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Main text 

Summary 

While several lung cancer susceptibility loci have been identified, much of lung cancer 

heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent 

were genotyped on the OncoArray and combined with existing data for an aggregated GWAS 

analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility 

loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the 

striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four 

loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression 

quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, 

SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic 

nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further 

exploration of the target genes will continue to provide new insights into the etiology of lung 

cancer. 

 
Text. 

Lung cancer continues to be the leading cause of cancer mortality worldwide1. Although tobacco 

smoking is the main risk factor, the heritability of lung cancer has been estimated at 18%2. 

Genome-wide association studies (GWAS) have identified several lung cancer susceptibility loci 

including CHRNA3/5, TERT, HLA, BRCA2, CHEK2 and several more3,4, nevertheless most of 

its heritability remains unexplained. With the goal of conducting a comprehensive 

characterization of common lung cancer genetic susceptibility loci, we undertook 

additional genotyping of lung cancer cases and controls using the OncoArray5 genotyping 

platform, which queried 517,482 SNPs chosen for fine mapping of susceptibility to 

common cancers as well as for de novo discovery (Supplementary Table 1, and Online 

methods). All participants gave an informed consent and each study obtained local ethics 

committee approval and after quality control filters (Online Methods), a total of 14,803 cases 

and 12,262 controls of European ancestry were retained and underwent imputation techniques 

to infer additional genotypes for genetic variants included in the 1000 Genomes Project data 

(Online Methods). Logistic regression was then used to assess the association between 

variants (n=10,439,017 SNPs) and lung cancer risk, as well as by predominant histological 

types and by smoking behaviour (Online Methods). Fixed-effects models (Online Methods) 

were used to combine the OncoArray results with previously published lung cancer GWAS3,4,6, 
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allowing for analysis of 29,266 patients and 56,450 controls of European descent (Table 1). 

There were no signs of genomic inflation overall or for any subtypes (Supplementary  

Figure 1) indicating little evidence for confounding by cryptic population structure (Online 

methods). All findings with a P-value less than 1x10-5 are reported in Supplementary  

Table 2. As shown in Figure 1, the genetic architecture of lung cancer varies markedly among 

histological subtypes, with striking differences between lung adenocarcinoma and squamous cell 

carcinoma. Manhattan plots for small cell carcinoma (SCLC), ever and never smoking are 

displayed in Supplementary Figure 2. The array heritability estimates were comparable among 

histological subsets, but squamous cell carcinoma appeared to share more genetic architecture 

with small cell carcinoma (SCLC) than with adenocarcinoma (Supplementary Table 3). 

 

Table 2 presents summary results of all loci with sentinel variants (defined as the variant with the 

lowest P-value at each locus) that reached genome-wide significance (P-value < 5x10-8) for lung 

cancer overall and by histological subtypes. Sentinel variants stratified by new and previous 

genotyping and additional statistical significance assessed based on the number of effective 

tests, Approximate Bayes Factors, and Bayesian False Discovery Probability are presented in 

Supplementary Table 4 and 5, respectively. Repeat genotyping of 12% of the OncoArray 

genotyped samples confirmed the fidelity of the genotyping or imputation for the risk loci, and 

showed excellent concordance of imputation for SNPs with MAF>0.05 (Online methods, 

Supplementary note). Among the 18 loci that reached GWAS significance, 10 had not reached 

significance in a genome-wide scan (Figure 1). Of these, four novel loci were associated with 

lung cancer overall and six with adenocarcinoma. 

 

To decipher the association between these 18 loci and lung cancer risk, we further investigated 

their association with gene expression level in normal lung tissues (n=1,425) (Supplementary 

Table 6, Supplementary Figure 3), genomic annotations (Supplementary Table 7) smoking 

propensity (cigarettes smoked per day (n=91,046) and Fagerström Test for Nicotine Dependence 

metrics (n=17,074)) (Table 2). Previous studies have shown shared risk for lung cancer and 

COPD through inflammation and ROS pathways7; therefore, we also assessed the association 

between   sentinel SNPs and reduced lung capacity through spirometry measurements (forced 

expiratory volume in 1 second [FEV1], forced vital capacity [FVC], n =30,199) (Table 2 and 

Online Methods). 
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Variants at 4 novel loci (1p31.1, 6q27, 8p21, 15q21.1) were associated with lung cancer risk 

overall, with little evidence for heterogeneity among subtypes (Supplementary Figure 4). The 

1p31.1 locus, recently identified in a pathway-based analysis of the TRICL data8, represented by 

rs71658797 (Odds Ratio [OR]=1.14, 95% Confidence Interval [CI] 1.09-1.18, P-value=3.25 x 

10-11), is located near FUBP1/DNAJB4 (Supplementary Figure 4). At 6q27, rs6920364 was 

associated with lung cancer risk with an OR of 1.07 (95% CI 1.04-1.09, P-value=2.9x10-8) with 

little heterogeneity found by smoking status (Supplementary Figure 4). This locus is predicted 

to regulate RNASET2 (Supplementary Figure 5, Supplementary Table 7). We identified 

rs6920364 as a lung cis-eQTL for RNASET2, an extracellular ribonuclease, in all five cohorts 

tested (Supplementary Table 6), with increased lung cancer risk correlating with increased 

RNASET2 expression (Figure 2). Variants correlated with rs6920364 (r2>0.88) have been 

noted in GWAS of Crohn’s disease and inflammatory bowel disease9-13. 

 
The 8p21 locus has been suggested as a lung cancer susceptibility locus by pathway analysis14 

and now confirmed at GWAS significance level. It is a complex locus represented by sentinel 

variant rs11780471 associated with lung cancer (OR=0.87, 95% CI 0.83-0.91, P-

value=1.69x10-8) (Supplementary Figure 4) but this region contained additional uncorrelated 

variants (pairwise r2< 0.10) associated with lung cancer (Supplementary Table 8). Multivariate 

analysis was consistent with multiple susceptibility alleles at this locus (Supplementary Table 

8). In contrast to lung tissue (Figure 3A, Supplementary Table 6, Supplementary Figure 3), 

we noted that the alleles associated with lung cancer tended to be associated with cerebellum 

expression of CHRNA2, a member of the cholinergic nicotinic receptor (Figure 3B). The 

CHRNA2 rs11780471 cis-eQTL effect in the brain was limited to the cerebellum (Figure 3C), 

a region not traditionally linked with addictive behaviour but where an emerging role is 

suggested15. We therefore investigated rs11780471 in the context of smoking behaviour 

(Supplementary Methods). Unlike the well- described 15q25.1 (rs55781567) CHRNA5 locus 

(Table 2), rs11780471 was not associated with number of cigarettes smoked per day or the 

FTND metrics (Figure 3D). Nevertheless, lung cancer risk allele carriers of rs11780471 

tended to be smokers and initiated smoking at earlier ages (Figure 3D), implying that this 

variant’s association with lung cancer could potentially be mediated via influencing aspects of 

smoking behaviour.  Another potentially relevant gene in this region is EPHX2, a xenobiotic 

metabolism gene.   
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The genetic locus at 15q21 (rs66759488) was shown to be associated with lung cancer 

(OR=1.07, 95% CI 1.04-1.10, p=2.83x10-8) overall and across lung cancer histologies 

(Supplementary Figure 4). Genomic annotation suggests that genetic variants correlated with 

rs66759488 may influence the SEMA6D gene (Supplementary Table 7), but there was no clear 

eQTL effect (Supplementary Table 6) and this variant did not appear to have a major influence 

on smoking propensity or lung function (Table 2). 

 

For specific lung cancer histology subtypes, we identified 6 novel loci associated with lung 

adenocarcinoma (15q21, 8p12, 10q24, 20q13.33, 11q23.3 and 9p21.3) (Table 2). The locus at 

15q21 (rs77468143, OR=0.86, 95% CI 0.82-0.89, p=1.15x10-16) is predicted to target 

SECISBP2L (Supplementary Figure 5) and expression analysis indicated rs77468143 to be a 

cis-eQTL for SECISBP2L in lung tissue in all eQTL cohorts tested (Supplementary Table 6). 

The genetic risk allele appears to correlate with decreased expression levels of SECISBP2L 

(Figure 2, Supplementary Figure 5), an observation that is consistent with SECISBP2L being 

down regulated in lung cancers16. rs77468143 was nominally associated with lung function 

(Table 2), potentially implicating inflammation of lung as part of the mechanism at this locus. 

 
At 8p12, expression analysis indicated that the alleles associated with lung adenocarcinoma 

(represented by the sentinel variant rs4236709 (Table 2)), also appear to be a lung cis-eQTL for 

the NRG1 gene (Supplementary Table 6, Supplementary Figure 5). This region also contains 

putative regulatory regions (Supplementary Figure 5). Somatic translocations of NRG1 are 

infrequently observed in lung adenocarcinomas17. While somatic translocations at 8p12 generally 

take place in never smokers and linked with ectopic activation of NRG1, rs4236709 was 

associated with lung cancer in both ever and never smokers (Supplementary Figure 4) and its 

genetic risk correlated with decreased NRG1 expression (Figure 2). Interestingly, 6q22.1 variants 

located near ROS1, another gene somatically translocated in lung adenocarcinoma and in which 

nearby germline variants have been associated with never smoking lung adenocarcinoma in 

Asian women18, were associated with lung adenocarcinoma at borderline genome wide 

significance (rs9387479; OR=0.92, 95% CI 0.89-0.95, p=6.57x10-8) (Supplementary Table 2). 

 
Three of sentinel variants associated with lung adenocarcinoma are located near genes related to 

telomere regulation; rs7902587 (10q24) and rs41309931 (20q13.33) near OBFC1 and RTEL1, 
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respectively, and rs2853677 near TERT as previously noted19,20. The variants at 10q24 associated 

with lung adenocarcinoma also appear associated with telomere length (Supplementary Figure 

6). By contrast, and consistent with observations with 20q13.33 variants associated with 

glioma 21, the variants associated with telomere length at 20q13.33 were not necessarily those 

associated with lung adenocarcinoma (Supplementary Figure 6). Nevertheless, more generally 

the variants associated by GWAS with longer telomere length22 appear linked with risk of 

lung adenocarcinoma23 and glioma21,24, a finding consistent with our expanded analysis here 

(Supplementary Figure 6). 

 

We additionally identified a complex locus at 11q23.3. The sentinel variant rs1056562 

(OR=1.11, 95% CI 1.07-1.14, p=2.7x10-10
) is more prominently associated with lung 

adenocarcinoma (Supplementary Figure 4). rs1056562 was correlated with expression of two 

genes at this locus, AMICA1 and MPZL3 (Supplementary Table 6). However, there did not 

appear to be a consistent relationship between the alleles related with AMICA1 and MPZL3 

gene expression and those with lung adenocarcinoma (Figure 2, Supplementary Table 9), 

suggesting that expression of these genes alone is unlikely to mediate this association. 

 
 
At 9p21.3 we identified rs885518 that appeared to be associated with lung adenocarcinoma 

(OR=1.17, 95% CI 1.11-1.23, p=6.8x10-10). 9p21.3 is a region containing CDNK2A and 

variants associated with multiple cancer types, including lung cancer. Nevertheless, rs885518 

is located approximately 200kb centromeric the previously described variants (Supplementary 

Figure 4) and shows little evidence for LD (all pairwise r2< 0.01) with rs1333040, a variant 

previously associated with lung squamous cell carcinoma3 and rs62560775, another variant 

suggested to be associated with lung adenocarcinoma25 that we confirm to genome significance 

here. Intriguingly, these variants appear to confer predominant associations with different lung 

cancer histologies suggesting that they are independent associations (Supplementary Figure 7). 

 

Aside from the clear smoking-related effects on lung cancer risk through the CHRNA5 and 

CYP2A6 regions and association with CHRNA2 noted above, the rest of variants we have 

identified do not appear to clearly influence smoking behaviors (Table 2), implying that these 

associations are likely mediated by other mechanisms. Nevertheless, there is shared genetic 

architecture between smoking behavior and lung cancer risk, consistent with the notion that 
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genetic   variants   do   influence   lung   cancer   risk   also   through   behavioural   mechanisms 

(Supplementary Figure 8). 

In conclusion, the genetic susceptibility alleles we describe here explain approximately 12.3% of 

the familial relative risk previously reported in family cancer databases26,27, out of which 

3.5% was accounted for by the novel loci. Our findings emphasize st riking heterogeneity 

across histological subtypes of lung cancer. We expect that further exploration of the related 

target genes of these susceptibility loci, as well as validation and identification of new loci, 

will continue to provide insights into the etiology of lung cancer. 
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Figure Legends 
 
Figure 1. Manhattan plots of lung cancer risk overall and by histological subtypes. (a) lung 
cancer risk overall, 29,266 cases and 56,450 controls (b) adenocarcinoma, 11,273 cases and 
55,483 controls (c) squamous cell carcinoma 7,426 cases and 55,627 controls. Each locus is 

annotated by their cytoband locations. The X‐axis represents chromosomal locations and the Y‐
axis represents -log10(P‐value). Black denotes the previously known loci and Red denotes the 
new loci identified in this analysis 

 

 
Figure 2. Scatter plots comparing variants across the 6q27, 15q21.1, 8p12 and 11q23.3 
susceptibility loci and (Y-axis) their associated with lung cancer (or lung adenocarcinoma, 
as relevant) and (X-axis) the lung cis–eQTL (GTEx). Each variant (dot) is colored relative the 
degree of linkage disequilibrium (r2) with sentinel lung cancer variant (marked) at that locus. 
Indented table, association between sentinel variant and lung cancer (or histological subtype) as 
well as the eQTL evidence in lung epithelium for the microarray (Laval, UBC, Groningen) and 
RNAseq (NCI and GTEx) cohorts. At 6q27, 15q21.1 and 8p12, the variants associated with lung 
cancer also tend to be those that that are lung cis-eQTL’s for RNASET2, SECISBP2L and NRG1, 
respectively. At 11q23.3, while the sentinel variant (rs1056562) is a lung cis-eQTL for AMICA1, 

additional variants are AMICA1 lung cis-eQTL’s but not associated with lung adenocarcinoma 
and vice versa suggesting an alternate candidate gene may be responsible for this association or a 
pleiotropic effect at this locus. 

 
Figure 3. eQTL and smoking behavior analysis of the 8p21 lung cancer susceptibility locus. Upper 
panel, Scatter plots of variants across the 8p21 locus and their associated with lung cancer (Y-
axis) and CHRNA2 eQTL (X-axis) in lung epithelial tissues (panel a) and CHRNA2 eQTL in 
brain cerebellum tissues (panel b). Panel C. eQTL association between rs11780471 across 
tissues from different parts of the brain from GTEx and Braineac consortia noting CHRNA2 cis- 
eQTL effect appears restricted to the brain cerebellum. Panel D. Association between 
rs11780471 and smoking phenotypes, noting evidence for association between smoking status 
(ever vs never) and age of initiation, with lung cancer risk allele carriers (G) more likely to be 
ever smokers and take up smoking earlier. Fagerstrom Test for Nicotine Dependence (FTND) 
index, error bars indicate the 95% confidence intervals. 
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Table 1. Demographic characteristics of the participating studies after quality control filters 

 
    

 Lung cancer patien ts    Controls   

 number (%)   number  (%)  

OncoArray studies- passed QC 14803 (51) 12262 (22) 

Published GWAS studies
a

 14463 (49)   44188  (78)  

Total 29266  56450  

Age 

<=50 3112 (12) 6032 (12) 

>50 23025 (88) 44075 (88) 

Sex 

Male 18208 (62) 27178 (53) 

Female 11059 (38) 24069 (47) 

Smoking status 

Never 2355 (9) 7504 (31) 

Ever 23223 (91) 16964 (69) 

Former 9037 (35) 8554 (35) 

Current 13356 (52) 7477 (31) 

Histology 
c
 

Adenocarcinoma 11273 (39)    55483 
b

  

Squamous cell carcinoma 7426 (25)    55627 
b

  

Small cell carcinoma 2664 (9)    21444 
b

  
 

a 
Previous GWAS studies include IARC, MDACC, SLRI, ICR, Harvard, ATBC, CPSII, German and deCODE 

studies. 
b 

number of non-cancer individuals included in the corresponding histology-specific analysis. 
c The remaining 27% includes other histological subsets, such as large cell carcinoma, non-small 

cell lung cancer, NOS, mixed histology, and unknown. 
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Table 2. The association between sentinel variants representing each lung cancer locus and lung cancer risk.  

Strata Locus* rs number Gene Allele
a

 Imputed 

or 

oncoarray 

genotyped 

Candidate 

Oncoarray 

EAF OR 95%CI P-value CPD FTND FEV1 FVC FEV1/ 

FVC 

Customized 

panel 

p- 

value 

p- 

value 

p- 

value 

p- 

value 

p- 

value 

Lung 1p31.1* rs71658797 FUBP1 T_A Oncoarray No 0.103 1.1 1.09-1.18 3.3E-11 0.056 0.334 0.445 0.898 0.334 

Lung 6q27* rs6920364 RNASET2 G_C Imputed eQTL 0.456 1.1 1.05-1.10 1.3E-08 0.833 0.104 0.927 0.876 0.986 

Lung 8p21.1* rs11780471 CHRNA2 G_A Imputed Lung 0.060 0.9 0.83-0.91 1.7E-08 0.646 0.403 6.9E-04 0.055 0.016 

Lung 13q13.1 rs11571833 BRCA2 A_T Imputed Lung 0.011 1.6 1.43-1.80 6.1E-16 0.890 0.312 0.601 0.667 0.237 

Lung 15q21.1* rs66759488 SEMA6D G_A imputed Lung 0.362 1.1 1.05-1.10 2.8E-08 0.266 0.888 0.739 0.200 0.202 

Lung 15q25.1 rs55781567 CHRNA5 C_G Imputed Lung 0.367 1.3 1.27-1.33 3.1E-103 6.8E-38 9.7E-16 7.2E-03 0.020 0.144 

Lung 19q13.2^ rs56113850 CYP2A6 C_T Oncoarray Lung 0.440 0.9 0.86-0.91 5.0E-19 8.1E-20 7.5E-04 0.822 0.826 0.319 

Adeno 3q28 rs13080835 TP63 G_T Imputed Lung 0.493 0.9 0.87-0.92 7.5E-12 0.803 0.336 0.135 0.445 0.834 

Adeno 5p15.33 rs7705526 TERT C_A Oncoarray All 0.342 1.3 1.21-1.29 3.8E-35 0.511 0.738 0.292 0.038 0.657 

Adeno 8p12* rs4236709 NRG1 A_G Imputed eQTL 0.218 1.1 1.09-1.18 1.3E-10 0.991 0.957 0.503 0.151 0.403 

Adeno 9p21.3* rs885518 CDNK2A A_G Imputed Several 0.101 1.2 1.11-1.23 9.96E-10 0.904 0.321 0.421 0.096 0.146 

Adeno 10q24.3* rs11591710 OBFC1 A_C Imputed Lung 0.137 1.2 1.11-1.22 6.3E-11 0.500 0.152 0.027 0.019 0.533 

Adeno 11q23.3* rs1056562 AMICA1 C_T Oncoarray Breast 0.473 1.1 1.07-1.14 2.8E-10 0.717 0.538 0.449 0.718 0.039 

Adeno 15q21.1* rs77468143 SECISBP2L T_G Imputed No 0.253 0.9 0.83-0.89 1.7E-16 0.071 0.184 4.9E-03 0.440 1.4E-03 

Adeno 20q13.33* rs41309931 RTEL1 G_T Imputed Prost/ColR 0.117 1.2 1.11-1.23 1.3E-09 0.146 0.939 0.964 0.657 0.284 

SQC 6p21.33 rs116822326 MHC A_G Imputed Lung 0.155 1.3 1.19-1.32 3.8E-19 0.392 0.774 0.132 0.498 0.103 

SQC 12p13.33 rs7953330 RAD52 G_C Oncoarray Lung 0.315 0.9 0.83-0.90 7.3E-13 0.800 0.463 0.019 3.3E-03 0.424 

SQC 22q12.1 rs17879961 CHEK2 A_G Oncoarray Lung 0.005 0.4 0.32-0.52 5.7E-13 0.441 0.360 0.041 0.040 0.805 

* denote novel locus identified to GWAS significance by this study; a, reference_effect. Bolded p-values indicate significant associations with consistent direction as expected. Genome 

positions relative to GRCh37, EAF, effective allele frequency; OR, odds (log additive) ratio; 95%CI, 95% confidence interval. P-value, based on fixed-effect meta-analysis adjusted for age, 

sex and genetically derived ancestry; CPD, cigarette per day; FTND, Fagerstrӧm Test for Nicotine Dependence; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity. 

Adeno, adenocarcinoma; SQC, squamous cell carcinoma. ^ marker had an acceptable, but not ideal concordance rate (see Supplementary Note) 
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Online methods 

This work is conducted based on the collaboration of Transdisciplinary Research of Cancer in Lung of the 

International Lung Cancer Consortium (TRICL-ILCCO) and the Lung Cancer Cohort Consortium (LC3). The 

participating studies are individually described in the Supplementary Note. 

 
OncoArray genotyping. 

Genotyping was completed at the Center for Inherited Disease Research (CIDR), the Beijing Genome 

Institute, the HelmholtzCenter Munich (HMGU), Copenhagen University Hospital, and the University of 

Cambridge. Quality control steps follow the approach described previously for the OncoArray
5
 

(Supplementary Note).  

 

Genotype quality control. 

After removing the 1,193 expected duplicates, QC procedures for the 43,398 individuals are 

summarized in Supplementary Note Figure 1. Standard quality control procedures (detailed in the 

Supplementary Note) were used to exclude underperforming individuals (number of DNAs=1,708) and 

genotyping assays (judged by success rate, genotype distributions deviated from that expected by Hardy 

Weinberg equilibrium, number of variants=16,149). After filtering, there were 517,482 SNPs available 

for analysis.  

 

Identity by Descent (IBD) was calculated between each pair of samples in the data using PLINK to 

detect unexpected duplicates and relatedness. Details are described in Supplementary Note. 340 

unexpected duplicated samples (proportion IBD>0.95) and 940 individuals were removed as related 

samples with proportion IBD between 0.45 and 0.95. Of these, 721 of them were expected first 

degree relatives. In total, 0.56% of the total samples were removed as unexpected duplicates or 

relatives in the QC analysis. We additionally considered the potential that more distant familial 

relationships could have impacted the results. However, further restriction to proportion IBD > 0.2 

identified 139 second degree relatives and excluding these had minimal impact on the association 

results (Supplementary Note Table 1). 

 
Complete genotype data for X chromosomes were used to verify reported sex by using PLINK sex 

inference and a support vector machine procedure resulting in 306 non concordant samples being 

removed (Supplementary Note).  

 

We used the program FastPop (http://sourceforge.net/projects/fastpop/)
28 

was used to identify 5,406 

individuals of non-European ancestry (Supplementary Note) resulting in a n  final association analysis 

including 14,803 lung cancer cases and 12,262 controls.  

 
We confirmed the fidelity genotyping (directly and imputed) of the OncoArray platform by considering 

concordance of these genotypes relative to genotypes obtained from analogous genotyping platform 

(Supplementary Note). 

 
Imputation analysis. 

A detailed description of the imputation procedures used by the OncoArray consortium and in this Lung 

http://sourceforge.net/projects/fastpop/
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Oncoarray project, has been described previously.
5   

Briefly, the reference Dataset was the 1000 

Genomes Project (GP) Phase 3 (Haplotype release date October 2014). The forward alignment of SNPs 

genotyped on the Oncoarray was confirmed by blasting the sequences used for defining SNPs against 

the 1000 Genomes. Any ambiguous SNPs were subjected to a frequency comparison to 1000 Genomes 

variants. Allele frequencies were calculated  from a large collection of control samples from Europeans 

(from 108,000 samples) and Asians (11,000 samples). A difference statistic is calculated by the formula: 

(|p1-p2|- 0.01)^2/((p1+p2)(2-p1-p2)) where p1 and p2 are the frequencies our dataset and in the 1000 

genomes respectively
5
. A cutoff of 0.008 in Europeans and 0.012 in Asians is needed to pass.  SNPs 

where the frequency would match if the alleles were flipped were excluded from imputation but not 

from the association analyses.
5    

AT/GC SNPs were not present in previously genotyped lower density 

arrays. Because all imputation was performed to the same standard all SNPs had the same orientation 

at the time of imputation. The OncoArray whole genome data were imputed in a two-stage procedure 

using SHAPEIT to derive phased genotypes, and IMPUTEv2
29 

to perform imputation of the phased data. 

We included for imputation only the more common variant if more than one variant yielded a match at 

the same position. The detailed parameter settings are in the Supplementary Note.  

 

 
Meta analysis of lung cancer GWAS. 

FlashPCA
30 

was run for principal component analysis (PCA) to infer genetic ancestry by genotype. 

The regression model assumed an additive genetic model and included the first three eigenvalues 

from FlashPCA as covariates. For imputed data of smaller sample size, which was enrolled in our 

analysis later, we changed the method score to EM algorithm to accommodate smaller sample size. 

 

We combined imputed genotypes from 14,803 cases and 12,262 controls from the OncoArray series with 

14,436 cases and 44,188 controls samples undertaken by the previous lung cancer GWAS 
3,4,6

, including 

studies of IARC, MDACC, SLRI, ICR, Harvard, NCI, Germany and deCODE as described previously
3,4,6 

, and 

we ensured that there were no overlap between the ATBC, EAGLE and CARET studies included in both 

the previous GWAS and current OncoArray dataset by comparing the identity tags (IDs) of all study 

participants. 

 
In addition to lung cancer, histological strata (adenocarcinoma, squamous cell carcinoma, small cell 

carcinoma (SCLC) and smoking status (Ever/Never) was assessed where data were available.  Additional 

details on subsets that were used are available upon request. 

 
We conducted the fixed effects meta-analysis with the inverse variance weighting and random effects 

meta-analysis from the DerSimonian-Laird method 
31

. All meta-analysis and calculations were performed 

using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). As the same referent panel was used for all 

studies, all SNPs showed the same forward alignment profiles. We excluded poorly imputed SNPs 

defined by imputation quality Rsq < 0.3 or Info < 0.4 for each meta-analysis component and SNPs with a 

Minor allele frequency (MAF) >0.01 (except for CHEK2 rs17879961 and BRCA2 rs11571833 which we 

have validated extensively previously
4
. We generated the index of heterogeneity(I

2
) and P-value of 

Cochran’s Q statistic to assess heterogeneity in meta-analyses and considered only variants with little 

https://mathgen.stats.ox.ac.uk/impute/1000GP%20Phase%203%20haplotypes%206%20October%202014.html
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evidence for heterogeneity in effect between the studies (P-value of Cochran’s Q statistic >0.05). SNPs 

were retained for study provided the average imputation R-square was at least 0.4. For SNPs in the 

0.4-0.8 range that reached genome wide significance results were evaluated for consistency with 

neighboring SNPs to assure a reliable inference. Due to the smaller sample size and fewer sites 

contributing in the strata of Never Smokers and SCLC, we additionally required variants to be present in 

each of the meta-analysis components to be retained for these 2 stratified analyses. 

 
Conditional analysis was undertaken using SNPTEST where individual level data was available and 

GCTA
32 

packages for the previous lung cancer GWAS, with the LD estimates obtained from individuals of 

European origin for the later. Results were combined using fixed effects inverse variance weighted 

meta-analysis as described above
33

. 

 

Assessing Statistical Significance 

Genome wide statistical significance was considered at P-values of 5X10
-8 

or lower, but we also 

presented significance per alternative criteria following Bonferroni correction for the number of 

effective tests or Bayesian False Discovery Probability (BFDP) described below. 

 

To evaluate the effective number of tests we used the Li and Ji (2005)
33 

method which performs an 

initial step of filtering out SNPs with MAF<0.01 (imputation is less reliable for these and power is also 

limited for most odds ratios). Among the 4,751,148 markers with that MAF there were 1,182,363 

effective tests. 

 
The BFDP combines significance level, study power, and cost of false discovery and non-discovery into 

consideration. The detailed procedures of this method are described in Wakefield, 2007
34

.  Essentially, 

the approximate Bayes Factor (ABF) which BFDP uses reflects how much the prior odds change in the 

light of the observed data (i.e. relative probability of the observed estimates under the null versus 

alternative hypothesis). Given the nature of GWA studies, we applied a flat prior for all variants at prior 

probability of 10
-6 

and 10
-8 

to demonstrate the range of BFDP. 

 

Annotation of susceptibility loci. 

We combined multiple sources of in silico functional annotation from public databases to help identify 

potential functional SNPs and target genes, based on previous observations that cancer susceptibility 

alleles are enriched in cis-regulatory elements and alter transcriptional activity. The details are 

described in the Supplementary Note. 

 
eQTL analysis of lung cancer sentinel variants. 

To investigate the association between the sentinel variants and mRNA expression, we used three 

different eQTL datasets : (i) Microarray eQTL study:  The lung tissues for eQTL analyses were from 

patients who underwent lung surgery at three academic sites, Laval University, University of British 

Columbia (UBC), and University of Groningen. Whole-genome gene expression profiling in the lung was 

performed on a custom Affymetrix array (GPL10379). Microarray pre-processing and quality controls 

were described previously. Genotyping was carried on the Illumina Human 1M-Duo BeadChip array. 

Genotypes and gene expression levels were available for 409, 287 and 342 patients at Laval, UBC, and 

Groningen, respectively. (ii) NCI RNAseq eQTL study: RNA was extracted from lung tissue samples within 
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the Environment and Genetics in Lung cancer Etiology (EAGLE) study.  RNAseq was carried out on 90 lung 

tissue sampled from an area distant from the tumor (defined here as “non-malignant lung tissue”) to 

minimize the potential for local cancer field effects. Transcriptome sequencing of 90 non-tumor samples 

was performed on the Illumina HiSeq2000/2500 platform with 100-bp paired-end reads.  Genotyping 

was undertaken using Illumina bead arrays as described previously. (iii) GTEx: eQTL summary statistics 

based on RNAseq analysis were obtained for eQTL summary statistics from the GTEx data portal 

http://www.gtexportal.org/home/ 
35

. This data included 278 individuals with data from lung tissue.  

Details of these three eQTL studies are included in the Supplementary Note. 

 

The Microarray eQTL study was used as a discovery cohort. Probe sets located within 1 Mb up and 

downstream of lung cancer SNPs were considered for cis-eQTL analyses. We have also explored a 5 Mb 

interval for lung cancer-associated SNPs not acting as lung eQTL within the 1 Mb window. The top eQTL 

association for that sentinel variant (or if contained multiple eQTL's with P-value<0.0005 each was 

considered), this particular eQTL was then chosen and assessed specifically in the independent NCI and 

GTEx RNAseq eQTL datasets. Statistical significance was defined the eQTL surpassed a locus specific 

Bonferroni correlation in the discovery cohort (P-value=0.05/number of probes at that locus) and 

subsequently there was evidence for replication of the eQTL effect with that variant and gene within the 

validation cohorts (NCI/GTEx RNAseq).   

 
Lung cancer susceptibility variants in other phenotypes. 

We assessed associations between sentinel genetic variant associated with lung cancer and other 

phentoypes, including smoking behavior Fagerstrӧm Test for Nicotine Dependence, lung function and 

telomere length. Additional details of these analyses for other phenotypes are described in 

Supplementary Note. Briefly: 

Smoking behaviors. 

The effects of lung cancer sentinel variants and smoking behavior were assessed based on the meta-

analysis across 3 studies:  ever-smoking controls with intensity information from the Oncoarray 

studies (N=8,120), deCODE (N=40,882) and UK Biobank (N=42,044). The association with nicotine 

dependence was evaluated based on Fagerstrӧm Test for Nicotine Dependence (FTND) data collected 

in 4 studies (n=17,074):  deCODE Genetics, Environment and Genetics in Lung Cancer Etiology 

(EAGLE), Collaborative Genetic Study of Nicotine Dependence (COGEND), and Study of Addiction: 

Genetics and Environment (SAGE) and among current smokers in one other study [Chronic 

Obstructive Pulmonary Disease Gene (COPDGene). The study-specific SNP association results were 

combined using fixed effects, inverse variance-weighted meta-analysis with genomic control applied.  

Specifically for the 8p21 variant rs11780471, we additionally considered other aspects of smoking 

behavior data from UKBiobank, deCODE and OncoArray controls. We additionally included summary 

statistics for the rs11780471 variants from the TAG consortium (described in detail in the 

Supplementary Note). 

Lung function. 

The lung function in silico look up was conducted in SpiroMeta consortium, which included 38,199 

European ancestry individuals. The genomewide associations between genetic variants and forced 

expiratory volume in 1 second (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes 

http://www.gtexportal.org/home/
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Project (phase 1)-imputed genotypes in the GWAS with 38,199 individuals
36

.   

Telomere Length (TL). 

Sentinel genetic variants associated with telomere length were those described by Codd et al
22

. 

Telomere lengths in 6,766 individuals from the UK Studies of Epidemiology and Risk Factors in Cancer 

Heredity (SEARCH) study controls using a real-time PCR methodology and genotyping as described in 

Pooley et al., 2013
37

. 
 

 
Genetic heritability and correlations. 

Genome-wide SNP heritability and correlation estimates were obtained using association summary 

statistics and linkage disequilibrium (LD) information through LD Score (LDSC) regression analyses 
38,39

. 

These analyses were restricted to HapMap3 SNPs with minor allele frequency above 5% in European 

populations of 1000 Genomes. Association summary statistics used for these analyses were based on 

lung cancer histological/smoking types (lung cancer overall, adenocarcinoma, squamous cell, small cell, 

ever smokers and never smokers) and smoking behavior parameters (cigarettes per day (CPD), smoking 

status (ever vs never smokers), and smoking cessation (current vs former smokers) from TRICL-ILCCO 

OncoArray consortium and Tobacco And Genetics consortium 

(https://www.med.unc.edu/pgc/downloads)
40

. 

 

Estimating the percentage of familial relative risks explained 

The familial relative risk to a first degree relative accounted for by an individual variant (denoted as λi) is 

estimated based on relative risk per allele and allele frequency for that variant, using the method 

described in Hemminki et al
41,

 and Bahcall
42

, under the assumption of log-additive effect. Assuming the 

effects of all susceptibility variants combined multiplicatively and not in linkage disequilibrium, the 

combined effect (λT) can then be expressed as the product of all λi. The proportion of the familial 

relative risk attributable to the totality of the susceptibility variants can then be computed as 

log(λT)/log(λP).  For lung cancer, the λP is approximately 2.0 based on the family cancer databases
26,27

. 

The percentage reported is based on the 18 sentinel variants reported in Table 2. The multiple 

independent alleles in the same locus are not accounted for in this estimation. 

 

 
Data Availability 

The datasets generated during the current study are available in the dbGAP repository under 

phs0012733. 

MetaAnalyses included in the analysis are available at dbGAP under phs000877. 

The Oncoarray data deposited at dbGAP includes data excluded from the analyses presented in this 

paper to avoid overlap with prior studies.  Readers interested in obtaining a copy of the original data 

can do so by completing a proposal request form that is located at http://oncoarray.dartmouth.edu. 

Cluster plots of all SNPs on the Oncoarray are located at http://oncoarray.dartmouth.edu 
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