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Supporting Information 

 

S1. Study Sites and Stand Productivity Estimation 

Our study area is located along a 3300 m elevation gradient in the tropical Andes and extends to the 

Amazon Basin. Across this transect a group of ten intensively monitored 1-ha plots was established 

as part of the long-term research effort coordinated by the Andes Biodiversity Ecosystems Research 

Group (ABERG, http://www.andesconservation.org) and the ForestPlots 

(https://www.forestplots.net/) and Global Ecosystems Monitoring Network (GEM; 

http://gem.tropicalforests.ox.ac.uk/projects/aberg) networks. In this study we exclude SPD-02, 

which is located on a landslide prone ridge just below cloud and was always an outlier in our 

simulations as well as in other studies across the gradient (Malhi et al. 2017a). Table S1.1 provides 

a summary of the environmental conditions for the study sites. Five of the plots are montane plots 

in the Kosñipata Valley, spanning an elevation range 1500 - 3500 m (Malhi et al. 2010), two are 

submontane plots located in the Pantiacolla front range of the Andes (range 600 - 900 m) and two 

plots are found in the Amazon lowlands in Tambopata National Park (elevation range 200 - 225 m). 

The elevation gradient is very moist (Table S1.1), with seasonal cloud immersion common above 

1500 m elevation (Halladay et al. 2012), and no clear evidence of seasonal or other soil moisture 

constraints throughout the transect (Zimmermann et al. 2010). Plots were established between 2003 

and 2013 in areas that have relatively homogeneous soil substrates and stand structure, as well as 

minimal evidence of human disturbance (Girardin et al. 2014).  

At all plots, the GEM protocol for carbon cycle measurements was employed 

(www.gem.tropicalforests.ox.ac.uk). The GEM protocol involves measuring and summing all major 

components of NPP and autotrophic respiration on monthly or seasonal timescales (Malhi et al. 

2017a). NPP measurements include: canopy litterfall, leaf loss to herbivory, aboveground woody 

productivity of all medium-large (D>10 cm) trees (every three months), annual census of wood 

productivity of small trees (D 2-10 cm), branch turnover on live trees, fine root productivity from 

ingrowth cores installed and harvested (every three months) and estimation of coarse root 

productivity from aboveground productivity. Autotrophic respiration (Ra) is calculated by summing 

up rhizosphere respiration (measured monthly), aboveground woody respiration estimated from 

stem respiration measurements (monthly) and scaling with surface area, belowground coarse root 

and bole respiration (fixed multiplier to stem respiration) and leaf dark respiration estimated from 

measurements of multiple leaves in two seasons. GPP, the carbon assimilated via photosynthesis is 

approximately equal to the amount of carbon used for NPP and Ra, thus GPP=NPP + Ra. Finally the 

proportion of total GPP invested in NPP, the carbon use efficiency is estimated by CUE=NPP/GPP. 

http://www.andesconservation.org/
http://gem.tropicalforests.ox.ac.uk/projects/aberg
http://www.gem.tropicalforests.ox.ac.uk/
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For six of the plots, NPP and GPP were estimated by summation of the measured and estimated 

components of NPP and autotrophic respiration (Malhi et al. 2017a). For the remaining plots, we 

used measured NPP to estimate GPP applying the mean carbon use efficiency of the other plots, 

separated into cloud forest and submontane/lowland plots. 

Table S1: Environmental characteristics of the study sites. Note that the annual solar radiation, 
mean temperature and total precipitation values refer only to year 2013.         

Site Code Lat Lon Elevation 
(m asl) 

Solar 
Radiation 

(GJ m-2 yr-1) 

Mean annual 
Temperature 

(oC) 

Annual 
Precipitation 

(mm) 
TAM-05 -12.83 -69.27 223 4.80 24.6 2078 

TAM-06 -12.84 -69.30 215 4.80 24.6 2078 

PAN-02 -12.65 -71.26 595 3.82 23.8 3156 

PAN-03 -12.64 -71.27 859 3.82 22.0 3156 

SPD-01 -13.05 -71.54 1713 4.35 17.2 3694 

TRU-04 -13.11 -71.59 2719 3.49 13.0 3570 

ESP-01 -13.18 -71.59 2868 3.51 12.3 1796 

WAY-01 -13.19 -71.59 3045 3.51 11.1 1796 

ACJ-01 -13.15 -71.63 3537 4.23 7.3 2088 

 
Figure S1: Estimated NPP (±2se) versus GPP (±2se) across the Amazon-Andes elevation gradient. 
The slope of the linear regression indicates the average plot-level CUE.       
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S2. Model Description 

The original TFS model is a trait-continua and individual-based model, which simulates the carbon 

(C) balance of each tree in a stand (Fyllas et al. 2014). The model is initialised with tree-by-tree 

diameter at breast height (D) and functional traits data. Four functional traits [leaf dry mass per area 

(LMA in g m-2), leaf N (NLm in mg g-1) and P (PLm in mg g-1) mass-based concentrations and wood 

density ȡW (g cm-3)] are used to represent a continuum of tree functional properties. Rather than 

grouping trees into plant functional types, TFS implements distributions of functional traits and thus 

a continuum of plant strategies and responses to environmental conditions can be simulated. Leaf 

mass per area, wood density and maximum tree height seem to consistently influence competitive 

interactions across plant species (Kunstler et al. 2016) and can be good candidate traits to represent 

the global “fast-slow” plant economics spectrum (Reich 2014). In TFS, the three leaf traits (LMA, 

NLm, PLm), the central components of the leaf economic spectrum, regulate the photosynthetic 

capacity and the respiration rate of trees (Wright et al. 2004, Atkin et al. 2015). Wood density (ȡW) 

accounts for variation in aboveground biomass (MA in kg DM), with trees of greater ȡW supporting 

a higher biomass for a given D and tree height (Chave et al. 2014). Alllometric equations are used 

to infer tree height (H in m) and allocation to leaf (ML), stem (MS) and root (MR) biomass (all in in 

kg DM). Light competition is approximated through the perfect plasticity assumption, with tree H 

used to estimate the relative position of an individual within the canopy, and thus the available solar 

radiation (Strigul et al. 2008). The carbon and water balance of each tree is estimated on a daily 

time-step and at the end of each simulation year, stand-level GPP and NPP is estimated by summing 

up the daily individual-tree C fluxes. 

The version of the model used in this study replaces the original CO2 assimilation [coupled 

Farquhar - stomatal conductance model, Fyllas et al. (2014)] and C allocation algorithms with the 

growth equation of Enquist et al. (2007b). Here we give a detailed description of the model, 

emphasising on the coupling of the integrative growth equation with the climate and solar radiation 

components of TFS. In particular the model of Enquist et al. (2007b) does not include any 

temperature or light availability effects on leaf photosynthetic rates and thus spatial and temporal 

variation of the thermal and irradiance conditions cannot be specifically modelled. We address these 

shortcomings by allowing the model to estimate an individual-specific daily growth that is driven 

by variation in temperature and irradiance (and potentially soil moisture) using the algorithms 

described in the following paragraphs.     
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1. Tree Allometry  

The diameter at breast height (D in cm) along with the four functional traits of (LMA, NLm, PLm and 

ȡW) is used to functionally define each tree in a plot. For each study site the model is initialised with 

measured tree D and trait values. Allometric equations relating tree height (H) and crown area (CA) 

were taken from Shenkin et al. (2016, under review). In all cases mixed-effect linear regression 

models were fit to account for species (fixed) and site (random) effects. The general form of these 

equations is implemented in TFS. Tree height (in m) is estimated from D (cm): 

10exp( log ( )) (1)H HH D     

with ĮH = 1.51 and ȕH = 0.084 

The exponent of the CA versus D scaling relationship is considered well conserved across tropical 

tree species (Farrior et al., 2016), and this was also verified from the analysis of our data. Crown 

area (in m2) is given from:   

D  (2)C
A CC   

with ĮC = 0.695 and ȕC = 1.305 

Aboveground tree biomass (MA in kg) is estimated from Chave et al. (2014) equation:  

A2
A A W( )  (3)M D H       

with ĮA = 0.0673 and ȕA = 0.976 and thus for a given D, trees with greater ȡW achieve a greater MA. 

Leaf (ML), stem (MS) and root (MR) biomass (all in kg) are calculated from aboveground biomass: 
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The coefficients of these equations were estimated by fitting standardised major axis (SMA) lines 

with data from the BAAD dataset (Falster et al. 2015). We only used data from evergreen 

angiosperms species found in tropical rainforests and tropical seasonal forests with D>1cm, as 

within our plots most species are evergreen and only individuals of D>2 cm are included in the 

productivity calculations. In our simulations, in order to account for potential variation across 

individual tree architecture we allowed the allometric coefficients to vary within the 95% 

confidence intervals estimated by the SMAs (Fig S2.1). Total tree biomass is then given from:  

 (5)T L S RM M M M  
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We note that for the simulations performed in this study the estimation of MS, MR and MT are not 

required, as the growth rate of trees is expressed only as a function of foliage mass (equation 6). 

Equation 3 adequately predicted MA when compared with the records reported in BAAD (Fig S2.1). 

The range of ML allometries allowed within our simulations is illustrated in Fig S2.1.   

Figure S2.1: Allometric equations used to predict total aboveground biomass (MA) and total dry 
leaf biomass (ML). Left panel: Red squares indicate predictions from the Chave et al. (2014) 
equation (equation 3) and black circles measurements reported in the BAAD dataset (Falster et al. 
2016). The RMSE for predicted and reported MA was 143 kg. Right panel: The allometric 
relationship between dry leaf biomass (ML) and MA. The black line represents the power function 

L
L L AM M  with ĮL=0.158 and ȕL=0.707, while the broken lines indicate the range of allometries 

allowed in our simulations within the 95% CI of the SMA estimates [ĮL=(0.150 – 0.166) and 
ȕL=(0.690 – 0.724)]. 

 

 

2. Tree Growth 

The relative growth rate (RGR) of a plant (the rate of increase in plant mass per unit of mass 

present) can be factored to the following three components: the leaf net carbon assimilation rate, the 

leaf area per unit leaf mass and the leaf weight ratio (Hunt 1982; Lambers et al. 2008). Enquist et al. 

(2007b) extended this equation to include additional functional traits and the effect of plant size on 

growth rate:   

,( )( )  (6)T L
L D L

L

dM ac
A M

dt m
  

where Mȉ is the total plant dry biomass (kg), c the carbon use efficiency (no units), Ȧ the fraction of 

whole-plant dry mass that is carbon, AL,D the leaf area specific photosynthetic rate (gC cm-2 day-1), 
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aL the individual leaf area (cm2), mL the individual leaf mass (g) and ML the total leaf dry mass (kg). 

The time step in our simulations (dt) is daily.   

In our simulations a random carbon use efficiency (c) is assigned to each tree in a plot, drawing 

from a normal distribution ( , )c c  with 0.33c   and ı=0.04, the values estimated from field 

observations at the plot level, which found no trend in c with elevation (Malhi et al. 2017a). The Ȧ 

term is set constant to 0.5 (gC g-1DM). The expression of the photosynthetic rate AL,D is also 

extended here to account for inter- and intra- specific variability due to leaf traits as well as to light 

availability (see Photosynthesis section). The ĮL/mL ratio is the inverse of LMA (i.e. SLA) and it is 

allowed to vary across individual trees.  

The basic assumption in equation 6 is that whole-plant net biomass growth rate scales 

isometrically with total plant leaf biomass (Hunt 1982). However, predicting the patterns of plant 

biomass allocation is a topic of extensive debate with Metabolic Scaling Theory (MST) suggesting 

relative invariant power laws (Enquist et al. 2007a) and other studies showing that scalling varies 

across species and plant sizes (Poorter et al. 2015). Another critique of MST-based growth 

equations is that they do not take into account resources availability, for example light in forest 

stands (Muller-Landau et al. 2006, Coomes & Allen 2009). In order to implement equation 6 within 

TFS and deal with the above critics we 1) used a set of allometric equations with stochastic scaling 

coefficients estimated from available data and 2) expressed the photosynthetic rate AL,D as a 

function of both leaf traits (that vary in a continuous way across individual trees) and irradiance that 

takes into account competition for light between individuals.  

As discussed in the previous section (Tree Allometry) the scalling coefficient, ȕL, of the 

L
L L A  M M  relationship is allowed to vary across our simulations within the (0.690 – 0.724) 

range predicted from the SMA fits of the BAAD dataset. This coefficient is usually denoted as ș in 

MST studies (Enquist et al. 2007a) and can be considered as an additional “functional trait” that 

reflects the geometry of the branching network. The exact value of ș has been vigorously debated 

with recent analyses suggesting that it ranges in a continuous way with ontogeny and decreases 

from seedlings to mature trees (Poorter et al. 2015). We note however that in our simulations the 

smallest tree included had an MA≈3x103 g DM and the biggest one an MA≈23x106 g DM suggesting 

that within this range the ȕL scalling exponent could vary from ca 0.7 to 0.58 (Poorter et al. 2015), 

being at a relative stable region. The sensitivity analysis of the model to variation in the ȕL 

parameter can be found in Fig S2.6. This analysis indicates that GPP and NPP simulations are 

sensitive to the value of ȕL value although this should change in combination with the normalization 

coefficient ĮL and not independently as was the case in the sensitivity analysis.  
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3. Light Competition 

One of the key criticisms of MST-based growth equations is that they fail to model asymmetric 

competition for light (Muller-Landau et al. 2006, Coomes and Allen 2009). In order to account for 

light competition between trees, we allowed AL,D to vary not only due to the functional properties of 

a tree's foliage but also based on its relative position within the canopy. Light availability (I) for 

each individual in the stand is estimated using the built-in canopy structure algorithm of TFS 

(Fyllas et al. 2014), based on the Perfect Plasticity Approximation (PPA - Purves et al. 2008). In the 

original TFS model, trees are classified at a canopy or sub-canopy group, with the latter group 

receiving less radiation. Here we use a more detailed light availability profile, where more than one 

canopy layers can be identified within a plot (Strigul et al. 2008). A critical height ( כ) is estimated 

for each layer (L). Trees that are taller than  ୀଵכ , i.e. canopy trees, receive the full amount of daily 

radiation. Trees with height between  ୀଵכ  and   ୀଶכ , are shaded by the first layer and so on. Each 

layer is assumed to have a constant leaf area index equal to the ratio of the total stand‟s LAI with 

the number of canopy layer identified. Based on its relative position within the canopy (number of 

shading layers), light availability for each tree is estimate following the Beer‟s light extinction 

model with an extinction coefficient K=0.5. Our simulations suggest that accounting for 

asymmetric light competition is important in order to adequately simulate forest productivity along 

the study gradient (S5 - Light Competition). 

Bohlman and Pacala (2012) applied a similar multilayer version of the PPA model in Barro 

Colorado Island and noted that the understorey layers (L>1) are probably not continuous and 

coherent. Thus in our implementation of the PPA, where layers are considered continuous, their 

relative importance for shading is probably overestimated in contrast with the underestimation of 

the first (L=1) canopy layer. Both Bohlman and Pacala (2012) and Farrior et al. (2016) used PPA to 

approximate light competition but implemented species independent growth rates within their 

simulations. Our approach further enhances their approach, by also considering continuous 

between-tree variation in potential growth rates emerging from differences in individual-tree 

functional traits.  

 

4. Photosynthesis  

In order to account for inter- and intra- specific variability in the leaf specific photosynthetic rates 

we used an independent dataset of 136 (one leaf per tree) light response curves and leaf traits 

measurements in 14 plots along the Amazon-Andes gradient (Atkin et al. 2015; Weerasinghe 2015), and 

expressed AL,D (equation 6) as a function of the three (LMA, NLm and PLm ) functional traits. There 

were six common plots (TAM-5, TAM-06, SPD-01, TRU-04, ESP-01 and WAY-01) with our study 
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sites, although the elevation range covered (ca 100 to 3450 m asl), includes most of our study sites 

with the exception of the uppermost plot (ACJ-01, 3537 m asl).  

The light-response curve measurements were made using one cut branch per tree, with 

measurements of net CO2 exchange (Anet) taking place between 10.00 am and 3.00 pm. 

Measurements were made on the most recently fully expanded leaves attached to the cut branches 

(which had been re-cut under water immediately after harvesting to preserve xylem water 

continuity) using the LICOR 6400XT system (LI-COR Inc., Lincoln NE, USA). The block 

temperature was set to that of the prevailing air temperature at each site at the time of measurements 

(20°C at the upland sites, and 28°C at the lowland sites). The area-based net  photosynthetic rate 

(Anet µmol m-2 s-1) was measured starting at 2000 µmol photons m-2 s-1 and gradually decreased to 

darkness via 1500, 1000, 250, 100, 80, 60, 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, 5 and 0 µmol 

photon m-2 s-1 with relative humidity between 60-70% and CO2 concentration set at 400 ppm. An 

equilibrium period of two minutes was allowed at each irradiance level before Anet was measured.  

The plot-level analysis of this dataset (136 leaves/trees) suggest that the area-based net light-

saturated photosynthetic rate (at 1500 ȝmol photons m-2 s-1) at the prevailing air temperature 

(Anet1500) did not show any trend with elevation or leaf temperature (Fig S2.2). This is in agreement 

with the findings of Malhi et al. (2017a), where at ambient temperatures there was no evidence of a 

trend of photosynthetic parameters with elevation. 

A recent study reported that, along the Andean elevation gradient, maximum carboxylation and 

electron transport rates at a measurement temperature of 25oC were significantly higher at upland 

sites, possibly reflecting greater P per unit leaf area at high elevations and/or thermal acclimation to 

sustained lower growth temperatures (Bahar et al. 2016). By contrast, when measurements of gas 

exchange were made at late morning to early afternoon at each site (20-28oC; Fig S2.2), light-

saturated, area-based rates of net photosynthesis, as well as maximum carboxylation and electron 

transport rates, show no significant trend with elevation (Bahar et al. 2016, Malhi et al. 2017a). The 

latter observations support the use of a temperature-independent equation for photosynthetic carbon 

assimilation in our simulations. We note, however, that our photosynthetic light response curves 

were parameterised with measurements made at leaf temperatures higher than 20oC. For some of 

the upland sites, leaf temperatures are lower than 20oC for much of the day (van de Weg et al. 

2014). This raises the question of whether our estimates of daytime carbon-fixation are an 

overestimate, given the potential for lower temperatures to reduce net photosynthesis. Currently, 

there are few data available on how leaf temperatures less than 20°C affect maximum 

photosynthetic rates along tropical elevation gradients such as that in Peru. A recent study in 

tropical montane forests in Rwanda showed that while the optimum temperature for photosynthesis 

of native montane tropical species is lower than that of exotic warm-adapted species, the 
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temperature range over which optimal rates are exhibited is broad, such that rates at 20°C and 25°C 

are similar (Varhammar et al. 2015). If the same is true for species adapted to our Andean high 

elevation plots, then maximum photosynthesis may be relatively temperature insensitive across the 

dominant daily range of leaf temperatures experienced (i.e. our measurements of leaf 

photosynthesis would be indicative of carbon uptake rates across a wider range of temperatures 

experienced by leaves each day at high altitude). Thus although trees in higher elevations operate 

under lower temperatures, their maximum light-saturated photosynthetic rate is equivalent to their 

lowland counterparts. The fact that in our dataset Anet1500 is higher than would be expected at lower 

temperatures (upland plots) is because of the higher photosynthetic capacity of the trees found at 

higher elevations. 

Figure S2.2 Plot average net light-saturated (at 1500 ȝmol photons m-2 s-1) photosynthetic rate 
(±standard error) at prevailing air temperature against site elevation and average leaf temperature. 
σo trend was observed in either case (Kendall‟s Ĳ = -0.209, p = 0.331 and Ĳ =0 .077, p = 0.747).   

 

Measurements of the instantaneous net photosynthetic rate (Anet) at different light intensities 

were subsequently used to fit the Michaelis-Menten (MM) light response model for each curve. The 

MM model was fit by applying the Differential Evolution (DE) algorithm (DEoptim R-package) to 

minimise the sum of squares. Chen et al. (2016) have shown that the DE provides robust estimates 

for various photosynthetic light response models and it is not sensitive to initial values selection. 

The MM light response model is given by the following equation: 

 max  (7)net d

A I
A R

k I
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where I (ȝmol m-2s-1) the irradiance, Amax the maximum gross photosynthetic rate (ȝmol m-2 s-1), k 

the half saturation coefficient (ȝmol m-2 s-1) and Rd is the non-photorespiratory mitochondrial CO2 

release taking place in the light (i.e. respiration in the light) (ȝmol m-2 s-1). The low light part (I<60 

ȝmol m-2s-1) of the curve was excluded in order to minimize the effects of the „Kok effect‟ (Kok 

1948), as the inhibitory effect of light diminishes as irradiance approaches darkness, resulting in 

increased rates of respiration in darkness compared to those in the light (e.g. Weerasinghe et al. 

(2014)).  

As for some curves the MM parameter estimates were unreasonable, we only used individual 

curves with estimates of Rd>0 (ȝmol m-2 s-1), Rd<4.5 (ȝmol m-2 s-1) and k<400 (ȝmol m-2 s-1) for 

further analysis (72 curves). Figure S2.3 illustrates the leaf-specific estimates of MM model for 

each light response curve versus average leaf temperature. No trend of Amax nor Rd was found with 

leaf temperature, in agreement with the constant Anet1500 at ambient temperatures. On the other hand, 

the estimated half saturation coefficient (k) presented a decreasing trend with leaf temperature 

(Kendall‟s Ĳ = -0.19, p = 0.018).    

Figure S2.3: Leaf-specific estimates of the Michaelis Menten light response curve parameters 
versus leaf temperature. No trend was identified in Amax and Rd with leaf temperature, while k 
decreased with leaf temperature (Kendall‟s Ĳ = -0.19, p = 0.018). 

 

 

We initially explored how the estimated parameters of the MM equation (Amax, k, Rd) varied (Fig 

S2.4) with the three leaf traits, expressed on an area basis (LMA, NLa and PLa). Amax increased with 

PLa supporting the role of leaf P in controlling leaf photosynthesis in tropical forests, Rd increased 

with LMA and PLa with higher P concentration associated with higher ATP and greater 

physiological activity and respiration and k increased with NLa in accordance with protein rich 

leaves having a higher light compensation point. 
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Figure S2.4: Variation of the Michaelis-Menten light response curve parameters against individual 

leaf traits. The blue lines present local polynomial regressions.  

 

We subsequently used a backward stepwise multiple linear regression to express Amax, Rd and k 

as a function of the three leaf traits with the initial model including second level interactions of 

LMA with the two leaf nutrient concentrations (NLa and PLa). The final models (Table S2.1) were 

selected by the Akaike information criterion (AIC) criterion. Amax was only related to PLa with the 

model explaining only the 5% of the variation, and thus the overall mean 12.13 (ȝmol m-2 s-1) was 

considered as the common maximum photosynthetic rate for all trees. The half saturation 

coefficient (k) was mainly related to leaf nutrients, with the linear model accounting for 20% of 

variation in k (Table S2.1). Finally, Rd was related to all three leaf traits with the linear model 

accounting for ca 25% of the variation. These equations were used to parameterise the TFS light 

response model that accounts for the effects of trait variation on the photosynthetic properties of 

individual leaves. 

An average daily photosynthetic rate AL (gC m-2 day-1) is estimated for each tree with the 

parameters of the MM model inferred from its trait values and the equations in Table S2.1. The 
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average daily light availability is used in equation (7), which is converted to photosynthetic photon 

flux density (PPFD) assuming a 0.48 PAR to solar short-wave radiation ratio and a solar PAR to 

conversion factor of 4.6 ȝmol J-1. Total foliage absorptance was assumed to be 0.75 (Valladares et 

al. 2002). The total daily photosynthetic rate AL,D (equation 6) is estimated by multiplying average 

AL with the day length. 

Table S2.1: Summary of the multiple linear regression models for the parameters of the Michaelis-
Menten light response function (dependent variables) and the leaf functional traits (predictors).  

Parameter Intercept 
LMA 

 (g m-2) 
NLa 

 (g m-2) 
PLa 

(g m-2) 
LMA* NLa 

 
LMA* PLa 

 
R2 

Amax  

(ȝmol m-2s-1) 
10.25 

(***) 
  

15.51 

(*) 
  0.056 

k 

(ȝmol m-2s-1) 
162.68  

(**) 
-0.524 

-96.227  

(*) 

1351.03 

(**) 

0.753 

(**) 

-8.216 

 (**) 
0.199 

Rd  

(ȝmol m-2s-1) 
-0.703 

0.015  

(**) 

2.182  

(***) 

-15.24 

(* ) 

-0.015     

(* **) 

0.131 

 (***) 
0.249 

 

5. Temperature Sensitivity 

Although the analysis of the photosynthetic rates data along the elevation gradient support the use 

of a temperature independent photosynthetic model, we specifically explored whether including a 

photosynthetic temperature dependence could increase the predictive ability of TFS. For that 

purpose we employed a normalised temperature response function (Higgins et al. 2016): 

2g(T)=max(0,-0.242+0.0937T-0.00177T ) (8) 

ranging between 0 and 1 and used as a multiplier for Anet. The shape of equation 8 was validated 

against photosynthetic temperature responses data from montane rainforest species in Rwanda 

(Varhammar et al 2015). Anet data of six species at different temperatures were provided 

(Varhammar pers. comm) and the ratio of Anet to the maximum Anet measured across the 

temperature range was estimated. Quadratic curves were fitted for each species and each curve was 

plotted against the generic model (Fig S2.5). The temperature sensitivity function is used to account 

for the effects temperature variation on daily photosynthesis. We note that the generic temperature 

sensitivity model yield a wider curve and thus leads to smaller reductions of Anet for given 

temperature changes compared with the available data. We note that this is the only temperature 

dependence of the model, as one of our questions was to explore whether explicitly taking into 

account temperature sensitivity was necessary to model forest productivity along the study gradient.   
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Fig S2.5. Temperature sensitivity function (blue curve) used in our simulations following the 

generic model of Higgins et al. (2016). Available data from montane species (broken lines) in 

Rwanda are also plotted. The thicker broken line represents the average temperature sensitivity 

across all species.  

 

6. Stand level primary productivity. 

The above equations are applied for each individual within the stand to estimate a daily and at the 

end of each year an annual growth, i.e. the tree specific NPP. The GPP of each tree is estimated by 

dividing with the individual specific carbon use efficiency c. The stand level GPP and NPP are 

estimated by summation of all individual NPPs and GPPs.        

7. Sensitivity Analysis 

We performed a sensitivity analysis of the simulated GPP by systematically changing the values of 

a set of key parameters, including the total solar radiation at the top of the canopy So, the mean 

diameter of the trees (with no change in total stand Basal Area), the value of the ȕL (or ș) scalling 

exponent, as well as the values of the maximum gross photosynthesis (Amax), the half saturation 

coefficient (k) and the respiration (Rd) terms in the light response function. Figure S2.6 summarises 



14 
 

the outputs from the sensitivity analysis. A similar sensitivity of simulated NPP was observed and 

results are not reported here.  

Fig S2.6. Sensitivity analysis of simulated GPP to changes in some key model parameters. The 

black lines indicate local polynomial regressions of the mean GPP across all plots and the grey area 

the 95% confidence interval. The area within the blue rectangular shape indicates the range of GPP 

and the respective model parameter within our simulations.  

 

Simulated GPP was sensitive to changes of radiation So at the top of the canopy with a doubling 

of So leading to a doublinf of GPP. Sensitivity to average stand diameter (Dȝ) was explored by 

maintaining the total stand basal area (BA) and changing the relative size of individual trees. 

Overall the model was not very sensitive to changes of Dȝ suggesting that the relative contribution 

of different size classes in the total biomass of the stand is not a strong driver of productivity in the 

model. Simulated GPP was also sensitive to variation of the scaling exponent of the allometric 

relationship L
L L AM M  , with higher ȕL leading to simulations of higher productivity. We note 

that in the sensitivity analysis we systematically changed ȕL without changing ĮL. However ĮL 

should co-vary with ȕL and thus these simulations are oversensitive to changes in ȕL. The model 

was also sensitive to variation of the parameters of the photosynthetic light response curve, with 

higher GPP simulated for higher Amax and lower GPP simulated for higher k and Rd.    
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S3. Randomisation Exercises 

In order to explore the importance of climate, stand structure and functional traits in determining the 

patterns of forest GPP and NPP across our study sites, we applied within TFS a set of 

randomization exercises (Table S3.1). To test the importance of climate (Climate only Setup - CoS), 

we simulated GPP and NPP by using the local (plot-specific) climate and a regional average stand 

structure and trait distribution (i.e. the average stand structure and traits distribution across all plots 

along the transect). In order to find a general way to initialise stand structure, we fit the distribution 

of D with data from all plots to four theoretical distributions including the normal, the lognormal, 

the Weibull and the Gamma, using the fitdistrplus package. From those four distributions, the 

lognormal was the most appropriate one as it adequately described variation in D across all plots 

with the lowest AIC (S4). In the CoS, an average regional (i.e. along-transect) stand structure was 

thus assigned to each plot using the properties of the fitted lognormal distribution (ȝ and ı). 

Individual trees were sequentially added in a plot (with D sampled from the regional log-normal 

distribution) until stand basal area (BA) was 31.4 m2 ha-1, the median BA measured across all plots. 

The importance of local functional diversity was factored out by initializing trees in the CoS using 

the average traits distribution across all plots, i.e. using transect-wide instead of local traits 

distributions. The hypothesis behind the CoS is that climate, and particularly variation in incoming 

radiation is sufficient to explain variation in productivity across the elevation gradient, with no 

between-plots variation in traits or stand structure required. 

The role of stand structure was tested using the Structure only Setup (SoS). Following this setup, 

the observed D distribution in each plot was used to initialise trees, with climate and functional 

diversity showing no variation between plots. In particular, climate was set to be identical across all 

plots, being assigned the observed climate of one of the mid elevation sites (SPD-01 at 1500 m). 

The effect of local functional diversity was factored out in a similar way to the CoS, by using a 

transect-wide traits dataset. The hypothesis behind the SoS is that change in stand structure is the 

most important determinant of productivity along the elevation gradient. It should be noted that 

stand structure here mainly expresses the D distribution and not the established biomass, as in TFS 

the biomass of a tree is also determined by its wood density. Thus this hypothesis does not directly 

test for the effects of stand biomass on forest productivity but rather for those of the stand‟s size 

distribution.  

The potential control of functional trait variation, expressed through the distributions of the four 

traits, was explored by initializing TFS with the locally observed trait distribution and assigning 

climate and stand-size distribution to fixed values (as above). In the Traits only Setup (ToS), climate 

was assumed to be common between all plots and assigned the values at SPD-01. Stand structure 
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was similarly to the CoS initialised for each plot by sampling from the common lognormal 

distribution until a stand‟s BA reached the transect-wide median value. Trait values were assigned 

to each tree in the stand using the built-in trait distribution generator of TFS, which is based on the 

random-vector generation algorithm of Taylor and Thompson (1986). This algorithm is appropriate 

for generating non-repeated pseudo-observations from a relatively small sample of observations 

with approximately the same moments as the original sample. Our hypothesis investigated by this 

setup is that knowledge of the local distribution of the four functional traits and only a generic 

description of stand structure and climate is adequate to predict observed variation in GPP and NPP 

with elevation. 

Finally, in the Fully constrained Set-up (FcS), we adopted the plot-specific set-ups of climate, 

structure and traits (as outlines in the partial set-ups above) as our complete model. 

 

Table S3.1: Summary of the different model setups used in this study. The Fully Constrained setup 
provides the most data demanding parameterisation where local scale climatic, functional diversity 
(traits) and stand structure data are required to predict GPP and NPP. The Climate Only setup 
requires knowledge of local climate and a regional description of trait diversity and stand structure, 
suggesting that climate is the most important predictor of GPP and NPP. The Structure Only setup 
requires a detailed description of each stand‟s structure and regional level climate and traits data, 
suggesting that stand structure is the most important predictor of GPP and NPP. The Traits Only 
setup requires a detailed description of each plot‟s functional traits distributions and regional level 
data of climate and stand structure, suggesting that functional diversity is the most important 
predictor of GPP and NPP. 

 
Setup Climate Stand Structure Trait Pool 
Fully Constrained 
FcS 

Local Local Local 

Climate Only 
CoS 

Local Regional Regional 

Structure Only 
SoS 

Regional Montane Local Regional 

Traits Only 
ToS 

Regional Montane Regional Local 

 

The predictive ability of the various model setups were quantified through standardised major axis 

(SMA) regressions and estimation of root mean square error (RMSE in Mg C ha-1 y-1) between 

observed and simulated GPP and NPP (see main text). In addition ordinary least square regressions 

of simulated GPP and NPP with elevation were performed with the estimated slope (ȕOLS in MgC 

ha-1 y-1 km-1) representing the sensitivity of each setup to changes in elevation. Here we present in a 

greater detail the results of the OLS regressions analyses (Table 3.2, Fig 3.1).  
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Table 3.2: Parameter estimates of the linear regression of observed and simulated GPP and NPP 
with elevation. Different model setups are used to explore the productivity sensitivity to climate, 
stand structure and functional traits. The sensitivity of GPP and NPP to elevation is summarised by 
the slope linear regression ȕOLS (Mg C ha-1 y-1 km-1). 

Setup aOLS std error ȕOLS std error 
 GPP 

Observations 34.16 1.80 -3.05 0.83 
FcS 36.86 1.93 -4.24 0.90 
CoS 34.02 1.79 -1.40 0.83 
SoS 28.87 0.88 0.51 0.41 
ToS 37.32 1.48 -3.26 0.69 

 NPP 
Observations 12.24 0.75 -1.53 0.35 

FcS 12.17 0.64 -1.40 0.30 
CoS 11.23 0.59 -0.46 0.27 
SoS 9.53 0.29 0.17 0.13 
ToS 12.32 0.49 -1.08 0.23 

 

Figure 3.1: Linear regressions of simulated GPP (upper panel) and NPP (lower panel) with 
elevation. Black points indicate GPP and NPP estimates from observations ± 2 standard errors. The 
broken black line represents the linear regression of observations with elevation. Grey points are 
simulations using the fully constrained model (FcS). Green points are simulations using the local 
climate (CoS) with an average regional structure and trait tree initialisation, blue points are 
simulations using the local stand structure (SoS) with a regional climate and trait initialisation and 
red points are simulations using the local traits distributions (ToS) with and average regional climate 
and structure initialisation. Lines indicate the respective linear regressions, with parameters 
estimates reported in Table 3.2. 
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S4. Tree size (D) distribution 

Four theoretical distributions were used to describe the diameter at breast height (D) distribution in 

all study plots. These distributions included the normal the log-normal, the Weibull and the 

Gamma. We used the fitdistrplus R package to fit individual-tree D measurements to each 

theoretical distribution and identify which of the four better described the observations. A summary 

of these fits is provided in Table S4.1. The log-normal distribution better described the observations 

and thus was used for initialising the model with an average stand structure (Fig S4.1).  

 

Table S4.1: Parameters estimates (± standard error) of the four theoretical distributions fitted to 
individual-tree diameter measurements. The log-normal distribution provided the best fit, achieving 
the lowest AIC.   

Theoretical Distribution Shape Scale or Rate AIC 

Normal 19.686 (±0.116) 10.470 (±0.082) 61594 

Log-normal 2.879 (±0.005) 0.424 (±0.003) 56245 

Weibull 1.998 (±0.012) 22.288 (± 0.131) 59453 

Gamma 5.128 (±0.077) 0.261 (±0.004) 57436 

 

Figure S4.1:  Empirical (red) and theoretical (blue) distribution of tree diameter (D) across the 
Andes-Amazon elevation gradient (left panel). Average stand structure was approximate through 
the log-normal distribution for D with ȝ=2.879 and ı=0.424. The right panel summarises the 
empirical (red) and theoretical (blue) cumulative distribution functions. 
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S5. Additional Simulation Exercises  

 
A set of simulation exercises were applied, to explore the importance of temperature, light and 

functional trait variation within our modelling framework. Below we describe these simulation 

exercises and summarise some key findings.  

 

Temperature Sensitivity 

The importance of the effect of photosynthetic temperature sensitivity was explored following a 

“leave-one-out” procedure that explored the ability of the model to simulate GPP and σPP patterns 

under three different model setups: 1) including both photosynthetic temperature sensitivity and 

functional traits shifts along the gradient, 2) including only temperature sensitivity and 3) including 

only functional trait shifts. In the first setup simulations were performed with both the temperature 

sensitivity function (equation 8) and the plot-specific trait initialisation enabled. Thus the effects of 

temperature on photosynthesis and the effects of environmental conditions (including temperature) 

on species distribution and associated functional traits shifts along the gradient were taken into 

account. In the second setup the temperature sensitivity function was enables but a gradient-wide 

trait distribution was used, by-passing the effects of functional traits shift along the gradient. In the 

third case, the photosynthetic temperature sensitivity function was disabled and only the local trait 

distributions were used, accounting only for the effect of trait shifts.  

The outputs of those simulations are summarised in Fig 2 and Table S5.1. Simulations including 

photosynthetic temperature sensitivity and functional trait shifts along the gradient were too 

sensitive to elevation changes, underestimating both GPP and NPP particularly at upland sites 

[GPP: RMSE=9.75, ȕOLS=-8.90, NPP: RMSE=2.86, ȕOLS=-2.94] (Fig 2, Table SX). A similar model 

behavior was observed even when only temperature sensitivity was included, assuming no 

functional traits shift with elevation. However when trait values were allowed to vary with elevation 

in accordance with observations and temperature sensitivity was excluded, the model illustrated the 

best model performance [GPP: RMSE=3.25, ȕOLS=-4.24, NPP: RMSE=0.99, ȕOLS=-1.40]. We 

defined this model setup, initialized with plot-specific solar radiation, stand structure and functional 

traits data, as the fully constrained model setup (FcS). The FcS captures the broad gradient between 

higher productivity in lowland sites and lower productivity in montane sites, suggesting that direct 

temperature sensitivity could be excluded from our modelling framework (although it could still 

matter through its effects on traits), and that across the gradient incoming radiation is the main 

climatic driver of spatial variation in forest productivity.  
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Table S5.1: Results of TFS performance under different setups. Bold values of the Pearson‟s 
correlation coefficient (ȡ) between field measurements and simulations indicate a statistical 
significant associations (p<0.05). In cases of statistical significant associations a SMA regression 
was fit and the slope ȕSMA along with a 95% CI is reported. An adequate model performance is 
considered when ȕSMA estimates include 1. RMSE (Mg C ha-1 y-1) between observations and 
simulations are also reported with lower values indicating a better model performance. The slope of 
an ordinary least square regression of simulated productivity with elevation ȕOLS is also reported 
here to summarize the sensitivity of GPP and NPP with elevation. For comparison the estimated 
slope from observations for GPP is -3.05 (Mg C ha-1 y-1 km-1) and for NPP is -1.53 (Mg C ha-1 y-1 
km-1).    

Setup ȡ 
simulations- 
observations 

slope 
simulations- 
observations 

(ȕSMA) 

RMSE 
simulations- 
observations 

slope  
simulations 
-elevation 

(ȕOLS)  
 GPP 

Temp + 
Traits 0.82 

0.89  
(0.68 – 1.16) 

9.75 
-8.90 

(±0.78) 

Temp 0.90 
0.84  

(0.69 – 1.01) 
7.88 

-6.61 
(±0.98) 

Traits (FcS) 0.77 
1.03  

(0.93-1.14) 
3.87 

-4.24 
(±0.90) 

 NPP 
Temp + 
Traits 

0.86 
0.87 

(0.70 – 1.09) 
2.86 

-2.94 
(±0.26) 

Temp 0.78 
0.82 

(0.68 – 1.00) 
2.74 

-2.18 
(±0.32) 

Traits (FcS) 0.90 
1.01 

(0.93-1.10) 
0.99 

-1.40 
(±0.30) 

 
 

The simulations used to explore for the importance of including a direct photosynthetic temperature 

dependence were also tested against the ground-area corrected (rather than planimetric) estimates of 

GPP and NPP (Fig S5.1a).  Similar to Table S5.1 the best model performance was observed when 

the photosynthetic temperature dependence was excluded and variation in functional traits between 

plots was explicitly taken into account.  

 

Table S5.1a: Results of TFS performance under different setups. Caption identical to Table S5.1 
with observed GPP and NPP corrected for the slope of the plots, by dividing planimetric GPP and 
NPP with the cosine of the slope.  
 

Setup ȡ 
simulations- 
observations 

slope 
simulations- 
observations 

(ȕSMA) 

RMSE 
simulations- 
observations 

slope  
simulations 
-elevation 

(ȕOLS)  
 GPP 

Temp + 
Traits 0.90 

0.95 
(076– 1.18) 

7.56 
-8.90 

(±0.78) 
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Temp 0.93 
0.89  

(0.77 – 1.05) 
5.75 

-6.61 
(±0.98) 

Traits (FcS) 0.85 
1.10  

(1.00-1.20) 
4.21 

-4.24 
(±0.90) 

 NPP 
Temp + 
Traits 0.87 

0.92 
(0.76 – 1.11) 

2.29 
-2.94 

(±0.26) 

Temp 0.78 
0.86 

(0.72 – 1.04) 
2.32 

-2.18 
(±0.32) 

Traits (FcS) 0.90 
1.07 

(0.95-1.20) 
1.47 

-1.40 
(±0.30) 

 

Figure S5.1a: Observed and simulated GPP (upper panel) and NPP (lower panel) along the Andes-
Amazon transect. Plot-specific values of climate, forest structure and traits distributions are 
employed.  Black circles are observations (± 2 standard error). Grey squares indicate simulation 
with no temperature dependence of photosynthesis but with functional traits shift along the gradient. 
Triangles indicate simulations with temperature dependence of photosynthesis and functional traits 
shift along the gradient. Open circles indicate simulations including temperature sensitivity but no 
functional traits shift along the gradient. Lines present local polynomial regressions (loess) of 
simulated GPP and NPP with elevation under the different model setups. The measured GPP and 
NPP values are ground-area (rather than planimetric) corrected. 
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Light Competition 
 
To account for the importance of light competition, we compared the fully constrained model 

simulations (FcS) that estimates individual-specific light availability with a model setup where light 

competition was not explicitly simulated and all trees were assumed to receive the full amount of 

available radiation. The overall model performance significantly decreased when light competition 

was not taken into account, with the model substantially overestimating both GPP and NPP (Fig 

S5.2 & Table S5.2). The above suggests that taking into account between-tree variation in light 

availability is particularly important in order to capture variation in GPP and NPP along the tropical 

forest elevation gradient.    

 

Figure S5.2: Simulated GPP (upper panel) and NPP (lower panel) using the FcS setup (black 
squares and black line) which accounts for between trees light competition and the FcS setup that 
ignores light competition (green squares and green line). Circles indicate field estimates of stand 
GPP and NPP.     
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Table S5.2: Comparison of model performance with and without light competition. Bold values of 
the Pearson‟s correlation coefficient (ȡ) between field measurements and simulations indicate a 
statistical significant associations (p<0.05). In cases of statistical significant associations a SMA 
regression was fit and the slope ȕSMA along with a 95% CI is reported. An adequate model 
performance is considered when ȕSMA estimates include 1. RMSE (Mg C ha-1 y-1) between 
observations and simulations are also reported with lower values indicating a better model 
performance. The slope of an ordinary least square regression of simulated productivity with 
elevation ȕOLS is also reported here to summarize the sensitivity of GPP and NPP with elevation. 
For comparison the estimated slope from observations for GPP is -3.05 (Mg C ha-1 y-1 km-1) and for 
NPP is -1.53 (Mg C ha-1 y-1 km-1). 

Setup ȡ 
simulations- 
observations 

slope 
simulations- 
observations 

(ȕSMA) 

RMSE 
simulations- 
observations 

slope  
simulations 
-elevation 

(ȕOLS)  
 GPP 

FcS - Light 0.77 
1.03  

(0.93-1.14) 
3.87 

-4.24 
(±0.90) 

FcS -No Light 0.78 
1.56 

(1.44-1.70) 
16.44 

-2.71 
(±1.49) 

 NPP 

FcS - Light 0.90 
1.01 

(0.93-1.10) 
0.99 

-1.40 
(±0.30) 

FcS -No Light 0.35  5.38 
-0.89 

(±0.49) 
 

 
Importance of elevation shifts in functional traits 
 
In order to explore the effects of functional diversity along the tropical forest elevation gradient two 

additional simulation exercises were performed, and compared with the FcS model setup. In the 

first case individuals across all plots were set to have the same functional traits values, i.e. the 

overall average LMA=113.8 (g m-2), NLm=21.00 mg g-1, PLm=1.42 (mg g-1) and ȡW=0.57 (g cm-3). 

This parameterisation is equivalent to having a single tropical tree PFT across the whole gradient, 

and thus no species and/or traits turnover with elevation. In the second case, the plot average trait 

values were assigned to all trees within a plot. This parameterisation is equivalent to have a plot 

specific PFT and thus partially takes into account functional traits differences between plots 

associated to species turnover with elevation. However within plot functional variation is not taken 

into account.    

The model performance statistics for these two exercises are compared with the FcS setup in table 

S5.3 and Fig S5.3. Using a single PFT, i.e. overall average traits values substantially decreased the 

predictive ability of the model. Furthermore, the decline of GPP and NPP with elevation (ȕOLS) was 

not reproduced highlighting the role of functional traits shifts to drive the patterns of forest 

productivity along the Amazon-Andes gradient. By increasing the number of PFTs and taking into 
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account species and functional traits turnover with elevation a much better model performance was 

achieved underlining the importance of species turnover for forest productivity along the study 

gradient.    

  

Table S5.3: Comparison of model performance with various level of functional diversity 
representation. Bold values of the Pearson‟s correlation coefficient (ȡ) between field measurements 
and simulations indicate a statistical significant associations (p<0.05). In cases of statistical 
significant associations a SMA regression was fit and the slope ȕSMA along with a 95% CI is 
reported. An adequate model performance is considered when ȕSMA estimates include 1. RMSE (Mg 
C ha-1 y-1) between observations and simulations are also reported with lower values indicating a 
better model performance. The slope of an ordinary least square regression of simulated 
productivity with elevation ȕOLS is also reported here to summarize the sensitivity of GPP and NPP 
with elevation. For comparison the estimated slope from observations for GPP is -3.05 (Mg C ha-1 
y-1 km-1) and for NPP is -1.53 (Mg C ha-1 y-1 km-1). 

 

Setup ȡ 
simulations- 
observations 

slope 
simulations- 
observations 

(ȕSMA) 

RMSE 
simulations- 
observations 

slope  
simulations 
-elevation 

(ȕOLS)  
 GPP 

FcS  
Between and within plot 
functional trait variation 

0.77 
1.03  

(0.93-1.14) 
3.87 

-4.24 
(±0.90) 

FcS – one PFT 
No functional trait 

variation 
0.69 

0.92 
(0.83-1.02) 

4.08 
-0.72 

(±0.93) 

FcS – nine PFTs 
Between plots functional 

trait variation 
0.85 

1.00 
(0.91 – 1.10) 

3.55 
-4.79 

(±0.80) 

 NPP 
FcS  

Between and within plot 
functional trait variation 

0.90 
1.01 

(0.93-1.10) 
0.99 

-1.40 
(±0.30) 

FcS – one PFT 
No functional trait 

variation 
0.41 

0.90 
(0.76-1.07) 

2.16 
-0.24 

(±0.31) 

FcS – nine PFTs 
Between plots functional 

trait variation 
0.89 

0.98 
(0.90-1.07) 

1.02 
-1.58 

(±0.26) 
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Figure S5.3: Simulated GPP (upper panel) and NPP (lower panel) using the FcS setup which 
accounts for within stand functional trait variation (black symbols and line) with the one PFT setup 
(blue symbols and line) that does not account for plot-level differences in plant functional traits and 
the nine PFTs setup (red symbols and line) that accounts for plot-level differences (but not within 
plot variation) in plant functional traits. Circles indicate field estimates of stand GPP and NPP. 

 

 
 

 


