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Interpolation of intermolecular potentials using Gaussian processes.

Elena Uteva, Richard S. Graham, Richard D. Wilkinson and Richard J. Wheatley.

We hope that this manuscript can be published in Chemical Communications.

Intermolecular potentials are ubiquitous in Chemistry and associated scientific areas, and

while calculating them has become more routine over the last 10-20 years (at least for

small and medium-sized rigid molecules, at a limited number of geometries),

interpolating or fitting the calculated data to produce a complete multidimensional

potential energy surface is a much more difficult problem, consuming a great amount of

researcher time, with no satisfactory solution as yet.

We think that the method described herein will be the benchmark for interpolating

intermolecular potential data. In particular, the innovation of using inverse internuclear

distances as coordinates makes a dramatic difference to the results (see especially figure

1, but very similar figures could have been produced for all the studied molecules, given

enough space). The methods described can be learned from scratch by a student in a

few days, and used to design and interpolate a complete intermolecular potential energy

surface in a few hours, compared to months of time spent in the past on producing

usually inferior fits.

In short, we believe that this work represents a clear step-change in an important area

of Chemistry, and we are pleased to submit it for your consideration.

Yours sincerely, Richard Wheatley.
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Abstract

A general procedure is proposed to produce intermolecular po-

tential energy surfaces efficiently from a relatively small num-

ber of training data. The procedure involves generation of ge-

ometrical configurations using a Latin hypercube design, with

a maximin criterion based on internuclear distances. Gaussian

processes are used to interpolate the data, using over-specified

inverse molecular distances as covariates, greatly improving

the interpolation. Symmetric covariance functions are speci-

fied so that the interpolation surface obeys all relevant symme-

tries, reducing prediction errors. Results are presented for two

systems involving CO2, a system with a deep energy minimum

(HF – HF) and a system with 48 symmetries (CH4 – N2). In

each case the approach predicts an independent test set, with

RMS error values that are comparable with or better than the

best literature fits.

1 Introduction

Computational chemistry has advanced to the stage where

calculations of intermolecular potential energies can be per-

formed accurately enough, for small molecules, to be useful

in areas including chemistry, physics, atmospheric science,

geology and biochemistry. However, the computational cost

of evaluating the energy at a single point in coordinate space

is significant (often minutes or hours of time), so it is neces-

sary to fit or interpolate calculated energy data to produce a

potential energy surface for any intermolecular geometry of

interest.

The choice of fitting or interpolation method, and the

amount of data that are needed, are both significant limiting

factors in the generation of accurate potential energy surfaces.

Examples of careful and elaborate fits of calculated data in-

clude the potential energy surface of CO2 – Ne1, where a root

mean square error (RMSE) of about 0.15 µEh was quoted

(Eh ≈ 2625.5 kJ mol−1); a RMSE of about 0.6 µEh in the well

aSchool of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK.
bSchool of Mathematical Sciences, University of Nottingham, Nottingham

NG7 2RD, UK.
cSchool of Mathematics and Statistics, University of Sheffield, Western Bank

Sheffield, S10 2TN UK.

region (energy E < 0) of CO2 – H2
2; and a maximum error of

about 2% of the well depth in the well region of CH4 – N2
3.

Fits with much larger errors are commonplace in the literature,

even when RMSE scores are based on the fit to training data,

rather than independent test data, a procedure which is prone

to over-estimating predictive accuracy. Interpolations of inter-

molecular potential data are less common. Cubic splines are

the most popular interpolation method, for example in work

on CO2 – Ar4. In contrast, Gaussian process (GP) interpo-

lation, of which cubic splines are a special case, has been

little used5,6, despite its promise in other applications. The

few applications include solid-state potentials7,8, and the dif-

ference between calculated intermolecular potentials of wa-

ter9, but not interpolating a complete intermolecular potential

energy surface. The development of a general interpolation

method, which produces reliable results based on relatively

few calculated energies, would constitute a major advance in

this research area. It is demonstrated here that with a carefully

chosen set of training points and coordinate system, symmet-

ric Gaussian process interpolation of intermolecular potentials

can achieve high predictive accuracy.

2 Gaussian process modelling

The approach involves two sets of data. A set of training data

(between 20-1000 points) is used to train the model, and a

larger set of grid data is used to test the model’s predictive

performance. Both datasets are described below. No knowl-

edge of the test data is used during training.

2.1 Intermolecular potential data

Data sets of the intermolecular interaction energy of the

bimolecular complexes CO2 – Ne, CO2 – H2, HF – HF and

CH4 – N2 are calculated as a function of their configura-

tional geometry. All molecules are approximated as linear

rigid rotors in their vibrational ground state, with fixed bond

lengths. Energy calculations are carried out in Molpro10 using

second-order Möller-Plesset perturbation theory (MP2) and

augmented correlation-consistent triple-zeta (aug-cc-pVTZ)

basis sets. Basis set superposition errors are corrected using

the full counterpoise correction procedure.
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Jacobi coordinates are used to describe the multi-

dimensional potential energy hypersurfaces (see Table 1). In

all cases r is the distance between the molecular centres. For

CO2 – Ne, θ is the angle between r and the CO2 axis. For

CO2 – H2, θ1 is the angle between r and the CO2 axis, θ2 is the

angle between r and the H2 axis, and φ is the torsional angle

of the H2 axis. Analogous coordinates are used for HF – HF.

For CH4 – N2, the N2 molecule is placed at a position relative

to the C of CH4 at position (r,θ,φ) in polar coordinates, and

the N-N axis is rotated to orientation (α,β), also in polar co-

ordinates. The C-O, H-H, H-F, C-H and N-N bond lengths are

taken to be 1.1632 Å, 0.77 Å, 0.92 Å, 1.09 Å and 1.098 Å,

respectively. An energy cutoff of Ecut = 0.005 Eh is imposed

(0.02 Eh for HF-HF due to its much larger well depth), and

molecular configurations with intermolecular potentials that

exceed this cutoff are excluded from the data sets. Configu-

rations are also excluded if any interatomic distance is below

1.5 Å or if all interatomic distances are above 8.5 Å. Separa-

tions below this would also be excluded by the energy cutoff,

but this criterion saves time that would be spent in calculat-

ing unhelpfully large energies, and beyond 8.5 Å it is more

efficient to use an asymptotic expansion of the energy, as dis-

cussed later. Details of the test data used for model assessment

are given in Table 1.

Table 1 Coordinates for the test (grid or LHC) data for each system.

System Test Grid or Latin Hypercube Test

Coordinate Range Spacing points

CO2 – Ne r 1.5-10 Å 0.116 Å 1122

cosθ 0-1 0.05

CO2 – H2 r 1.5-10 Å 0.5 Å 12844

cosθ1 0-1 0.111

cosθ2 0-1 0.111

φ 0-180◦ 20◦

HF – HF Latin hypercube 2158

CH4 – N2 Latin hypercube 1182

2.2 Gaussian process training

Gaussian processes (GPs)11 are used extensively in machine

learning and statistics as regression models. They are ‘non-

parametric’ models of functions, which generalise the Gaus-

sian distribution. The prior specification of a GP consists of a

mean function (often taken to be zero) and a covariance func-

tion k(x,x′), which expresses the covariance between f (x) and

f (x′), where f is the function being interpolated. Training

data, consisting of observations of the value of f at various

locations, are used to update the mean and covariance func-

tions to give a posterior model which can be used to predict

the function at any location.

Properties of the resulting GP model are inherited from the

covariance function, for example, differentiability, continuity

and stationarity. The intermolecular energy is a non-stationary

function of distance, as it varies rapidly at small interatomic

separations, but more gently at larger separation. Although it

is possible to write down a non-stationary covariance function,

in practice it can be challenging to specify a flexible form that

captures the correct non-stationary behaviour. It is simpler to

transform either the inputs or outputs to achieve approximate

stationarity, which is addressed here by using the inverse in-

teratomic distances as covariates in the GP. Thus the GP co-

ordinates are x = (1/r1, ...,1/rND
) where ri is the interatomic

distance, running over all pairs of nuclei belonging to different

molecules. This results in an over-specified system, for exam-

ple with ND = 6 dimensions for CO2 – H2. It is shown later

that this change in variables leads to a dramatic improvement

in performance.

The training data should ideally comprise approximately

evenly spaced points in a single symmetry-distinct sub-region

of x space, and respect the geometric constraint. The gen-

eral strategy is to generate many candidate data sets (coordi-

nates only, not energies), exclude points outside the symmet-

ric and geometric constraints, and select the candidate data set

with the best distribution of points. Specifically, for CO2 – Ne

and CO2 – H2, candidate data sets are generated from Latin

hypercube (LHC) sampling of 1/r and the angular LHC co-

ordinates in Table 1. For HF – HF, three LHCs are generated

and combined into one dataset: one uses the F-F distance as

the radial coordinate r, and keeps only those data points within

the LHC for which the F-F distance is the shortest of the four

internuclear distances; the other two LHCs are generated in

the same way but with F-F replaced by H-H and H-F in turn.

The LHC for CH4 – N2 is generated based on an H-N dis-

tance as the radial coordinate, and uses only the data points

for which the same H-N distance is the shortest of the ten in-

ternuclear distances. For all four interactions, after generating

the LHCs, deleting data points based on the symmetric and ge-

ometric constraints, and combining the sets of points into one

(for HF-HF), the minimum separation of the remaining points

is calculated in x space. The candidate data set with the largest

minimum separation is used as the training set. This ‘max-

imin’ approach aims to give even coverage across the whole

of the relevant region of x space.

The Gaussian process has a zero mean function and a

squared-exponential covariance function

κ(x,x′) = σ2
f

ND

∏
i=1

exp

[

−
(xi − x′i)

2

2l2
i

]

(1)

where σ2
f is the signal variance and li is the correlation

length for each dimension. This choice results in a station-

ary infinitely differentiable model, which is called the ‘non-

symmetric model’.
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The potential energy surfaces obey various symmetries in

x space. For example, for CO2 – Ne, the energy is invariant

under the interchange of the two coordinates corresponding to

distances between Ne and each of the O atoms. Let G rep-

resent the permutation group containing permutations of ele-

ments of x under which the energy surface is unchanged. If

it is assumed that li = l j when coordinates xi and x j swap for

some permutation in G, then a covariance function of the form

ksym(x,x
′) = σ2

f ∑
g∈G

κ(gx,x′). (2)

results in a GP which shares the symmetries of the energy

surface (see the Supplementary Material). The ‘symmetric

model’ based on this symmetric covariance function gives

predictions that respect the relevant symmetries, and usu-

ally significantly improves the performance, even within the

symmetry-unique region covered by the test data, as shown

below.

The GPs are obtained using the GPy package12 modified

to include symmetric covariance functions. Zero-mean Gaus-

sian observation error11 is assumed on the function outputs

(refered to as nugget in geostatistics), with standard deviation

σn. Thus the model’s hyperparameters are σ f , σn and {li}.

These hyperparameters are estimated by optimising the log-

likelihood over ≈ 30 random restarts, which typically is suffi-

cient to find the optimal values multiple times.

The choice of inverse internuclear distances to transform

to stationarity is important. To illustrate this a ‘basic model’

GP is created, which uses internuclear distances r as co-

ordinates rather than 1/r, but is otherwise identical to the non-

symmetric GP above. In particular, the same test and training

data are used, and the covariance function has the same form

as equation (1).

3 Results

10 100 1000
Latin Hypercube size
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Fig. 1 RMSE against LHC size for CO2 – Ne. The lowest energy in

the grid data is −2.90×10−4 Eh.

Predictive performance is measured using the root mean

square error (RMSE) of the GP predictions of the test data.

Note that the GP has no advance knowledge of the test data,

only the far more limited training data. The RMSEs are some-

what noisy because of the random nature of generating LHCs,

and because relatively small fractional errors in individual

points high on the repulsive wall have a significant effect on

the RMSE. However, this variability is usually small com-

pared to the effect of increasing the LHC size, as demonstrated

next.
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Basic model
Non-symmetric kernel
Symmetric kernel

Fig. 2 RMSE against LHC size for CO2 – H2. The lowest energy in

the grid data is −8.25×10−4 Eh.

The results for CO2 – Ne are shown in Figure 1. Here,

the models based on inverse intermolecular distances dramat-

ically outperform the basic model, being typically 2-3 orders

of magnitude more accurate, when compared at fixed LHC

size. Furthermore, even though this system contains only one

symmetry, the symmetric model is typically a factor of 2 more

accurate than the non-symmetric model. Figure 2 shows sim-

ilar results for CO2 – H2. Here, the inverse distance models

again strongly outperform the basic model, achieving RMSEs

< 10−6 Eh for a reasonable number of training points. The

symmetric kernel typically gives a factor of 2-10 improve-

ment, with the greater improvement compared to CO2 – Ne

probably resulting from the greater number of symmetries.

For HF – HF, the minimum energy in the calculated test data

is −6.17 × 10−3 Eh, which is about an order of magnitude

larger than for the other interactions. Probably as a conse-

quence of this, it is found to be necessary to include training

points up to at least 10−2 Eh, otherwise the prediction of the

few remaining points on the repulsive wall is poor. Using a

cutoff of 2× 10−2 Eh gives an RMSE of 1.6× 10−4 Eh for

a symmetric GP with 59 training points, and the RMSE gen-

erally decreases with increasing numbers of training points,

to 1.8× 10−5 Eh for 327 training points. The RMSE in the

negative-energy region is about 5×10−6 Eh for the latter GP;

one or two high-energy points dominate the overall RMSE.

The inclusion of symmetry in the GP has little effect on the

RMSE for this interaction.

For CH4 – N2, all 48 symmetry elements are included in the

GP. The minimum energy in the test data is −6.98×10−4 Eh.

As might be expected, the inclusion of symmetry is impor-

1–5 | 3
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tant for this interaction, even though all the training and test

data are confined within a single symmetry-distinct region of

space. With a training set of 106 points, the RMSE is found to

be 51×10−6 Eh for the nonsymmetric GP and 6.8×10−6 Eh

for the symmetric GP. Using 326 training points reduces these

values to 17× 10−6 Eh and 1.3× 10−6 Eh respectively. The

latter RMSE is therefore less than 0.2% of the well depth, and

less than 0.03% of the high-energy cutoff.
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Fig. 3 CO2 – Ne Molpro calculations and the GP model, at cosθ = 1

(linear geometry), in the repulsive (a), attractive (b) and long-range

(c) regions. The long-range asymptotic expansion is E =−(0.570+
0.182cos2 θ)r−6 − (1.704+7.266cos2 θ+1.785cos4 θ)r−8.

The performance of the GP outside the training region

(E > 0.005Eh and r > 8.5Å) is shown for linear CO2 – Ne

in Figure 3; results for other geometries and interactions are

qualitatively similar. The extrapolation errors for points within

the geometric constraint but with E > Ecut are mostly good,

being a few percent or less. However, for small values of r

the GP returns to its mean value of zero. This unphysical be-

haviour can be corrected by using a mean function with strong

repulsion outside the geometric constraint. One example of

the many possible choices is plotted in Figure 3(a), namely

E = Emax
1
N ∑N

i=1(xi/xmax)
12, where Emax is an estimate of the

typical energy at the small-r edge of the geometric constraint∗

and xmax is the maximum inverse distance allowed by the ge-

ometric constraint (0.67 Å−1 in this case). For large sepa-

rations the GP tends to a small, but non-zero constant. This

can be corrected for points beyond the geometric constraint,

by crossing over to the long-range asymptotic expansion ob-

tained from time-dependent perturbation theory. Figure 3(c)

shows that smooth interpolation between the GP and this func-

tion will be straightforward.

4 Conclusions

The procedure described here has been used to produce in-

termolecular potential energy surfaces efficiently from a rel-

atively small number of input data points. The algorithm is

∗This can be obtained from the maximum energy, before applying the energy

cut-off, over the test data (if available) or training data.

straightforward and easily generalised to new molecular pairs.

It uses a symmetric Gaussian process, with the inverse inter-

atomic distances as input variables. The GP is trained us-

ing energy data chosen from a Latin hypercube design, with

a maximin criterion for the inverse internuclear distances.

The wide applicability and robustness of the approach has

been demonstrated by testing against two systems involving

CO2, a system with a deep energy minimum (HF – HF) and a

system with 48 symmetries (CH4 – N2). In all cases the ap-

proach accurately predicts an extensive set of test data, with

no a priori knowledge of this dataset, and gives RMSE val-

ues that are similar to, or better than, the best fits in the lit-

erature, which were generally based on thousands of training

points. Furthermore, the interpolation method can be readily

and directly applied to any pairwise interaction, at least for

simple molecules, with no bespoke work, beyond identifying

the symmetries in the system.

The approach contains three key innovations: a novel

method for symmetric GP kernels; the use of inverse inter-

atomic distances as the GP input variables; and a new strategy

for positioning training data on a Latin hypercube design with

a maximin criterion on the inverse intermolecular distances.

There are numerous extensions that follow from this ap-

proach. The relatively small number of training points can be

used in more precise and computationally demanding poten-

tial energy calculations, then interpolated, without needing ex-

tensive test data. Application to many other chemical systems

is straightforward. Furthermore, the model’s accuracy against

training set size could be optimised by sequentially adding

training points through active learning methods13. This could

be achieved either with or without a priori knowledge of the

test data, depending on the nature of the potential energy data

to be modelled. Another promising application is the inter-

polation of non-additive potentials, which are known to be

difficult to fit14. Here the data are usually high-dimensional,

vary strongly and rather unpredictably as a function of geome-

try, and can contain many symmetries. Finally, existing high-

precision calculations could be used as training and testing

data for interpolation by the algorithm. Here a sparse Gaus-

sian process15 could select a subset of the preexisting data on

which to base computation, leading to numerically cheap, yet

highly accurate, potential energy surfaces.
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1 Latin hypercube generation

We wish to generate a dataset of model evaluations, {xi, f (xi)}
N
i=1, that can be used to

train the Gaussian process, where the xi represent N distinct molecular geometries. Each

element of xi is the inverse distance between two atoms, one from each of the molecules

under consideration. The design only needs to contain points in a symmetry-distinct sub-

space. For example, in CO2-Ne the O nuclei are denoted O1 and O2, and the symmetry-

distinct subspace is defined such that Ne is always nearer to O1 than to O2. Space filling

designs are held to be good choices for Gaussian process models, and so we will use a

maxi-min criterion to evaluate candidate designs. In otherwords, we seek designs which

maximise the minimum distance between any two design points. Latin hypercube (lhc)

designs are used as candidate designs, as they naturally fill space to some extent, and we

then choose a prefered design from a large number of candidates. We define the effective

distance between points xi and x j in the design to be

|x|2i j = (xi −x j)
⊤(xi −x j) (1)

and we generate a training design using the following algorithm:

• Generate a lhc in 1/r and rigid-body rotation angles. (For non-rigid molecules,

intramolecular coordinates would also be used.)

• Convert the lhc data to atomic positions and compute all interatomic distances for

pairs of atoms on separate molecules.

• Reject the geometries that don’t obey the geometric constraint or lie outside the

symmetry-distinct region of coordinate space.

• Reject the entire lhc if it does not contain at least the target number of geometries

(usually the mean number of remaining points after the geometric constraint is ap-

plied).

• Find the minimum |x|2i j within the current lhc.

• Repeat for Nit new lhcs and return the lhc with the largest minimum |x|2i j.
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2 Symmetric covariance function

The motivating problem is modelling the H2 - CO2 system, which we parameterise by 6

distances:

• r1 = H1 →C

• r2 = H2 →C

• r3 = H1 → O1

• r4 = H2 → O1

• r5 = H1 → O2

• r6 = H→O2

The potential function f between the two molecules obeys the following symmetry

relations

f (123456) = f (214365) = f (125634) = f (216543)

where f (123456) denotes f (r1,r2,r3,r4,r5,r6).
In other words, the function

f (x) = f (σx)∀σ ∈ K4

where K4 is the permutation group consisting of the permutations

σ1 = (12)(34)(56), σ2 = (35)(46) σ3 = (12)(36)(45),

where we are using cyclic notation for the permutations. Note that along with the identity

e, these four permutations form an abelian group that is symmetric to the Klein-4 group

K4 (≡ Z2 ×Z2), i.e., σ
2
i = e and σ1σ2 = σ3 etc.

2.1 A single symmetry

To start with, suppose we want to model f where f is invariant under the single permutation

σ, where σ
2 = e. If we assume

f (x) = g(x)+g(σx)

for some arbitrary function g, then f has the required symmetry. If we model g(·) ∼
GP(0,k(·, ·)), then the covariance function for f is

k f = Cov( f (x), f (x′)) = k(x,x′)+ k(σx,x′)+ k(x,σx′)+ k(σx,σx′)

If k is an isotropic kernel (we only actually require isotropy for each pair of vertices

that swap in σ), then k(x,x′) = k(σx,σx′) and k(x,σx′) = k(σx,x′) as swaps only occur in

pairs (σ2 = e). So we can use

k f (x,x
′) = k(x,x′)+ k(σx,x′)

saving half the computation.

2 | 1–3
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2.2 Invariance under permutations in K4

Now lets consider functions that are invariant to permutations in K4. If we write

f (x) = g(x)+g(σ1x)+g(σ2x)+g(σ3x)

then if g(·)∼ GP(0,k(·, ·))

k f (x,x
′)= k(x,x′)+k(σ1x,x′)+k(σ2x,x′)+k(σ3x,x′)+k(x,σ1x′)+k(σ1x,σ1x′)+ . . .k(σ3x,σ3x′)

(2)

If k is isotropic, then k(x,σix
′) = k(σ−1

i x,x′). Thus k(x,x′) = k(σix,σix
′), k(x,σix

′) =
k(σix,x

′) and k(σix,σ jx
′) = k(σkx,x′) for i 6= j 6= k. Thus we can use

k f (x,x
′) = k(x,x′)+ k(σ1x,x′)+ k(σ2x,x′)+ k(σ3x,x′)

as a covariance function for f instead of Equation (2). This reduces the amount of com-

pution needed to calculate the covariance functions by 75%.

Note that we don’t need k to be completely isotropic for this simplification to hold,

only that the covariance function is isotropic for any pair of inputs that swap in any of the

permutations. So in the H2- CO2 system, we require the length-scales to be the same for

inputs 1 and 2, and the same for inputs 3, 4, 5 and 6.

1–3 | 3
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