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ABSTRACT

Existing methods for generating a detailed trace of a computation

of a lazy functional program are complex. These complications

limit the use of tracing in practice. However, such a detailed trace

is desirable for understanding and debugging a lazy functional

program. Here we present a lightweight method that instruments

a program to generate such a trace, namely the augmented redex

trail introduced by the Haskell tracer Hat. The new method is a

major step towards an omniscient debugger for real-world Haskell

programs.
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1 INTRODUCTION

A detailed trace of a computation is the basis for any so-called omni-

scient debugger for a programming language (Zeller 2009). A trace

substantially supports the processes of understanding and debug-

ging a program. Today’s computers provide gigabytes of volatile

and non-volatile memory. Therefore storing a detailed trace of a

substantial part of a computation poses no practical problem. The

Big Data challenge for computer science is to define a trace struc-

ture, generate it and finally make good use of it. The Haskell tracer

Hat defines the augmented redex trail (ART) as a trace structure
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type Recogniser = [Char] -> Maybe [Char]

lit :: Char -> Recogniser

lit x [] = Nothing

lit x (y:ys) = if x==y then Just ys else Nothing

(<|>) :: Recogniser -> Recogniser -> Recogniser

(rl <|> rr) xs = rl xs `mplus` rr xs

mplus :: Maybe a -> Maybe a -> Maybe a

mplus Nothing mr = mr

mplus ml _ = ml

binaryDigit :: Recogniser

binaryDigit = lit '0' <|> lit '1'

main = print (binaryDigit [])

Figure 1: A simple recogniser forwords in an LL(1) grammar.

and comprises tools for generating and using it (Section 9). This

paper is about a better method for generating the ART.

Consider the Haskell program in Figure 1. A recogniser deter-

mines whether a given word is within a given LL(1) grammar. If

a prefix of the given word is in the grammar, then a recogniser

returns Just xs with xs being the remainder of the input word;

otherwise the recogniser returns Nothing. Only the combinators

necessary for defining the recogniser of a binary digit, which is 0

or 1, are given. Computation starts with evaluating main, which

applies the recogniser to the empty list. The result isNothing.

Figure 2 shows the ART for our example. An ART is basically

the graph produced by a naive implementation, a simple graph

rewriting machine, except that a reduction step does not overwrite

a redex by a reduct, but instead connects the redex node with a

reduction edge to the reduct node. The nodes of an ART are labelled

with function and constructor identifiers or are application nodes

App or indirection nodes Ind. For easy referencing we identify every

node by a number. There are three sorts of edges:

• A bold reduction edge leads horizontally from the root

of a redex to the root of its reduct. Starting for example at

node 1, the redex main reduces to node 2, an application

of print.

• A normal unbroken edge leads from a node down to one

of its components. For example, following all component

edges we find that node 2 represents the expression print

(binaryDigit []). Similarly node 45 represents the ex-

pression lit _ []. Here _ represents an unknown value

that lazy evaluation never demanded.
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1: main 2: App

4: print 7: App

9: binaryDigit

18: App

38: []

10: App

12: App 48: App

14: <|> 29: App

20: App 45: App

60: Ind

22: mplus 26: App 42: Nothing

31: lit

58: Nothing

50: lit

Figure 2: Visual representation of the ART for the program of Figure 1.

• Every node except for the start node 1: main is part of

a reduct. A dotted parent edge leads from every node to

the root of its redex. For example, the parent of 38: [] is

1: main.

The relative order of node identifiers is determined by the lazy

evaluation strategy, but the edge structure of an ART is independent

of the evaluation strategy. An ART can also represent an eager

computation; then every application node always has two outgoing

component edges.

An ART contains detailed information for debugging or under-

standing how a program works. In general, the ART is far too large

and complex to be displayed in its entirety. Hence Hat provides

various viewing tools for the ART. Each viewer enables the pro-

grammer to interactively explore a computation in a different way,

seeing limited information at a time.

Hat transforms a Haskell program into a self-tracing Haskell

program. When the latter program is executed, it has the same

observable behaviour as the original but in addition generates an

ART in a file. To generate all the edges connecting the nodes, Hat’s

transformation is rather complex and changes all data types and

types of all expressions in a program (Section 2.2).

In this paper we present a much simpler method for obtaining the

very same ART for a Haskell program. A new program transforma-

tion changes only function bodies and leaves all types in a program

unchanged. The transformation applies semantic identity functions,

which produce side-effects using the function unsafePerformIO,

to subexpressions. When the value of a subexpression is demanded,

then the effect is produced, but otherwise the computation pro-

ceeds like in the original program, preserving the lazy evaluation

order. The side-effects record a sequence of events. Through a sin-

gle traversal of this sequence from beginning to end we can later

reconstruct the ART.

Our method was inspired by the Haskell object observation

debugger Hood (Gill 2001). The method is related to our earlier

work on algorithmic debugging (Faddegon and Chitil 2015, 2016).

The paper makes the following contributions:

• Type- and semantics-preserving tracing combinators for

instrumenting code such that during a computation an

informative sequence of events is produced (Section 3).

• A simple program transformation that introduces the trac-

ing combinators into a program (Section 4).

• An efficient translation of a sequence of events into an

ART (Section 5).

• A prototype implementation for a small subset of Haskell

(Section 6).

2 OUTLINE: PROBLEM AND SOLUTION IDEA

The ART was designed as a universal trace for lazy functional

programs that contains the information to enable multiple different

views of a computation (see Section 9). Sharing within the graph

minimises the size of an ART, benefiting both generation time and

storage space. Because of the size of an ART — it commonly has

millions of nodes — and to decouple trace generation from multiple

separate viewing tools, Hat generates the ART in a file.

2.1 The ART Data Structure

An ART file contains numerous details, such as source file names

and source locations for all identifiers and their definitions. How-

ever, the Haskell types in Figure 3 describe its essential structure.
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type ART = Map NodeId TNode

type NodeId = Int

noId = -1

type Name = String

type Arity = Int

data TNode =

TApp {tred::NodeId,tparent::NodeId,

tleft::NodeId,tright::NodeId}

| TVar {tred::NodeId,tparent::NodeId,tname::Name}

| TCon {tparent::NodeId,tname::Name,tarity::Arity}

| TInd {tparent::NodeId,tind::NodeId}

Figure 3: The ART Data structure.

1 7→ TVar {tred=2, tparent=0, tname="main"}

2 7→ TApp {tred=-1, tparent=1, tleft=4, tright=7}

4 7→ TVar {tred=-1, tparent=1, tname="print"}

7 7→ TApp {tred=18, tparent=1, tleft=9, tright=38}

9 7→ TVar {tred=10, tparent=1, tname="binaryDigit"}

10 7→ TApp {tred=-1, tparent=9, tleft=12, tright=48}

12 7→ TApp {tred=-1, tparent=9, tleft=14, tright=29}

14 7→ TVar {tred=-1, tparent=9, tname="<|>"}

18 7→ TApp {tred=60, tparent=7, tleft=20, tright=45}

20 7→ TApp {tred=-1, tparent=7, tleft=22, tright=26}

22 7→ TVar {tred=-1, tparent=7, tname="mplus"}

26 7→ TApp {tred=42, tparent=7, tleft=29, tright=38}

29 7→ TApp {tred=-1, tparent=9, tleft=31, tright=-1}

31 7→ TVar {tred=-1, tparent=9, tname="lit"}

38 7→ TCon {tparent=1, tname="[]", tarity=0}

42 7→ TCon {tparent=26, tname="Nothing", tarity=0}

45 7→ TApp {tred=58, tparent=7, tleft=48, tright=38}

48 7→ TApp {tred=-1, tparent=9, tleft=50, tright=-1}

50 7→ TVar {tred=-1, tparent=9, tname="lit"}

58 7→ TCon {tparent=45, tname="Nothing", tarity=0}

60 7→ TInd {tparent=18, tind=45}

Figure 4: ART of Figure 2 using types of Figure 3.

An ART is a finite map from node identifiers, we use natural

numbers, to trace nodes TNode. There are four different sorts of

nodes: application, variable, data constructor and indirection. Every

node points to its parent node, that is, the root of the redex whose

reduction caused its creation. Both a variable and a constructor

node have a name; a constructor also an arity. Both an application

and a variable can be the root of a redex and hence they both have

a reduction pointer. If there is no reduction, then the reduction

pointer is noId. Finally, both applications and indirections can have

components. An application can have two components, left and

right. At creation time of an application node these components are

still unknown and hence are noId. In contrast, for an indirection

its component tind is always well-defined. Indirection nodes are

needed to ensure that from every reduct its redex can be reached via

a parent pointer (Sparud and Runciman 1997a): When an applied

function is a projection, an indirection node is added to the ART

to represent the result. The parent pointer of the indirection is

different from the parent pointer of its component.

Figure 4 shows the ART of our example program using the data

types of Figure 3.

2.2 Hat’s Program Transformation

To generate an ART, the Haskell tracer Hat transforms a Haskell

program into another Haskell program that, when executed, has the

same observable behaviour as the original program but in addition

writes an ART describing the computation into a file. File writing

is mostly sequential, but because the ART is a graph with cycles,

some forward pointers in the ART file have to be updated.

To generate all the graph edges of the ART, the transformation

inserts in numerous places in the program a pointer of type RefExp.

Hence the types of all expressions, including function identifiers,

change. Every expression of type T is replaced by an expression of

type R T, where

data R a = R a RefExp

that is, every subexpression is paired with a pointer. Data types

change accordingly, for example the definition of the tree type

data Tree a = Empty | Node (Tree a) a (Tree a)

becomes

data Tree a = Empty | Node (R (Tree a)) a (R (Tree a))

Every function type is replaced by the new function type

newtype Fun a b = Fun (RefExp -> R a -> R b)

It is substantial work and difficult to implement Hat’s program

transformation correctly. Another drawback is that the additional

pointers in data structures and function parameters increase the

space and time requirements of the program.

2.3 The Idea

During program execution we generate a sequence of events. This

sequence could be held in memory or be written sequentially to file.

Every new event is added to the end of the current sequence; earlier

events are never changed. After the execution has terminated, a

single traversal of the sequence from beginning to end translates

the event sequence into an ART, which contains both backward

and forward pointers.1

In the next sections we assume that a program is just a sequence

of top-level function definitions. In Section 7 we discuss further

language constructs such as local definitions and constants.

2.3.1 “Identity” Functions with Side-Effects. We can instrument

any subexpressionM of a program such that an event is recorded,

either just before evaluation of M or just after evaluation of M .

We just replaceM by instPre "begin" M , respectively instPost

"end" M , where

instPre :: String -> a -> a

instPre event exp = unsafePerformIO $ do

sendEvent event

return exp

instPost :: String -> a -> a

instPost event exp = unsafePerformIO $ do

1We assume that a forward pointer in the ART can be updated in constant time.
Although we also traverse parts of the already constructed ART, for all practical
purposes the translation is linear in the length of the event sequence.
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exp `seq` sendEvent event

return exp

Here sendEvent :: String -> IO a adds the given string as

an event to the end of our global sequence of events. The function

unsafePerformIO :: IO a -> a turns the event recording into a

side-effect, such that instPre "begin" and instPost "end" are

polymorphic functions that do not change the type of their argu-

ments. For the combinator instPost it is important that Haskell

provides the parametrically polymorphic function seq :: a ->

b -> b that forces evaluation to weak-head normal form of its

first argument before returning its second argument. Therefore

instPre first sends the event and then evaluates its argument and

postPre evaluates in the opposite order.

2.3.2 Event References Record Expression Nesting. For each func-

tion symbol, data constructor and application we will generate an

event. To be able to reconstruct whole nested expressions, events

have to be able to refer to each other. Each event in our sequence

of events can be identified by a unique event identifier; for simplic-

ity we choose as event identifier the position of the event in the

sequence, starting with 0. A later event in the sequence can refer

to an earlier one by including the event identifier of the earlier one

in the later event. Thus we can record an expression having two

subexpressions by ensuring that the events for the two subexpres-

sions refer to the event of the whole expression. For example, our

transformation can replace e1e2 by app e1e2, where

app :: (a -> b) -> a -> b

app f x = unsafePerformIO $ do

appId <- sendEvent "apply"

return ((instPre ("left" ++ show appId) f)

(instPre ("right" ++ show appId) x))

Here it does not matter whether we use instPre or instPost. We

also note that eventually we should define a new data type for

events instead of encoding them as strings.

We ensure that for every subexpression there is an event with a

reference to the event of the surrounding expression. Because we

add later events at the end of the sequence and never update earlier

events, subexpressions have to refer up to events representing

larger expressions, but never vice versa. When translating the event

sequence in one linear traversal into an ART we have to invert all

references to obtain component edges.

2.3.3 Delimit Chains of Reduction. Whenever evaluation of an

expression is started, it will be rewritten in a sequence of steps until

its value is reached; in terms of ART structure there is a chain of

redexes with reduction edges until finally there is a non-redex.2

Our ART of Figure 2 shows five such chains:

1 −−◮ 2

7 −−◮ 18 −−◮ 60

9 −−◮ 10

45 −−◮ 58

26 −−◮ 42

We can instrument any subexpression M of a program such

that an event marking the start is recorded before evaluation of

2We will discuss exceptions, including runtime errors and abortion of a computation
by the programmer in Section 7.4.

myId :: Bool -> Bool

myId True = True

myId False = False

myNot :: Bool -> Bool

myNot True = myId False

myNot False = myId True

z :: Bool

z = myNot (myNot True)

Figure 5: A program with expression nesting.

myId :: Bool -> Bool

myId True = instPre "True" True

myId False = instPre "False" False

myNot :: Bool -> Bool

myNot True = instPre "apply myId" (myId False)

myNot False = instPre "apply myId" (myId True)

z :: Bool

z = ev (instPre "apply myNot" (myNot

(ev (instPre "apply myNot" (myNot True)))

))

Figure 6: Program with some tracing combinators.

• begin

→ apply myNot

• begin

→ apply myNot

→ apply myId

→ False

• end

→ apply myId

→ True

• end

Figure 7: Sequence of events generated by evaluation of z.

the subexpression starts, and another event marking the end is

recorded after a value was reached. We just replace M by ev M ,

where

ev :: a -> a

ev = instPre "begin" . instPost "end"

Example. Figures 5 to 7 demonstrate how chains are recorded.

For simplicity here we ignore the nesting of expressions but just

record data constructors and function applications. We instrument

the program of Figure 5 with the tracing combinators and obtain the

program of Figure 6. When evaluating the expression z, the event

sequence of Figure 7 is generated. The markings on the left empha-

sise that the events begin and end serve as start and end markers

of chains. One chain of reductions is nested within another chain

of reductions. The variable z reduces to an application of myNot

which reduces to an application of myId, which reduces to the data
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App

xsApp

rrApp

rl<|>

L

L

L

R

R

R

Figure 8: Left side of the equation of <|> in Figure 1 as a tree.

constructor True. That reduction chain is interrupted by another

reduction chain that shows that an application of myNot reduced

to an application of myId, which reduces to the data constructor

False.

2.3.4 λ-bound Variables. One additional idea is required to han-

dle parameter variables such as x and rl in the example in Figure 1.

As Figure 2 demonstrates, an ART contains nodes for variables such

as lit, binaryDigit and <|>, but not for parameter variables.3 We

call the recorded variables let-bound and the unrecorded parameter

variables λ-bound.4 For example, the program equation

(rl <|> rr) xs = rl xs ’mplus’ rr xs

uses the λ-bound variables rl, rr and xs. The program execution

that yields the ART shown in Figure 2 uses the equation exactly

once. Rewriting the equation without infix notation and annotating

subexpressions with the corresponding node identifiers of the ART

shows more clearly how the equation is used:

((((<|>)14 rl)12 rr)10 xs)7 =

((mplus22 (rl xs)26)20 (rr xs)45)18

The instrumented right-hand sides of the equations for main and

binaryDigit yield the ART nodes 14, 12, etc. that form the left-

hand side of the equation for <|>. The instrumented right-hand

side of the equation for <|> yields the ART nodes 22, 26, 20, etc.

for the right-hand side of the equation. However, additionally that

instrumented code has to connect the component edges of the App

nodes 26 and 45 correctly.

We can identify every λ-bound variable of an equation by a list

of left or right branches that indicate their location in a syntax

tree of the left-hand side, starting at the root node. The left-hand

side of the defining equation of <|> has the syntax tree shown in

Figure 8. The tree yields for each λ-bound variable the following

list of branches:

xs: [R]

rr: [L,R]

rl: [L,L,R]

3Originally this decision was made because the ART was inspired by term rewriting. A
term rewriting sequence (computation) contains function identifiers but all parameter
variables have been instantiated by substitution. A later justification of this design
decision is that function identifiers are essential for understanding a computation,
because in contrast to parameter variables they traditionally have meaningful names.
As we want to generate an ART, we follow that decision, although recording also
parameter variable identifiers would be trivial to implement.
4The naming stems from how a full Haskell program with local definitions in where

blocks and class instances would be translated into a core λ-calculus with a let-binding.

So each event generated for a λ-bound variable contains such a

list. The list enables us to add a component edge: the parent of

the λ-bound variable is the root node of the left-hand side in the

ART and from there we can follow left and right as the branch

list specifies to find the root node of the expression bound to the

variable. So to add the component edge in the ART, a small part of

the already constructed ART needs to be traversed.

2.3.5 Summary. We instrument every subexpression on the

right-hand side of an equation. Thus during program execution

we record variable and constructor identifiers, but also expression

constructs such as applications. These events yield the nodes of the

ART.

• The marker events begin and enter delimit a chain and

enable us to construct the reduction edges of the ART.

• The nesting of chains reflects the evaluation order, not the

nesting of expressions in the program. So to construct the

component edges of the ART, we add an event reference

to the surrounding expression to each Enter event. The

event for a λ-bound variable has a branch list that enables

construction of the component edge.

• Finally the parent edges are actually fully determined by

the reduction and component edges: the parent of a node

in the middle of a chain is the preceding node of the chain

(inverse of a reduction pointer); basically the parent of any

other node is the same as the parent of the node that they

are a component of (inverse of a component pointer).

3 EVENTS AND TRACING COMBINATORS

In the preceding section we discussed our ideas using strings as

events and we used simplified tracing combinators. Now we com-

bine these ideas to obtain a working tracing system.

Figure 9 gives the definition of events and related types. Every

event in an event sequence has a unique EventId, which is its

position in the sequence.

The subsequence from an Enter event to its corresponding

Value event, without any nested subsequences, describes a chain of

reductions. Thus we can later construct reduction edges. An Enter

event has an EventId and a Branch, to specify which component

of which node it is. This information enables us later to construct

component edges.5 A constructor event has the name and arity

of the constructor, and an event for a let-bound variable has the

name of the variable. The event for a λ-bound variable has a list of

branches as discussed in the preceding section. Finally, there is the

application event App.

Figure 10 defines the tracing combinators that we use to generate

the event sequence. We assume that sendEvent is a function that

takes an event and adds it to the end of the global event sequence;

it also returns the unique EventId of that event. The function

runH initialises the global event sequence, evaluates the given IO-

expression, transforms the event sequence into an ART as we will

discuss in Section 4 and finally writes the ART to a file with the

given name.

5A component edge of an ART always points to the start of a chain. Considering that
most uses of an ART are interested in the end of a chain, it would probably be more
efficient to have every component edge point to the end of a chain.
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type EventId = Int

data Branch = L | R

type Name = String

data Event =

Enter EventId Branch

| Value

| Con Name Arity

| Var Name

| LamVar [Branch]

| App

Figure 9: Events recorded in a sequence.

sendEvent :: Event -> IO EventId

runH :: FilePath -> IO a -> IO ()

eval :: EventId -> Branch -> a -> a

eval parent branch x = unsafePerformIO $ do

sendEvent (Enter parent branch)

x `seq` sendEvent Value

return x

con :: Name -> Arity -> a -> a

con name arity x = unsafePerformIO $ do

sendEvent (Con name arity)

return x

var :: Name -> a -> a

var name var = unsafePerformIO $ do

sendEvent (Var name)

return var

lamVar :: [Branch] -> a -> a

lamVar pos var = unsafePerformIO $ do

var `seq` sendEvent (LamVar pos)

return var

app :: (a -> b) -> a -> b

app f x = unsafePerformIO $ do

eventId <- sendEvent App

return ((eval eventId L f) (eval eventId R x))

Figure 10: Tracing combinators.

The combinator eval marks the beginning and end of a chain of

reductions as discussed in Section 2.3.3; it just takes an EventId and

Branch as parameters, to include them in the Enter event. Com-

binators con and var generate constructor and let-bound variable

events. The combinator lamVar generates the event for a λ-bound

variable. The definition first forces the evaluation of the variable via

seq, so that the chain of computation for the variable is recorded

in the event sequence before the LamVar event is added. Finally the

• 0: Enter 0 L
→ 1: Var "main"
→ 2: App
• 3: Enter 2 L
→ 4: Var "print"
• 5: Value
• 6: Enter 2 R
→ 7: App
• 8: Enter 7 L
→ 9: Var "binaryDigit"
→ 10: App
• 11: Enter 10 L
→ 12: App
• 13: Enter 12 L
→ 14: Var "<|>"
• 15: Value
• 16: Value
• 17: Value
→ 18: App
• 19: Enter 18 L
→ 20: App
• 21: Enter 20 L
→ 22: Var "mplus"
• 23: Value
• 24: Value
• 25: Enter 20 R
→ 26: App
• 27: Enter 26 L
• 28: Enter 12 R
→ 29: App
• 30: Enter 29 L
→ 31: Var "lit"
• 32: Value
• 33: Value
→ 34: LamVar [L,L,R]
• 35: Value
• 36: Enter 26 R
• 37: Enter 7 R
→ 38: Con "[]" 0
• 39: Value
→ 40: LamVar [R]
• 41: Value
→ 42: Con "Nothing" 0
• 43: Value
• 44: Enter 18 R
→ 45: App
• 46: Enter 45 L
• 47: Enter 10 R
→ 48: App
• 49: Enter 48 L
→ 50: Var "lit"
• 51: Value
• 52: Value
→ 53: LamVar [L,R]
• 54: Value
• 55: Enter 45 R
→ 56: LamVar [R]
• 57: Value
→ 58: Con "Nothing" 0
• 59: Value
→ 60: LamVar [R]
• 61: Value
• 62: Value

Figure 11: Events for the example program in Figure 1.
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combinator app records an application event. It wraps the combina-

tor eval around both components of the application. This collabo-

ration of the two combinators ensures that the component structure

of expressions is recorded in the trace. The combinator eval is used

only in the definition of app and for starting the computation of a

complete program in the definition of runH. The combinator app

is the only combinator that uses the unique identifier returned by

sendEvent.

Figure 11 shows the complete event sequence for our program

from the Introduction. The markings on the left emphasise the

chains of reductions just as in Figure 7. The whole sequence is

bracketed by an Enter 0 L and a Value event that were generated

by runH. The additional information of an Enter event determines

for a chain to which component of which application it belongs.

Every App event is followed directly by an Enter event for its

left component, the applied function. An Enter event for its right

component, the argument of the function, may appear later in the

event sequence, but will only appear if it is demanded.

4 PROGRAM TRANSFORMATION

A transformation that inserts the tracing combinators instruments

a program for tracing. Figure 12 shows the result of transforming

our introductory program of Figure 1. A module import for the

tracing library HatLight that defines the tracing combinators is

added. The standard library Prelude is hidden and instead a trac-

ing version of it, HatPrelude, is imported. All type definitions and

type signatures remain unchanged, just like the left-hand sides of

equations that define functions. However, all expressions are trans-

formed by inserting tracing combinators. That transformation is

straightforward, except that for each use of a λ-bound variable a list

of branches is needed, which is obtained from the left-hand side of

the equation as described in the previous section. The combinators

app〈n〉 are variants of app that apply a function to n arguments.

The function main uses runH and starts by recording its own vari-

able identifier in the event sequence. Executing this program yields

the event sequence shown in Figure 11.

5 TRANSLATION FROM EVENT SEQUENCE
TO ART

When we generate an event sequence, we never update any event;

we only join new events at the end. Thus an event sequence has

backwards references, namely the EventId of each Enter event,

but no forward references. We translate such an event sequence into

an ART which also has forward references, namely the component

and reduction pointers. Translation traverses the event sequence

once from beginning to end. From each event a new ART node is

created, except for Enter and Value events. For simplicity we use

the EventId of an event as the NodeId of the corresponding ART

node. Hence there are no ART nodes with the EventIds of Enter

or Value events. The generation of the ART is mostly a sequential

writing processes: If the ART is stored in a sequential data structure

such as a file, then new nodes can be joined at the end; however,

a few updates and also reading operations of the existing partial

ART are needed.

Figure 13 defines the translation as a Haskell function mkArt.

During the traversal the translation function go keeps track of a

import HatLight

import qualified Prelude

import HatPrelude

type Recogniser = [Char] -> Maybe [Char]

lit :: Char -> Recogniser

lit x [] = con "Nothing" 0 Nothing

lit x (y:ys) =

app3 (var "if" ifThenElse)

(app2 (var "==" (==))

(lamVar [L,R] x) (lamVar [R,L,R] y))

(app (con "Just" 1 Just) (lamVar [R,R] ys))

(con "Nothing" 0 Nothing)

(<|>) :: Recogniser -> Recogniser -> Recogniser

(<|>) rl rr xs =

app2 (var "mplus" mplus)

(app (lamVar [L,L,R] rl) (lamVar [R] xs))

(app (lamVar [L,R] rr) (lamVar [R] xs))

mplus :: Maybe a -> Maybe a -> Maybe a

mplus Nothing mr = lamVar [R] mr

mplus ml _ = lamVar [L,R] ml

binaryDigit :: Recogniser

binaryDigit =

app2 (var "<|>" (<|>))

(app (var "lit" lit) (con "'0'" 0 '0'))

(app (var "lit" lit) (con "'1'" 0 '1'))

main =

runH "Recogniser" Prelude.$ var "main" Prelude.$

app (var "print" print)

(app (var "binaryDigit" binaryDigit)

(con "[]" 0 []))

Figure 12: Transformed Example Program.

stack of Chains and the NodeId = EventId of the event currently

being processed. The function writeConnect adds one node to the

ART data structure and modifies it in other places; that is, if the

newly written node is the beginning of a chain, then the node that

it is an argument of is updated (writeArg); otherwise it is a later

entry in a chain and the reduction pointer of the preceding node is

updated (updateReduction). Hence a component pointer always

points to the first node of a reduction chain.

A variable of type Chain stores where the chain currently being

traversed belongs into the ART. At the beginning of a chain its

value is the data constructor Context carrying the NodeId of the

node of which the chain is a component and the Branch to identify

exactly which component it is. Later the data constructor Last

carries the NodeId of the last node of the chain that has already

been translated. As chains are nested, our translation uses a stack

of Chains (i.e. a list). Translation of an Enter event puts a new
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data Chain = Context NodeId Branch | Last NodeId

mkArt :: [Event] -> ART

mkArt es = go es [] 0 Map.empty

go :: [Event] -> [Chain] -> NodeId -> ART -> ART

go (Enter a b : es) cs id art =

go es (Context a b : cs) (id+1) art

go (Value : es) (c:cs) id art =

go es cs (id+1) art

go (Con name arity : es) cs id art =

writeAndGo es cs id

(\p -> TCon p name arity) art

go (App : es) cs id art =

writeAndGo es cs id

(\p -> TApp noId p noId noId) art

go (Var name : es) cs id art =

writeAndGo es cs id

(\p -> TVar noId p name) art

go (LamVar d : es) (Context a b : cs) id art =

go es (Last n : cs) (id+1) (writeArg a b n art)

where

n = directionLookup (getParent a art) d art

go (LamVar d : es) cs id art =

writeAndGo es cs id

(\p -> TInd p (directionLookup p d art)) art

go [] [] _ art = art

writeAndGo :: [Event] -> [Chain] -> NodeId ->

(NodeId -> TNode) -> ART -> ART

writeAndGo es (c:cs) id newNode =

go es (Last id : cs) (id+1) .

writeConnect c id newNode

writeConnect :: Chain -> NodeId ->

(NodeId -> TNode) -> ART -> ART

writeConnect (Context a b) id newNode art =

writeArg a b id .

Map.insert id (newNode (getParent a art)) $ art

writeConnect (Last l) id newNode art =

updateReduction l id .

Map.insert id (newNode l) $ art

Figure 13: Translation of an event sequence into an ART.

Context on the stack, translation of a Value event removes a chain

from the stack.

The translation of Con, Var and even App events is relatively

simple. Each gives rise to the construction of a corresponding ART

node.

The translation of a LamVar event is more complex. Translation

uses the function directionLookup, which given the node that rep-

resents the root of the left-hand side for this λ-bound variable plus

the list of branches and the current partial ART, returns the node

that is the root of the value of the variable. We have to distinguish

two cases:

• If we are at the beginning of a chain, then the λ-variable

is a component, not the right-hand side of an equation.

We get the parent node of the context node; that is the

root of the left-hand side of the equation in the ART. From

that node directionLookup obtains the beginning of the

chain of the λ-bound variable. The argument specified by

the Context is updated with the node beginning that chain.

That node is used for updating the argument specified by

the Context.

For example, the λ-bound variable xs of the equation

for <|> in Figure 1 has the branch list [R]. Hence the right

argument of node 26 is the node 38 in Figures 2 and 4.

• If we are in the middle of a chain, then the λ-variable is

the right-hand side of an equation. That equation defines a

projection. From that last node directionLookup obtains

the beginning of the chain of the λ-bound variable. That

node is the component of the new indirection node that

is added to the ART, connected by reduction pointer from

the last node.

For example, the right-hand side of the first equation

of mplus in Figure 1 is just the λ-bound variable mr, which

has the branch list [R]. Therefore the reduction pointer of

node 18 points to an indirection node 60whose component

is node 45 in Figures 2 and 4.

6 A PROTOTYPE: HATLIGHT

HatLight is our prototype implementation of the new method for

creating an ART. HatLight is mainly a Haskell library that defines

the tracing combinators and the translation from event sequences

to an ART. Both event sequence and ART are data structures in

memory, not in files. HatLight outputs the event sequence and

ART, but also writes the ART into a file using the DOT graph

description language.6 Thus the ART can be visualised with a tool

such as GraphViz.7 HatLight also includes a tracing standard library,

which includes some frequently used functions and types. Currently

HatLight consists of approximately 570 lines of Haskell code.

All the transformed programs, event sequences, ART data and

visualisations of the ART in this paper have been obtained with

HatLight. The definitions of the combinators and the translation

are excerpts of HatLight.

To gain an insight into the overhead of tracing, we modified our

prototype towrite the event sequence into a file. The event sequence

contains all information needed to construct an ART and it is of

similar size. We measured the runtime of the original and traced

versions of two programs, each with two different parameters. The

program nfib determines by simple, exponential recursion the

Fibonacci number of the parameter. The program perms outputs

all permutations of the list of numbers from 1 to the parameter. It

uses the definitions given in Section 9.4 of Hutton (2016); all list

functions, including map, (++) and concat are traced. The table in

Figure 14 gives the measurements obtained on a MacBook Air with

flash storage, after compilation with the Glasgow Haskell compiler8

version 7.8.3 with flag -O2.

6https://en.wikipedia.org/wiki/DOT_(graph_description_language)
7https://www.graphviz.org
8https://www.haskell.org/ghc
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program original runtime /s traced runtime /s slowdown factor number of events trace file size /B writing time /s

nfib 23 0.007 2.92 417 4,497,648 44,976,480 2.30

nfib 25 0.008 8.27 1034 11,775,073 114,970,504 5.90

perms 7 0.015 0.74 49 902,535 8,782,879 0.48

perms 8 0.080 5.96 75 7,731,770 77,873,134 3.83

Figure 14: Tracing measurements for two example programs.

The slowdown factor of runtime is substantial. The table also

shows that the computations produce huge trace files, each of which

contains many events. Therefore we wrote a Haskell program that

just writes the same number of lines; each line is a constant string

of length 9, so that the file size is similar to the corresponding event

sequence file. The last column in the table gives the runtimes of

this program. Thus we see that more than half of the runtime of a

traced program is needed just for writing the event sequence file.

So to reduce the slowdown factor in the future, we will have to

speed up file writing. Our prototype uses the simple but inefficient

line

hPutStrLn handle (show event)

to write an event into the file.

Nonetheless, the runtime overhead and the file sizes clearly

demonstrate that we should not trace every reduction of a program.

In Section 8 wewill discuss howwe can trace only part of a program.

7 COVERING THE COMPLETE LANGUAGE

Since 2002 Hat works for all of Haskell 98 plus a few common exten-

sions such as multi-parameter classes and functional dependencies.

Hence its definition of the ART covers all of Haskell. However, we

still have to ensure that our new method for generating an ART

works for all of Haskell.

7.1 Types and Classes

Haskell has a complex system of types and classes. Because our

transformation changes expressions without changing their types,

we do not transform type or class definitions, only the definitions of

bodies of methods in class instances. Hence our method is agnostic

of the type and class system and its implementation is not affected

by any extensions of that system.

7.2 Local Definitions

Consider the following function definition that makes use of a

locally defined function. The function snoc appends an element to

the end of a list.

snoc :: a -> [a] -> [a]

snoc x xs = go xs

where

go [] = [x]

go (y:ys) = y : go ys

We can transform the right-hand side of each defining equation

as before, but we face one problem: The variable x is used in the

body of the definition of the local function go, but it is λ-bound

on the left-hand side of the enclosing definition of the top-level

function snoc. Hat generates an ART for this program, but it was

noticed that presenting applications of a local function without

the values of its free variables can yield to confusing views. For

example, hat-observe could produce an output such as

go [] = [0]

go [] = [42]

However, Hat’s ART contains more information than the ART data

structure given in Figure 3. Every variable node has a Boolean flag

that indicates whether this is a local variable that may have free

variables. Every variable node stores the beginning and end of its

definition in the source code. Thus it is easy to determine whether

one variable is defined locally within the definition of another

variable. Although the chain of parents (parent, grandparent, grand-

grandparent, etc.) of a node is information about the dynamics of

a computation, for a local variable the chain of parents includes

the redex roots of all enclosing variables. Thus the ART has the

information to determine for any local variable the redex roots

of all its enclosing variables. Hence hat-observe can produce an

output like

(snoc 0 []).go [] = [0]

(snoc 42 []).go [] = [42]

We can extend HatLight to also record for every let-bound vari-

able a Boolean flag and information about the beginning and end of

its definition in the source. Furthermore, HatLight needs to include

in the event for a λ-bound variable a counter of how many levels

of enclosing redexes to go up before following the list of branches

as described in Section 2.3.4;9 Thus HatLight could generate the

correct ART also for programs with local definitions as above.

7.3 Constants

Although by definition Haskell is only a non-strict language, all

implementations provide a lazy semantics and thus ensure that

every constant is computed at most once with its value being shared

by all use occurrences. We call a let-bound variable in a program

a constant, if it appears alone on the left-hand side of its defining

equation, that is, it is not a function identifier with parameters on

the left-hand side.10 In our introductory example binaryDigit and

main are constants and they are the only constants. Because each

of these constants is used only once, our tracing method works

fine. However, if a constant is used twice or more, then the tracing

method fails. Consider

true :: Bool

true = True

9This counter corresponds to the de Bruijn index of λ-calculus.
10There is a difference between the term constant and the established term constant
applicative form (CAF) : A constant bound to a λ-abstraction is not a CAF. In this paper
we do not discuss λ-expressions, but Section 8 indicates that we also have to handle
constants that are bound to λ-abstractions in the way described here.
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1: main 2: App

4: print 7: App

9: App 19: true

21: True

11: && 15: true 16: True

Figure 15: An ART that is incomplete because of a constant.

1: main 2: App

4: print 7: App

9: App

16: true

25: True

11: && 18: True

Figure 16: An ART that shares the constant true correctly.

main = print (true && true)

With our method we obtain the incomplete ART shown in Figure 15

The node 15: true reduces to the result 16: True, but there is

no reduction edge for node 19: true. The reason for the problem is

simple: the constant bool is only evaluated once and the resulting

value True is stored and not recomputed when the value of true

is demanded again; however, our tracing works by side-effects that

only happen when computation happens. This effect may not only

lead to missing information in an ART, but wemay obtain an invalid

event sequence that cannot be translated into an ART at all. That

happens for example for the following program:

pair :: (Int,Int)

pair = (6,7)

fst (x,_) = x

snd (_,x) = x

main = print (fst pair * snd pair)

The first occurrence of pair yields a reduction chain in the event

sequence, but the second occurrence does not. However, the body of

the function snd is a λ-bound variable with branch list [R,R]. Fol-

lowing this direction in the partially constructed ART fails, because

there is no second pair constructor in the ART.

Hat handles constants (Chitil et al. 2003). The computation of a

constant is shared in its ART. The ART has a special node for the use

occurrence of a constant. That node is similar to an indirection; its

component pointer points at the single shared value of the constant.

There is no single parent for a constant, because the constant can be

used by many redexes of the computation. In early versions of Hat

the parent pointer of a constant does not point to any of its parents;

in later versions of Hat a constant has a list of parent pointers, one

for each parent redex. It is unclear whether the additional time and

space overhead for storing this list is worthwhile for the views.

We recently enhanced our new method for generating an ART

to handle constants. Because a constant is computed only once,

its computation is recorded only once in the event sequence and

thus the ART. We added a new event and new combinator for

each use of a constant. Thus we can connect several uses of a

constant to the single chain for the constant. Figure 16 shows the

resulting ART for the first example of this section. In our current

version a constant has no parents. This enhancement also works for

recursively defined constants, but it is still experimental, because it

may not work well in combination with untraced code, which we

discuss in Section 8.

7.4 Exceptions

A computation of a program may explicitly raise an exception.

Any runtime error and also the abortion of a computation by the

programmer raises an exception. We can handle these by adding

an exception handler in the combinator eval. When an exception

is raised all reduction chains that are still open can be terminated

with an exception value and the event Value.

7.5 Desugaring

Haskell has many language features that can be desugared into a

small subset of the language. For example, a list comprehension

can be desugared into the use of a few list combinators. However,

for the end user it is desirable that a view of the ART shows an

expression as it is in the program. That will require extending the

ART data structure and extending every view accordingly.

Desugaring is a temporary solution to obtain a tracing system

for Haskell quickly, but in the long term every language construct

will need to be supported directly.

7.6 Challenges

Haskell’s monadic input/output functions and also functions for

imperative state such as those using the STmonad can be handled by

HatLight in principle, by wrapping the untraced primitive functions,

as outlined in Section 8. Hat even extends the definition of the ART

for some simple output functions to record the characters that they

output more directly. However, for tracing any program that makes

substantial use of these functions we still have to find a good way

of presenting the computation to the user.
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By definition Haskell is a sequential language, but its most popu-

lar compiler, the Glasgow Haskell compiler, provides it with several

different application interfaces for concurrent programming. Our

lightweight tracing method generates a sequence of events; the

order of these events is essential for reconstructing the ART. Hence

our method works only for tracing a sequential computation, at

best a single thread of a concurrent computation. The most simple

extension to handle many concurrent threads would assume to

have at runtime access to an identifier of the current thread and

add this identifier to every event. Thus for every thread an event se-

quence could be determined and an ART-like trace be reconstructed.

In practice, much further research will be needed to find a good

way of presenting a concurrent computation to the user, probably

specific to the particular concurrency application interface that the

program uses.

8 UNTRACED CODE

Our new method works well for transforming and then tracing

the computation of a complete program. However, in general pro-

grammers do not want to trace the computation of all code of a

program. When a program uses a library, the programmer usually

does not want to see the details of library-function computations.

Additionally, tracing creates a time and space overhead that the

programmer wants to limit to the parts of the program that they

are interested in.

Hat also transforms untraced code, using a slightly different

transformation and different combinators. That way untraced code

has the same transformed types as traced code and both can eas-

ily be combined. Hat’s method is pragmatic but not perfect: the

untraced code still writes some superfluous information into the

ART file while missing out some essential parts. Because our new

method for generating an ART leaves the types of all expressions

unchanged, combining transformed and untransformed code is not

hindered by changes in types.

It is highly desirable to combine transformed and untransformed

code. Untransformed code will always be more efficient and it may

use some language features that the program transformation does

not (yet) support. Also, transformed code still has to use some

untransformed primitive functions, for example for arithmetic and

input/output.

Combining traced and untraced code requires some thought.

The computation of a function in untraced code is not traced, but

that function returns a value to the traced world. Hence that value

needs to be recorded in the trace. Both the Hat and the HatLight

program transformations can easily handle a call to an untraced

first-order function by wrapping it in a combinator that records the

result value in the trace when it is returned from the function.

In a higher-order programming language, that value may be

a function or a data structure that contains functions. The ART

represents a functional value as a function identifier or a partial

application of a function identifier. It is unclear how any wrapper

could record that function identifier in the ART. Worse, if that

function identifier is defined in untraced code, in particular if it is a

local function of some black-box library, it should not appear inside

the ART. So the definition of the ART does not fit with the concept

of black-box untraced code.

We see the solution to the problem in representing a functional

value that is returned from untraced code not intensionally, but

extensionally, that is, as a finite map from arguments to results. For

example for the program

main = print (map (+ 1) [1,2,3])

the value of (+ 1), and thus also the argument for the function

map, can be represented as

{1 7→ 2, 2 7→ 3, 3 7→ 4}

The algorithmic debugger hoed-pure uses this representation of

functional values and it is also based on first generating a sequence

of events which afterwards is translated into its computation tree

(see Section 9.3). Hence merging the method of hoed-pure into

HatLight is a feasible future goal.

9 RELATED WORK

9.1 ART and Hat

The Haskell tracer Hat11 produces an ART for a Haskell program.

The design of the structure of an ART started with the redex trail

trace developed by Sparud and Runciman (1997a,b). That redex trail

only allowed trace exploration as later implemented in hat-trail

and described in Section 9.1. A comparison of three different trac-

ing systems for Haskell lead to the conclusion that different views

of a computation are useful (Chitil et al. 2001). A small addition

to the redex trail structure, namely reduction pointers, yields an

augmented redex trail (ART) that can support all three views. Wal-

lace et al. (2001) implemented this addition and the three views .

Claessen et al. (2003) give the most extended examples of what Hat

does from the user’s point of view. Later Chitil (2005) and Silva

and Chitil (2006) explored further views and uses of the ART. Chitil

et al. (2003) define Hat’s program transformation for generating

an ART and later Chitil and Luo (2007) defined the ART structure

formally and proved basic properties.

Multiple Views. To appreciate the structure of the ART, we briefly

review some of the views of an ART that Hat provides.

The viewing tool hat-observe is inspired by Hood (see Sec-

tion 9.3). For a given function identifier it lists all the arguments

that the function was applied to during a computation plus its

results. For example, for the function identifier lit it shows

lit _ [] = Nothing

removing duplicates, and for the function identifier mplus it shows

mplus Nothing Nothing = Nothing

An observation can be obtained from a single linear traversal of

the ART. When hat-observe is started, it first creates an index

of every identifier occurring in the ART to speed up every later

search. Component edges enable reconstruction of expressions and

reduction edges point to the result value of a redex.

The viewing tool hat-trail allows exploring the history of

an expression backwards: it tells that the argument Nothing of

print was created by the reduction of mplus Nothing Nothing.

The second Nothing of that redex was created by the reduction of

lit _ []. The first application of that redex was created by the

reduction of binaryDigit. Finally binaryDigit was created by

the reduction of main. In every step the programmer can select any

11projects.haskell.org/hat/



IFL 2016, August 31-September 2, 2016, Leuven, Belgium Olaf Chitil, Maarten Faddegon, and Colin Runciman

1: main = print Nothing

7: (lit _ <|> lit _) [] = Nothing

9: binaryDigit = lit _ <|> lit _

26: lit _ [] = Nothing 45: lit _ [] = Nothing

18: mplus Nothing Nothing = Nothing

Figure 17: Evaluation dependence tree (EDT) obtained from the ART shown in Figure 2.

subexpression of a given expression and ask for its parent. Below a

selected subexpression is underlined and its parent is given in the

subsequent line:

print Nothing

<- mplus Nothing Nothing

<- lit _ []

<- binaryDigit

<- main

Thus hat-trail enables exploring a computation backwards; de-

bugging goes from a noticed failure backwards to the program

defect that caused it. Parent edges are essential for hat-trail’s

functionality; hat-trail reconstructs expressions from component

edges.

The viewing tool hat-detect is an algorithmic debugger for

semi-automatically locating a defect in a program. At the heart of

algorithmic debugging is a computation tree, a structured repre-

sentation of a computation. Figure 17 shows the computation tree,

an evaluation dependence tree, constructed by hat-detect for our

example. Every node is a computation statement: a redex plus its

result value (we consider print Nothing as a value of type IO ()).

Here we include the ART node identifier of the redex in each tree

node to emphasise the relationship. The tree gives insight into the

computation, but because our program shows no failure, we cannot

do any debugging. The tool hat-detect constructs the evaluation

dependence tree on the fly from the ART, using all three sorts of

edges.

Most debuggers used in practice, especially for imperative pro-

grams, are stepping debuggers. A stepping debugger is a very spe-

cial instance of an algorithmic debugger; the stepping debugger

only allows a linear, forward traversal of the computation tree. This

relation between stepping debugger and computation tree is central

to the work of Braßel et al. (2007), which we discuss later. The ART

could be used as basis for a stepping debugger similar to the one of

Braßel et al. (2007).

Many other uses of an ART have been discussed and/or imple-

mented, for example, a virtual stack trace and dynamic program

slicing.

A Structural Differences. The ART structure as shown in Figure 2

and generated by our new method differs from Hat’s ART in one

point: A component pointer is noId, when the component was

never demanded during the computation. In contrast, Hat’s ART

always has a valid component pointer to the root of an (unevaluated)

expression. Recording such an unevaluated expression would be

possible in principle, but substantially complicate our method. The

additional information about unevaluated expressions seems of

little use. To prevent information overload, displayed expressions

should avoid any unnecessary information, and Hat’s viewing tools

already offer showing such unevaluated expressions just as _.

9.2 Other Algorithmic Debuggers for Lazy
Functional Languages

Besides hat-detect, several algorithmic debuggers (Shapiro 1983)

for Haskell have been developed. Nilsson and Sparud (1997) define

the evaluation dependence tree (EDT) as a suitable computation tree

for algorithmic debugging of lazy functional programs. Nilsson’s

algorithmic debugger Freja generates an EDT (Nilsson 1998, 2001).

Freja does not generate a more general trace like the ART. Freja is a

complete compiler for a subset of Haskell and compiler and runtime

system together enable the generation of the EDT. Therefore debug-

ging with Freja has only modest runtime overheads, but a complex

tracing architecture integrated with a compiler makes supporting

a large and evolving programming language such as Haskell very

hard. In contrast our lightweight method permits us better to ex-

plore the design space of tracing and will hopefully enable us to

build the first omniscient debugger that will be used for real-world

Haskell programs. Freja already handles many language features

discussed in Section 7. In particular, Freja records the names of

all variables, including λ-bound variables, and for each locally de-

fined variable it records the set of its free variables together with

their values. Thus Freja can provide inspiration for an alternative,

possibly more friendly user interface to some language features.

Freja requires all higher-order functions to be traced, even though

the workings of trusted higher-order functions is not recorded; in

contrast we outlined in Section 8 how we plan to use untraced

higher-order functions.

Pope (2005, 2006) built the algorithmic debugger Buddha for

Haskell. Generation of the computation tree is based on program

transformation, which, however, is still integrated with an existing

compiler, the Glasgow Haskell compiler. Buddha can represent

functional values as finite maps and Pope stated that a computation

tree with functional values as finite maps has to have a structure

that is different from the EDT. Subsequently Chitil and Davie (2008)

defined the new computation tree structure formally by relating

it to the ART, named it the function dependence tree (FDT), and

proved its soundness for algorithmic debugging.

9.3 Hood and Hoed

Our new method for obtaining an ART was inspired by Andy Gill’s

work on observing the values of expressions in lazy functional
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programs, which he implemented in his Haskell debugging library

Hood (Gill 2001). A programmer using Hood annotates their pro-

gram with the observe combinator. At runtime these annotations

generate a sequence of events. Finally, when computation termi-

nates, the Hood library reconstructs observed values from the se-

quence of events. These values can be values of data types, that

is, applications of data constructors and primitive values such as

42 and ’a’, or functional values. A functional value is represented

extensionally, that is, as a finite map from arguments to results, as

we discussed in Section 8. To sum up, Hood does not generate any

trace structure from its sequence of events, but a set of values.

We identified and generalised Hood’s use of “identity” functions

with side-effects and its use of event references to record expres-

sion nesting. Hood’s Enter events inspired our novel method of

delimiting chains of reductions in the event sequence. Hood does

not record such chains; it does not need them for observing only

values.

Faddegon and Chitil (2015) combined Hood’s instrumentation

with the cost centre stacks of the profiling system of the Glasgow

Haskell compiler to obtain a computation tree for algorithmic de-

bugging of Haskell programs. The implementation hoed-stack

uses Hood’s event sequence to obtain computation statements as

nodes of the computation tree and the cost centre stacks are used

to connect these nodes to a tree. The computation tree is a function

dependence tree, not an evaluation dependence tree (cf. Section 9.2).

Subsequently Faddegon and Chitil (2016) discovered that cost

centre stacks are not needed, but that the very same sequence of

events that Hood generates already contains sufficient information

to connect the nodes of computation statements to a tree. The

central insight is that events come in pairs, an Enter event is later

followed by an event describing the weak-head normal form of a

value. From the nesting structure of these event pairs the structure

of the computation tree can be obtained. Because of higher-order

functions, the relationship between nesting of event pairs and the

computation tree structure is quite complex. The implementation

of this algorithmic debugger is called hoed-pure.

Here, in this paper, we follow Hood in instrumenting a program

with combinators that generate a sequence of events. However,

Hood traces only values and except for function identifiers so does

Hoed. To obtain the richer information needed for an ART, we use

a richer set of events. For example, we have events for both let-

and λ-bound variables. Instead of the event pairs of Hood we have

chains of events, starting with an Enter and ending with a Value

event, but with an unbound number of events in between. Hood’s

and Hoed’s program annotations are far more lightweight than the

instrumentation introduced by our program transformation. Hoed

requires only one annotation in the definition of each function of

interest. It’s observe combinator recursively traverses a data struc-

ture while recording it in the sequence of events. In contrast, we

annotate every subexpression with a combinator. Thus we record a

value when it is constructed by the program (the data constructor

is instrumented), whereas Hood and Hoed record a value when that

value passes through the observe combinator which otherwise

behaves like the identity function.

Hood and Hoed have the great advantage that they require an-

notating only functions of interest; most of a program may be left

unchanged. The connection of computation tree nodes based on

nested event pairs works even when an arbitrary number of un-

traced function calls are performed in between. In contrast, our

method for constructing an ART is based on transforming the com-

plete program. This whole-program tracing is the premise for being

able to transform the event sequence into the ART, a single con-

nected graph. As we discussed in Section 8, extending ourmethod to

work with untransformed modules will probably require combining

it with the method of hoed-pure.

Finally our method for constructing an ART has the advantage

that it preserves sharing of expressions in the heap of the instru-

mented program, whereas the observe combinator loses sharing.

Hence for Hood and Hoed the execution of an annotated program

can require more space and the event sequence contains much

duplication, compared to the ART.

9.4 Other Debuggers for Lazy Functional
Languages

Perera et al. (2012) define another tracing model for lazy functional

programs that is based on program slicing. They prove several

desirable properties for their approach. It would be interesting to

establish whether the ART meets similar properties, which the

work of Silva and Chitil (2006) suggests.

Marlow et al. (2007) describe a different approach to debugging

Haskell programs. They describe how a traditional stepping debug-

ger can work and be implemented for a lazy functional language.

Braßel et al. (2007) present a debugging approach for Haskell that

views a computation in a combination of a traditionally stepping

debugger and an algorithmic debugger. For eager evaluation these

two views are closely related. The central idea is that a small trace

states which reduction steps an eager evaluator should skip to

perform exactly the same computations as a lazy evaluator. This

trace is generated by an initial lazy computation of the program.

The viewing tool then uses an eager evaluator of Haskell together

with the small trace to provide a view of eager evaluation that

“magically” skips unnecessary steps. This approach fitswell with our

observation that the ART structure is independent of the order of

evaluation. The main obstacle in practice is that for a lazy language

there is hardly ever an eager evaluator available but it must be

implemented from scratch.

10 CONCLUSIONS

We have presented a new method for generating a detailed trace

of a lazy functional computation. We have shown that the simple

idea of instrumenting a high-level program such that it generates

events at well-defined points of the computation can yield detailed

information about how a computation works; this technique, first

introduced by Gill (2001), clearly has many potential application

areas. We have described and justified every step of the newmethod.

Our implementation HatLight establishes that the method works.

The fact that our tracing combinators do not change typesmay be

seen as a disadvantage: A mistake in Hat’s program transformation

is likely to yield programs that do not compile but raise type errors.

Thus such a mistake is soon noticed. However, in our experience

also mistakes in the new program transformation are likely to yield

programs that raise type errors.
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We could complete HatLight to write the ART into a file in the

same format as used by Hat, such that all of Hat’s viewing tools

could be used. However, our aim in the near future is to use HatLight

as an experimental platform for modifications and extensions as

discussed in Sections 7 and 8. For that purpose HatLight needs

to stay small and allow for useful variations of the ART that are

incompatible with Hat. The difference discussed in Section 9.1 is

already such a variation.

With different combinators our method should also work for

strict functional programming languages. However, because these

languages are generally not pure, recording of side-effects in the

ART will be important. Hat currently supports basic input-output

effects in its tracing and ART, but further work in this area will be

required.

ACKNOWLEDGMENTS

We thank the reviewers, in particular Henrik Nilsson, for their

valuable comments and helpful suggestions.

REFERENCES
Bernd Braßel, Michael Hanus, Sebastian Fischer, Frank Huch, and Germán Vidal. 2007.

Lazy call-by-value evaluation. In ICFP ’07: Proceedings of the 2007 ACM SIGPLAN
International Conference on Functional Programming. 265–276.

Olaf Chitil. 2005. Source-based trace exploration. In Implementation and Application of
Functional Languages, 16th International Workshop, IFL 2004 (LNCS 3474), Clemens
Grelck, Frank Huch, Greg J. Michaelson, and Phil Trinder (Eds.). Springer, 126–141.

Olaf Chitil and Thomas Davie. 2008. Comprehending Finite Maps for Algorithmic
Debugging of Higher-Order Functional Programs. In 10th International ACM SIG-
PLAN Symposium on Principles and Practice of Declarative Programming, PPDP 2008.
ACM, 205–216.

Olaf Chitil and Yong Luo. 2007. Structure and Properties of Traces for Functional
Programs. In Proceedings of the 3rd International Workshop on Term Graph Rewriting,
Termgraph 2006 (ENTCS 176(1)), Ian Mackie (Ed.). 39–63.

Olaf Chitil, Colin Runciman, andMalcolmWallace. 2001. Freja, Hat and Hood—ACom-
parative Evaluation of Three Systems for Tracing and Debugging Lazy Functional
Programs. In Proceedings of the 12th International Workshop on Implementation of
Functional Languages (IFL 2000) (LNCS 2011), Markus Mohnen and Pieter Koopman
(Eds.). Springer, Aachen, Germany, 176–193.

Olaf Chitil, Colin Runciman, and Malcolm Wallace. 2003. Transforming Haskell for
Tracing. In Proceedings of the 14th International Workshop on Implementation of
Functional Languages (IFL 2002) (LNCS 2670). 165–181.

Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes, and Malcolm Wallace. 2003.
Testing and Tracing Lazy Functional Programs using QuickCheck and Hat. In 4th

Summer School in Advanced Functional Programming (LNCS 2638). 59–99.
Maarten Faddegon and Olaf Chitil. 2015. Algorithmic Debugging of Real-world Haskell

Programs: Deriving Dependencies from the Cost Centre Stack. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. ACM, 33–42.

Maarten Faddegon and Olaf Chitil. 2016. Lightweight Computation Tree Tracing for
Lazy Functional Languages. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation.

Andy Gill. 2001. Debugging Haskell by Observing Intermediate Data Structures.
Electronic Notes in Theoretical Computer Science 41, 1 (2001). 2000 ACM SIGPLAN
Haskell Workshop.

Graham Hutton. 2016. Programming in Haskell. Cambridge University Press.
Simon Marlow, José Iborra, Bernard Pope, and Andy Gill. 2007. A lightweight interac-

tive debugger for Haskell. In Haskell ’07: Proceedings of the ACM SIGPLAN workshop
on Haskell. ACM, New York, NY, USA, 13–24.

Henrik Nilsson. 1998. Declarative Debugging for Lazy Functional Languages. Ph.D.
Dissertation. Linköping, Sweden.

Henrik Nilsson. 2001. How to Look Busy While Being As Lazy As Ever: The Imple-
mentation of a Lazy Functional Debugger. J. Funct. Program. 11, 6 (Nov. 2001),
629–671.

Henrik Nilsson and Jan Sparud. 1997. The Evaluation Dependence Tree as a Basis
for Lazy Functional Debugging. Automated Software Engineering: An International
Journal 4, 2 (April 1997), 121–150.

Roly Perera, Umut A. Acar, James Cheney, and Paul Blain Levy. 2012. Functional
Programs That Explain Their Work. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’12). ACM, New York,
NY, USA, 365–376.

Bernie Pope. 2005. Declarative Debugging with Buddha. In Advanced Functional
Programming, 5th International School, AFP 2004 (LNCS 3622). Springer Verlag,
273–308.

Bernie Pope. 2006. A Declarative Debugger for Haskell. Ph.D. Dissertation. The Univer-
sity of Melbourne, Australia.

E. Y. Shapiro. 1983. Algorithmic Program Debugging. MIT Press.
Josep Silva and Olaf Chitil. 2006. Combining Algorithmic Debugging and Program

Slicing. In Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP ’06). ACM, New York, NY, USA,
157–166.

Jan Sparud and Colin Runciman. 1997a. Complete and partial redex trails of functional
computations. In Selected papers from 9th Intl. Workshop on the Implementation of
Functional Languages (IFL’97) (St. Andrews, Scotland). LNCS 1467, 160–177.

Jan Sparud and Colin Runciman. 1997b. Tracing lazy functional computations using re-
dex trails. In Proc. 9th Intl. Symposium on Programming Languages, Implementations,
Logics and Programs (PLILP’97) (Southampton). LNCS 1292, 291–308.

Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. 2001. Multiple-
View Tracing for Haskell: a New Hat. In Proceedings of the 2001 ACM SIGPLAN
Haskell Workshop.

Andreas Zeller. 2009. Why Programs Fail, Second Edition: A Guide to Systematic Debug-
ging. Morgan Kaufmann Publishers Inc.


	Abstract
	1 Introduction
	2 Outline: Problem and Solution Idea
	2.1 The ART Data Structure
	2.2 Hat's Program Transformation
	2.3 The Idea

	3 Events and Tracing Combinators
	4 Program Transformation
	5 Translation from Event Sequence to ART
	6 A Prototype: HatLight
	7 Covering the Complete Language
	7.1 Types and Classes
	7.2 Local Definitions
	7.3 Constants
	7.4 Exceptions
	7.5 Desugaring
	7.6 Challenges

	8 Untraced Code
	9 Related Work
	9.1 ART and Hat
	9.2 Other Algorithmic Debuggers for Lazy Functional Languages
	9.3 Hood and Hoed
	9.4 Other Debuggers for Lazy Functional Languages

	10 Conclusions
	Acknowledgments
	References

