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Abstract 1 

 2 

A mechanistic understanding of environmental controls on ecosystem productivity remains 3 

surprisingly elusive and controversial. Tropical forest environmental gradients present a particularly 4 

rich study system for facilitating insights into the relationships between environment, biodiversity 5 

and ecosystem function. In this study, we integrated a generic framework for scaling plant growth, 6 

carbon fluxes, and functional trait spectra within an individual.based forest model, to analyse 7 

variation in forest primary productivity along a 3.3 km tropical elevation gradient in the Amazon.8 

Andes. The model accurately predicted the magnitude and trends in forest productivity with 9 

elevation, with solar radiation and plant functional traits collectively accounting for productivity 10 

variation along the gradient. Solar radiation influenced the magnitude of forest productivity with 11 

upland sites being less productive, while the variation of plant functional traits (leaf dry mass per 12 

area, leaf nitrogen and phosphorus concentration and wood density) with elevation regulated the 13 

sensitivity of productivity to changes in elevation. Remarkably, explicit representation of 14 

temperature variation with elevation was not required to achieve accurate predictions of forest 15 

productivity. The turnover in the plant community and ensuing shift in leaf traits, a possible indirect 16 

response to temperature, cancels much of the temperature dependency that is found in single plant 17 

measurements of photosynthesis. Light competition is an important process that should be explicitly 18 

accounted for in order to accurately simulate forest productivity. Our semi.mechanistic model 19 

shows that spatial variation in traits can translate into potentially mapping spatial variation in 20 

productivity at the landscape scale.  21 
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1.�Introduction 1 

One of the major challenges in contemporary ecosystem science is to understand how ecosystems 2 

respond to changes in environmental conditions, and how taxonomic and functional diversity 3 

mediate these changes (Lavorel & Garnier 2002; Balvanera et al. 2006). Environmental conditions 4 

change both in time and in space, and transects along environmental gradients can provide valuable 5 

insights into controls of ecosystem function. Tropical forest environmental gradients present a 6 

particularly rich study system (Vazquez & Givnish 1998; Wright 2002), with their high diversity 7 

facilitating general insights into the relationships between diversity and function that are not 8 

contingent on the characteristics and presence or absence of particular dominant species. More 9 

specifically, tropical elevation gradients, with their usual high levels of moisture and year.long 10 

growing season, provide “natural laboratories” in which to understand the influence of temperature 11 

on ecosystem function without the complicating influence of variation in temperature seasonality 12 

and winter dormant seasons (Malhi et al. 2010; Sundqvist et al. 2013). 13 

It is valuable to distinguish direct environmental controls on ecosystem productivity from 14 

indirect controls mediated through forest structure and composition, as direct and indirect controls 15 

can have different response times to environmental change, and determine the degree to which 16 

productivity can be estimated from surveying ecosystem composition. Environmental conditions are 17 

usually considered direct drivers of ecosystem productivity (Fig 1). Although in most tropical 18 

regions temperature is not a limiting factor on productivity, some studies suggest that across sites, 19 

tree growth increases with mean temperature (Raich et al. 2006, Cleveland et al. 2011) within the 20 

temperature range of currently observed tropical climates. In seasonal tropical forests, rainfall is 21 

positively associated with tree growth (Brienen & Zuidema 2005), while other studies identify solar 22 

radiation as a key driver of forest productivity across Amazonia (Nemani et al. 2003) particularly 23 

during the rainy season (Graham et al. 2003). Soil fertility may be important: in lowland tropical 24 

forest, phosphorus (P) availability is considered a key limiting factor of primary productivity 25 

(Quesada et al. 2012) whereas in montane regions with colder and younger soils, nitrogen (N) may 26 

be the limiting factor (Tanner et al. 1998). In summary, increases in one of the above factors can 27 

have positive effect on tree growth (given no other resource limitation), expressing a direct 28 

(“proximal”) and short.term effect of environmental conditions on ecosystem productivity (Fig 1).    29 

Environmental conditions can additionally have an indirect (“distal”) effect on forest 30 

productivity by regulating the structure and/or the species/functional composition of the community 31 

(Fig 1). Such effects tend to act on longer temporal scales, where potential feedbacks between 32 

structure and functional composition can also take place. Many studies have shown that functional 33 

traits systematically vary with water availability (Santiago et al. 2004), soil fertility (Fyllas et al. 34 
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tree growth rate (Poorter et al. 2008) and community productivity (Finegan et al. 2014). However 2 

feedbacks between environmental conditions, stand structure and functional composition have also 3 

been identified. For example, across Amazonia there exists a structural feedback on productivity, 4 

with rich soils favoring low biomass, fast.growing species in contrast to poor soils that favor high 5 

biomass slow.growing species (Baraloto et al. 2011; Quesada et al. 2012).  6 

 Disentangling the role of environmental and biotic controls on tropical forest productivity 7 

requires appropriate datasets. In recent years, a large body of data has been emerging from an 8 

elevation transect in the Andes and Amazon in SE Peru, including rates of ecosystem carbon 9 

cycling (Girardin et al. 2010; Malhi et al. 2017a; Nottingham et al. 2015), forest structure and 10 

dynamics (Feeley et al. 2011; Asner et al. 2014a), plant ecophysiology (van de Weg et al. 2009; 11 

2012; Bahar et al. 2016) and leaf and wood traits (Asner et al. 2014b; Malhi et al. 2017b). Along 12 

this 3300 m gradient there is a steep temperature decrease with increasing elevation, a reduction in 13 

solar radiation, and an increase in soil N and P content that drive high species turnover (Neyret et al. 14 

2016). This species turnover is associated with shifts in several functional traits including increasing 15 

leaf mass per area (LMA) and leaf P concentration with elevation (Asner et al. 2014b). Forest stature 16 

and structure vary greatly between lowland and highland plots, resulting in a decline in biomass 17 

with elevation and more open forests in the mountains (Malhi et al. 2017a; Asner et al. 2014a). 18 

Productivity declines with elevation but with some evidence of a step.change decline near the cloud 19 

base (Malhi et al. 2017a). It thus seems that various direct and indirect factors can potentially 20 

control forest productivity along the Andes.Amazon gradient. The integration of the available 21 

datasets presents a unique opportunity to mechanistically explore the influence of climate, plant 22 

functional traits and forest structure on forest productivity.  23 

Individual.based vegetation models provide an ideal framework to integrate forest inventory data 24 

with ecosystem dynamics theory and to explore how climate, functional traits and stand structure 25 

control primary productivity (Purves & Pacala 2008). In particular, by accounting for inter.specific 26 

functional variation as well as tree.size variation, the performance of alternative life history 27 

strategies can be explored (Moorcroft et al. 2001; Scheiter et al. 2009). Mechanistic, process.based 28 

vegetation models apply detailed energy, carbon and water flux algorithms to quantify how key 29 

ecosystem processes vary with environmental conditions and tree functional traits, the latter 30 

extensively used as predictors of plant processes (Scheiter et al. 2013). For example, LMA and 31 

mass.based leaf nitrogen (NLm) and phosphorus (PLm) concentration are the central elements of the 32 

leaf economic spectrum and can be used to predict mass.based photosynthetic and respiration rates 33 

(Wright et al. 2004; Atkin et al. 2015), while wood density (ρW) and maximum height (Hmax) appear 34 
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Process.based vegetation models usually implement detailed photosynthetic algorithms (Farquhar et 2 

al. 1980) to calculate rates of CO2 assimilation and then allocate C to different plant components 3 

(Franklin et al. 2012). However, such models can be challenging to parameterise and 4 

computationally expensive to run at individual.tree scale. As an alternative approach, Enquist et al. 5 

(2007) suggested a framework that employs a growth equation which integrates functional traits 6 

with tree.size and can be used to estimate individual growth rates for each tree in a stand in a much 7 

simpler way. In our current study we make changes to an existing vegetation model (TFS, Fyllas et 8 

al. 2014) that replace the detailed physiological algorithms with a general trait.based growth 9 

equation.  10 

The aim of our paper is to apply the TFS model to disentangle the relative importance of climate 11 

(direct environmental effects), stand structure and functional traits (indirect environmental effects) 12 

in controlling forest productivity along the Andes.Amazon elevation gradient. We initially apply 13 

TFS along the gradient and validate its performance against field.based estimates of productivity. 14 

We subsequently exploit the model framework to perform a set of randomisation exercises designed 15 

to quantify the relative importance of climate, stand structure and functional traits in determining 16 

the observed patterns of forest productivity.  17 

 18 

2. Materials and Methods 19 

2.1 Study site 20 

The study area is located along a 3300 m elevation gradient in the tropical Andes and extends to the 21 

Amazon Basin. Across this transect a group of nine intensively monitored 1.ha plots (Table S1.1) 22 

was established as part of the long.term research effort coordinated by the Andes Biodiversity 23 

Ecosystems Research Group (ABERG, http://www.andesconservation.org) and the ForestPlots 24 

(https://www.forestplots.net/) and Global Ecosystems Monitoring Network (GEM; 25 

http://gem.tropicalforests.ox.ac.uk/projects/aberg) networks. Five of the plots are montane plots in 26 

the Kosñipata Valley, spanning an elevation range 1500 . 3500 m (Malhi et al. 2010), two are 27 

submontane plots located in the Pantiacolla front range of the Andes (600 . 900 m) and two plots 28 

are found in the Amazon lowlands in Tambopata National Park (200 . 225 m). The elevation 29 

gradient is very moist (Table S1.1), with seasonal cloud immersion common above 1500 m 30 

elevation (Halladay et al. 2012), and no clear evidence of seasonal or other soil moisture constraints 31 

throughout the transect (Zimmermann et al. 2010). Plots were established between 2003 and 2013 32 

in areas that have relatively homogeneous soil substrates and stand structure, as well as minimal 33 

evidence of human disturbance (Girardin et al. 2014).  34 
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plots, the net primary productivity (NPP, the rate of biomass production in wood, canopy and fine 2 

roots) and gross primary productivity (GPP, the rate of canopy carbon uptake through 3 

photosynthesis) were estimated by summation of the measured and estimated components of NPP 4 

(litterfall, woody production, fine root turnover and branch turnover) and autotrophic (leaf, wood 5 

and fine root) respiration (Malhi et al. 2017a). For the remaining plots, we used measured NPP to 6 

estimate GPP applying the mean carbon use efficiency (c=NPP/GPP) of the other plots, separated 7 

into cloud forest and submontane/lowland plots. Further details of measurement protocols are given 8 

in Malhi et al. (2017a) and summarised in S1. 9 

2.2 Model Description 10 

The original TFS model is a trait.continua and individual.based model, which simulates the carbon 11 

(C) balance of each tree in a stand (Fyllas et al. 2014). Rather than grouping trees into plant 12 

functional types, TFS prescribes inter.related joint distributions of functional traits which represent 13 

trade.offs of possible plant strategies and responses to environmental conditions. The model is 14 

initialised with tree.by.tree diameter at breast height (D) and functional traits data. Three leaf traits 15 

(LMA, NLm, PLm), the central components of the leaf economic spectrum, regulate the 16 

photosynthetic capacity and the respiration rate of trees. Wood density (ρW) accounts for variation 17 

in aboveground biomass (MA), with trees of greater ρW supporting higher biomass. Allometric 18 

equations are used to infer tree height (H) and allocation to leaf (ML), stem (MS) and root (MR) 19 

biomass. Light competition is approximated using the perfect plasticity assumption (Strigul et al. 20 

2008). The carbon and water balance of each tree is estimated on a daily time.step and at the end of 21 

each year stand.level GPP and NPP is estimated by summing up the daily individual.tree C fluxes. 22 

Here we use a simplified version of TFS (described in S2), where the mechanistic representation 23 

of photosynthesis, respiration and C allocation is replaced with the integrative whole.plant growth 24 

rate model of Enquist et al. (2007): 25 

( )( )  (1)T L
L L

L

dM ac
A M

dt mω
=  26 

where MΤ is the total plant dry biomass (kg), c the carbon use efficiency (no units), ω the fraction of 27 

whole.plant dry mass that is carbon, AL the leaf area specific photosynthetic rate (g C cm.2 per unit 28 

time), aL the individual leaf area (cm2), mL the individual leaf mass (g) and ML the total leaf dry 29 

mass (kg). 30 

Equation (1) is an extension of the classic relative growth rate equation (Hunt 1982), with the 31 

basic assumption that whole.plant net biomass growth rate scales isometrically with total plant leaf 32 
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Metabolic Scaling Theory (MST) suggesting relative invariant power laws and other studies arguing 2 

that scaling varies across species and plant sizes (Poorter et al. 2015). Another critique of MST.3 

based growth equations is that they do not take into account resource availability and in particular 4 

the vertical distribution of light in forest stands (Muller.Landau et al. 2006; Coomes & Allen 2009). 5 

In order to implement equation 1 within TFS and deal with these critiques we 1) used a set of 6 

allometric equations with stochastic scaling coefficients estimated from available data and 2) 7 

expressed the photosynthetic rate AL as a function of both leaf traits (that vary in a continuous way 8 

within and between communities) and irradiance that takes into account competition for light 9 

between individuals. In the following paragraphs we describe how the model was constrained with 10 

the available field and literature data. A sensitivity analysis of the simulated GPP and NPP for some 11 

of the key model parameters is provided in S2.        12 

2.2.1 Tree allometry  13 

Transect.wide allometric equations of tree height (H) and crown area (CA) as a function of tree 14 

diameter were used to define the architecture of each tree in a stand (Shenkin et al. in review). In 15 

the model, trees were considered to have a flat.topped circular canopy with an area equal to the 16 

allometrically estimated projected crown area.  17 

In TFS aboveground tree biomass (MA in kg) is estimated from the Chave et al. (2014) equation 18 

that takes into account the diameter, the wood density and the height of a tree. Total leaf biomass 19 

was expressed as a power function of MA, parameterised using the BAAD dataset (Falster et al. 20 

2015). During simulations we allowed the coefficients of the power functions to vary within their 21 

95% confidence interval estimates, with individual trees having different leaf allometries (S2–Tree 22 

Allometry). 23 

2.2.2 Functional traits and Photosynthesis 24 

The photosynthetic rate (AL) is controlled by the leaf functional traits and the available light of each 25 

individual. A Michaelis.Menten (MM) model was used for that purpose where:  26 

max  (2)L d

A I
A R

k I
= −

+
 27 

with I (Umol m.2s.1) the irradiance at the top of each individual, Amax the maximum gross 28 

photosynthetic rate (Umol m.2s.1), k the half saturation coefficient (Umol m.2s.1) and Rd is the non.29 

photorespiratory mitochondrial CO2 release taking place in the light (i.e. respiration in the light) 30 

(Umol m.2s.1).  31 
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functional traits (LMA, NL and PL) regulate the parameters of the light response curve (Marino et al. 2 

2010). An independent dataset of 136 light response curves and LMA, NL and PL measurements 3 

(Atkin et al. 2015; Weerasinghe 2015) was available for 14 study sites along the Andean elevation 4 

gradient. These data were used to fit MM light response curves and express their parameters (Amax, 5 

k and Rd) as a function of the leaf functional traits (S2.Photosynthesis). An average daily AL is 6 

estimated using equation 2 and average daily irradiance, with the total daily AL given after 7 

multiplying average AL with the day length.       8 

Analyses in Bahar et al. (2016) and here (S2.Photosynthesis) suggest that across the Andean 9 

gradient the maximum light.saturated photosynthetic rate does not vary with elevation. Thus 10 

photosynthesis strongly acclimates to prevailing air temperature and this supports the use of a 11 

temperature independent model of leaf photosynthesis in our simulations. However, in order to 12 

specifically test for the importance of direct temperature effects on photosynthesis, we used a 13 

generic temperature sensitivity model (Higgins et al. 2016) and compared simulations with and 14 

without temperature dependence. In this wet gradient (Zimmermann et al. 2010) we did not include 15 

any water availability effect on photosynthesis.  16 

2.3 Model , Inventory data integration 17 

Within our study plots all trees with a D>10 cm have been identified at the species level, and in 18 

selected subplots all trees with D>2 cm have been measured and identified. In addition LMA, NLm, 19 

PLm and ρW were available (Malhi et al. 2017b; Asner et al. 2016b) for approximately 7% of the 20 

stems of species that comprise 60% (in diverse lowland sites) to 80% (in the less diverse montane 21 

sites) of the total plot basal area. In our simulations individuals with measured trait values were 22 

included as such, without using an average species value, in order to incorporate intraspecific 23 

variation. For the rest of the trees, trait values were populated hierarchically using, in decreasing 24 

order of preference, the species mean plot value, the species transect.wide mean value or, for trees 25 

for which no species.level traits were available, the plot.level trait means.  26 

Climate data were available from weather stations located close to each study site (Table S1.1). 27 

The most complete time series for most weather stations were for the year 2013 and solar radiation, 28 

temperature and precipitation were recorded at 30.minute intervals. We used these time.series to 29 

estimate average daily climate. For days with missing data, the average daily values were estimated 30 

by interpolating the daily parameters of the previous and following three days.  31 
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2.4 Simulations  1 

We performed two sets of simulations to elucidate the major controls of forest productivity along 2 

Amazon.Andes gradient. Firstly, the importance of temperature sensitivity was explored following 3 

a “leave.one.out” procedure that explored the ability of TFS to simulate GPP and NPP patterns 4 

under three different model setups: 1) inclusion of both photosynthetic temperature sensitivity and 5 

variation of functional traits along the gradient, 2) inclusion only of photosynthetic temperature 6 

sensitivity, and, 3) inclusion only of functional trait variation.  7 

Secondly to explore the importance of climate, stand structure and functional traits in 8 

determining GPP and NPP across our study sites, we applied within TFS a set of randomization 9 

exercises. These are described in detail in S3. To test the importance of climate (Climate only Setup 10 

. CoS), we simulated GPP and NPP by using the local (plot.specific) climate and a regional average 11 

stand structure and trait distribution (i.e. the average stand structure and traits distribution across all 12 

plots along the transect). The hypothesis behind CoS is that climate, and particularly variation in 13 

incoming solar radiation, is sufficient to explain variation in productivity across the elevation 14 

gradient, with no between.plots variation in traits or stand structure required. The role of stand 15 

structure was tested using the Structure only Setup (SoS). Following this setup, the observed D 16 

distribution in each plot was used to initialise trees, while climate and functional diversity were kept 17 

constant. The hypothesis behind the SoS is that change in stand structure, via its effects on the 18 

partitioning of available light, is the most important determinant of productivity along the elevation 19 

gradient. Finally, the potential control of functional trait variation, expressed through the 20 

distributions of the four traits, was explored by initializing TFS with the locally observed trait 21 

distribution while keeping  climate and stand.size distribution  fixed  (Traits only Setup (ToS)). The 22 

hypothesis tested by this setup is that knowledge of the local distribution of the four functional traits 23 

is adequate to predict observed variation in GPP and NPP with elevation.  24 

 25 

3. Results 26 

The predictive ability of the various model setups were quantified through standardised major axis 27 

(SMA) regressions and estimation of root mean square error (RMSE in MgC ha.1 y.1) between 28 

observed and simulated GPP and NPP. In addition ordinary least square regressions of simulated 29 

GPP and NPP with elevation were performed with the estimated slope (βOLS in MgC ha.1 y.1 km.1) 30 

representing the sensitivity of each setup to changes in elevation.    31 

Simulations including photosynthetic temperature sensitivity and functional trait shifts along the 32 

gradient over.predict sensitivity to elevation changes, underestimating both GPP and NPP 33 
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particularly at upland sites [GPP: RMSE=9.75, βOLS=.8.90, NPP: RMSE=2.86, βOLS=.2.94] (Fig 2, 1 

Table S5.1). A similar model behavior was observed even when only temperature sensitivity was 2 

included, assuming no functional traits shift with elevation. However, when trait values were 3 

allowed to vary with elevation in accordance with observations and temperature sensitivity was 4 

excluded, the model performed best [GPP: RMSE=3.25, βOLS=.4.24, NPP: RMSE=0.99, βOLS=.5 

1.40]. We named this model setup, initialized with plot specific solar radiation, stand structure and 6 

functional traits data, as the fully constrained model setup (FcS). We note here that accounting for 7 

light competition was particularly important for accurate GPP and NPP simulations (Fig S5.2, Table 8 

S5.2). The FcS captures the broad gradient between higher productivity in lowland sites and lower 9 

productivity in montane sites, suggesting that direct photosynthetic temperature sensitivity could be 10 

excluded from our modelling framework (although it could still matter through its effects on traits), 11 

and that across the gradient solar radiation is the main climatic driver of spatial variation in forest 12 

productivity.  13 

After validating the model, we used the randomization exercises to test the importance of 14 

climate, stand structure and functional traits to drive GPP and NPP patterns. When exploring for the 15 

effects of climate (CoS), i.e. factoring out stand structure and traits variation, the RMSE increased 16 

both for GPP and NPP [3.99 and 1.99 respectively] and the model was less sensitive to elevation 17 

changes [βOLS=.1.40 and βOLS=.0.46 respectively] (Table 1). Hence, CoS captured the mean 18 

productivity across the gradient but was not as sensitive as FcS to changes in elevation and in 19 

particular overestimated forest productivity at upland sites (Fig 3).  20 

When site.specific structure was used as the main driver (SoS), there was a substantial decline in 21 

the predictive ability of the model. The broad scale decline of primary productivity with elevation 22 

could not be reproduced adequately (Fig 3), and RMSE increased both for GPP and NPP (Table 1). 23 

This suggests that knowledge of the tree.size distribution alone is not enough to estimate patterns of 24 

productivity along the Andean elevation gradient. It should be remembered however that the SoS 25 

setup represents mainly variation in size.class distribution and not variation in established biomass, 26 

which in the model is additionally influenced by variation in wood density.    27 

When functional trait variation alone was considered (ToS), the model reproduced the broad 28 

scale decline with elevation but both GPP and NPP were overestimated compared to FcS, 29 

particularly at mid elevations (Fig 3). For GPP the RMSE increased [5.38] compared to the FcS and 30 

the CoS but the sensitivity of the model to elevation was close to observations [βOLS=.3.26] (Table 31 

1). For NPP, the RMSE [1.64] was higher than FcS but lower than CoS and sensitivity with 32 

elevation [βOLS=.1.08] was higher than CoS. These results suggest that the local traits distributions 33 
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captures the declining trend in productivity with elevation, but additional knowledge of solar 1 

radiation, is required to accurately estimate GPP and NPP.  2 

To gain further insights into the mechanisms that drive variation in forest productivity, we 3 

explored how some key stand.level parameters vary with elevation using inferences from the FcS 4 

(Fig 4). Average light availability over all canopy depths (I) declines with elevation and then 5 

increases at the uppermost plot, following variation in incoming solar radiation at the top of the 6 

canopy (SO) and inversely the number of stems per area (NS). On the other hand, the basal.area 7 

weighted average LMA and PLa increase with elevation, while NLa does not change much. Simulated 8 

Rd does not vary much across the gradient and given the constant Amax the decline in actual 9 

photosynthesis (AL) is mainly a result of variation in light availability, with a small divergence at 10 

the uppermost plots. However, the half.saturation coefficient also increases with elevation and this 11 

suggests that trees at upland sites have a lower photosynthetic rate for a given light intensity (below 12 

maximum rates) compared to their lowland counterparts, explaining the divergence in AL. Thus 13 

reductions in average photosynthetic rate with elevation are likely to be mainly due to reductions in 14 

light availability as well as due to the higher light levels required for photosynthetic light saturation 15 

for trees at higher elevations.       16 

 17 

4. Discussion 18 

Various environmental and biotic drivers can control forest productivity along the Amazon.Andes 19 

elevation gradient (Fig 1). We developed a simplified version of a vegetation model that integrates a 20 

range of field measurements in order to understand the relative importance of climate, stand 21 

structure and functional traits on forest productivity. The inclusion of the trait.based growth 22 

equation of Enquist et al. (2007) increases the simplicity and tractability of the model. Overall, TFS 23 

provided simulations that were in line with observations of the magnitude and trends in GPP and 24 

NPP across the elevation gradient. In the following paragraphs we describe how the performed 25 

simulations and randomisation exercises were used to understand the decline in productivity with 26 

elevation. 27 

Temperature and Photosynthesis Acclimation 28 

Variation in primary productivity has been traditionally considered to reflect the effects of climate 29 

variables such as radiation, temperature and precipitation on plant metabolic rates (Chapin et al. 30 

2012). A recent study reported that, along the Andean elevation gradient, maximum carboxylation 31 

and electron transport rates at a standardized temperature of 25oC were significantly higher at 32 

upland sites, possibly reflecting greater P per unit leaf area at high elevations and/or thermal 33 
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acclimation to sustained lower growth temperatures (Bahar et al. 2016). By contrast, when 1 

measurements of gas exchange were made at the daytime temperatures at each site (20.28oC; Fig 2 

S2.2), light.saturated, area.based rates of net photosynthesis, as well as maximum carboxylation 3 

and electron transport rates, show no significant trend with elevation (Bahar et al. 2016, Malhi et al. 4 

2017a). The latter observations support the use of a temperature.independent equation for 5 

photosynthetic carbon assimilation. Our simulations show that accurate GPP and NPP predictions 6 

can be made without a direct temperature sensitivity effect on photosynthesis (Fig 2). When both 7 

temperature sensitivity and functional traits variation was included in the model, forest productivity 8 

was too sensitive to elevation changes. This suggests that the effect of temperature is likely to be 9 

manifested through variation in leaf traits, which may be controlled by variation in environmental 10 

conditions (including temperature) along the gradient. The shift in leaf traits and photosynthetic 11 

characteristics with elevation cancels out much of the ecophysiological temperature dependency 12 

found in single plant measurements. This does not imply that short.term temperature changes 13 

(months to decades) will not affect forest productivity but rather that long.term changes lead to a 14 

turnover in species such that the local community is acclimated to local growing conditions, 15 

resulting in little sensitivity of productivity to temperature on long time scales, and within the 16 

temperature range studied. An alternative possibility is that temperature shows a strong but non.17 

causal relationship with leaf traits along the gradient, and this obscures a real direct temperature 18 

effect. 19 

Functional Traits 20 

Previous studies along this and other elevation gradients in the Andes region found that more than 21 

80% of LMA and NL turnover between communities is determined phylogenetically, suggesting that 22 

these traits may have been involved in evolutionary adaptation (Asner et al. 2014b). Furthermore, 23 

Asner et al. (2014b) found that these inter.community differences in LMA and NL were dominated 24 

by changes in temperature, rather than by other factors such as moisture or radiation. By contrast, 25 

between.community variation in PL is controlled by substrate rather than temperature effects (Asner 26 

et al. 2016b). Along the Amazon.Andes gradient leaf N:P ratio declines with elevation (Malhi et al. 27 

2017b) and this might indicate a switch from P to N limited photosynthesis consistent with soil 28 

properties (Nottingham et al. 2015, 2016), with Bahar et al. (2016) suggesting that knowledge of 29 

growth temperature is not required to estimate photosynthetic capacity if leaf and soil P data are 30 

available. Here, we used empirical relationships to infer the parameters of the photosynthetic light 31 

response curve form LMA, NLa and PLa and thus determine how changes in traits regulate C.32 

fixation. In an additional simulation exercise, the progressive increase of the functional strategies 33 

included in the model (from one PFT, to nine PFTs, to a continuum of plant strategies), increased 34 
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the predictive ability of the model. This outcome suggests that species turnover (Asner et al. 2014a; 1 

Neyret et al. 2016) and the associated shifts in plant functional traits is a stronger driver of spatial 2 

variation in forest productivity than direct environmental filtering effects (S5–Importance of 3 

elevation shifts in functional traits).  4 

Solar Radiation & Light Competition 5 

Along the Andean gradient, solar radiation declines at mid.high elevations, associated with a higher 6 

frequency of both cloud occurrence and cloud immersion (Halladay et al. 2012), and then rises 7 

again at the uppermost treeline plot. In our simulations, the actual photosynthetic rate follows 8 

variation in light availability, while at the uppermost plots this relationship could be additionally 9 

controlled by the higher photosynthetic light saturation level that characterises upland trees (Fig 4). 10 

Thus, solar radiation is the strongest direct climatic determinant of forest productivity, and therefore 11 

actual photosynthesis does not track potential photosynthesis (van der Weg et al. 2014, Malhi et al. 12 

2017a). One of the key criticisms of classical MST is that it fails to account for asymmetric 13 

competition for light (Coomes & Allen 2009). The proposed modelling framework addresses this 14 

issue by explicitly simulating the hierarchical position of each individual within a stand, using the 15 

PPA assumption (Strigul et al. 2008). Our simulations show that inclusion of light competition is 16 

necessary for accurately predicting GPP and NPP (S5–Light Competition).  17 

Stand Structure 18 

Our simulations suggest that stand structure and in particular diameter distribution do not have a 19 

strong effect on forests productivity along our study plots. Although woody biomass declines with 20 

elevation, basal area does not (Malhi et al. 2017b). This constancy of basal area may diminish the 21 

effect of biomass variation in contrast with studies that identify biomass as the strongest predictor 22 

of forest productivity, for example during succession (Lohbeck et al. 2015). Thus in mature stands, 23 

like the ones studied here, variation in functional traits that control carbon assimilation and biomass 24 

allocation might be stronger predictors of forest productivity than standing biomass (Finegan et al. 25 

2015). In our case this functional trait variation seems to be primarily controlled by species 26 

turnover.           27 

 28 

5. Conclusions 29 

Here we combine a uniquely rich dataset of plot.level productivity coupled with functional traits 30 

and a modelling framework to understand what drives the trend of productivity along a tropical 31 

forest elevation gradient. We have shown that an individual.based model that explicitly describes 32 

functional trait variation within and between plots, and accounts for light competition can 33 
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realistically capture variation in primary productivity along the investigated gradient. Our findings 1 

suggest that the decline in productivity with increasing elevation is explained by a combination of 2 

shifts in plant traits values and a decline in solar radiation. Remarkably, we do not need to account 3 

for direct temperature dependence of photosynthesis, beyond what may be an effect of temperature 4 

through the observed plant traits. The turnover in the plant community and ensuing shift in plant 5 

traits cancels much of the temperature dependency that is found in single plant in situ 6 

measurements. The work demonstrates the utility of tropical elevation transects in yielding 7 

important insights into long.term ecosystem sensitivity to temperature, but also suggests that 8 

variation in solar radiation introduces a moderate complicating caveat.  Advanced new techniques 9 

such as airborne spectroscopy have demonstrated the potential to map key leaf traits at landscape 10 

and regional scale, both along elevation gradients and across edaphic contrasts in the lowlands 11 

(Asner et al. 2014a, 2016a). Our work shows that this spatial variation in traits can translate into 12 

potentially mapping spatial variation in productivity at landscape scale, with spatial variation in leaf 13 

traits capturing much of the spatial variation in environmental conditions. However, mapping traits 14 

alone is not sufficient, and there is still a need to account for light.limitation of photosynthesis. In 15 

combination with airborne mapping of canopy traits at large scale, this work opens the door to a 16 

mechanistic approach to mapping ecosystem productivity at landscape and regional scales.  17 
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TABLES 1 

Table 1: Results of TFS performance under different setups. Bold values of the Pearson’s 2 

correlation coefficient (ρ) between field measurements and simulations indicate a statistical 3 

significant associations (p<0.05). In cases of significant correlations a SMA regression was fit and 4 

the slope βSMA along with a 95% CI is reported. An adequate model performance is considered 5 

when βSMA estimates include 1. RMSE (Mg C ha.1 y.1) between observations and simulations are 6 

also reported with lower values indicating a better model performance. The slope of an ordinary 7 

least square regression of simulated productivity with elevation βOLS (±standard error) is also 8 

reported here to summarise the sensitivity of GPP and NPP with elevation. For comparison the 9 

estimated slope from observations for GPP is .3.05 (Mg C ha.1 y.1 km.1) and for NPP is .1.53 (Mg C 10 

ha.1 y.1 km.1).      11 

 12 

Setup ρ 

simulations, 

observations 

slope 

simulations, 

observations 

(βSMA) 

RMSE 

simulations, 

observations 

slope  

simulations 

,elevation 

(βOLS)  

 GPP 

�����

Fully Constrained 
0.77 

1.03 
(0.93.1.14) 

3.25 
.4.24 

(±0.90) 
�����

Local Climate 
0.79 

1.09 
(1.00 – 1.18) 

3.99 
.1.40 

(±0.83) 
�����

Local Stand Structure 
0.06  4.92 

0.51 
(±0.41) 

�����

Local Traits 
0.51  5.38 

.3.26 
(±0.69) 

 NPP 

�����

Fully Constrained 
0.90 

1.01 
(0.93.1.10) 

0.99 
.1.40 

(±0.30) 
�����

Local Climate 
0.60 

1.07 
(0.92.1.24) 

1.99 
.0.46 

(±0.27) 
�����

Local Stand Structure 
.0.31  2.13 

0.17 
(±0.13) 

�����

Local Traits 
0.62 

1.07 
(0.93.1.24) 

1.64 
.1.08 

(±0.23) 
 13 
 14 

15 
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FIGURE CAPTIONS 1 
Figure 1: Environmental and biotic controls on primary productivity. Environmental factors such as 2 

radiation, temperature and precipitation can have direct effects (black arrows) on GPP and NPP 3 

and/or indirect effects (grey arrow) through the regulation of stand structure and functional 4 

composition (expressed here as the distribution of functional traits). Biotic controls related to the 5 

stand structure and its functional composition can also have direct effect on primary productivity 6 

(black arrows). However stand structure and functional composition are not only regulated by 7 

environmental factors as for example the biogeographic and disturbance history of the region could 8 

also play a significant role. In this study we explore the roles of a number of environmental and 9 

biotic controls (dashed and solid black arrows) and find that only two factors (traits and radiation; 10 

solid black lines) are required to explain the elevational trend in productivity. This study does not 11 

address how environmental factors influence biotic attributes (grey arrow). 12 

 13 

 14 
Figure 2 Observed and simulated GPP (upper panel) and NPP (lower panel) along the Andes.15 

Amazon transect. Plot.specific values of climate, forest structure and traits distributions are 16 

employed.  Black circles are observations (± 2 standard error). Grey squares indicate simulation 17 

with no temperature dependence of photosynthesis but with functional traits shift along the gradient. 18 

Triangles indicate simulations with temperature dependence of photosynthesis and functional traits 19 

shift along the gradient. Open circles indicate simulations including temperature sensitivity but no 20 

functional traits shift along the gradient. Lines present local polynomial regressions (loess) of 21 

simulated GPP and NPP with elevation under the different model setups.   22 

 23 

Figure 3: Simulated GPP (upper panel) and NPP (lower panel) under the different model setups. 24 

Grey points indicate GPP or NPP simulations following the fully constrained model setup (FcS). 25 

Green points present simulations using the local climate (CoS) and average regional structure and 26 

trait data. Blue points present simulations using the local stand structure (SoS) and average regional 27 

climate and trait data. Red points present simulations using the local traits distributions (ToS) and 28 

regional climate and stand structure data. Black points indicate estimates of GPP or NPP from field 29 

measurements ± 2 standard errors. Line presents local polynomial regressions (loess) of simulated 30 

GPP or NPP with elevation for each model setup.   31 
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(FcS) model setup. SO (MJ m.2 y.1) is the total annual incoming solar radiation at the top of the 2 

canopy, I (Umol m.2 s.1) is the average annual light availability across all canopy layers, NS (stems 3 

ha.1) the number of stems per area, LMA (g m.2) the basal.area weighted average leaf dry mass per 4 

area, NLa and PLa the average basal area weighted N and P concentrations, Amax (Umol m.2 s.1) the 5 

average maximum photosynthetic rate, Rd (Umol m.2 s.1) the average basal area weighted respiration 6 

rate, AL (Umol m.2 s.1) average annual basal area.weighted actual photosynthetic rate and K (Umol 7 

m.2 s.1) average basal area weighted half saturation coefficient. Kendall correlations coefficients (τ) 8 

are displayed for all stand.level parameters where a statistically significant association with 9 

elevation was identified.    10 

 11 
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