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REVIEW
Making the clock tick: the transcriptional landscape of the plant

 circadian clock [version 1; referees: 2 approved]
James Ronald, Seth J Davis
Department of Biology, University of York, York, YO10 5DD, UK

Abstract
Circadian clocks are molecular timekeepers that synchronise internal
physiological processes with the external environment by integrating light and
temperature stimuli. As in other eukaryotic organisms, circadian rhythms in
plants are largely generated by an array of nuclear transcriptional regulators
and associated co-regulators that are arranged into a series of interconnected
molecular loops. These transcriptional regulators recruit chromatin-modifying
enzymes that adjust the structure of the nucleosome to promote or inhibit DNA
accessibility and thus guide transcription rates. In this review, we discuss the
recent advances made in understanding the architecture of the Arabidopsis
oscillator and the chromatin dynamics that regulate the generation of rhythmic
patterns of gene expression within the circadian clock.

   Referee Status:

  Invited Referees

 version 1

published
21 Jun 2017

 1 2

 , Hebei Normal University,Xiaodong Xu
Hebei Collaboration Innovation Center for
Cell Signaling, China

1

 , Institute of Plant andShu-Hsing Wu
Microbial Biology, Academia Sinica,
Taiwan

2

 21 Jun 2017,  (F1000 Faculty Rev):951 (doi: First published: 6
)10.12688/f1000research.11319.1

 21 Jun 2017,  (F1000 Faculty Rev):951 (doi: Latest published: 6
)10.12688/f1000research.11319.1

v1

Page 1 of 7

F1000Research 2017, 6(F1000 Faculty Rev):951 Last updated: 21 JUN 2017



 

 Seth J Davis ( )Corresponding author: seth.davis@york.ac.uk
 Competing interests: The authors declare that they have no competing interests.
 Ronald J and Davis SJ. How to cite this article: Making the clock tick: the transcriptional landscape of the plant circadian clock [version
   2017,  (F1000 Faculty Rev):951 (doi:  )1; referees: 2 approved] F1000Research 6 10.12688/f1000research.11319.1

 © 2017 Ronald J and Davis SJ. This is an open access article distributed under the terms of the Copyright: Creative Commons Attribution Licence
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Circadian work in the SJD group is currently funded by the BBSRC awards BB/M000435/1 and BB/N018540/1.Grant information:
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 21 Jun 2017,  (F1000 Faculty Rev):951 (doi:  ) First published: 6 10.12688/f1000research.11319.1

Page 2 of 7

F1000Research 2017, 6(F1000 Faculty Rev):951 Last updated: 21 JUN 2017



Introduction
The daily rotation of the Earth generates predictable diurnal 

changes in light and temperature. Circadian clocks act as endog-

enous timekeepers to co-ordinate internal physiological responses 

to match the predicted environmental condition. The plant circadian 

clock directly regulates a range of output pathways, which includes 

hormone signalling, hypocotyl development, metabolism, the floral 

transition, photosynthesis, and the response to biotic and abiotic 

stress1–3. Accordingly, plants with an internal clock that matches the 

external environment (~24 hours) have enhanced photosynthesis 

and survival compared to plants with a clock that does not match 

the external environment4.

Endogenous circadian rhythms are generated through a series 

of interconnected transcriptional–translational feedback loops,  

collectively termed the oscillator. Light and temperature signals dif-

ferentially converge on the plant oscillator through multiple input 

pathways to provide timing cues in a process termed entrainment5,6. 

In plants, light signals at dawn are thought to act as the major 

entraining signal7. This review will discuss the recent advances 

made in understanding the transcriptional architecture of the plant  

oscillator and the chromatin dynamics driving rhythmic gene 

expression.

Overview of the oscillator
At the core of the plant oscillator are the morning-expressed, par-

tially redundant MYB domain transcription factors (TFs) CIRCA-

DIAN CLOCK ASSOCIATED 1 (CCA1) and LATE  ELONGATED 

HYPOCOTYL (LHY)8–10. CCA1/LHY directly antagonise most 

clock gene expression through binding to the evening element (EE) 

motif within the promoter11–13. One target of CCA1/LHY-repressive   

activity is the PSEUDO-RESPONSE REGULATOR (PRR)  

TIMING OF CAB EXPRESSION (TOC1)8,9,14. CCA1/LHY- 

repressive activity restricts TOC1 expression to a window around 

dusk. At dusk, TOC1 accumulates and reciprocally represses 

CCA1/LHY expression in addition to other clock genes15,16. This 

mutual antagonism between CCA1/LHY and TOC1 defines the 

central loop of the Arabidopsis oscillator7,9,17.

Additional interconnected loops subsequently regulate the activ-

ity of the core loop7,18. At dawn, the TFs TEOSINTE BRANCHED 

CYCLOIDEA-PCF20/22 (TCP20/22) recruit the co-activator 

LIGHT REGULATED WD 1 (LWD1) to activate CCA1/LHY 

expression19. LWD1 and its homolog LWD2 are also required to 

activate the expression of TOC1 and the related PRR5, PRR7, 

and PRR920. PRR5, PRR7, and PRR9 directly associate with the  

CCA1/LHY promoter and repress CCA1/LHY expression21,22. 

PRR9, PRR7, and PRR5 are sequentially expressed, generating a 

wave of repressive activity. PRR9 expression starts at dawn, fol-

lowed by PRR7 in the late morning and PRR5 in the afternoon22. 

This repressive sequence is re-enforced by the CCA1-related MYB 

TF REVEILLE8 (RVE8) and its associated homologs, RVE6 

and RVE423. RVE8 binds to the EE within the PRR5, TOC1, and 

EARLY FLOWERING 4 (ELF4) promoter and activates gene 

expression by recruiting the co-activators NIGHT LIGHT-INDUC-

IBLE AND CLOCK REGULATED 1/2 (LNK1/LNK2)24–28. In 

the evening, the GARP TF LUX ARRYTHMO (LUX) and the  

unrelated proteins ELF3 and ELF4 associate to form the evening  

complex (EC)29,30. The EC represses the morning-expressed PRR7 

and PRR9 and evening-expressed GIGANTEA (GI) and LUX29–34. 

LUX and ELF3 have also been recently shown to associate 

with the promoter of LNK1/2, highlighting another potential 

target of the EC35. Together, this interconnected network of 

activators and repressors drives rhythmic gene expression 

within the plant  oscillator.

Chromatin dynamics of the circadian clock
The structure of nucleosomes has a fundamental role in regulat-

ing gene expression. A nucleosome is a complex of DNA wound 

around the histone octamer (two H2A-H2B dimers and a H3-H4 

tetramer)36. Each histone unit can be post-translationally modi-

fied through a suite of chromatin-remodelling enzymes to generate 

what is collectively called the histone code37. These modifications 

regulate the accessibility of the DNA through opening or compact-

ing the histone octamer or by providing a binding site for other 

chromatin-modifying enzymes37. Modifications associated with 

transcriptional activation include the acetylation of H3 lysine resi-

dues (H3Ac) or tri-methylation of H3K4 (H3K4me3), while repres-

sive markers include the tri-methylation of H3K9 (H3K9me3) and 

H3K27 (H3K27me3)38–40.

The promoter regions of CCA1, LHY, TOC1, GI, PRR9, and LUX 

all display diurnal changes in histone modifications. The levels  

of H3K9Ac, H3K14Ac, H3K56Ac, and H3K4me3 within the 

gene promoter peak at the time of maximum gene activation41–44.  

Conversely, as gene expression declines, there is a reduction 

in H3Ac and demethylation of H3K4me3 and an increase in 

H3K36me2, modifications associated with transcriptional repres-

sion42. It has also recently been shown that there are global diurnal 

changes in H3K9Ac, H3K27Ac, and H3S28P in the promoters of 

genes associated with the circadian clock and sugar signalling45. 

Additionally, the association of RVE8 to the TOC1 promoter is 

associated with hyperacetylation while the association of CCA1 

to the TOC1 promoter correlates with hypoacetylation25,41. Diurnal 

post-translational modification of histones thus has a fundamental 

role in generating the rhythmic patterns of gene expression within 

the oscillator.

The factors regulating these histone modifications are beginning 

to be understood. PRR5, PRR7, and PRR9 directly recruit the 

Groucho/Tup1 co-repressor TOPLESS (TPL) through an ethyl-

ene amphiphilic repression (EAR) domain to repress CCA1/LHY 

expression46. TPL belongs to a multi-gene family of co-repressors 

that recruit the histone deacetylase (HDA)19 and/or the closely 

related HDA6 to facilitate gene silencing47. Unlike the other PRRs, 

TOC1 lacks an EAR domain and cannot directly interact with 

TPL46. The mechanisms mediating TOC1 repression are there-

fore unknown. Alongside the PRRs, the EC has also recently been 

shown to interact with chromatin-remodelling enzymes. ELF3 can  

co-precipitate with MUT9-like kinase 1–4 (MLK1–4), which pro-

motes the phosphorylation of H3T348,49. H3T3P is associated with 

heterochromatin formation and gene silencing49. mlk1–4 single  

and combination loss-of-function mutants displayed a longer  

circadian period48. In contrast, loss of function in ELF3, ELF4, or 

LUX all display circadian arrhythmicity50–53. Thus, the EC may 

recruit other co-repressors to repress gene expression.
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Other chromatin-remodelling enzymes have also been associated 

with the plant oscillator. The histone acetyltransferase (HAT) TAF1 

and the HDA HD1 regulates the acetylation and de-acetylation of 

the TOC1 and CCA1 promoter, respectively44. However, TAF1 and 

HDA1 loss-of-function mutants had only a small effect on TOC1 

and CCA1 expression. Arabidopsis has 12 HATs and 18 HDAs, 

and within each respective class functional redundancy has been 

observed54–56. HATs and HDAs are therefore likely to be acting 

redundantly within the clock. Alongside HATs and HDAs, histone 

methylases and demethylases have also been implicated within the 

clock. The H3K4me3 methylase SET DOMAIN GROUP 2 (SDG2/

ATRX3) aides clock gene expression and the ability of TOC1 

to associate with DNA42. The histone demethylase JUMONJI 

DOMAIN CONTAINING 5 (JMJD5, also referred to as JMJ30) 

displays diurnal regulation with expression peaking in the evening57. 

JMJD5 mutants have a shortening of circadian period, suggesting 

that JMJD5 has a regulatory role within the oscillator57,58. Remark-

ably, Arabidopsis JMJD5 has retained conserved functional activity 

with its human orthologue, which functions within the mammalian 

clock57. However, the mammalian JMJD5 lacks canonical demethy-

lase activity59. Further work is needed to understand the functional 

activity of JMJD5 and its role within the Arabidopsis clock. It has 

also been recently shown that 17 different chromatin-remodelling 

enzymes display diurnal patterns of expression60, further intertwin-

ing the relationship between the clock and chromatin remodellers. 

In summary, the concerted activities of a broad range of histone-

modifying enzymes are required within the clock to facilitate the 

transcriptional regulatory activity of the plant oscillator.

Conclusions and perspectives
In recent years, much progress has been made in connecting the 

individual components of the oscillator into an interconnected 

transcriptional network. However, many questions still persist over 

the mechanisms of transcriptional regulation. The association of 

RVE8 to the TOC1 promoter correlates with hyperacetylation, but 

neither RVE8 nor LNK1/2 have domains that could recruit HAT 

directly25,27. The repressive mechanisms of the core components 

CCA1/LHY and TOC1 are also poorly understood. TOC1 has 

been recently shown to co-occupy PHYTOCHROME 

INTERACTING FACTOR 3 (PIF3) target promoters and 

inhibit PIF3-mediated gene activation61. However, whether this 

is achieved by passively inhibiting HAT recruitment or by 

actively recruiting co-repres-sors through an unidentified 

repression domain is unknown. It also remains unclear whether 

CCA1/LHY repress gene expression passively or actively, with 

both mechanisms being proposed in a temporal-dependent 

manner13,41. Furthermore, CCA1 and LHY are often grouped 

together and viewed as a joint operator within the clock. 

However, CCA1 and LHY have been shown to have distinct roles 

within the clock17,62. Future work could investigate the extent of 

functional overlap between CCA1/LHY.

One noticeable shortage in the plant clock when compared to 

the mammalian or fungal circadian clock are transcriptional  

activators63,64. CCA1/LHY, TOC1, and the plant-specific pro-

tein GI were all proposed to act as transcriptional activators 

within the oscillator14,21,65. However, these have now been shown 

to be an indirect relationship or an effect caused by the mutant 

background used12,13,18,66. In eukaryotes, the default state of gene 

expression is often one of a repressive nature67, so transcriptional  

activators would be expected within the oscillator.

The discovery of the RVE8/LNKs25,27 and the TCP/LWD complex19 

has provided some answers to the mechanisms of transcriptional 

activation within the oscillator. However, recent mathematical mod-

elling of the oscillator that incorporated RVE8 has shown a non-reli-

ance of the oscillator on transcriptional activation18. The activation 

of the oscillator genes could be sourced externally. The 

transcript induction of CCA1, LHY, GI, PRR9, PRR7, LNK1, 

LNK2, ELF3, and ELF4 are all positively regulated by light68–72. 

Additionally, the expression of LUX, PRR7, and PRR9 is 

activated in a temperature-dependent manner73,74. Thus, external 

environmental signals may participate in gene activation within 

the clock, while the repressive circuitry of the clock acts to 

antagonise and attenuate these external gene activation pathways. 

What is notable in this is the finding that a large proportion of 

transcription factors are rhythmic and a subset of those can 

modulate clock parameters75. Together, it appears that known 

activators within the clock act to fine-tune prevailing envi-

ronmental antagonism as a form of signal integration.

Transcriptional regulators and the associated chromatin landscape 

governing transcriptional regulation are only one level 

nestled within a multi-layered regulatory network. Post-

translational modi-fications, nucleocytoplasmic partitioning, 

RNA splicing, and pro-tein degradation all have their own 

essential role in aiding rhythm generation76–78. It is only through 

the integration of all of these  layers of activity that the plant 

clock can generate and sustain robust rhythms and facilitate the 

response to diurnal changes in the  environment.
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