfAb
∞(R) are the full subcategories whose objects are split filtered A∞-

algebras, non-negatively filtered A∞-algebras and split non-negatively filtered A∞-algebras
respectively. See Diagram (8).
• bgMod

R
is the bgModR-enriched category of bigraded modules. See Definition 4.24.

• tCR is the vbCR-enriched category of twisted complexes. See Definition 4.23.

• tC b
R is the full subcategory of tCR whose objects are (N,Z)-graded twisted complexes.

• fMod
R
is the bgModR-enriched category of filtered graded modules. See Definition 4.28.

• fC
R
is the vbCR-enriched category of filtered complexes. See Definition 4.33.

• sfMod
R
and sfMod b

R
are the full subcategories of fMod

R
whose objects are split filtered modules

and split non-negatively filtered modules respectively.
• sfC

R
and sfC b

R
are the full subcategories of fC

R
whose objects are split filtered complexes and

split non-negatively filtered complexes respectively.
• ⊗̂ denotes the enriched monoidal structure on tCR, bgMod

R
, fMod

R
and fC

R
. See Lemmas 4.27

and 4.36.
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[LRW13] M. Livernet, C. Roitzheim, and S. Whitehouse, Derived A∞-algebras in an operadic context, Algebr. Geom.

Topol. 13 (2013), no. 1, 409–440.
[LV12] JL. Loday and B. Vallette, Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental

Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012.
[Mae16] J. Maes, Derived homotopy algebras, Ph.D. thesis, Instituto de Matemáticas de la Universidad de Sevilla,
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(M. Livernet) Institut de mathématiques de Jussieu-Paris Rive Gauche, UMR 7586 du CNRS, Université
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