
This is a repository copy of Stress-Testing Remote Model Querying APIs for Relational
and Graph-Based Stores.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/118583/

Version: Accepted Version

Article:

Paige, Richard Freeman orcid.org/0000-0002-1978-9852, Kolovos, Dimitrios
orcid.org/0000-0002-1724-6563, Barmpis, Konstantinos et al. (2 more authors) (2019)
Stress-Testing Remote Model Querying APIs for Relational and Graph-Based Stores.
Software and Systems Modeling. pp. 1047-1075. ISSN 1619-1366

https://doi.org/10.1007/s10270-017-0606-9

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Noname manuscript No.
(will be inserted by the editor)

Stress-Testing Remote Model Querying APIs for

Relational and Graph-Based Stores

Antonio Garcia-Dominguez ·

Konstantinos Barmpis · Dimitrios S.

Kolovos · Ran Wei · Richard F. Paige

Received: date / Accepted: date

Abstract Recent research in scalable model-driven engineering now allows
very large models to be stored and queried. Due to their size, rather than
transferring such models over the network in their entirety, it is typically more
efficient to access them remotely using networked services (e.g. model repos-
itories, model indexes). Little attention has been paid so far to the nature of
these services, and whether they remain responsive with an increasing number
of concurrent clients. This paper extends a previous empirical study on the
impact of certain key decisions on the scalability of concurrent model queries
on two domains, using an Eclipse Connected Data Objects model repository,
four configurations of the Hawk model index and a Neo4j-based configuration
of the NeoEMF model store. The study evaluates the impact of the network
protocol, the API design, the caching layer, the query language and the type
of database, and analyses the reasons for their varying levels of performance.
The design of the API was shown to make a bigger difference compared to the
network protocol (HTTP/TCP) used. Where available, the query-specific in-
dexed and derived attributes in Hawk outperformed the comprehensive generic
caching in CDO. Finally, the results illustrate the still ongoing evolution of
graph databases: two tools using different versions of the same backend had
very different performance, with one slower than CDO and the other faster
than it.

A. Garcia-Dominguez
School of Engineering and Applied Science, Aston University
Aston Triangle, Birmingham, B4 7ET
Tel.: +44 0121 204 4454
E-mail: a.garcia-dominguez@aston.ac.uk

K. Barmpis, D. S. Kolovos, R. Wei, R. F. Paige
Department of Computer Science, University of York
Deramore Lane, York, YO10 5GH
Tel.: +44 01904 325500
E-mail: {konstantinos.barmpis,dimitris.kolovos,ran.wei,richard.paige}@york.ac.uk

2 A. Garcia-Dominguez et al.

Keywords model persistence · remote model querying · NoSQL storage ·
relational databases · API design · stress testing · collaborative modelling

1 Introduction

Model-driven engineering (MDE) has received considerable attention due to
its demonstrated benefits of improving productivity, quality and maintainabil-
ity. However, industrial adoption has ran into various challenges regarding the
maturity and scalability of MDE. Mohagheghi et al (2012) interviewed partic-
ipants from four companies and noted concerns that the tools at the time did
not scale to the large projects that would merit the use of MDE. Several ways
in which MDE practice could learn from widely-used programming environ-
ments to handle large models better were pointed out by Kolovos et al (2008),
with a strong focus on the need for modularity in modelling languages to
improve scalability and simplify collaboration. Three categories of scalability
issues in MDE were identified by Barmpis and Kolovos (2014a):

– Model persistence: storage of large models; ability to access and update
such models with low memory footprint and fast execution time.
The simplest solution (using one file per model) has not scaled well as
models increase in size. One alternative approach is fragmenting the models
into multiple smaller files. Another option is writing a model persistence

layer that stores the model in a database of a certain type (relational,
graph-oriented and so on).

– Model querying and transformation: ability to perform intensive and com-
plex queries and transformations on large models with fast execution time.
Efficient queries and transformations are closely related to the type of
persistence used for the models. Fragmented models can be backed with
an incrementally maintained model index (such as Hawk1) that can an-
swer queries faster than going through the fragments. For database-backed
models, the query must be transformed to an efficient use of the data-
base, and the database must provide a high level of performance. This is
the approach taken by Mogwaï2, a query engine for models stored in the
NeoEMF3 layer that transforms OCL queries into Gremlin4 API calls.

– Collaborative work: multiple developers being able to query, modify and
version control large-scale shared models in a non-invasive manner.
With fragmented models, existing version control systems can be reused.
Database-backed systems need to implement their own version control ap-
proaches: this is the approach taken in model repositories such as CDO5.

1 https://github.com/mondo-project/mondo-hawk
2 https://github.com/atlanmod/Mogwai
3 https://github.com/atlanmod/NeoEMF
4 http://tinkerpop.apache.org/gremlin.html
5 http://wiki.eclipse.org/CDO

Stress-Testing Remote Model Querying APIs 3

Regardless of how models are stored, high-performance querying is cru-
cial when dealing with very large models. For instance, within the building
industry it is common to use building information models (BIM) containing
millions of elements and covering the logical and physical structure of entire
buildings. These models need to be queried e.g. to compute quantity takeoffs

which estimate the materials needed to complete construction (Bagnato et al,
2014). Reverse engineering source code into models (Bruneliére et al, 2014)
also produces very large models, and these need to be queried to find de-
sign flaws or elements to be modernized, among other things. Complex graph
pattern matching may further complicate things, as when validating railway
models (Szárnyas et al, 2017).

Sharing models by sending files manually is inefficient (in effort and trans-
mission time) and prone to mistakes (e.g. having someone use an outdated ver-
sion). Instead, it is considered better to use model repositories such as CDO or
file repositories such as Git, and to expose the models for querying/modifica-
tion through networked services. As an example, in previous work (Garcia-
Dominguez et al, 2016a), we demonstrated how Hawk enabled Constella-
tion model repositories to offer dashboards with model metrics and advanced
searching from a web interface. Within the MONDO project, one of the tools
for collaborative modelling implemented an “online” approach where multiple
concurrent users accessed the model over a web interface (Rath and Varró,
2016).

Exposing models through networked services introduces new layers of com-
plexity, such as the design and implementation of the service, or the interac-
tions between the layers as more and more clients try to access a model at the
same time. Existing studies have not analysed these new factors, considering
only local queries within the same machine or the “best case” scenario with
only one remote user. It is important to stress-test these networked services,
as solutions may exhibit various issues in high-load situations.

In this empirical study, we will evaluate the impact of several design de-
cisions in the remote model querying services offered by multiple existing so-
lutions (CDO, Hawk and Mogwai). While these tools have different goals in
mind, they all offer this same functionality, and they all had to choose a partic-
ular network protocol, messaging style, caching/indexing style, query language
and persistence mechanism. The results of this study aim to inform develop-
ers and end users of future remote model querying services on the tradeoffs
between these choices.

This paper is an extended version of our prior conference work (Garcia-
Dominguez et al, 2016b), which discussed a smaller study with fewer tools,
queries and research questions. The new contributions of this paper are:

– An updated and extended discussion of the state of the art, with recent
works on prefetching, partial loading, and non-relational model stores.

– A largely expanded experimental design, testing four additional tool config-
urations (Hawk with Neo4j/EPL, Hawk with OrientDB/EOL, Hawk with
OrientDB/EPL and Mogwaï), new and revised queries for the GraBaTs’09

4 A. Garcia-Dominguez et al.

case study, and a new case study based on the queries from the Train
Benchmark by Szárnyas et al (2017). The previous research question on
the impact of the internals of the tools (RQ3) has been refined into multi-
ple research questions.

– A revamped and expanded results section, with a stronger focus on statis-
tical tests in order to manage the much larger volume of data in this work.
Only the results from RQ2 have remained intact, since the APIs for CDO
and Hawk have not changed.

– A revised set of conclusions, taking into account the more nuanced results
produced by the Train Benchmark case study.

The rest of this work is structured as follows: Section 2 provides a discussion
on existing work on model stores, Section 3 introduces the research questions
and the design of the experiment, Section 4 discusses the obtained results and
Section 5 presents the conclusions and future lines of work.

2 Background and Related Work

Persisting and managing large models has been extensively investigated over
the past decade. This section presents the main state-of-the-art tools and tech-
nologies, with a focus on the tools used in this empirical study.

2.1 File-Based Model Persistence

One of the most common formats for storing models are files containing a
serialized model representation. Tools like the Eclipse Modeling Framework
(EMF) (Steinberg et al, 2008), ModelCVS (Kramler et al, 2006), Modelio6 and
MagicDraw7 all use XML-based model serialisation. StarUML8 stores models
in JSON. To improve performance, many tools offer binary formats as well:
this is the case for EMF, for instance.

Files are easy to deploy and use, and many tools (e.g. EMF) default to using
a one-file-per-model approach. However, storing one model per file impacts
scalability negatively as shown in (Barmpis and Kolovos, 2014a; Gómez et al,
2015). In this case, even a simple query or a small change requires loading the
entire model in memory at once: this is impractical for large models. Recent
work by Wei et al (2016) demonstrated a specialisation of the EMF XMI
parser which can load only the subset required by the query to be run: while
this reduced loading times and memory usage, changes in the partially loaded
models cannot be saved back without losing information.

These limitations in scalability suggest that it could be beneficial to break
up large models into smaller units (or “fragments”) to allow for on-demand par-
tial loading. Modelio does this by default in recent versions: for instance, each

6 https://www.modelio.org/
7 http://www.nomagic.com/products/magicdraw.html#Collaboration
8 http://staruml.io/

Stress-Testing Remote Model Querying APIs 5

UML class is stored in a separate file, and links between files are resolved
through a purpose-built index. For EMF-based models, the EMF-Splitter
framework by Garmendia et al (2014) can take a metamodel annotated with
modularity information and produce editors that produce fragmented XMI-
based models natively. Nevertheless, in a worst-case scenario, certain types of
queries (e.g. a query that looked for all instances of a type) could still require
loading the full set of fragments.

2.2 Database-Backed Model Persistence

In light of the scalability limitations resulting from storing models as text files,
various database-backed model persistence formats have been proposed. Data-
base persistence allows for partial loading of models as only accessed elements
have to be loaded in each case. Furthermore, such technologies can leverage
database indices and caches for improving element lookup performance as well
as query execution time.

Most of these database-backed solutions store each object as its own data-
base entity (e.g. row, document or graph node). This is the case for Teneo/Hiber-
nate9, one of the first Object-Relational Mappings (ORMs) for EMF models.
More recent systems which store models in databases rely on NoSQL tech-
nologies to take advantage of their flexible schema-free storage and/or quick
reference navigation, such as MongoEMF10 (based on the MongoDB docu-
ment store) or NeoEMF (Gómez et al, 2015). NeoEMF in particular imple-
ments a multi-backend solution: NeoEMF/Graph uses graph-based databases
(Neo4j11 in particular), NeoEMF/Map uses file-backed maps (as implemented
by MapDB12), and NeoEMF/HBase uses HBase13 distributed stores.

However, there are also approaches that operate at the fragment level: this
is the case for EMF-Fragments by Scheidgen (2013). In this tool, the model
is broken up along the EMF containment references that have been marked
to be “fragmenting”, and these fragments are addressable through a key-value
store. The EMF-Fragments tool supports both MongoDB and HBase. Users
can choose how to represent each inter-object reference in the metamodel:
these can be kept as part of the source object (as usual in EMF XMI-based
persistence) or separately from it (as usual in database-backed persistence).

For most of these database-backed solutions, querying is an orthogonal
concern: existing query languages can be used, but the languages will not be
able to leverage the underlying data structures to optimise certain common
cases (e.g. OCL’s “Type.allInstances()”) or avoid constructing intermediate
objects in memory. Mogwaï is a model query framework that tackles this issue
for models stored in NeoEMF/Graph, translating OCL queries to Tinkerpop

9 http://wiki.eclipse.org/Teneo/Hibernate
10 https://github.com/BryanHunt/mongo-emf/wiki
11 https://neo4j.com/
12 http://www.mapdb.org/
13 http://hbase.apache.org/

6 A. Garcia-Dominguez et al.

Gremlin through ATL and reporting reductions in execution up to a factor of
20 (Daniel et al, 2016).

2.3 Model Repositories

When collaborative modeling is involved, simply storing models in a scalable
form such as inside a database stops being sufficient; in this case issues such
as collaborative access and versioning need to also be considered. Examples
of model repository tools are Morsa (Pagán et al, 2013), ModelCVS14, Con-
nected Data Objects (CDO), EMFStore (Koegel and Helming, 2010), Modelio,
MagicDraw and MetaEdit+15. Model repositories allow multiple developers to
manage models stored in a centralised repository by ensuring that models re-
main in a consistent state, while persisting them in a scalable form, such as in
a database.

CDO in particular is one of the most mature solutions, having been de-
veloped since 2009 as an Eclipse project and being currently maintained by
Obeo16. It implements a pluggable storage architecture that enables it to use
various solutions such as relational databases (H2, MySQL) or document-
oriented databases (MongoDB), among others. CDO includes Net4j, a mes-
saging library that provides bidirectional communication over TCP, HTTP
and in-memory connections, and uses it to provide an API that exposes re-
mote models as EMF resources. In addition to storing models, CDO includes a
CDOQuery API that makes it possible to run queries remotely on the server,
reducing the necessary bandwidth.

2.4 Heterogeneous Model Indexing

An alternative to using model repositories for storing models used in a collab-
orative environment is to store them as file-based models in a classical version
control system, ideally in a fragmented form. As discussed by Barmpis et al
(2015), this approach leverages the benefits of widely-used file-based version
control systems such as SVN and Git, but retains the issues file-based models
face (Section 2.1). To address this issue a model indexer can be introduced
that monitors the models and mirrors them in a scalable model index. The
model index is synchronised with the latest version of the models in the repos-
itory and can be used to perform efficient queries on them, without having to
check them out locally or load them into memory.

One example of such a technology is Hawk17. Hawk can maintain a graph
database which mirrors the contents of the models stored in one or more
version control repositories and perform very efficient queries on them. Hawk

14 http://www.modelcvs.org/versioning/index.html
15 http://www.metacase.com/
16 As stated in http://projects.eclipse.org/projects/modeling.emf.cdo
17 https://github.com/mondo-project/mondo-hawk

Stress-Testing Remote Model Querying APIs 7

can be used as a Java library, as a set of plugins for the Eclipse IDE, or as a
network service through an Apache Thrift18-based API.

Hawk can be extended to add support for various file formats, storage back-
ends and query languages. As part of the integration efforts with the Softeam
Modelio and Constellation products (Garcia-Dominguez et al, 2016a), two new
components were added: a model parser for Modelio EXML/RAMC files, and
a storage backend based on OrientDB. OrientDB is an open source multi-
paradigm database engine which can operate as a key-value store, as a docu-
ment database or as a graph database. While studies from 2014 showed that
OrientDB had lower performance than Neo4j for model querying (Barmpis
and Kolovos, 2014a), its relative performance with regards to Neo4j has im-
proved since then, and its more permissive license makes it more appealing to
industrial users (ASL2.0 instead of Neo4j’s GPLv3).

3 Experiment Design

As mentioned in the introduction, once we have scalable modelling and scalable
querying, the next problem to solve is how to share those huge models across
the organisation. Exposing them through a model querying service over the
network is convenient, as they can provide answers without waiting for the
model itself to be transferred. However, the design and implementation of the
service is not trivial, and the underlying implementation may not react well
to serving multiple concurrent clients.

This section presents the design of an empirical study that evaluates the
impact of several factors in the performance of the remote model querying
services of multiple tools: a model repository (CDO), several configurations of
a model index (Hawk with Neo4j/OrientDB backends and EOL/EPL queries),
and a database-backed model storage layer (NeoEMF). By studying the per-
formance of these queries, we will be evaluating the responsiveness of the un-
derlying tools with increasing levels of demand and how their different layers
interact with each other.

3.1 Research Questions

RQ1. What is the impact of the network protocol on remote query times and

throughputs?

In order to connect to a remote server, two of the most popular options
are using raw TCP connections (for the sake of performance and flexibility)
or sending HTTP messages (for compatibility with web browsers and inter-
operability with proxies and firewalls). Both Hawk and CDO support TCP
and HTTP. Since NeoEMF did not officially have a remote querying API at

18 http://thrift.apache.org/

8 A. Garcia-Dominguez et al.

the time of writing this paper, it was extended by the authors with TCP and
HTTP-based APIs implemented in the same way as Hawk’s.

Properly configured HTTP servers and clients can reuse the underlying
TCP connections with HTTP 1.1 pipelining and avoid repeated handshakes,
but the additional overhead imposed by the HTTP fields may still impact the
raw performance of the tool.

RQ2. What is the impact of the design of the remote query API on remote query

times and throughputs?

Application protocols for network-based services can be stateful or state-
less. Stateful protocols require that the server keeps track of part of the state
of the client, while stateless protocols do not have this requirement. In addi-
tion, the protocol may be used mostly for transporting opaque blocks of bytes
between server and client, or it might have a well-defined set of operations and
messages.

While a stateful protocol may be able to take advantage of the shared
state between the client and server, a stateless protocol is generally simpler to
implement and use. Service-oriented protocols need to also take into account
the granularity of each operation: “fine” operations that do only one thing may
be easier to recombine, but they will require more invocations than “coarse”
operations that perform a task from start to finish. One example of a fine
operation could be fetching a single model element by ID. A coarse operation
would be running an entire query in the server and retrieving the results.

CDO implements a stateful protocol on top of the Net4j library, which
essentially consists of sending and receiving buffers of bytes across the network.
On the other hand, Hawk and our extended version of NeoEMF implement a
stateless service-oriented API on top of the Apache Thrift library, exposing a
set of specific operations (e.g. “query”, “send object” or “register metamodel”).
The Hawk API supports both fine- and coarse-grained operations (fetching
single elements or running queries), whereas the Mogwai API only supports
running entire queries. Invoking a query for Hawk and Mogwai only requires
one pair of HTTP request/response messages.

While the stateful CDO clients and servers may cooperate better with each
other, the simpler and coarser APIs in Hawk and Mogwaï may reduce the total
network roundtrip for a query by exchanging fewer messages.

RQ3. What is the impact of the internal caching and indexing mechanisms on

remote query times and throughputs?

Database-backed systems generally implement various caching strategies
to keep the most frequently accessed data in memory, away from slow disk
I/O. At the very least, the DBMS itself will generally keep its own cache, but
the system might use additional memory to cache especially important subsets
or to keep them in a form closer to how it is consumed.

Another common strategy is to prepare indices in advance, speeding up
particular types of queries. DBMSs already provide indices for common con-
cepts such as primary keys and unique values, but these systems may add

Stress-Testing Remote Model Querying APIs 9

their own application-specific indices that precompute parts of the queries to
be run.

RQ4. What is the impact of the mapping from the queries to the backend on

remote query times?

Remote query APIs are usually bound to certain model querying lan-
guages: CDO embeds an OCL interpreter, Hawk has the Epsilon languages
and NeoEMF translates a subset of OCL to Gremlin through Mogwaï. Once
the query is written, it has to be run by a query engine against the chosen
backend.

The interactions between the query language, the engine and the underly-
ing backend need to be analysed. Declarative query languages delegate more
work into the query engine, whereas imperative query languages rely on the
user to fine-tune accesses. Query engines have to map the query into an ef-
ficient use of the backend. In some cases, there may be useful features in a
backend that are not made available to users, whether due to a limitation in
the mapping of the query engine, or to the lack of a matching concept in the
query.

RQ5. Do graph-based tools scale better against demand than tools that store mod-

els in relational databases?

Various authors (including the authors of this paper) have previously re-
ported considerable performance gains when running single queries on graph-
based solutions when compared to solutions backed by databases or flat files.
It may seem that graph databases are always the better choice, but they
have been around for less time than relational approaches and usually require
more fine tuning to achieve the ideal performance. This question will focus on
whether this advantage is common across graph-based tools and if it extends
to situations with very high levels of demand.

3.2 Experiment Setup

In order to provide answers for the above research questions, a networked en-
vironment was set up to emulate increasing numbers of clients interacting with
a model repository (CDO 4.4.1.v20150914-0747), a model index (Hawk 1.0.0.
201609151838) or a graph-based model persistence layer (NeoEMF on com-
mit 375e077 combined with Mogwaï on commit 543fec9) and collect query
response times. The environment is outlined in Figure 1, and consists of the
following:

– One “Controller” machine that supervises the other machines through
SSH connections managed with the Fabric Python library19. It is respon-
sible for starting and stopping the client and server processes, monitoring
their execution, and collecting the measured values. It does not run any
queries itself, so it has no impact on the obtained results.

19 http://www.fabfile.org/

10 A. Garcia-Dominguez et al.

Fig. 1: Network diagram for the experimental setup

– Two “Client” machines that invoke the queries on the server, fetch the
results and measure query response times. The two client machines were
running Ubuntu Linux 14.04.3, Linux 3.19.0-47-generic and Oracle Java
8u60 on an Intel Core i5 650 CPU, 8GiB of RAM and a 500GB SATA3
hard disk.
The client machines had three client programs installed: one for CDO, one
for Hawk and one for Mogwaï/NeoEMF. Only one of these programs ran
at a time. Each of these programs received the address of the server to
connect to, the size of the Java fixed thread pool to be used, the number
of queries to be distributed across these threads and the query to be run.
The clients sent their queries to the server and simply waited to receive
the response from the server: they did not fetch model elements directly20.

– One “Server” machine that hosts the CDO model repository, the Hawk
model index and the NeoEMF model store, and provides TCP and HTTP
ports exposing the standard CDO and Hawk APIs for remote querying and
a small proof of concept API for NeoEMF/Mogwaï. The server machine
had the same configuration as the client machines. The server waits to
receive a query and runs it locally through an embedded database, and
then replies back with the identifiers of the matching model elements.
The server machine also had three server programs installed: one for CDO,
one for Hawk and one for Mogwaï/NeoEMF. Again, only one of these pro-
grams ran at a time. All server programs were Eclipse products based on
Eclipse Mars and used the same embedded HTTP server (Eclipse Jetty

20 Early experiments where the Hawk clients did access the models over the network to
run the queries showed unsatisfactory performance, with query times an order of magnitude
slower than sending the query to be run by the server. This led us to discard this alternative.

Stress-Testing Remote Model Querying APIs 11

9.2.13). All systems were configured to use up to 4096MB of memory
(-Xmx4096m -Xms2048m)21.
In particular, the CDO server was based on the standard CDO server
product, with the addition of the experimental HTTP Net4j connector. No
other changes were made to the CDO configuration. The CDO DB Store

storage component was used in combination with the default H2 database
adapter. DB Store was the most mature and feature-complete option at
the time of writing22.

– One 100Mbps network switch that connected all machines together in
an isolated local area network.

As the study was intended to measure query performance results with
increasing numbers of concurrent users, the client programs were designed to
first warm up the servers into a steady state. Query time was measured as the
time required to connect to the server, run the query on the server and retrieve
the model element identifiers of the results over the network. Queries would
be run 1000 times in all configurations, to reduce the impact of variations due
to external factors (CPU and I/O scheduling, Java just-in-time recompilation,
disk caches, virtual memory and so on).

Several workloads were defined. The lightest workload used only 1 client
machine with 1 thread sending 1000 queries to the server in sequence. The
other workloads used 2 client machines generating load at the same time us-
ing a producer/consumer design where the producer thread would queue 500
query invocations, and t ∈ {2, 4, 8, 16, 32} consumer threads (client threads)
would execute them as quickly as possible. For instance, with 2 client threads
in a machine, each thread would be expected to execute approximately 250 in-
vocations: the exact number might slightly vary due to differences in execution
time across invocations. These workloads could therefore simulate between 1
(1 machine with 1 client thread) and 64 (2 machines at the same time, with
32 client threads each) concurrent clients.

3.3 Queries Under Study

After defining the research questions and preparing the environment, the next
step was to populate CDO, Hawk and Mogwaï/NeoEMF with the contents to
be queried, and to write equivalent queries in their supported query languages.
Two use cases were considered, each with their own sets of queries: one related
to reverse engineering existing Java code, and one related to pattern matching
in railway models.

21 The Neo4j performance guide suggests this amount for a system with up to 100M nodes
and 8GiB RAM, to allow the OS to keep the graph database in its disk cache.
22 According to the online help in the June 2016 release: http://download.eclipse.org/
modeling/emf/cdo/drops/R20160607-1209/help/org.eclipse.emf.cdo.doc/html/

reference/StoreFeatures.html.

12 A. Garcia-Dominguez et al.

Fig. 2: Relevant excerpt of the JDTAST metamodel for the GraBaTs’09
queries.

3.3.1 Singletons in Java models: GraBaTs’2009 queries

The first use case, SharenGo Java Legacy Reverse-Engineering23, was based
on MoDisco and was originally presented at the GraBaTs 2009 tool con-
test (GraBaTs, 2009). It has been widely used for research in scalable mod-
elling (Barmpis and Kolovos, 2014a; Pagán et al, 2013; Benelallam et al, 2014;
Carlos et al, 2015), as it provides a set of models reverse-engineered from in-
creasingly large open source Java codebases. The largest codebase in the case
study was selected, covering all the org.eclipse.jdt projects and produc-
ing over 4.9 million model elements. CDO required 1.4GB to store the model,
Hawk required 2.0GB with Neo4j and 3.7GB with OrientDB, and NeoEMF
required 6.0GB.

These model elements conformed to the Java Development Tools AST (JD-
TAST) metamodel. Some of the types within the JDTAST metamodel in-
clude the TypeDeclarations that represent Java classes and interfaces, the
MethodDeclarations that represent Java methods, and the Modifiers
that represent Java modifiers on the methods (such as static or public).
The relevant excerpt of the metamodel is shown in Figure 2.

Based on these types, task 1 in the GraBaTs 2009 contest required defining
a query (from now on referred to as the GraBaTs query) that would locate
all possible applications of the Singleton design pattern in Java (Sottet and
Jouault, 2009). In other words, it would have to find all the TypeDeclara-

tions that had at least one MethodDeclaration with public and static

modifiers that returned an instance of the same TypeDeclaration.

To evaluate CDO, the GraBaTs query was written in OCL as shown in List-
ing 1. The query (named OQ after “OCL query”) filters the TypeDeclara-

tions by iterating through their MethodDeclarations and their respective
Modifiers.

23 http://www.eclipse.org/gmt/modisco/useCases/JavaLegacyRE/

Stress-Testing Remote Model Querying APIs 13

Listing 1: GraBaTs query written in OCL (OQ) for evaluating CDO.

DOM::TypeDeclaration.allInstances()→select(td |
td.bodyDeclarations→selectByKind(DOM::MethodDeclaration)
→exists(md : DOM::MethodDeclaration |

md.modifiers→selectByKind(DOM::Modifier)
→exists(mod : DOM::Modifier | mod.public)

and md.modifiers→selectByKind(DOM::Modifier)
→exists(mod : DOM::Modifier | mod._static)

and md.returnType.oclIsTypeOf(DOM::SimpleType)
and md.returnType.oclAsType(DOM::SimpleType).name.fullyQualifiedName

= td.name.fullyQualifiedName))

Listing 2: GraBaTs query written in EOL (HQ1) for evaluating Hawk.

return TypeDeclaration.all.select(td|td.bodyDeclarations.exists(md:MethodDeclaration|
md.returnType.isTypeOf(SimpleType)
and md.returnType.name.fullyQualifiedName = td.name.fullyQualifiedName
and md.modifiers.exists(mod:Modifier | mod.public = true)
and md.modifiers.exists(mod:Modifier | mod.static = true)

));

Listing 3: GraBaTs query written in EOL (HQ2) using derived attributes on
the MethodDeclarations for evaluating Hawk, without indexed lookups.

return TypeDeclaration.all.select(td |
td.bodyDeclarations.exists(md:MethodDeclaration |

md.isPublic = true and md.isStatic = true and md.isSameReturnType = true));

Listing 4: GraBaTs query written in EOL (HQ3) using derived attributes on
the MethodDeclarations for evaluating Hawk, with indexed lookups.

return MethodDeclaration.all.select(md |
md.isPublic = true and md.isStatic = true and md.isSameReturnType = true

).collect(td | td.eContainer).asSet;

To evaluate Hawk, we used the three EOL implementations of the GraBaTs
query of our previous work (Barmpis and Kolovos, 2014b). The first version
of the query (“Hawk query 1” or HQ1, shown in Listing 2) is a translation of
OQ to EOL, and follows the same approach.

The second version (HQ2), shown in Listing 3, makes use of thee derived
attributes on MethodDeclarations: isStatic (the method has a static

modifier), isPublic (the method has a public modifier), and isSameReturn-

Type (the method returns an instance of its TypeDeclaration). A detailed
discussion about how derived attributes are declared in Hawk and how they

14 A. Garcia-Dominguez et al.

Listing 5: GraBaTs query written in EOL (HQ4) using derived attributes on
the TypeDeclarations for evaluating Hawk.

return TypeDeclaration.all.select(td|td.isSingleton = true);

Listing 6: GraBaTs query written in OCL for Mogwaï (MQ)

import DOM : ’platform:/resource/jdtast.neoemf/model/JDTAST.ecore’

package DOM
context TypeDeclaration

def: singletons : Set(TypeDeclaration) =
TypeDeclaration.allInstances()→select(td |

td.bodyDeclarations→exists(md | md.oclIsTypeOf(MethodDeclaration)
and md.modifiers→exists(mod |

mod.oclIsKindOf(Modifier) and mod.oclAsType(Modifier).public = true)
and md.modifiers→exists(mod |

mod.oclIsKindOf(Modifier) and mod.oclAsType(Modifier)._static = true)
and md.oclAsType(MethodDeclaration).returnType.oclIsTypeOf(SimpleType)
and md.oclAsType(MethodDeclaration).returnType.oclAsType(SimpleType)

.name.fullyQualifiedName = td.name.fullyQualifiedName))
endpackage

are incrementally re-computed upon model changes is available in our previous
works (Barmpis et al, 2015; Barmpis and Kolovos, 2014b).

The third version (HQ3), shown in Listing 4, uses the same derived at-
tributes but starts off from the MethodDeclarations so Hawk can take
advantage of the fact that derived attributes can also be indexed, replacing
iterations by lookups and noticeably speeding up execution.

The fourth version (HQ4), shown in Listing 5, assumed instead that Hawk
extended TypeDeclarations with the isSingleton derived attribute, setting
it to true when the TypeDeclaration has a static and public Method-

Declaration returning an instance of itself. This derived attribute eliminates
one more level of iteration, so the query only goes through the TypeDecla-

rations.
The query for Mogwaï (MQ) is shown in Listing 6. Ideally we would have

used the same OCL query in CDO and in Mogwaï, but unfortunately CDO
OCLQuery only accepts raw expressions and Mogwaï only accepts constraints
within packages and contexts. Additionally, there are limitations in Mogwaï’s
implementation (particularly, the ATL transformation from OCL to the Grem-
lin API) that require making small changes in the queries. For instance, the
OCL translator in Mogwaï does not support the Eclipse OCL-specific “select-
ByKind” operation, and additional type conversions are needed.

The GraBaTs query has been translated to one OCL query for CDO (OQ),
1 OCL query for Mogwaï (MQ) and four possible EOL queries for Hawk (HQ1
to HQ4). It must be noted that since CDO and Mogwaï/NeoEMF do not
support derived attributes like Hawk, it was not possible to rewrite OQ or

Stress-Testing Remote Model Querying APIs 15

Segment

length : EInt

TrackElement

Switch

currentPosition : Position

Route

SwitchPosition

position : Position

Sensor

<<enumeration>>

Signal

FAILURE

STOP

GO

<<enumeration>>

Position

FAILURE

LEFT

RIGHT

STRAIGHT

Semaphore

signal : Signal

RailwayContainer

sensor0..1

positions0..*

follows0..*

definedBy

2..*

switch1

route1

elements0..*

connectsTo0..*

entry1

exit1

semaphores
0..*

routes
0..*

Fig. 3: Containment hierarchy and references of the metamodel of the Train
Benchmark (Szárnyas et al, 2017).

MQ in the same way as HQ1. Since the same query would be repeatedly
run in the experiments, the authors inspected the code of CDO, Mogwaï and
Hawk to ensure that neither tool cached the results of the queries themselves:
this was verified by re-running the queries while adding unique trivially true
conditions, and comparing execution times.

3.3.2 Railway model validation: Train Benchmark queries

To improve the external validity of the answers for the research questions in
Section 3.1, a second case study with a wider assortment of queries was needed.
For this purpose, it was decided to use some of the queries and models from
the Train Benchmark by Szárnyas et al (2017).

The Train Benchmark (TB) was originally developed within the MONDO
EU FP7 project on scalability in model-driven engineering, in order to compare
the querying performance of various technical solutions with regards to model
validation. The original benchmark divided execution into four stages (read,
check, edit and re-check), and tested two scenarios: a batch scenario with only
read and check, and an incremental scenario with all four stages. Since the
focus of the present study is on scalability to user demand rather than reacting
to changes, only the batch scenario will be adopted.

The queries on the TB operate on domain-specific models of railway sys-
tems: the containment hierarchy and references of the underlying metamodel
are shown on Figure 3. The RailwayContainer acts as the root of the model,
which contains Routes and the Semaphores between them. A Route is
formed of two or more Sensors which monitor Switches and Segments.
The Switches have a particular SwitchPosition for each Route.

16 A. Garcia-Dominguez et al.

Based on this metamodel, the TB includes automatic model generators that
can produce synthetic models of arbitrary size by producing a random number
of small fragments and reconnecting them in a random manner. After this, a
small portion of the elements (<1%) is modified to produce the validation
errors that will be detected by the later queries. The benchmark includes
generators for both the repair case (the edit stage corrects validation errors)
and the inject case (edit introduces validation errors).

For the present study, the repair generator was used. Multiple models were
generated during initial experiments (with between 1,418 and 3,355,152 ele-
ments) by varying the size parameter of the generator between 1 and 2048.
However, some of the queries were too slow on CDO and Mogwaï for stress
testing, and a medium-sized model had to be selected (size = 32, with 49 334
elements). In general, the simplicity of the TB metamodel ensures that queries
access larger portions of the model than the GraBaTs queries in Section 3.3.1,
and some of the queries perform more complex pattern matching as well.

The present study used the OCL versions of the TB queries for CDO and
Mogwaï, with some adjustments in the case of Mogwaï. For Hawk, the OCL
queries were translated to the Epsilon Object Language (EOL), optimized for
Hawk features and then further translated to the Epsilon Pattern Language
(EPL). EPL (Kolovos et al, 2016) is a specialisation of EOL, providing a more
declarative and readable syntax for graph pattern matching in models. The
queries look for violations of various well-formedness constraints:

– ConnectedSegments (CS): each Sensor must have 5 or fewer Segments
connected to them. The queries in Figure 4 find Sensors that are moni-
toring a sequence of 6 or more Segments.
The Mogwaï version is similar to the original OCL one, but it can only
return the sixth TrackElement that produces the violation. The orig-
inal OCL query packed all the participants in each match into a list of
tuples, but Mogwaï queries can only return a flat list of individual model
elements. Matching a sequence of six consecutive elements is rather awk-
ward, requiring many nested repetitions of select and collect. EOL has a
similar readability issue, but EPL has a much cleaner syntax for this sort
of graph matching problem.

– PosLength (PL): Segments must have positive length. The queries on
Figure 5 find Segments that have zero or negative length.
In this case, Hawk can be told to index the “length” attribute of Segment

in advance to jump directly to the relevant elements.
– RouteSensor (RS): Sensors associated to a Switch that belongs to a

Route must also be associated with the same Route. The queries on
Figure 6 find Sensors that are connected to a Switch, but the Sensor

and the Switch are not connected to the same Route.
The EOL and EPL versions filter the Sensors by taking advantage of
a derived attribute, “nMonitoredSegments”, defined through the EOL ex-
pression “self.monitors.size” (where “self” takes each of the Sensors as a

Stress-Testing Remote Model Querying APIs 17

railway::Sensor.allInstances()→collect(
sensor | sensor.monitors→select(oclIsKindOf(railway::Segment))→
collect(segment1 | segment1.connectsTo→select(oclIsKindOf(railway::Segment))→
select(segment2 | segment2.monitoredBy→includes(sensor))→
collect(segment2 | segment2.connectsTo→select(oclIsKindOf(railway::Segment))→
select(segment3 | segment3.monitoredBy→includes(sensor))→
collect(segment3 | segment3.connectsTo→select(oclIsKindOf(railway::Segment))→
select(segment4 | segment4.monitoredBy→includes(sensor))→
collect(segment4 | segment4.connectsTo→select(oclIsKindOf(railway::Segment))→
select(segment5 | segment5.monitoredBy→includes(sensor))→
collect(segment5 | segment5.connectsTo→select(oclIsKindOf(railway::Segment))→
select(segment6 | segment6.monitoredBy→includes(sensor))→collect(
segment6 | Tuple{sensor = sensor, segment1 = segment1,
segment2 = segment2, segment3 = segment3, segment4 = segment4,
segment5 = segment5, segment6 = segment6})))))))

(a) Original OCL

import railway : ’platform:/resource/railway.neoemf/model/railway.ecore’

package railway
context Sensor
def: connectedSegments : Bag(TrackElement) = Sensor.allInstances()→collect(sensor |
sensor.monitors→select(oclIsTypeOf(Segment))→collect(segment1 |
segment1.connectsTo→select(oclIsTypeOf(Segment))→select(segment2 |
segment2.monitoredBy→includes(sensor))→collect(segment2 |
segment2.connectsTo→select(oclIsTypeOf(Segment))→select(segment3 |
segment3.monitoredBy→includes(sensor))→collect(segment3 |
segment3.connectsTo→select(oclIsTypeOf(Segment))→select(segment4 |
segment4.monitoredBy→includes(sensor))→collect(segment4 |
segment4.connectsTo→select(oclIsTypeOf(Segment))→select(segment5 |
segment5.monitoredBy→includes(sensor))→collect(segment5 |
segment5.connectsTo→select(oclIsTypeOf(Segment))→select(segment6 |
segment6.monitoredBy→includes(sensor))))))))

endpackage

(b) OCL query for Mogwaï

return Sensor.all.select(sensor | sensor.nMonitoredSegments > 5).collect(
sensor | sensor.monitors.
collect(segment1: Segment | segment1.connectsTo.
select(segment2: Segment | segment2.monitoredBy.includes(sensor)).
collect(segment2 | segment2.connectsTo.
select(segment3: Segment | segment3.monitoredBy.includes(sensor)).
collect(segment3 | segment3.connectsTo.
select(segment4: Segment | segment4.monitoredBy.includes(sensor)).
collect(segment4 | segment4.connectsTo.
select(segment5: Segment | segment5.monitoredBy.includes(sensor)).
collect(segment5 | segment5.connectsTo.
select(segment6: Segment | segment6.monitoredBy.includes(sensor)).collect(
segment6 | Map{"sensor" = sensor, "segment1" = segment1,
"segment2" = segment2, "segment3" = segment3, "segment4" = segment4,
"segment5" = segment5, "segment6" = segment6}

))))))).flatten.asSequence;

(c) EOL

pattern ConnectedSegments
sensor : Sensor
in: Sensor.all.select(s|s.nMonitoredSegments > 5),
segment1: Segment from: sensor.monitors,
segment2: Segment from: segment1.connectsTo.select(s|s.monitoredBy.includes(sensor)),
segment3: Segment from: segment2.connectsTo.select(s|s.monitoredBy.includes(sensor)),
segment4: Segment from: segment3.connectsTo.select(s|s.monitoredBy.includes(sensor)),
segment5: Segment from: segment4.connectsTo.select(s|s.monitoredBy.includes(sensor)),
segment6: Segment from: segment5.connectsTo.select(s|s.monitoredBy.includes(sensor)) {}

(d) EPL

Fig. 4: Train Benchmark ConnectedSegments query.

18 A. Garcia-Dominguez et al.

railway::Segment.allInstances()→select(segment | segment.length <= 0)
→collect(segment | Tuple{segment = segment})

(a) Original OCL

import railway : ’platform:/resource/railway.neoemf/model/railway.ecore’

package railway
context Segment
def: negLength : Set(Segment) =
Segment.allInstances()→select(segment | segment.length <= 0)

endpackage

(b) OCL for Mogwaï

return Segment.all.select(segment |
segment.length <= 0

);

(c) EOL, indexed “length”

pattern PosLength
segment : Segment

in: Segment.all.select(s|s.length <= 0) {}

(d) EPL, indexed “length”

Fig. 5: Train Benchmark PosLength query.

value). This reduces the problem to a lookup of the relevant Sensors and
a quick pattern matching to find the offending sixth Segment.

– SemaphoreNeighbor (SN): the exit Semaphore of a Route must be the
entry Semaphore of the Route that it connects to. The queries on Fig-
ure 7 find Routes that are reachable from another Route but do not have
their Semaphores as entry point.
There is an important difference between the original OCL and the EOL/EPL
versions: Hawk can traverse a reference “x” in reverse by using “revRef-
Nav_x”, since Neo4j and OrientDB edges are navigable in both directions.
This allows the query to be written more without the inefficient nested
“Route.allInstances” that was required by the OCL version.

– SwitchMonitored (SM): every Switch must be monitored by a Sensor.
The queries on Figure 8 find Switches that are not being monitored.
The EOL/EPL variants use a derived attribute “isMonitored” on every
Switch, defined as “not self.monitoredBy.isEmpty()”.

– SwitchSet (SS): the entry Semaphore of a Route can only show “GO” if
all Switches along the Route are in the same position. The queries on
Figure 9 find Switches that do not have the right position.
In this case, there is only a minor change due to the fact that in Hawk,
enumerated values are stored as simple strings.

Stress-Testing Remote Model Querying APIs 19

railway::Route.allInstances()→collect(
route | route.follows→collect(swP | swP.target→collect(

sw | sw.monitoredBy→select(sensor | route.gathers→excludes(sensor))→collect(
sensor | Tuple{route = route, sensor = sensor, swP = swP, sw = sw}

))))

(a) Original OCL

import railway : ’platform:/resource/railway.neoemf/model/railway.ecore’

package railway
context Route
def: routeSensor : Bag(Sensor) = Route.allInstances()→collect(route |
route.follows→collect(swP | swP.target→collect(

sw | sw.monitoredBy→select(sensor | route.gathers→excludes(sensor))
)))

endpackage

(b) OCL for Mogwaï

return Route.all.collect(
route | route.follows.collect(swP | swP.target.collect(

sw | sw.monitoredBy.select(sensor | route.gathers.excludes(sensor)).collect(
sensor | Map{"route" = route, "sensor" = sensor, "swP" = swP, "sw" = sw}

)))).flatten;

(c) EOL

pattern RouteSensor
route: Route, swP: SwitchPosition from: route.follows, sw: Switch from: swP.target,
sensor: Sensor from: sw.monitoredBy.select(s|route.gathers.excludes(s)) {}

(d) EPL

Fig. 6: Train Benchmark RouteSensor query.

4 Results and Discussion

The previous section described the research questions to be answered, the
environment that was set up for the experiment and the queries to be run.
This section will present the obtained results, answer the research questions
(with the help of additional data in some cases) and discuss potential threats
to the validity of the work. The raw data and all related source code supporting
these results are available from the Aston Data Explorer repository24.

24 http://dx.doi.org/10.17036/44783FFA-DA36-424D-9B78-5C3BBAE4AAA1

20 A. Garcia-Dominguez et al.

railway::Route.allInstances()→collect(
route1 | route1.exit→collect(semaphore | route1.gathers→collect(
sensor1 | sensor1.monitors→collect(te1 | te1.connectsTo→collect(
te2 | te2.monitoredBy→collect(sensor2 | railway::Route.allInstances()
→select(route2 | route2.gathers→includes(sensor2)
and route2.entry→excludes(semaphore)
and route1 <> route2)→collect(route2 | Tuple{
semaphore = semaphore, route1 = route1, route2 = route2,
sensor1 = sensor1, sensor2 = sensor2, te1 = te1, te2 = te2})))))))

(a) Original OCL

import railway : ’platform:/resource/railway.neoemf/model/railway.ecore’

package railway
context Sensor
def: semNeighbor: Bag(Route) = Route.allInstances()→collect(
route1 | route1.exit→collect(semaphore | route1.gathers→collect(
sensor1 | sensor1.monitors→collect(te1 | te1.connectsTo→collect(

te2 | te2.monitoredBy→collect(sensor2 | Route.allInstances()
→select(route2 | route2.gathers→includes(sensor2)

and route2.entry→excludes(semaphore)
and route1 <> route2)))))))

endpackage

(b) OCL for Mogwaï

return Route.all.collect(
route1 | route1.exit.collect(semaphore | route1.gathers.collect(

sensor1 | sensor1.monitors.collect(te1 | te1.connectsTo.collect(
te2 | te2.monitoredBy.collect(sensor2 | sensor2.revRefNav_gathers

.select(r | r <> route1 and r.entry <> semaphore).collect(route2 | Map{
"semaphore"=semaphore, "route1"=route1, "route2"=route2,
"sensor1"=sensor1, "sensor2"=sensor2, "te1"=te1, "te2"=te2}

))))))).flatten.asSequence;

(c) EOL, uses reverse reference navigation (“revRefNav_”)

pattern SemaphoreNeighbor
route1: Route, semaphore: Semaphore from: route1.exit,
sensor1: Sensor from: route1.gathers, te1: TrackElement from: sensor1.monitors,
te2: TrackElement from: te1.connectsTo, sensor2: Sensor from: te2.monitoredBy,
route2: Route from: sensor2.revRefNav_gathers.select(
r | r <> route1 and r.entry <> semaphore

) {}

(d) EPL, uses reverse reference navigation (“revRefNav_”)

Fig. 7: Train Benchmark SemaphoreNeighbor query.

Stress-Testing Remote Model Querying APIs 21

railway::Switch.allInstances()
→select(sw | sw.monitoredBy→isEmpty())
→collect(sw | Tuple{sw = sw})

(a) Original OCL

import railway : ’platform:/resource/railway.neoemf/model/railway.ecore’

package railway
context Switch
def: notMonitored : Set(Switch) =
Switch.allInstances()→select(sw | sw.monitoredBy→isEmpty())

endpackage

(b) OCL for Mogwaï

return Switch.all.select(
sw | sw.isMonitored = false

);

(c) EOL, with derived “isMonitored”

pattern SwitchMonitored
sw : Switch from: Switch.all

.select(sw|sw.isMonitored = false) {}

(d) EPL, with derived “isMonitored”

Fig. 8: Train Benchmark SwitchMonitored query.

4.1 Measurements Obtained

The median execution times (in milliseconds) and coefficients of dispersion
over 1000 executions of the GraBaTs’09 queries from Section 3.3.1 are shown
on Table 1. Likewise, the results for the Train Benchmark queries from Sec-
tion 3.3.2 are shown on Tables 2 to 4. To save space, Hawk with the Neo4j
backend is abbreviated to “Hawk/N” and “H/N”. Likewise, Hawk with the Ori-
entDB backend is shortened to “Hawk/O” and “H/O”. These abbreviations will
be used throughout the rest of the paper as well.

Medians were picked as a measure of centrality due to their robustness
against the occasional outliers that a heavily stressed system can produce.
Coefficients of dispersion are dimensionless measures of dispersion that can
be used to compare data sets with different means: they are defined as τ/η,
where τ is the mean absolute deviation from the median η. Coefficients of
dispersion are robust to non-normal distributions, unlike the better known
coefficients of variation (Bonett and Seier, 2006). The tables allow for quick
comparison of performance levels across tools, queries and number of client
threads. Nevertheless, more specific visualisations and statistical analyses will
be derived for some of the following research questions.

One important detail is that SemaphoreNeighbor was not fully run through
CDO and Mogwaï, as it runs too slowly to allow for stress testing. More
specifically, with only 1 client thread over TCP, the median time for the first

2
2

A
.
G

a
rcia

-D
o
m

in
g
u
ez

et
a
l.

Query Tool/Lang Proto
1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads
M CD M CD M CD M CD M CD M CD M CD

HQ1 Hawk/N HTTP 2 025 0.01 2 121 0.06 3 154 0.01 6 347 0.02 12 818 0.01 26 052 0.02 53 753 0.03
TCP 1 631 0.01 1 712 0.08 2 598 0.00 5 327 0.03 10 882 0.02 22 092 0.02 45 646 0.04

Hawk/O HTTP 3 979 0.01 4 432 0.05 9 369 0.09 20 257 0.12 40 626 0.20 79 638 0.26 159 645 0.33
TCP 3 491 0.01 3 991 0.06 8 623 0.09 17 692 0.16 34 296 0.30 66 547 0.39 136 348 0.42

HQ2 Hawk/N HTTP 549 0.01 601 0.08 919 0.01 1 890 0.06 3 915 0.03 8 046 0.04 16 265 0.06
TCP 582 0.01 631 0.08 964 0.02 1 931 0.06 3 902 0.03 8 075 0.04 16 331 0.05

Hawk/O HTTP 1 804 0.02 2 210 0.07 4 973 0.20 11 078 0.13 21 184 0.24 41 923 0.31 84 298 0.39
TCP 1 715 0.01 2 102 0.07 4 745 0.17 10 253 0.19 19 103 0.28 37 723 0.35 74 815 0.39

HQ3 Hawk/N HTTP 223 0.40 485 0.19 976 0.16 2 409 0.10 5 003 0.17 11 258 0.18 26 243 0.20
TCP 215 0.40 485 0.19 955 0.16 2 440 0.12 5 033 0.14 11 204 0.18 26 041 0.22

Hawk/O HTTP 186 0.48 402 0.25 735 0.30 1 624 0.45 3 963 0.24 8 681 0.20 18 096 0.22
TCP 181 0.54 400 0.28 710 0.31 1 664 0.41 3 838 0.27 8 454 0.19 17 640 0.21

HQ4 Hawk/N HTTP 16 0.16 17 0.13 20 0.15 32 0.35 61 0.44 130 0.48 259 0.49
TCP 14 0.17 15 0.12 19 0.10 32 0.33 65 0.36 132 0.38 273 0.42

Hawk/O HTTP 25 0.11 26 0.14 57 0.70 65 0.58 139 0.37 276 0.46 544 0.53
TCP 24 0.06 25 0.14 56 0.86 67 0.40 140 0.34 267 0.49 523 0.55

OQ CDO HTTP 8 004 0.01 8 004 0.01 8 010 0.07 8 207 0.06 13 115 0.14 21 229 0.07 39 328 0.17
TCP 1 088 0.07 1 328 0.10 2 233 0.03 5 364 0.05 10 670 0.06 21 066 0.06 38 522 0.14

MQ Mogwaï HTTP 5 500 0.01 5 998 0.05 8 756 0.01 21 494 0.03 64 340 0.02 108 768 0.03 215 731 0.05
TCP 5 673 0.01 6 248 0.05 9 014 0.01 26 762 0.03 67 540 0.03 110 789 0.02 219 019 0.05

Table 1: Median execution times in milliseconds and coefficients of dispersion over 1000 executions of the GraBaTs’09 queries,
by tool, language, protocol and client threads.

S
tress-T

estin
g

R
em

o
te

M
o
d
el

Q
u
ery

in
g

A
P

Is
2
3

Query Tool/Lang Proto
1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads
M CD M CD M CD M CD M CD M CD M CD

CS CDO HTTP 8009 0.01 8011 0.01 8010 0.05 8122 0.06 8630 0.08 17196 0.16 29094 0.15
TCP 1076 0.04 1197 0.07 1801 0.02 3608 0.03 7169 0.04 14408 0.05 27837 0.12

H/N/EOL HTTP 206 0.04 221 0.12 336 0.04 669 0.11 1378 0.06 2837 0.06 5697 0.09
TCP 209 0.02 223 0.12 337 0.02 669 0.11 1335 0.06 2737 0.05 5647 0.08

H/N/EPL HTTP 246 0.02 257 0.09 389 0.02 780 0.10 1570 0.05 3187 0.04 6480 0.07
TCP 246 0.02 257 0.08 385 0.02 761 0.10 1533 0.05 3098 0.05 6328 0.07

H/O/EOL HTTP 435 0.02 494 0.09 780 0.03 1614 0.10 3036 0.20 6120 0.27 11807 0.36
TCP 420 0.02 466 0.10 761 0.03 1619 0.09 3167 0.18 6098 0.27 12000 0.33

H/O/EPL HTTP 486 0.02 517 0.11 828 0.03 1687 0.10 3264 0.17 6563 0.22 13305 0.27
TCP 490 0.02 553 0.14 902 0.03 1806 0.10 3440 0.16 6627 0.24 13276 0.26

Mogwaï HTTP 8133 0.00 8794 0.04 12767 0.00 33478 0.03 94119 0.03 160948 0.02 319803 0.04
TCP 7896 0.01 8844 0.04 12803 0.00 30694 0.02 85720 0.02 157047 0.02 319346 0.03

PL CDO HTTP 2129 0.42 2900 0.49 3392 0.74 2878 0.43 3376 0.34 8114 0.27 13058 0.17
TCP 224 0.03 383 0.03 585 0.08 1186 0.10 2419 0.11 5024 0.12 9987 0.12

H/N/EOL HTTP 106 0.04 111 0.11 151 0.06 297 0.18 603 0.13 3062 0.31 7905 0.17
TCP 110 0.04 119 0.08 157 0.06 295 0.16 602 0.12 3451 0.16 7821 0.24

H/N/EPL HTTP 157 0.03 166 0.09 236 0.04 478 0.15 982 0.09 4621 0.24 11081 0.19
TCP 168 0.03 178 0.08 236 0.05 453 0.13 932 0.08 4761 0.16 10851 0.17

H/O/EOL HTTP 197 0.03 213 0.12 336 0.24 794 0.34 1363 0.18 3764 0.25 9126 0.29
TCP 218 0.02 242 0.11 389 0.29 822 0.30 1437 0.16 3905 0.24 9250 0.28

H/O/EPL HTTP 286 0.03 303 0.10 570 0.30 1213 0.28 1989 0.15 6428 0.19 14191 0.22
TCP 311 0.02 336 0.11 548 0.24 1221 0.25 2084 0.13 6709 0.19 14378 0.22

Mogwaï HTTP 285 0.03 305 0.08 449 0.04 990 0.09 2611 0.16 5128 0.17 10336 0.20
TCP 265 0.02 286 0.07 427 0.04 949 0.09 2262 0.11 4449 0.12 8852 0.13

Table 2: Median execution times in milliseconds and coefficients of dispersion over 1000 executions of the Train Benchmark
queries ConnectedSegments and PosLength, by tool, language, protocol and client threads.

2
4

A
.
G

a
rcia

-D
o
m

in
g
u
ez

et
a
l.

Query Tool/Lang Proto
1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads
M CD M CD M CD M CD M CD M CD M CD

RS CDO HTTP 2893 0.17 2899 0.17 2695 0.28 2599 0.27 2652 0.12 2668 0.14 3940 0.40
TCP 177 0.03 184 0.11 237 0.07 471 0.08 938 0.10 1872 0.12 3667 0.14

H/N/EOL HTTP 208 0.02 203 0.13 325 0.03 654 0.11 1321 0.06 2671 0.05 5454 0.08
TCP 208 0.03 216 0.07 344 0.02 685 0.11 1370 0.06 2788 0.05 5697 0.08

H/N/EPL HTTP 235 0.02 250 0.12 382 0.02 765 0.10 1550 0.05 3121 0.05 6286 0.07
TCP 240 0.02 251 0.08 386 0.02 760 0.10 1523 0.05 3091 0.05 6308 0.07

H/O/EOL HTTP 633 0.02 688 0.11 1139 0.03 2351 0.11 4618 0.17 9170 0.21 19280 0.25
TCP 707 0.01 779 0.11 1310 0.03 2703 0.11 5328 0.15 10829 0.20 21925 0.25

H/O/EPL HTTP 676 0.02 744 0.11 1238 0.04 2596 0.12 5092 0.17 10494 0.21 21289 0.25
TCP 767 0.01 859 0.10 1424 0.04 2833 0.11 5727 0.17 11191 0.20 23283 0.25

Mogwaï HTTP 338 0.03 371 0.10 579 0.03 1209 0.09 2575 0.05 5112 0.05 10324 0.07
TCP 308 0.01 346 0.13 536 0.02 1114 0.08 2456 0.06 4858 0.08 9744 0.08

SM CDO HTTP 2103 0.20 1908 0.22 2493 0.21 2435 0.14 2443 0.10 2557 0.07 2961 0.15
TCP 83 0.02 86 0.03 81 0.26 153 0.21 320 0.20 655 0.21 1269 0.20

H/N/EOL HTTP 8 0.14 8 0.16 8 0.26 10 0.36 18 0.55 31 0.80 49 0.76
TCP 5 0.07 6 0.17 6 0.21 8 0.33 15 0.61 31 0.76 46 0.83

H/N/EPL HTTP 10 0.20 9 0.18 9 0.28 15 0.45 23 0.49 48 0.58 90 0.74
TCP 7 0.25 7 0.16 8 0.35 13 0.47 19 0.71 41 0.78 74 0.85

H/O/EOL HTTP 11 0.18 11 0.15 15 0.51 24 0.65 44 0.46 78 0.68 143 0.88
TCP 9 0.08 9 0.14 12 0.53 23 0.63 46 0.45 86 0.62 148 0.85

H/O/EPL HTTP 13 0.19 13 0.16 19 0.56 33 0.59 54 0.42 111 0.62 213 0.74
TCP 9 0.12 11 0.17 18 0.65 29 0.63 59 0.41 118 0.56 168 0.86

Mogwaï HTTP 33 0.09 34 0.10 48 0.08 117 0.25 259 0.19 480 0.15 947 0.17
TCP 33 0.05 35 0.11 47 0.06 106 0.26 240 0.27 468 0.27 939 0.53

Table 3: Median execution times in milliseconds and coefficients of dispersion over 1000 executions of the Train Benchmark
queries RouteSet and SwitchMonitored, by tool, language, protocol and client threads.

S
tress-T

estin
g

R
em

o
te

M
o
d
el

Q
u
ery

in
g

A
P

Is
2
5

Query Tool/Lang Proto
1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads
M CD M CD M CD M CD M CD M CD M CD

SN H/N/EOL HTTP 365 0.01 359 0.11 553 0.02 1135 0.08 2413 0.04 5810 0.10 13419 0.10
TCP 352 0.01 370 0.07 552 0.02 1119 0.09 2285 0.05 5564 0.09 12546 0.09

H/N/EPL HTTP 871 0.01 917 0.10 1370 0.01 2755 0.04 5561 0.02 11216 0.03 22746 0.04
TCP 839 0.01 878 0.11 1303 0.01 2634 0.04 5284 0.02 10619 0.03 22152 0.05

H/O/EOL HTTP 1054 0.01 1177 0.10 1999 0.04 3970 0.13 7990 0.22 15993 0.30 28698 0.42
TCP 1203 0.01 1321 0.07 2128 0.04 4137 0.12 7996 0.22 16009 0.31 33188 0.39

H/O/EPL HTTP 2582 0.02 2834 0.06 4424 0.02 8233 0.11 17094 0.20 33895 0.29 65888 0.39
TCP 2784 0.01 2958 0.09 4701 0.03 8747 0.12 18124 0.19 35411 0.28 67154 0.41

SS CDO HTTP 2103 0.21 1901 0.18 2618 0.22 2378 0.16 2243 0.11 2252 0.10 2178 0.13
TCP 69 0.04 69 0.04 67 0.57 77 0.27 162 0.22 314 0.24 619 0.23

H/N/EOL HTTP 28 0.11 27 0.14 35 0.11 58 0.28 125 0.30 249 0.26 503 0.20
TCP 28 0.08 27 0.10 34 0.07 56 0.24 116 0.23 234 0.18 463 0.20

H/N/EPL HTTP 36 0.06 36 0.11 48 0.06 83 0.26 176 0.26 355 0.18 718 0.17
TCP 36 0.06 36 0.09 46 0.05 83 0.23 170 0.18 341 0.14 673 0.19

H/O/EOL HTTP 53 0.06 54 0.11 78 0.20 162 0.31 320 0.32 579 0.46 1173 0.53
TCP 53 0.04 55 0.10 80 0.16 165 0.27 324 0.29 579 0.47 1149 0.55

H/O/EPL HTTP 72 0.04 74 0.11 106 0.09 218 0.24 423 0.27 809 0.42 1559 0.47
TCP 71 0.05 76 0.07 106 0.07 223 0.21 429 0.25 828 0.41 1559 0.54

Mogwaï HTTP 55 0.08 57 0.13 85 0.15 195 0.28 464 0.16 854 0.15 1729 0.15
TCP 53 0.04 56 0.14 81 0.06 182 0.22 436 0.21 816 0.30 1764 0.32

Table 4: Median execution times in milliseconds and coefficients of dispersion over 1000 executions of the Train Benchmark
queries SemaphoreNeighbor, and SwitchSet, by tool, language, protocol and client threads.

26 A. Garcia-Dominguez et al.

railway::Route.allInstances()→collect(
route | route.entry→select(signal = railway::Signal::GO)→collect(
semaphore | route.follows→collect(
swP | swP.target→select(currentPosition <> swP.position)→collect(
sw | Tuple{route = route, semaphore = semaphore, swP = swP, sw = sw}

))))

(a) Original OCL

import railway : ’platform:/resource/railway.neoemf/model/railway.ecore’

package railway
context Switch
def: switchSet: Bag(Switch) = Route.allInstances()→collect(
route | route.entry→select(signal = ’GO’)→collect(semaphore | route.follows→collect(
swP | swP.target→select(currentPosition <> swP.position))))

endpackage

(b) OCL for Mogwaï

return Route.all.collect(
route | route.entry.select(e | e.isDefined() and e.signal = ’GO’).collect(
semaphore | route.follows.collect(
swP | swP.target.select(t | t.currentPosition <> swP.position).collect(
sw | Map{"route" = route, "semaphore" = semaphore, "swP" = swP, "sw" = sw}

)))).flatten.asSequence;

(c) EOL

pattern SemaphoreNeighbor
route: Route,
semaphore: Semaphore from: route.entry.select(e | e.isDefined() and e.signal = ’GO’),
swP: SwitchPosition from: route.follows,
sw: Switch from: swP.target.select(t | t.currentPosition <> swP.position) {}

(d) EPL

Fig. 9: Train Benchmark SwitchSet query.

10 runs of SN was 88.44 seconds for CDO and 305.19 seconds for Mogwaï. For
this reason, only Hawk was fully evaluated regarding SN.

The next step was to check if the execution times belonged to a normal
distribution for the sake of analysis. Shapiro-Wilk tests25 rejected the null hy-
pothesis (“the sample comes from a normal distribution”) with p-values < 0.01
for almost all of the combinations of query, tool, language, protocol and thread
count: only 11 out of 516 tested combinations reported p-values ≥ 0.01. In or-
der to visualize how they deviated from a normal distribution, further manual

25 Monte Carlo simulations have shown that Shapiro-Wilk tests have better statistical
power than other normality tests (Razali and Wah, 2011).

Stress-Testing Remote Model Querying APIs 27

inspections with quartile-quartile plots were conducted. These confirmed that
most distributions tended to be either heavy-tailed, bimodal, multimodal, or
curved.

This is somewhat surprising, as the natural intuition is that execution times
should follow a normal distribution: 90% of the Java benchmarks conducted
by Georges et al (2007) with single-core processors did follow a Gaussian dis-
tribution according to Kolmogorov-Smirnov tests. At the same time, 10% of
those benchmarks were not normally distributed (being reportedly skewed or
bimodal), and modern machines with multi-core processors have only grown
more non-deterministic since then. More recently, Chen et al (2015) concluded
that execution times for multithreaded loads in modern multicore machines do
not follow neither normal nor log-normal distributions, and that more robust
nonparametric methods are needed for performance comparison. Our study in
particular involves 3 machines communicating over Ethernet and doing heavy
disk-based I/O: even with 1 thread per client machine, the server will experi-
ence a non-deterministic multithreaded load as the one studied by Chen at al.
For these reasons, the rest of this paper will assume that the query execution
times are not normally distributed, and will use non-parametric tests.

Query Tool Proto 1t 2t 4t 8t 16t 32t 64t

OQ CDO HTTP 1 1

CS CDO/H2 HTTP 1
CS Hawk/O/EOL HTTP 1
CS Hawk/O/EPL HTTP 2

PL CDO/H2 HTTP 1

RS Hawk/O/EOL HTTP 1
RS CDO/H2 TCP 1

SN Hawk/O/EPL HTTP 1

SS Hawk/O/EPL HTTP 1
SS CDO/H2 TCP 1
SS Hawk/O/EPL TCP 2 1

Table 5: Failed executions (timeout / server error), by query, tool, protocol
and client threads (“1t”: 1 thread). Only combinations with failed executions
are shown.

Some of the configurations had intermittent issues when running queries.
This was another goal of our stress testing: finding if the different tools would
fail with increased demand and if they could recover from these errors (which
they did by themselves). Table 5 shows the configurations that produced server
errors, and Table 6 shows the configurations that reported the wrong number
of results. The “correct” number of results is computed by running each query
across all tools in local installations, without the risk of the network or the
stress test influencing the result, and ensuring they all report equivalent re-

28 A. Garcia-Dominguez et al.

Query Tool Proto 1t 2t 4t 8t 16t 32t 64t

OQ CDO HTTP 3 8 22 17 1

CS CDO HTTP 2 2 1 2 3 4
CS CDO TCP 1 3 3 6

RS CDO HTTP 2 3 2 6 11 12 9
RS CDO TCP 6 3 3 10 15 28 32

SS CDO TCP 1

Table 6: Executions with incorrect number of results, by query, tool, protocol
and client threads (“1t”: 1 thread). Only combinations with incorrect execu-
tions are shown.

sults. In our previous conference paper (Garcia-Dominguez et al, 2016b), in-
correct executions only happened for the CDO HTTP API, but a similar issue
exists even in the TCP API for some of the Train Benchmark queries. Hawk
over Neo4j and Mogwaï were the only combinations of tool and backend that
did not report failed or incorrect executions.

Regarding the failed and incorrect executions of CDO, at this early stage
of the study we could only treat it as a black box, as we were merely users of
this tool and not their developers. However, our analysis of RQ2 in Section 4.3
suggest that this is due to the stateful buffer-based design of the CDO API. As
for the failed executions of Hawk with OrientDB, we attribute these problems
to concurrency issues in the OrientDB backend, since Hawk with Neo4j does
not report any issues and has otherwise the exact same code.

4.2 RQ1: Impact of Protocol

Tool Query 1t 2t 4t 8t 16t 32t 64t

CDO OQ 1.00 1.00 1.00 0.98 0.39 0.12 0.07

Mogwaï MQ -0.98 -0.51 -0.96 -0.99 -0.80 -0.31 -0.20

Hawk/N HQ1 1.00 0.83 1.00 0.99 0.98 0.98 0.92
HQ2 -0.96 -0.45 -0.91 -0.18
HQ3 0.25
HQ4 0.55 0.54 0.32

Hawk/O HQ1 1.00 0.73 0.40 0.51 0.34 0.26 0.19
HQ2 0.96 0.40 0.14 0.26 0.23 0.13 0.12
HQ3 0.09 0.08
HQ4 0.22 0.13

Table 7: Cliff deltas for GraBaTs’09 query execution (-1: HTTP is faster for all
pairs, 1: HTTP is slower for all pairs), for configurations where Mann-Whitney
U test reports significance (p-value < 0.01), by tool, query and number of client
threads (“1t”: 1 thread).

Stress-Testing Remote Model Querying APIs 29

Tool Query 1t 2t 4t 8t 16t 32t 64t

CDO CS 1.00 1.00 1.00 1.00 0.98 0.42 0.25
PL 1.00 1.00 1.00 1.00 0.81 0.38 0.51
RS 1.00 1.00 1.00 1.00 1.00 0.94 0.17
SM 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SS 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Mogwaï CS 0.76 0.12 -0.39 0.95 0.95 0.52 0.07
PL 0.93 0.61 0.57 0.23 0.41 0.34 0.30
RS 0.98 0.42 0.91 0.42 0.42 0.41 0.42
SM -0.13 0.16 0.17
SS 0.37 0.12 0.29 0.14 0.14 0.12

H/N/EOL CS -0.30 -0.22 -0.09 0.23 0.29
PL -0.58 -0.40 -0.44 -0.30
RS -0.50 -0.78 -0.19 -0.33 -0.36 -0.27
SM 0.96 0.85 0.72 0.37 0.16 0.11
SN 0.89 -0.36 0.52 0.21 0.31
SS 0.14 0.14 0.07 0.13 0.17

H/N/EPL CS 0.22 0.09 0.24 0.28 0.15
PL -0.83 -0.42 0.16 0.27 -0.12
RS -0.48 -0.09 -0.29 0.16 0.09
SM 0.65 0.66 0.33 0.19 0.16 0.09
SN 0.97 0.47 0.99 0.44 0.86 0.78 0.36
SS 0.08 0.07 0.21 0.12 0.18

H/O/EOL CS 0.74 0.48 0.41 -0.07
PL -0.94 -0.56 -0.53 -0.07 -0.14
RS -0.98 -0.55 -0.98 -0.55 -0.37 -0.34 -0.22
SM 0.80 0.58 0.20
SN -1.00 -0.51 -0.71 -0.16 -0.15
SS -0.08 -0.13

H/O/EPL CS -0.24 -0.58 -0.91 -0.34 -0.10
PL -0.94 -0.49 -0.11 -0.15 -0.08
RS -1.00 -0.58 -0.94 -0.36 -0.31 -0.16 -0.17
SM 0.77 0.55 0.10 0.10 -0.07 0.12
SN -1.00 -0.51 -0.86 -0.25 -0.11
SS 0.10 -0.22

Table 8: Cliff deltas for Train Benchmark query execution (-1: HTTP is faster
for all pairs, 1: HTTP is slower for all pairs), for configurations where Mann-
Whitney U test reports significance (p-value < 0.01), by tool, query and num-
ber of client threads (“1t”: 1 thread).

A quick glance at the results on Tables 1–4 shows that there are notable
differences in some cases between HTTP and TCP, but not always: in fact,
sometimes HTTP appears to be faster.

To clarify these differences, pairwise Mann-Whitney U tests (Mann and
Whitney, 1947) were conducted between the HTTP and TCP results of every
configuration. p-values < 0.01 were required to reject the null hypothesis that
there was the same chance of HTTP and TCP being slower than the other
for that particular configuration. Where the null hypothesis was rejected, Cliff
deltas were computed to measure effect size (Hess and Kromrey, 2004). Cliff
delta values range between +1 (for all pairs of execution times, HTTP was
always slower) and -1 (HTTP was always faster). Cohen d effect sizes (Cohen,
1988) were not considered since execution times were not normally distributed.
The results are summarised on Tables 7 and 8. 99% confidence intervals of

30 A. Garcia-Dominguez et al.

the difference between HTTP and TCP execution times were also computed
during the Mann-Whitney U tests, but due to space constraints they were not
included in those tables. Some of those confidence intervals will be mentioned
in the following paragraphs.

CDO is the simplest case here: all tested configurations have significant
differences and report positive effect sizes, meaning that HTTP was con-
sistently slower than TCP. Cliff deltas become much weaker (closer to 0)
with increasing number of threads, except for the SM and SS queries. This
is also confirmed through the confidence intervals: for OQ with 1 thread, it is
[+6929ms,+6944ms], while with 64 threads it is only [+78ms,+1406ms]. By
comparing the medians, it can be seen that HTTP can be over 3000% slower
than TCP in extreme cases, such as SS with 4 client threads.

Mogwaï has conflicting results across the two case studies. For the OQ
GraBaTs’09 query, HTTP is quite often faster, though HTTP and TCP be-
come rather similar for 32 and 64 threads with absolute values below 0.35. For
the Train Benchmark queries, TCP is more often faster than HTTP, though
this difference again drops off as the number of client threads increases. For
SM and SS, the two faster running queries for Mogwaï in the TB case study,
the difference is again very small. This suggests that for Mogwaï, in addition
to the protocol used, the way concurrency is handled by the server and how
it interacts with the query might have an impact as well. In particular, the
Jetty HTTP server and the TCP server use different types of network I/O:
non-blocking for Jetty (which decouples network I/O from request processing)
and blocking for Thrift (which simplifies the Thrift message format).

The results from Hawk are the most complex to analyse. Regarding the
GraBaTs’09 queries, HQ1 is consistently slower on HTTP for Neo4j and Ori-
entDB, with strong effect sizes for all numbers of client threads. HQ2 is only
slower on HTTP for OrientDB, especially with few client threads: with Neo4j,
HTTP is faster for 1–8 threads. HQ3 and HQ4 sometimes run slower on HTTP,
but effect sizes are weaker overall and in most cases there is not a significant
difference. It appears that once queries are optimized through derived and in-
dexed attributes, there is not that much difference between HTTP and TCP.

As for the Train Benchmark queries under Hawk, a first step is studying
the Cliff deltas for each query:

– CS does not show a consistent pattern neither by backend nor by query
language: effect sizes are only moderate with Neo4j (with absolute values
below 0.30), and with OrientDB effect sizes are positive when using EOL
and negative when using EPL.

– PL and RS are usually faster on HTTP, especially with OrientDB.
– SM on the other hand is consistently slower on HTTP. This time, the

strongest effect sizes are produced when using Neo4j.
– SN is consistently slower on HTTP with Neo4j, and consistently faster on

HTTP with OrientDB.
– SS effect sizes are usually positive with Neo4j and negative with OrientDB,

but they are weak, with absolute values below 0.22.

Stress-Testing Remote Model Querying APIs 31

From these results, it appears that the largest factor on HTTP slowdown
patterns for Hawk is the chosen backend, suggesting that the interaction be-
tween the concurrency and I/O patterns of the Jetty HTTP server, the Thrift
TCP server, and the Hawk backend may be relevant. While the Hawk Neo4j
backend took advantage of the thread-safety built into Neo4j, the OrientDB
backend has only recently implemented its own thread pooling to preserve
database caches across queries. The query language was only important for
CS, showing there may be an interaction but it could be relevant only for
certain queries.

As for the coefficients of dispersion, the general trend is that they increase
as more client threads are used. This is to be expected from the increasingly
non-deterministic multithreaded load, but the exact pattern changes depend-
ing on the tool and the protocol. For most configurations, Hawk shows very
similar CDs with HTTP and TCP, and so does Mogwaï (except for some rare
cases such as SM and SS over 32 threads): this is likely due to the fact that
the message exchanges are the same across both solutions (a single request/re-
sponse pair). However, CDO shows consistently different CDs over HTTP and
over TCP, suggesting that they may be fundamentally different in design from
each other. This will be the focus of the next section.

4.3 RQ2: Impact of API Design

One striking observation from RQ1 was that CDO over HTTP had much
higher overhead than Hawk and Mogwaï over HTTP. Comparing the medians
of OQ and HQ1 with 1 client thread, CDO+HTTP took 635.66% longer than
CDO+TCP, while Hawk+HTTP only took 24.16% longer than Hawk+TCP.
This contrast showed that CDO used HTTP to implement their APIs very
differently from the other tools.

To clarify this issue, the Wireshark packet sniffer was used to capture
the communications between the server and the client for one invocation of
OQ and HQ1 (with Hawk over Neo4j). These captures showed quite different
approaches for an HTTP-based API:

– CDO involved exchanging 58 packets (10203 bytes), performing 11 differ-
ent HTTP requests. Many of these requests were very small and consisted
of exchanges of byte buffers between the server and the client, opaque to
the HTTP servlet itself.
Most of these requests were either within the first second of the query ex-
ecution time or within the last second. There was a gap of approximately
6 seconds between the first group of requests and the last group. Interest-
ingly, the last request before the gap contained the OCL query and the
response was an acknowledgement from CDO. On the first request after
the gap, the client sent its session ID and received back the results from
the query.
The capture indicates that these CDO queries are asynchronous in nature:
the client sends the query and eventually gets back the results. While the

32 A. Garcia-Dominguez et al.

default Net4j TCP connector allows the CDO server to talk back to the
client directly through the connection, the experimental HTTP connector
relies on polling for this task. This has introduced unwanted delays in the
execution of the queries. The result suggests that an alternative solution for
this bidirectional communication would be advisable, such as WebSockets.

– Hawk involved exchanging 14 packets (2804 bytes), performing 1 HTTP
request and receiving the results of the query in the same response. Since
its API is stateless, there was no need to establish a session or keep a
bidirectional server–client channel: the results were available as soon as
possible.
While this synchronous and stateless approach is much simpler to imple-
ment and use, it does have the disadvantage of making the client block
until all the results have been produced. Future versions of Hawk could
also implement asynchronous querying as suggested for CDO.
One side note is that Hawk required using much less bandwidth than CDO:
this was due to a combination of using fewer requests, using gzip compres-
sion on the responses and taking advantage of the most efficient binary
encoding available in Apache Thrift (Tuple).

In summary, CDO and Hawk use HTTP in very different ways. The CDO
API is stateful and consists of exchanging pending buffers between server and
client: queries are asynchronous. This is not a problem when using TCP, since
messages can be exchanged both ways. However, HTTP by itself does not allow
the server to initiate a connection to the client to send back the results when
they are available: to emulate this, polling is used. This could be solvable with
technologies such as WebSockets, which is essentially a negotiation process to
upgrade an HTTP connection to a full-duplex connection.

This stateful and buffer-based communication explains some of the inter-
mittent communication issues that were shown for CDO in Tables 5 and Ta-
bles 6. In a heavily congested multithreaded environment, concurrency issues
(race conditions or thread-unsafe code) may result in buffers being sent out of
order or mangled together. If the state of the connection becomes inconsistent,
it may either fail to produce a result or may miss to collect some of the results
that were sent across the connection.

In comparison, the Hawk API is stateless and synchronous: query results
are sent back in a single message. Since there are no multiple messages that
need to be correlated to each other, this problem is avoided entirely.

These results suggest that while systems may benefit from supporting both
synchronous querying (for small or time-sensitive queries) and asynchronous
querying (for large or long-running queries), asynchronous querying can be
complex to implement in a robust manner. Proper full-duplex channels are
required to avoid delays (either raw TCP or WebSockets over HTTP) and
adequate care must be given to thread safety and message ordering.

Stress-Testing Remote Model Querying APIs 33

4.4 RQ3: Impact of Caching and Indexing

This section will focus on the results from the TCP variants, since they were
faster or equivalent to the HTTP variants in the previous tests. It will also
focus on the times in the ideal situation where there is only 1 client thread: later
questions will focus on the scenarios with higher numbers of client threads.

4.4.1 GraBaTs’09 queries

A Kruskal-Wallis test reported there were significant differences in TCP execu-
tion times across tool/query combinations with 1 client thread (p-value below
0.01). A post-hoc Dunn test (Dunn, 1961) was then used to compute p-values
for pairwise comparisons, using the Bonferroni correction. There was only one
pairwise comparison with p-value higher than 0.01: HQ3 with Hawk/Neo4j
against HQ3 with Hawk/Orient (p-value = 0.054). These two configurations
will be considered to be similar in performance. All other comparisons will be
based on the medians shown in Table 1.

Looking at the OQ and HQ1 times for CDO, Hawk and Mogwaï, CDO is the
fastest, with a median of 1088ms compared to 5673ms from Mogwaï, 1631ms
from Hawk/Neo4j and 3491ms from Hawk/OrientDB. This is interesting, as
normally one would assume that the join-free adjacency of the graph databases
used in Hawk and Mogwaï would give them an edge over the default H2
relational backend in CDO.

Enabling the SQL trace log in CDO showed that after the first execution
of OQ, later executions only performed one SQL query to verify if there were
any new instances of TypeDeclaration. Previous tests had already rejected
the possibility that CDO was caching the query results. Instead, an inspec-
tion of the CDO code revealed a collection of generic caches. Among others,
CDO keeps a CDOExtentMap from EClasses to all their EObject in-
stances, and also keeps a CDORevisionCache with the various versions of
each EObject. CDO keeps a cache of prepared SQL queries as well.

In comparison, Hawk and Mogwaï do not use object-level caching by de-
fault, relying mostly on the graph database caches instead. Neo4j caches are
shared across all threads, whereas in OrientDB they are specific to each thread,
requiring more memory. OrientDB caches can be configured to free up mem-
ory as soon as possible (weak Java references) or use up as much memory as
possible (soft Java references): for this study, the second mode was used, but
the authors identified issues with this particular mode. The issues were ini-
tially notified and resolved26, but the lack of an LRU policy in the OrientDB
in-house cache prompted the authors to have Hawk replace it with a standard
Guava cache.

Beyond object-level caching, Hawk caches type nodes and Mogwaï caches
the compiled version of the ATL script that transforms OCL to Gremlin. The
ATL caching in Mogwaï was in fact added during this study, as a result of

26 https://github.com/orientechnologies/orientdb/issues/6686

34 A. Garcia-Dominguez et al.

communication with the Mogwaï developers that produced several iterations
tackling limitations in the OCL transformer, reducing query latency and re-
solving concurrency issues.

The above results indicate that a strong caching layer can have an impact
large enough to trump a more efficient persistent representation in some sit-
uations. Nevertheless, the results of HQ2, HQ3 and HQ4 confirm the findings
of our previous work in scalable querying (Barmpis et al, 2015; Barmpis and
Kolovos, 2014b): adding derived attributes to reduce the levels of iteration
required in a query speeds up running times by orders of magnitude, while
adding minimal overhead due to the use of incremental updating. These de-
rived attributes can be seen as application-specific caches that precompute
parts of a query, unlike the application-agnostic caches present in CDO:

– HQ2 replaces the innermost loop in HQ1 with the use of pre-computed
derived attributes (isStatic, isPublic and isSameReturnType) of a generic
nature. These derived attributes produce a 2.80x speedup on Hawk/Neo4j
and 2.04x speedup on Hawk/OrientDB. OrientDB receives less of a boost
as following edges in general appears to be less efficient than in Neo4j.

– HQ3 uses the same attributes but rearranges the query to have them appear
in the outermost “select”, so Hawk can transform the iteration transparently
into a lookup. Compared to HQ2, HQ3 is 2.71x faster on Neo4j and 9.47x
faster on OrientDB. From the previous Dunn post-hoc test, it appears that
indexing in the Hawk and OrientDB backends is similarly performant in
this case.

– HQ4 uses a much more specific derived attribute (isSingleton) that elimi-
nates one more level of iteration, turning the query into a simple lookup.
HQ4 is one order of magnitude faster than HQ3 both on Neo4j and Ori-
entDB, but here Hawk/Neo4j is somewhat faster. This suggests that a
single index lookup is faster on Neo4j, whereas multiple index lookups are
faster on OrientDB. This may be due to the way OrientDB caches index
pages internally, compared to Neo4j.

4.4.2 Train Benchmark

The Train Benchmark results span over 6 queries of very different nature: some
are very lightweight, while others require a more intensive traversal of the un-
derlying graph. For each query, a Kruskal-Wallis test confirmed that there were
significant differences in TCP execution times across configurations (p-value <
0.01). A post-hoc Dunn test confirmed that most pairwise combinations of con-
figurations had significant differences as well (p-value < 0.01 with Bonferroni
correction), except for SwitchSet between Hawk/Orient/EOL and Mogwaï.
Having established most differences in times are significant, this section will
use the medians on Tables 2 and 4 to compare the tools.

To simplify the comparison, rather than using the tables directly, this sec-
tion will use the more intuitive radar plots in Figure 10 to guide the discussion.
Comparing the relative area of each different tool gives a general impression

Stress-Testing Remote Model Querying APIs 35

Fig. 10: Radar plot for median Train Benchmark TCP query execution times
in milliseconds over 1000 executions, with 1 client thread.

of their standing: tools with smaller areas are faster in general. The Hawk
side and the CDO/Mogwaï side use the same scales, to allow for comparisons
across plots. CDO and Mogwaï do not have any data points for SN, since they
were too slow for a full run (Section 4.1).

The Hawk side compares the relative performance of the four tested con-
figurations (two backends, two query languages). It can be seen that the Ori-
entDB backend is close to the Neo4j backend in some queries (CS and SM),
twice as slow in most queries, and noticeably slower in RS. Examining these
results suggests that while derived/indexed attributes are effective on both
backends, range queries in OrientDB do not deal well with high-cardinality
attributes:

– The two queries that ran in similar times (CS and SM) use custom Hawk
indices: CS performs an indexed range query on a derived attribute (nMon-

itoredSegments > 5), and SM performs an indexed lookup (isMonitored =
false).

– However, PL is still slow even though it uses an indexed range query (length

≤ 0), which apparently contradicts the results obtained with CS. One im-
portant difference between the queries is that there are many more distinct
values of length (978) than of nMonitoredSegments (2): the indexed range
query in PL will need to read many more SB-Tree nodes than in CS.

Looking at the CDO/Mogwaï side, it appears that the generic caching in
CDO helped obtain good performance in PL, RS (where it slightly outper-
formed even Hawk with Neo4j) and CS, but it was not that useful for SM. In
SM, Mogwaï can follow the monitoredBy reference faster than CDO, and Hawk
can use an indexed lookup to fetch directly the 35 unmonitored Switches in-
stead of going through all 1501 of them. In general, it appears that CDO deals

36 A. Garcia-Dominguez et al.

quite well with queries that involve few types, in addition to queries with few
nested reference traversals.

While Mogwaï does not support indexed attributes, its use of Neo4j through
NeoEMF should have given it similar performance to that of Hawk with Neo4j
through the default Neo4j caching. Instead, it is always slower than Hawk with
Neo4j and EOL, and it is only faster than Hawk with OrientDB and EOL on
RS. After a discussion with the Mogwaï/NeoEMF developers, it seems that
this difference may be due to the use of Neo4j 1.9.6 in NeoEMF (Hawk uses
2.0.5, after testing various 2.x releases), and to inefficiencies in the bundled
implementation of Gremlin.

4.5 RQ4: Impact of Mapping from Query to Backend

In a database-backed model querying solution, the query language is the inter-
face shown to the user for accessing the stored models, and a query engine is
the component that maps the query into an efficient use of the backend. Good
solutions are those whose queries are easy to read and write and are mapped
to the best possible use of the backend.

Since the query language, the query engine and the backend are all interre-
lated, it is hard to separate their individual contributions. CDO and Mogwaï
use the same query language, but run it in very different ways. Likewise, Mog-
waï and Hawk share a backend (Neo4j), but they store models differently and
use different APIs to access it. For this reason, it is not possible to talk about
what is the “best” query language in isolation of the other factors, or make
other similar general statements. Instead, the answer to RQ4 will start from
each source language and draw comparisons on how their queries were mapped
to the capabilities of the backends, for the different tools that supported them:

– OCL is reasonably straightforward to use for queries with simple pattern
matching, like OQ/MQ from GraBaTs’09 or the Train Benchmark PL and
SM queries. However, it quickly becomes unwieldy with queries that have
more complex pattern matching, requiring many nested select/collect in-
vocations in cases such as SN (Figure 4 on page 17).
CDO and Mogwaï map OCL in very different ways. CDO parses the OCL
query into a standard Eclipse OCL abstract syntax tree of Java objects and
evaluates the tree, providing a CDO environment that integrates caching
and reads from the database as needed with multiple SQL queries. This
allows it to start running the query very quickly, but it also implies that
OCL queries need to switch back and forth between the H2 database layer
and the model query layer, reducing performance. This may have been one
of the main reasons for CDO’s inclusion of an object-level cache.
Mogwaï, on the other hand, parses the OCL query as a model, transforms
it into Gremlin, compiles the Gremlin script into bytecode, executes the
query entirely within Gremlin and deserialises the results back into EMF
objects. This process increases query latency over an interpreted approach,

Stress-Testing Remote Model Querying APIs 37

but queries could potentially run faster thanks to less back-and-forth be-
tween layers. However, as mentioned for RQ3, the use of an old release of
Neo4j (1.9.6) in the current version of Mogwaï has made it run quite slow,
negating this advantage over CDO and Hawk.

– EOL is inspired by OCL, and while the examples show that it is slightly
more concise, it still suffers from the same nested collect/select problem
when performing complex graph pattern matching. The execution approach
is also similar: the EOL query is turned into an abstract syntax tree, which
is visited in a post-order manner to produce the final value.
However, the EOL-Hawk bridge (Barmpis et al, 2015) takes advantage of
several features in the underlying graph database: custom indices (already
discussed for RQ3) and the bidirectional navigability of the edges. It also
allows for following references in reverse (from target to source), and certain
queries can be written much more efficiently. This was the reason why the
median time for SN was 352ms with Hawk/Neo4j/EOL and over 300s with
Mogwaï. It is a missed opportunity for Mogwaï, which could have exposed
this capability as well through OCL.

– EPL is a refined version of EOL which is specialized towards pattern match-
ing. Looking at SN again, the EPL version is much easier to understand,
with no explicit nesting: these nested loops are implicit in EPL’s execution.
Like EOL, EPL is also interpreted instead of compiled, reducing latency
for some queries.
As shown in Tables 3 and Figure 10, EPL appears to be consistently slower
than EOL, even though queries are very similar. The overhead is especially
notable for SN, where EPL is twice as slow as EOL. To clarify this issue,
a profiler was used to follow 5 executions of the EOL and EPL versions of
SN. It revealed that the additional type checking done implicitly by EPL
on every match candidate was the main reason for the heavy slowdown.
While this check is painless on traditional in-memory models, on the graph
databases built by Hawk this check requires following one more edge and
potentially performing disk I/O. Disabling this type check by referring to
the “Any” root supertype in Epsilon instead returned execution times to
values similar to those of EOL.

In closing, these experiences show that while query compilation may have
a higher potential for performance, it may be more important to focus on
selecting a stronger database technology and fully expose the strengths of
this technology through the query language and the query engine. Developers
wishing to repurpose existing “declarative” query languages need to test if any
language features interact negatively with the chosen technology, as the cost
of certain common operations may have changed dramatically.

4.6 RQ5: Scalability with Demand

The next question was concerned about how well relational and graph-based
approaches scale as demand increases: one approach could do well with few

3
8

A
.
G

a
rcia

-D
o
m

in
g
u
ez

et
a
l.

Tool Query 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads

Hawk/N HQ1 0.66 - 0.67 0.70 - 0.73 0.86 - 0.86 0.20 - 0.20 0.16 - 0.16 0.95 - 0.96 0.84 - 0.86
HQ2 1.85 - 1.87 1.91 - 2.00 2.31 - 2.33 2.76 - 2.80 2.71 - 2.75 2.60 - 2.63 2.36 - 2.42
HQ3 4.72 - 4.81 2.70 - 2.81 2.29 - 2.36 2.19 - 2.24 2.11 - 2.16 1.84 - 1.90 1.49 - 1.57
HQ4 76.79 - 77.45 83.21 - 84.94 115.63 - 117.08 163.65 - 172.77 156.89 - 167.44 152.44 - 162.54 138.61 - 151.56

Hawk/O HQ1 0.31 - 0.31 0.32 - 0.33 0.25 - 0.26 0.30 - 0.31 0.30 - 0.32 0.30 - 0.33 0.29 - 0.32
HQ2 0.63 - 0.63 0.60 - 0.62 0.46 - 0.48 0.51 - 0.53 0.54 - 0.57 0.54 - 0.57 0.52 - 0.56
HQ3 5.64 - 5.83 3.25 - 3.39 3.07 - 3.22 3.14 - 3.26 2.72 - 2.82 2.42 - 2.52 2.20 - 2.31
HQ4 45.51 - 45.92 48.58 - 49.78 36.84 - 41.67 78.10 - 82.31 72.66 - 77.72 73.43 - 81.44 71.80 - 80.36

Mogwaï MQ 0.19 - 0.19 0.20 - 0.21 0.25 - 0.25 0.20 - 0.20 0.16 - 0.16 0.19 - 0.19 0.18 - 0.18

Table 9: Bounds of the 99% confidence interval for median execution time ratios between CDO and other tools (GraBaTs’09).
Values greater than 1 indicate that CDO is slower, while values less than 1 indicate that the other tool is slower.

S
tress-T

estin
g

R
em

o
te

M
o
d
el

Q
u
ery

in
g

A
P

Is
3
9

Tool Query 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads

H/N/EOL CS 5.08 - 5.13 5.23 - 5.30 5.32 - 5.35 5.32 - 5.45 5.33 - 5.40 5.23 - 5.29 4.90 - 5.02
PL 2.04 - 2.05 3.18 - 3.21 3.65 - 3.72 3.91 - 4.07 3.91 - 4.03 1.44 - 1.50 1.24 - 1.30
RS 0.85 - 0.85 0.84 - 0.85 0.69 - 0.70 0.68 - 0.70 0.68 - 0.69 0.66 - 0.68 0.64 - 0.66
SM 16.60 - 16.60 14.50 - 15.00 12.00 - 12.80 17.50 - 18.82 19.48 - 21.49 19.51 - 23.03 24.31 - 29.08
SS 2.46 - 2.52 2.54 - 2.58 1.29 - 1.97 1.30 - 1.39 1.33 - 1.42 1.31 - 1.39 1.29 - 1.37

H/N/EPL CS 4.33 - 4.37 4.55 - 4.60 4.66 - 4.69 4.68 - 4.78 4.65 - 4.71 4.62 - 4.68 4.36 - 4.46
PL 1.33 - 1.34 2.11 - 2.14 2.42 - 2.46 2.57 - 2.65 2.57 - 2.64 1.04 - 1.08 0.91 - 0.94
RS 0.74 - 0.74 0.73 - 0.73 0.61 - 0.62 0.61 - 0.63 0.61 - 0.62 0.60 - 0.61 0.58 - 0.59
SM 11.71 - 11.71 11.71 - 11.86 8.50 - 9.20 11.24 - 12.36 15.30 - 17.50 14.37 - 16.70 14.84 - 17.59
SS 1.92 - 1.95 1.92 - 1.94 0.95 - 1.47 1.0 - 1.0 1.0 - 1.0 0.90 - 0.95 0.90 - 0.95

H/O/EOL CS 2.53 - 2.55 2.52 - 2.55 2.36 - 2.37 2.20 - 2.24 2.22 - 2.30 2.27 - 2.40 2.25 - 2.42
PL 1.02 - 1.03 1.54 - 1.56 1.39 - 1.45 1.37 - 1.44 1.64 - 1.71 1.24 - 1.31 1.04 - 1.10
RS 0.25 - 0.25 0.23 - 0.24 0.18 - 0.18 0.17 - 0.18 0.17 - 0.18 0.17 - 0.18 0.16 - 0.17
SM 9.56 - 9.56 9.11 - 9.22 5.00 - 5.51 5.95 - 6.76 6.69 - 7.37 7.01 - 7.89 7.59 - 9.08
SS 1.29 - 1.30 1.24 - 1.26 0.54 - 0.69 0.44 - 0.47 0.48 - 0.51 0.51 - 0.56 0.50 - 0.56

H/O/EPL CS 2.17 - 2.19 2.09 - 2.12 1.99 - 2.01 1.97 - 2.00 2.05 - 2.12 2.11 - 2.21 2.05 - 2.17
PL 0.72 - 0.72 1.11 - 1.13 1.0 - 1.0 1.0 - 1.0 1.14 - 1.17 0.72 - 0.76 0.67 - 0.70
RS 0.23 - 0.23 0.21 - 0.22 0.17 - 0.17 0.16 - 0.17 0.16 - 0.16 0.16 - 0.17 0.15 - 0.16
SM 9.11 - 9.22 7.64 - 7.91 3.67 - 4.08 4.90 - 5.57 5.24 - 5.76 5.09 - 5.71 6.64 - 7.90
SS 0.97 - 0.97 0.91 - 0.92 0.41 - 0.63 0.33 - 0.35 0.36 - 0.38 0.36 - 0.39 0.38 - 0.42

Mogwaï CS 0.13 - 0.14 0.13 - 0.14 0.14 - 0.14 0.12 - 0.12 0.08 - 0.08 0.09 - 0.09 0.09 - 0.09
PL 0.84 - 0.84 1.32 - 1.33 1.35 - 1.37 1.23 - 1.26 1.06 - 1.09 1.10 - 1.13 1.11 - 1.15
RS 0.57 - 0.57 0.53 - 0.53 0.44 - 0.45 0.42 - 0.43 0.38 - 0.39 0.38 - 0.39 0.37 - 0.38
SM 2.52 - 2.53 2.41 - 2.44 1.56 - 1.68 1.40 - 1.49 1.30 - 1.38 1.36 - 1.44 1.29 - 1.39
SS 1.30 - 1.31 1.20 - 1.22 0.53 - 0.83 0.41 - 0.44 0.36 - 0.38 0.38 - 0.40 0.34 - 0.36

Table 10: Bounds of the 99% confidence interval for median execution time ratios between CDO and other tools (Train Bench-
mark). Values greater than 1 indicate that CDO is slower, while values less than 1 indicate that the other tool is slower.

40 A. Garcia-Dominguez et al.

clients, but then quickly drop in performance with more clients. Ideally, we
would simply swap relational backends with graph-based backends in each tool
and do separate comparisons. Unfortunately, CDO does not include a graph-
based backend, and Hawk and Mogwaï do not support relational backends.
Instead, we will perform the comparison across tools, assuming that each tool
was specially tailored to their backend and that therefore they are good rep-
resentatives for their type of approach. These results could be revisited if new
backends were developed, but they should serve as a good snapshot of their
standing at the time of writing this paper.

In this section, the relational approaches will be represented by CDO (based
on the embedded H2 database), and the graph-based approaches will be rep-
resented by Hawk (combined with Neo4j 2.0.5 or OrientDB 2.2.8) and Mogwaï
(backed by NeoEMF, which uses Neo4j 1.9.6). CDO is one of the most mature
model persistence layers and has considerable industrial adoption, so it can be
considered a good representative for the relational approaches.

First, Kruskal-Wallis tests confirmed (with p-values < 0.01) that for each
combination of query and client threads, TCP execution times had significant
differences across the tested combinations of tool, backend and query language.
Post-hoc Dunn tests were used to evaluate the null hypotheses that CDO
execution times were similar to each of the non-CDO configurations (p-values
< 0.01). In most cases, the null hypothesis was rejected, but there were some
exceptions (2 out of 63 for the GraBaTs’09 queries, and 4 out of 175 for the
Train Benchmark queries).

After confirming significant differences for most CDO vs. non-CDO pairs,
the next step was quantifying how those pairs scaled relative to each other.
Cliff deltas would have been able to express if a certain configuration started
being faster more often than the other at a certain point, but they could
not show if the gap between CDO and the non-CDO configuration increased,
stayed the same or decreased together with the client threads. Instead, it was
decided to use the median of the tc/to ratios between random pairings of the
tc CDO TCP execution times and the to non-CDO TCP execution times:
values larger than 1 would imply that CDO was slower, and values smaller
than 1 would mean that CDO was faster. To increase the level of confidence
of the results, bootstrapping over 10 000 rounds was used to estimate a 99%
confidence interval of this “median of ratios” metric. The confidence intervals
produced for the GraBaTs’09 and Train Benchmark queries are shown on
Tables 9 and 10, respectively. Cells with “1.0–1.0” represent cases where CDO
and the tool did not report significantly different times according to the Dunn
tests.

In absolute terms, in most cases if a query runs faster or slower on a certain
tool than on CDO, it will remain that way for all client threads. However, there
are some exceptions:

– Mogwaï becomes slightly faster than CDO for the PL query with 2 or more
threads, and slower than CDO for SS with 4+ threads. In fact, all non-
CDO solutions experience a noticeable drop in performance for SS with 4

Stress-Testing Remote Model Querying APIs 41

threads: it is just that Mogwaï did not have enough leeway to stay ahead of
CDO. It appears that when running queries with no specific optimisations
(e.g. indexed attributes), there may be less thread contention on CDO than
on the other tools, closing the gap that originally existed in some cases.

– Hawk with Neo4j/EPL and Hawk with OrientDB/EOL start with better
performance than CDO for SS, but quickly drop to similar or slightly in-
ferior performance when using 4 or more client threads. In the first case,
the additional type checks performed by EPL are weighing Hawk down.
In the second case, the lower performance of the OrientDB backend gives
Hawk less margin to handle the CPU saturation at 4 threads – with Ori-
entDB/EPL, Hawk is already slightly slower than CDO with 1 thread.

One interesting observation is that depending on the combination between
the query and the tool, some queries maintain a consistent ratio with CDO
(e.g. OQ on Mogwaï), others raise then fall (PL for Mogwaï and Hawk), and
others simply fall (RS and SS on all tools). This further supports the idea
that thread contention profiles among the different tools vary notably for the
same query. While further studies would be necessary to find out the specific
reasons for most of these cases, there are some configurations for which it is
easier to explain. The reason behind HQ4 having consistently increasing ratios
for Hawk/Neo4j and Hawk/OrientDB is that it reduces multiply nested loops
with a single lookup, changing the underlying order of the computation: the
heavier the load, the larger the contrast created by this change.

As a general conclusion, graph databases by themselves are not a silver
bullet — Mogwaï for instance did not outspeed CDO in many queries. It
is important to use recent releases and take advantage of every feature at
their disposal in order to achieve a solid advantage over mature relational
technologies.

4.7 Threats to Validity

This section discusses the threats to the internal and external validity of the
results, as well as the steps we have taken to mitigate them. Starting with the
internal validity of the results, these are the threats we have identified:

– There is a possibility that CDO, Hawk or Mogwaï could have been config-
ured or used in a more optimal way. Since the authors developed Hawk, this
may have allowed them to fine-tune Hawk better than CDO or Mogwaï.
However, the servers did not show any undesirable virtual memory usage,
excessive garbage collection or unexpected disk I/O. The H2 backend was
chosen for CDO due to its maturity in comparison to the other backends,
and the Neo4j backend has consistently produced the best results for Hawk
according to previous work. Mogwaï is only available for the Neo4j backend
of NeoEMF, so using an alternative configuration was out of the question.
The authors contacted the CDO developers regarding how to compress
responses and limit results by resource, to make it more comparable with

42 A. Garcia-Dominguez et al.

Hawk, and were informed that these were not supported yet27. The authors
also collaborated with the Mogwaï developers to improve performance as
much as possible during the writing of the paper, contributing bugfixes and
suggesting various improvements that reduced query latency.

– The queries for CDO/Mogwaï and Hawk were written in different lan-
guages, so part of the differences in their performance may be due to the
languages and not the systems themselves. The aim in this study was to
use the most optimized language for each system, since Hawk does not
support OCL and Mogwaï and CDO do not support EOL.
Analytically, we do not anticipate that this is likely to have a strong impact
on the obtained results for CDO and Hawk as both languages are very
similar in nature and are executed via mature Java-based interpreters. It
may only be an issue with Mogwaï, whose OCL-to-Gremlin transformation
is still a work in progress and may change when Mogwaï transitions to
Neo4j 2.x.

As for whether the results can be generalised beyond this study, there are
a few threats that must be acknowledged:

– This study has not considered running several different queries concur-
rently. While multiple configurations for Hawk have been considered (all
4 combinations of Neo4j/Orient and EOL/EPL), only one configuration
was studied for CDO and for Mogwaï. The tested configurations would be
quite typical in most organisations, but it would be interesting to perform
studies that mix different queries running in different models concurrently,
and configure Hawk and CDO with different backends, memory limits, and
model sizes.

– The experiment has compared a specific set of tools: one for model repos-
itories (CDO), one for graph-based model indexing (Hawk) and one for
querying models persisted as graphs (Mogwaï on top of NeoEMF/Graph).
This raises the question of whether the results could be extended to other
tools of the same types.
The first part of our answer is that this categorization was not relevant for
this study: any tool could have been used as long as it provided a high-level
remote querying API and relied on a database for persisting the models.
CDO, Mogwaï (in combination with NeoEMF/Graph) and Hawk are three
instances of these same requirements, and therefore any generalisations are
backed by not one, but the three tools.
The next part is that while some of the detailed results are specific to cer-
tain tools (e.g. comparisons between Neo4j releases), there are higher-level
results which reaffirm knowledge from other areas in software engineering.
For instance, RQ1 showed that HTTP’s overhead was roughly constant if
the message patterns were similar, and RQ2 confirmed just how much of
an impact a different message pattern could have. RQ3 compared generic
against application-specific caching, RQ4 discussed readability and query

27 https://www.eclipse.org/forums/index.php?t=rview&goto=1722258
https://www.eclipse.org/forums/index.php?t=rview&goto=1722096

Stress-Testing Remote Model Querying APIs 43

implementation quality, and RQ5 confirmed using a graph backend may
not always bring better performance by itself. The high-level observations
collected during these studies can be extended to any database-backed re-
mote model querying solution in the future: indeed, part of our intention
with this paper was to make future developers aware of these aspects.

– The results are based on two specific case studies: it could be argued that
different case studies could have yielded different results. To avoid intro-
ducing bias, the authors refrained from defining custom benchmarks and
instead adopted benchmarks from the existing literature. These bench-
marks were picked as they covered different application areas (software en-
gineering versus critical systems modelling), different metamodels (highly
hierarchical software metamodels versus “flat” railway metamodels), and
different workloads (localized pattern matching in GraBaTs’09 versus a
combination of complex pattern matching and simple “all X with attribute
Y meeting Z” queries in TB).
For these reasons, we argue that the 7 queries across the 2 case studies are
representative of pattern matching queries on models, where we want to
find elements whose state and relationships meet certain conditions. We do
not expect other model querying case studies to change the results signif-
icantly. However, our case studies do not cover other model management
tasks, such as code generation or model transformation: those would re-
quire their own case studies. Incidentally, Hawk did significantly speed up
code generation in our previous work (Garcia-Dominguez et al, 2016a).

5 Conclusions and Further Work

This study was a largely extended version of our prior conference paper, going
from 2 configurations to 6 (CDO, Mogwaï, and all 4 combinations of Hawk
with Neo4j/Orient and with EOL/EPL), and adding 6 new queries written in
3 languages (OCL, EOL and EPL). This wider study confirmed some prior
results, while giving a more nuanced outlook on others.

It was confirmed once more that the network protocol used had very dif-
ferent impact depending on how it was used: CDO once more had dramatic
overheads of 600%, while Hawk and our simple HTTP server for Mogwaï had
at most a 20% overhead. In fact, statistical tests showed that for the more ef-
ficient GraBats’09 queries, there was no significant difference beyond a certain
number of client threads. For the Train Benchmark queries, some queries even
ran faster on HTTP thanks to the more fine tuned default thread manage-
ment on the Jetty HTTP server. One worrying result is that for some Train
Benchmark queries, CDO showed incorrect and failed queries even over TCP
— this could point to underlying thread safety or race condition issues in the
framework or the networking library.

Comparing CDO/Hawk packet captures confirmed that the problem with
CDO over HTTP was the naïve way in which server-to-client communications

44 A. Garcia-Dominguez et al.

had been implemented, which used simple polling instead of state-of-the-art
approaches such as WebSockets.

Regarding caching and indexing, CDO’s application-agnostic caching per-
formed quite well in both the GraBaTs’09 and Train Benchmark queries. How-
ever, Hawk was able to outspeed CDO easily when derived and indexed at-
tributes (a form of application-specific caching) were used, as it happened for
the HQ3, HQ4, CS, PL and SM queries. The Hawk OrientDB backend did
show some performance degradation when performing ranged queries on at-
tributes with high cardinalities, however. The current version of Mogwaï did
not perform as well in this regard, as it had no support for indexed attributes
and does not implement a caching layer of its own: the only caching is for the
compiled ATL script that transforms OCL queries into Gremlin programs. We
suggest that Mogwaï should adopt one in the future.

As for the impact of the query language, it was found that Mogwaï’s full
recompilation of OCL into native Gremlin queries did not give it a definitive
advantage over CDO’s on-the-fly SQL query generation: in fact, it seemed
to perform the worst among all tools, though this may have been due to
the use of an older Neo4j release. The interpreted nature of EOL and EPL
did not result in performance issues, but it was found that without taking
the appropriate precautions, EPL would perform additional work that would
result in a severe drop of performance for queries with many nested loops.
Beyond the implementation approach of the language, we found that Mogwaï
missed the opportunity to integrate Neo4j’s ability to traverse edges in both
directions into its OCL dialect: if it had done so, it would have readily outsped
CDO on the SN query, as Hawk did (median was 300ms for Hawk/Neo4j/EOL
compared to 100s for CDO).

Finally, 99% confidence intervals for the execution time ratios of CDO
against the other configurations were computed. For the most part, tools re-
tained their relative performance as the number of client threads increased.
There were some exceptions, however: some configurations that started faster
than CDO using the Mogwaï tool, the Hawk OrientDB backend or the EPL
query language would become slower than CDO as the number of threads in-
creased – the only configuration that did not show this was Hawk with Neo4j
and EOL. However, even this optimal configuration could somewhat lose its
performance edge against CDO in some queries: a future study comparing
levels of thread contention across tools could be useful to shed light on the
reasons.

In closing, this study showed that achieving high-performance and scalable
remote model querying is not only a matter of choosing the right backend and
using it efficiently: every other part of the system must be carefully engineered.
Our ideal system would meet these requirements:

– The API should support both synchronous and asynchronous querying.
Synchronous querying is more robust against high loads (as seen with Hawk
and Mogwaï), since it does not require maintaining a correlation between
multiple responses. Asynchronous querying, where the results are trickled

Stress-Testing Remote Model Querying APIs 45

back to the client, can handle larger result sets but is hard to protect
against stressful situations (as seen with CDO).

– Any server-to-client communication needed for asynchronous querying should
be conducted over a real full-duplex channel rather than through polling,
to avoid introducing unnecessary delays.

– To reduce roundtrip times, APIs should support running entire queries in
the server rather than simply fetching individual elements to be filtered on
the client. In other words, the API should include two levels of granularity:
one at the query level, and one at the model element level.

– The query engine must include a caching layer, and ideally should be able
to precompute the results of common subqueries.

– The query language must allow users to take advantage of important fea-
tures on the backend, while not imposing unexpected work on it.

– Using a graph database can noticeably improve performance in queries
that require following many references, but it is not a silver bullet: graph
databases are young in comparison to relational databases, and presently
their use requires more fine tuning and benchmarking.

For future work, we would like to examine scalability within a real collab-
orative modelling environment instead of producing synthetic loads, where a
mix of queries is run concurrently according to the needs of the users over time.
Another direction for future work is analysing the queries to split the work in
a query efficiently between the client and the server, using the server for model
retrieval and the client to transform the retrieved values. This will require bal-
ancing the reduced workload on the server with the increased network latency
and transmission costs.

One more possible line of work is studying how to scale systems such as
Hawk and CDO horizontally over multiple servers, either by sharding or split-
ting the data according a domain-specific criteria (e.g. Java projects in the
GraBaTs’09 dataset, or subsets of the rail network in the Train Benchmark
datset), or by replicating all the data. Sharding could be less expensive per
server, but it would require breaking down queries into smaller parts and in-
tegrating the results: this could be done in the client, or in an intermediate
“broker” node. Effectively, this would increase the number of requests done
through the network, and it may not be worth it except for very large queries.
Querying with replication would be simpler, only requiring the addition of a
load balancer in front of the servers. In fact, this particular approach would
be easier to study in the short term, as Hawk already has an experimental
integration with the multi-master replication mode of OrientDB. So far it has
only been used for increased availability, but increased performance could be
achieved as well by developing a load balancer node that exposed the same
API as current Hawk servers.

Acknowledgements This research was part supported by the EPSRC, through the Large-
Scale Complex IT Systems project (EP/F001096/1), and by the EU through the MONDO
FP7 STREP project (#611125). We would also like to thank Gwendal Daniel for his support

46 A. Garcia-Dominguez et al.

on the use of Mogwaï and NeoEMF. The research data supporting this publication are
available on http://dx.doi.org/10.17036/44783FFA-DA36-424D-9B78-5C3BBAE4AAA1.

References

Bagnato A, Brosse E, Sadovykh A, Maló P, Trujillo S, Mendialdua X, De Car-
los X (2014) Flexible and scalable modelling in the MONDO project: Indus-
trial case studies. In: Proceedings of the 3rd Extreme Modeling Workshop,
Valencia, Spain, pp 42–51

Barmpis K, Kolovos DS (2014a) Evaluation of contemporary graph databases
for efficient persistence of large-scale models. Journal of Object Technology
13-3:3:1–26, DOI 10.5381/jot.2014.13.3.a3

Barmpis K, Kolovos DS (2014b) Towards scalable querying of large-scale mod-
els. In: Proceedings of the 10th European Conference on Modelling Foun-
dations and Applications, pp 35–50, DOI 10.1007/978-3-319-09195-2_3

Barmpis K, Shah S, Kolovos DS (2015) Towards incremental updates in large-
scale model indexes. In: Proceedings of the 11th European Conference on
Modelling Foundations and Applications, DOI 10.1007/978-3-319-09195-
2_3

Benelallam A, Gómez A, Sunyé G, Tisi M, Launay D (2014) Neo4EMF, a
scalable persistence layer for EMF models. In: Proceedings of the 10th Eu-
ropean Conference on Modelling Foundations and Applications, Springer,
pp 230–241

Bonett DG, Seier E (2006) Confidence Interval for a Coefficient of Dispersion in
Nonnormal Distributions. Biometrical Journal 48(1):144–148, DOI 10.1002/
bimj.200410148

Bruneliére H, Cabot J, Dupé G, Madiot F (2014) MoDisco: A model
driven reverse engineering framework. Information and Software Technol-
ogy 56(8):1012–1032, DOI 10.1016/j.infsof.2014.04.007

Carlos XD, Sagardui G, Murguzur A, Trujillo S, Mendialdua X (2015) Run-
time translation of model-level queries to persistence-level. In: Model-Driven
Engineering and Software Development, Springer, Cham, pp 97–111, DOI
10.1007/978-3-319-27869-8_6

Chen T, Guo Q, Temam O, Wu Y, Bao Y, Xu Z, Chen Y (2015) Statistical
Performance Comparisons of Computers. IEEE Transactions on Computers
64(5):1442–1455, DOI 10.1109/TC.2014.2315614

Cohen J (1988) Statistical Power Analysis for the Behavioral Sciences, 2nd
edn. Routledge, ISBN 0-8058-0283-5

Daniel G, Sunye G, Cabot J (2016) Mogwaï: A framework to handle complex
queries on large models. In: Proceedings of the IEEE 10th International
Conference on Research Challenges in Information Science, IEEE, Grenoble,
France, pp 1–12, DOI 10.1109/RCIS.2016.7549343

Dunn OJ (1961) Multiple Comparisons Among Means. Journal of the Ameri-
can Statistical Association 56(293):52, DOI 10.2307/2282330

Stress-Testing Remote Model Querying APIs 47

Garcia-Dominguez A, Barmpis K, Kolovos DS, da Silva MAA, Abherve A,
Bagnato A (2016a) Integration of a graph-based model indexer in commer-
cial modelling tools. In: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, ACM
Press, Saint Malo, France, pp 340–350, DOI 10.1145/2976767.2976809

Garcia-Dominguez A, Barmpis K, Kolovos DS, Wei R, Paige RF (2016b)
Stress-Testing Centralised Model Stores. In: Proceedings of the 12th Eu-
ropean Conference on Modelling Foundations and Applications, Springer,
Vienna, Austria, pp 48–63, DOI 10.1007/978-3-319-42061-5_4

Garmendia A, Guerra E, Kolovos DS, de Lara J (2014) EMF Splitter: A
Structured Approach to EMF Modularity. In: Proceedings of the 3rd Ex-
treme Workshop at the ACM/IEEE 17th International Conference on Model
Driven Engineering Languages and Systems, Valencia, Spain, vol 1239, pp
22–31, URL http://ceur-ws.org/Vol-1239/xm14_submission_3.pdf

Georges A, Buytaert D, Eeckhout L (2007) Statistically rigorous Java perfor-
mance evaluation. ACM SIGPLAN Notices 42(10):57–76

Gómez A, Tisi M, Sunyé G, Cabot J (2015) Map-based transparent persistence
for very large models. In: Egyed A, Schaefer I (eds) Fundamental Approaches
to Software Engineering, Lecture Notes in Computer Science, vol 9033,
Springer Berlin Heidelberg, pp 19–34, DOI 10.1007/978-3-662-46675-9_2

GraBaTs (2009) 5th International Workshop on Graph-Based Tools. URL
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/, last checked:
November 14th, 2016.

Hess MR, Kromrey JD (2004) Robust confidence intervals for effect sizes:
A comparative study of Cohen’s d and Cliff’s delta under non-normality
and heterogeneous variances. In: Annual Meeting of the American Edu-
cational Research Association, pp 1–30, URL http://www.coedu.usf.edu/
main/departments/me/documents/cohen.pdf

Koegel M, Helming J (2010) EMFStore: a model repository for EMF models.
In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, ACM, vol 2, pp 307–308, DOI 10.1145/1810295.1810364

Kolovos DS, Paige RF, Polack FA (2008) Scalability: The holy grail
of model driven engineering. In: Proceedings of the 1st Int. Work-
shop on Challenges in Model-Driven Software Engineering, Toulouse,
France, pp 10–14, URL http://ssel.vub.ac.be/ChaMDE08/_media/
chamde2008_proceedingsd121.pdf, last checked: November 14th, 2016.

Kolovos DS, Rose L, Garcia-Dominguez A, Paige R (2016) The Epsilon book,
chap The Epsilon Pattern Language (EPL), pp 153–164. URL http://

www.eclipse.org/epsilon/doc/book/, last checked: November 14th, 2016.
Kramler G, Kappel G, Reiter T, Kapsammer E, Retschitzegger W, Schwinger

W (2006) Towards a semantic infrastructure supporting model-based tool
integration. In: Proceedings of the 2006 International Workshop on Global
Integrated Model Management, ACM, New York, NY, USA, GaMMa ’06,
pp 43–46, DOI 10.1145/1138304.1138314

Mann HB, Whitney DR (1947) On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathe-

48 A. Garcia-Dominguez et al.

matical Statistics 18(1):50–60, DOI 10.1214/aoms/1177730491
Mohagheghi P, Gilani W, Stefanescu A, Fernandez MA (2012) An empirical

study of the state of the practice and acceptance of model-driven engineering
in four industrial cases. Empirical Software Engineering 18(1):89–116, DOI
10.1007/s10664-012-9196-x

Pagán JE, Cuadrado JS, Molina JG (2013) A repository for scalable model
management. Software & Systems Modeling 14(1):219–239, DOI 10.1007/
s10270-013-0326-8

Rath I, Varró D (2016) Prototype tool for collaboration. Project deliverable
D4.4, Budapest University of Technology, Budapest, Hungary, URL http:

//www.mondo-project.org/
Razali NM, Wah YB (2011) Power comparisons of Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling tests. Journal of statistical mod-
eling and analytics 2(1):21–33, iSBN 978-967-363-157-5

Scheidgen M (2013) Reference representation techniques for large models. In:
Proceedings of the Workshop on Scalability in Model Driven Engineering,
ACM, Budapest, Hungary, DOI 10.1145/2487766.2487769

Sottet JS, Jouault F (2009) Program comprehension. In: Proceed-
ings of the 5th International Workshop on Graph-Based Tools,
URL http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/
grabats2009reverseengineering.pdf, last checked: November 11th, 2016.

Steinberg D, Budinsky F, Paternostro M, Merks E (2008) EMF: Eclipse
Modeling Framework, 2nd edn. Addison-Wesley Professional, ISBN 978-
0321331885

Szárnyas G, Izsó B, Ráth I, Varró D (2017) The Train Benchmark: cross-
technology performance evaluation of continuous model queries. Software &
Systems Modeling DOI 10.1007/s10270-016-0571-8

Wei R, Kolovos DS, Garcia-Dominguez A, Barmpis K, Paige RF (2016) Par-
tial loading of XMI models. In: Proceedings of the ACM/IEEE 19th Inter-
national Conference on Model Driven Engineering Languages and Systems,
ACM Press, Saint Malo, France, pp 329–339, DOI 10.1145/2976767.2976787

	Introduction
	Background and Related Work
	Experiment Design
	Results and Discussion
	Conclusions and Further Work

