
This is a repository copy of Weaving Parallel Threads.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/118201/

Version: Accepted Version

Proceedings Paper:
Calderon Trilla, Jose Manuel, Poulding, Simon Marcus and Runciman, Colin 
orcid.org/0000-0002-0151-3233 (2015) Weaving Parallel Threads. In: Barros, M and 
Labiche, Y, (eds.) Proceedings of International Symposium on Search-based Software 
Engineering. LNCS . Springer , Bergamo, Italy , pp. 62-76. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Weaving Parallel Threads

Searching for Useful Parallelism in Functional Programs

José Manuel Calderón Trilla1(B), Simon Poulding2, and Colin Runciman1

1 University of York, York, UK
jmct@jmct.cc

2 Blekinge Institute of Technology, Karlskrona, Sweden

Abstract. As the speed of processors is starting to plateau, chip man-
ufacturers are instead looking to multi-core architectures for increased
performance. The ubiquity of multi-core hardware has made parallelism
an important tool in writing performant programs. Unfortunately, par-
allel programming is still considered an advanced technique and most
programs are written as sequential programs.

We propose that we lift this burden from the programmer and allow
the compiler to automatically determine which parts of a program can
be executed in parallel. Historically, most attempts at auto-parallelism
depended on static analysis alone. While static analysis is often able to
find safe parallelism, it is difficult to determine worthwhile parallelism.
This is known as the granularity problem. Our work shows that we can
use static analysis in conjunction with search techniques by having the
compiler execute the program and then alter the amount of parallelism
based on execution speed. We do this by annotating the program with
parallel annotations and using search to determine which annotations to
enable.

This allows the static analysis to find the safe parallelism and shift
the burden of finding worthwhile parallelism to search. Our results show
that by searching over the possible parallel settings we can achieve better
performance than static analysis alone.

1 Introduction

Moore’s law has often provided a ‘free lunch’ for those looking to run faster
programs without the programmer expending any engineering effort. Through-
out the 1990 s in particular, an effective way of having a faster x86 program
was to wait for IntelTM to release its new line of processors and run the pro-
gram on your new CPU. Unfortunately, clock speeds have reached a plateau
and we no longer get speedups for free [23]. Increased performance now comes
from including additional processor cores on modern CPUs. This means that
programmers have been forced to write parallel and concurrent programs when
looking for improved wall-clock performance. Unfortunately, writing parallel and
concurrent programs involves managing complexity that is not present in single-
threaded programs. The goal of the work outlined in this paper is to convince

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 62–76, 2015.
DOI: 10.1007/978-3-319-22183-0 5



Weaving Parallel Threads 63

the reader that not all hope is lost. By looking for the implicit parallelism in pro-
grams that are written as single-threaded programs we can achieve performance
gains without programmer effort.

Our work focuses on F-Lite: a pure, non-strict functional language that
is suitable as a core language of a compiler for a higher-level language like
Haskell [17]. We have chosen to use a non-strict language because of the lack of
arbitrary side-effects [11], and many years of work in the area of implicit paral-
lelism [6,10,13] however we feel that many of our techniques would transfer well
to other language paradigms.

The primary contribution of this paper is to demonstrate that using search
based on dynamic execution of the parallelised program is a robust way to help
diminish the granularity problem that is difficult for static analysis alone. We
show that for some programs, the combination of search and static analysis can
achieve speed-ups that are nearly linear with respect to the number of cores.

The rest of this paper describes our technique in more detail. Section 2 discuss
the main background to this work: implicit parallelism in functional languages.
Section 3 provides a worked example to illustrate the static analysis we perform
to determine potential parallelism. We describe our empirical method and results
in Sect. 4. Lastly, we offer our conclusions and discuss related work in Sect. 6.

2 Implicit Parallelism in Functional Languages

In this section we will motivate and discuss the benefits and drawbacks of implicit
parallelism in a lazy purely functional language. We will also give a high-level
overview of strictness analysis which allows us to find safe parallelism in lazy
languages.

2.1 Background

Research into parallelism in lazy purely functional languages has a long history
that dates back to the early work on lazy functional languages [1,12,19,20]1.
Non-strictness makes it difficult to reason about when expressions are evalu-
ated. This forces the programmer to avoid the use of arbitrary side-effects. The
resulting purity means that functions in pure functional languages are referen-

tially transparent, or the result of a function depends only on the values of its
arguments (i.e. there is no global state that could effect the result of the function
or be manipulated by the function).

Purity alone is of huge benefit when dealing with parallelism. Because func-
tions do not rely on anything but their arguments the only communication
between threads necessary is the result of the thread’s computation, which is
shared via the program’s graph using the same mechanism used to implement
laziness [19].

Laziness, while forcing the programmer to be pure (which is a boon to par-
allelism), is an inherently sequential evaluation strategy. Lazy evaluation only

1 For a comprehensive review we suggest [7].



64 J.M. Calderón Trilla et al.

evaluates expressions when they are needed. This is what allows for the use of
infinite data structures, only what is needed will be computed.

The two reductions of sqr in Fig. 1 illustrate the key differences between lazy
evaluation and eager, or strict, evaluation.

Eager Evaluation

sqr (5 ∗ 5)

= sqr 25

= let x = 25 in x ∗ x

= 25 ∗ 25

= 625

Lazy Evaluation

sqr (5 ∗ 5)

= let x = 5 ∗ 5 in x ∗ x

= let x = 25 in x ∗ x

= 25 ∗ 25

= 625

Fig. 1. Eager and Lazy evaluation order for squaring a value.

In the case of eager evaluation the argument to sqr is evaluated before enter-
ing the function body. For lazy evaluation the argument is passed as a suspended
computation that is only forced when the value is needed (in this case when x

is needed in order to multiply x ∗ x). Notice that under lazy evaluation 5 ∗ 5 is
only evaluated once, even though it is used twice in the function. This is due to
the sharing of the result. This is why laziness is often described as call-by-need
with sharing [7].

In the case of sqr in Fig. 1, both eager and lazy evaluation required the same
number of reductions to compute the final result. This is not always the case;
take the following function definitions

bot :: Int → Int

bot x = x + bot

const :: a → b → a

const x y = x

In an eager language the expression const 5 bot will never terminate, while it
would return 5 in a lazy language as only the first argument to const is actually
needed in its body.

This tension between the call-by-need convention of laziness with paral-
lelism’s desire to evaluate expressions before they are needed is well known [24].
The most successful method of combating this tension is through the use of
strictness analysis [9,16,27].

2.2 Strictness, Demand Context, and Strategies

Here we will describe the method by which we identify the safe parallelism in
F-Lite programs and arrange for the evaluation of these expressions in parallel.



Weaving Parallel Threads 65

The strictness properties of a function determine which arguments are definitely
needed for the function to terminate, whereas the demand on an argument tells
us how much of the argument’s structure is needed. Strategies are functions that
evaluate their argument’s structure to a specific depth. By analysing the program
for strictness and demand information, we can then generate strategies for the
strict arguments to a function and evaluate the strategies in parallel to the body
of the function. The strategies we generate will only evaluate the arguments to
the depth determined by the demand analysis.

Strictness. Because we are working in a lazy language it is not always safe to
evaluate the arguments to a function before we enter the body of a function.
However, if a function uses the value of an argument within its body it is safe
to evaluate that argument before, or in parallel to, the execution of the body of
the function. In order to determine which arguments can be evaluated in this
way modern compilers use strictness analysis [16]. More formally, a function f

of n arguments

f x1 . . . xi . . . xn = . . .

is strict in its ith argument if and only if

f x1 . . . ⊥ . . . xn = ⊥

What this states is that f is only strict in its ith argument if f becomes
non-terminating2 by passing a non-terminating value as its ith argument.

Knowing the strictness information of a function is the first step in automatic
parallelisation. This is because if f is strict in its ith argument we do not risk
introducing non-termination (which would not otherwise be present) by evaluat-
ing the ith argument in parallel. In other words, evaluating xi in parallel would
only introduce non-termination to the program if evaluating f with xi would
have resulted in f ’s non-termination anyway.

F-Lite has two primitives for taking advantage of strictness information: par

and seq.

seq :: a b b par :: a b

seq x y = yxrapy = y

b

Fig. 2. Semantics of seq and par.

Both functions return the value of their second argument. The difference is
in their side-effects. seq returns its second argument only after the evaluation of
its first argument. par forks the evaluation of its first argument in a new parallel

2 In this paper we use the convention that ⊥ represents erroneous or non-terminating
expressions.



66 J.M. Calderón Trilla et al.

thread and then returns its second argument; this is known as sparking a parallel
task [4].

Strictness analysis was a very active research area in the 1980’s and the
development of analyses that provide the type of strictness information outlined
above is a well understood problem [2,5,16]. However, as outlined above, strict-
ness analysis does not provide satisfactory information about complex data-
structures [26]. This can be remedied by the use of projections to represent
demand.

Demand. So far our discussion of strictness has only involved two levels of
‘definedness’: a defined value, or ⊥. This is the whole story when dealing with
flat data-structures such as Integers, Booleans or Enumerations. However, in
lazy languages nested data-structures have degrees of definedness.

Take the following example function and value definitions in F-Lite

Both length and sum are functions on lists, but they use lists differently.
length does not use the elements of its argument list. Therefore length would
accept definedList and partialList (which has a non-terminating element)
as arguments and still return the correct value. On the other hand sum needs the
elements of the list, otherwise it would not be able to compute the sum. For this
reason, sum only terminates if it is passed a fully defined list and would result
in non-termination if passed partialList. Neither function would terminate if
passed infiniteList, since even length requires the list to have a finite length
(some functions do not require a finite list, such as head, the function that
returns the first element in a list). With these examples we say that length

demands a finite list, whereas sum demands a fully-defined list.
This additional information about a data-structure is extremely useful when

trying to parallelise programs. If we can determine how much of a structure is
needed we can then evaluate the structure to that depth in parallel.

The work that introduced this representation of demands was by Wadler and
Hughes [27] using the idea of projections from domain theory. The technique we
use in our compiler is a projection-based strictness analysis based on the work in
Hinze’s dissertation [9]. Hinze’s dissertation is also a good resource for learning
the theory of projection-based strictness analysis.

Strategies. With the more sophisticated information provided by projection-
based analysis, we require more than simply par and seq. To this end we use
the popular technique of strategies for parallel evaluation [15,25]. Strategies are
designed to evaluate structures up to a certain depth in parallel to the use of those



Weaving Parallel Threads 67

structures. Normally, strategies are written by the programmer for use in hand-
parallelised code. In order to facilitate auto-parallelisation we have developed a
method to derive an appropriate strategy from the information provided to us by
projection-based strictness analysis. The rules for the derivation are presented
as a denotational semantics and can be found in our earlier work [3].

2.3 The Granularity Problem

We have now discussed how we find the parallelism that is implicit in our pro-
gram, but none of the analysis we provide determines whether the safe paral-
lelism is worthwhile. Often static analysis will determine that a certain structure
is safe to compute in parallel, but it is very difficult to know when it is actually
of any benefit. Parallelism has overheads that require the parallel tasks to be
substantial enough to make up for the cost. A fine-grained task is unlikely to
require more computation than the cost of sparking and managing the thread,
let alone the potential to interrupt productive threads [7,10].

One of the central arguments in our work is that static analysis alone is
insufficient at finding both the implicit parallelism and determining whether the
introduced parallelism is substantial enough to warrant the overheads.

Our proposal is that the compiler should run the program and use the infor-
mation gained from running it (even if it only looks at overall execution time)
to remove the parallelism that is too fine-grained. By doing this we shift the
burden of the granularity problem away from our static analysis and onto our
search techniques. This way our static analysis is only used to determine the safe
parallel expressions, and not the granularity of the expressions.

3 Overview

In this section we will present a high-level overview of our technique. This will
provide the context for our discussion in the subsequent sections.

The program listed in Fig. 3 is the Tak program benchmark, often used for
testing the performance of recursion in interpreters and code generated by com-
pilers [14].

tak :: Int -> Int -> Int -> Int

tak x y z = case x <= y of

True -> z

False -> tak (tak (x - 1) y z)

(tak (y - 1) z x)

(tak (z - 1) x y)

main = tak 24 16 8

Fig. 3. Source listing for Tak



68 J.M. Calderón Trilla et al.

After we perform our projection-based strictness analysis, and introduce the
safe par annotations, we transform the program into a parallelised version. The
result of this transformation on Tak is listed in Fig. 4.

tak x y z = case x <= y of

True -> z

False -> let x’ = tak ((x - 1)) y z

y’ = tak ((y - 1)) z x

z’ = tak ((z - 1)) x y

in (par x’

(par y’

(seq z’

(tak x’ y’ z’))))

main = tak 24 16 8

Fig. 4. Source listing for Tak after analysis, transformation, and par placement

Each strict argument is given a name via a let binding. This is so that any
parallel, or seqed, evaluation can be shared between threads. When there are
multiple strict arguments (as is the case for tak) we spark the arguments in
left-to-right order except for the last strict argument, which we seq. This is a
common technique that is used to avoid potential collisions [25]. Collisions occur
when a thread requires the result of another thread before the result has been
evaluated. By ensuring that one of the arguments is evaluated in the current
thread (by using seq) we give the parallel threads more time to evaluate their
arguments, lessening the frequency of collisions.

While static analysis has determined that x’ and y’ can be evaluated in par-
allel safely, it does not determine whether parallel evaluation of those expressions
is worthwhile. In order to address this issue we take advantage of two key prop-
erties of our par annotations:

1. Each introduced par sparks off a unique subexpression in the program’s
source

2. The semantics of par (as shown in Fig. 2) allow us to return its second argu-
ment, ignoring the first, without changing the semantics of the program as a
whole.

These two properties allow us to represent the pars placed by static analysis
and transformation as a bit string. Each bit represents a specific par in the
program AST. When a par’s bit is ‘on’ the par behaves as normal, sparking off
its first argument to be evaluated in parallel and return its second argument.
When the bit is ‘off’ the par returns its second argument, ignoring the first.

This allows us to change the operational behavior of the program without
altering any of the program’s semantics.



Weaving Parallel Threads 69

4 Experimental Setup and Results

In this section we evaluate the use of search in finding an effective enabling of
pars that achieves a worthwhile speed-up when the parellelised program is run
in a multi-core architecture. As a reminder, the starting point for our proposed
technique is a program that was originally written to be run sequentially on a
single core; static analysis identifies potential sites at which par functions could

be applied; and then search is used to determine the subset of sites at which the
par is actually applied.

4.1 Research Questions

Our hypothesis is that enabling a subset of the pars will often be preferable to
enabling them all, hence the first research question:

RQ1. What speed-up is achieved by using search to enable a subset of pars
compared to the enabling all the pars found by static analysis?

Since the overall goal is to speed-up a sequential program by parallelising it
to use multiple cores, the second question is:

RQ2. What speed-up is achieved by parallelisation using search compared to
the original software-under-test (SUT) executed as a sequential program?

In this empirical work, we consider two algorithms: a simple hill-climbing
algorithm and a greedy algorithm:

RQ3. Which search algorithm achieves the larger speed-ups, and how quickly
do these algorithms achieve these speed-ups?

Since some pars can only have an effect when one or more other pars are also
enabled, there is an argument that a sensible starting point for both algorithms
is to have all pars enabled. An alternative is to start with a random subset of
the pars enabled. This motivates the final research question:

RQ4. Which form of initialisation enables the algorithm to find the best speed-
ups: all pars enabled (we refer to this as ‘all-on’ initialisation), or a random
subset enabled (‘random’ initialisation)?

4.2 Algorithms

Representation. We represent the choice of enabled pars as a bit string where
a 1 indicates that the par is applied at a site, and 0 that it is not. The length
of the bit string is the number of potential pars annotations found by the static
analysis.

Fitness. To facilitate experimentation, the SUTs are executed using a simulator
which records the number of reductions made by each thread. A parameter to
the simulator controls the number of cores available to the SUT, and thus the
maximum number of threads that may be run in parallel. We choose the number
of reductions made by the main thread as the fitness metric. The main thread



70 J.M. Calderón Trilla et al.

cannot complete until all the other threads it has started have completed, and
so this number of reductions is an indication of the SUT’s runtime. The simula-
tor includes a realistic overhead of 250 reductions for handling each additional
thread.

Hill-Climbing Algorithm. We utilise a simple hill-climbing algorithm in which
the neighbours of the current bitstring are those formed by flipping a single bit.
At each iteration, these neighbours of the current bitstring are considered in a
random order, and the fitness evaluated for each in turn. The first neighbour
that has a better fitness, i.e. fewer reductions are made by the main thread,
than the current bitstring becomes the current bitstring in the next iteration.
The algorithm terminates when no neighbour of the current bitstring has a better
fitness.

Greedy Algorithm. The greedy algorithm considers the bits in representation in
a random order. As each bit is considered, the bit is flipped from its current
setting and the resulting bit string evaluated; the setting of the bit—current or
flipped—with the better fitness is retained. The algorithm terminates once all
the bits have been evaluated.

4.3 Software-Under-Test

SumEuler. SumEuler is a common parallel functional programming benchmark
first introduced with the work on the 〈ν,G〉-Machine in 1989 [1]. This program
is often used a parallel compiler benchmark making it a ‘sanity-check’ for our
work. We expect to see consistent speed-ups in this program when parallelised
(9 par sites).

Queens + Queens2. We benchmark two versions of the nQueens program.
Queens2 is a purely symbolic version that represents the board as a list of lists
and does not perform numeric computation (10 par sites for Queens and 24 for
Queens2). The fact that Queens2 has more than double the number of par sites
for the same problem shows that writing in a more symbolic style provides more
opportunity for safe parallelism.

SodaCount. Solves a word search problem for a given grid of letters and a list
of keywords. Introduced by Runciman and Wakeling, this program was cho-
sen because it exhibits a standard search problem and because Runciman and
Wakeling hand-tuned and profiled a parallel version, demonstrating that impres-
sive speed-ups are possible with this program [21] (15 par sites).

Tak. Small recursive numeric computation that calculates a Takeuchi number.
Knuth describes the properties of Tak in [14] (2 par sites).

Taut. Determines whether a given predicate expression is a tautology. This
program was chosen because the algorithm used is inherently sequential. We
feel that it was important to demonstrate that not all programs have implicit
parallelism within them, sometimes the only way to achieve parallel speed-ups
is to rework the algorithm (15 par sites).



Weaving Parallel Threads 71

MatMul. List of list matrix multiplication. Matrix multiplication is an inher-
ently parallel operation, we expect this program to demonstrate speed-ups when
parallelised (7 par sites).

4.4 Method

The following four algorithm configurations were evaluated:

– hill-climbing with all-on initialisation
– greedy with all-on initialisation
– hill-climbing with random initialisation
– greedy with random initialisation.

Each algorithm configuration was evaluated for four settings of the num-
ber cores: 4, 8, 16 and 24 cores. Each algorithm/core count combination was
evaluated against each of the seven SUTs described above.

Since both search algorithms are stochastic, multiple runs were made for
each algorithm/core count/SUT combination, each using 30 different seeds to
the pseudo-random number generator. For all runs, after each fitness evaluation,
the best bit string found and its fitness (the number of reductions made by the
main thread), was recorded.

In addition, the fitness (number of reductions) was evaluated for a bit string
where all bits are set to 1: this equivalent to using the static analysis without
optimisation using search. This evaluation was made for each combination of
core count and SUT. Finally, the fitness was evaluated for the sequential version
of each SUT.

4.5 Results

The results are summarised in Table 1. This table compares the speed-up, cal-
culated as the ratio of the medians of the reduction counts, of hill-climbing with
all-on initialisation compared to (a) the parallelisation that would result from
the static analysis without optimisation; (b) the sequential version of the pro-
gram; (c) the greedy algorithm with all-on initialisation; and (d) the hill-climbing
algorithm with random initialisation. The speed-up is calculated as the factor by
which the number of reductions is reduced, and so values greater than 1 indicate
that the SUT parallelised using hill-climbing with all-on initialisation would be
faster in the multi-core environment. Values in bold in the table indicate that
differences between the algorithms used to calculate the speed-up are statisti-
cally significant at the 5 % level using a one- or two-sample Wilcoxon test as
appropriate3.

3 Since in the following we discuss the results for each SUT, or combination of SUT and
number of cores, individually as well as for the entire set of results as a family, we do
not apply a Bonferroni or similar correction to the significance level. Nevertheless we
note here that most of the currently significant differences would remain significant
if such a correction were applied.



72 J.M. Calderón Trilla et al.

Table 1. The speed-up, calculated as the ratio of the medians of the reduction counts,
achieved by the hill-climbing algorithm using all-on initialisation compared to the
default parallelisation from static analysis (static parallel), a sequential implementation
of the SUT (sequential), the greedy algorithm (greedy), and hill climbing using random
initialisation (random init). Speed-ups are rounded to 4 significant figures. Values in
bold font are significant at the 5 % level.

Hill-climbing speed-up compared to:

SUT Cores Static parallel Sequential Greedy Random init

MatMul 4 4.903 1.021 1 1

MatMul 8 4.625 1.021 1 1

MatMul 16 4.485 1.021 1 1

MatMul 24 4.439 1.021 1 1

Queens 4 1.080 1.294 1 1

Queens 8 1.043 1.369 1 1

Queens 16 1.017 1.401 1 1

Queens 24 1.003 1.401 1.000 1

Queens2 4 6.479 3.843 1 1

Queens2 8 6.421 7.607 1 1

Queens2 16 6.263 14.79 1 1

Queens2 24 6.101 21.54 1 1

SodaCount 4 4.237 3.773 1.000 1.055

SodaCount 8 3.544 6.207 1.007 1.071

SodaCount 16 3.110 10.40 1.081 1.072

SodaCount 24 2.810 13.26 1.004 1

SumEuler 4 1.494 3.948 1 1

SumEuler 8 1.486 7.773 1 1

SumEuler 16 1.460 14.77 1 1

SumEuler 24 1.432 20.69 1 1

Tak 4 1.609 1.560 1 1

Tak 8 1.609 3.118 1 1

Tak 16 1.608 6.230 1 1

Tak 24 1.608 9.330 1 1

Taut 4 1.000 1.000 1.000 1

Taut 8 1.000 1.000 1.000 1.000

Taut 16 1.000 1.000 1.000 1

Taut 24 1.000 1.000 1.000 1



Weaving Parallel Threads 73

4.6 Discussion

RQ1. For most of SUTs there is a relatively large speed-up of the hill-climbing
algorithm compared to the default parallelisation where all pars are enabled. The
largest speed-ups are for Queens2 where we might expect a wall-clock run time
that is more than 6 times better than the default parallelisation. For Queens and
Taut the speed-ups are closer to 1, but are in all cases statistically significant.

0

5

10

15

20

0 25 50 75 100

evaluations

s
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t
o
 s

e
q
u
e
n
ti
a
l

alg,cores

HC,24

G,24

HC,16

G,16

HC,8

G,8

HC,4

G,4

(a) Queens2

5

10

0 20 40 60

evaluations

s
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t
o
 s

e
q
u
e
n
ti
a
l

alg,cores

HC,24

G,24

HC,16

G,16

HC,8

G,8

HC,4

G,4

(b) SodaCount

Fig. 5. The speed-up, calculated as the ratio of the medians of the reduction counts,
obtained so far by the algorithm plotted against the number of fitness evaluations. HC
and G indicate the hill-climbing and greedy algorithm respectively, both using all-on
initialisation. The numbers following the algorithm abbreviation indicate the number
of cores (Color figure online).



74 J.M. Calderón Trilla et al.

We conclude that the hill-climbing algorithm can improve parallel performance
across a range of SUTs and across a range of core counts.

RQ2. For Queens2 and SumEuler, the speed-up compared the sequential version
of these SUTs is almost linear: it approaches the number of cores available. For
example, for SumEuler on 4 cores, the speed-up compared to the sequential
version is 3.95. A linear speed-up is the best that can be achieved, and so these
results are indicative that our proposed technique could be very effective in
practice. Meanwhile, for other SUTs such as MathMaul and Taut, there is little
speed-up over the sequential version of the SUT.

RQ3. The results show that for most SUTs, there is little difference in the
speed-up achieved by the hill-climbing and greedy algorithm. (For clarity, the
table shows the comparison only between the two algorithms using all-on initial-
isation, but similar results are obtained when initialisation is random.) Only for
SodaCount is there a non-trivial and statistically significant difference between
the hill climber and greedy algorithm for all core sizes. Figure 5 performs a fur-
ther analysis for this research question: for two of the SUTs, it plots the best
speed-up (compared to sequential) obtained so far by the algorithm against the
number of fitness evaluations. For Queens2 at all core counts, the greedy algo-
rithm finds the same best speed-up as the hill-climbing, but finds it in fewer
fitness evaluations, i.e. the search is faster. For SodaCount, the greedy algo-
rithm finds its best speed-up in relatively few evaluations. The hill-climber takes
longer but finds a better speed-up at all cores counts; the difference is most
noticeable in the results for 16 cores. For frequently-used SUTs that account for
a significant part of a system’s performance, the additional effort required to
find the best parallelisation using hill-climbing may be justified, but will depend
on context.

RQ4. For most SUTs there is no statistically significant difference between all-
on and random initialisation. For SodaCount, the all-on initialisation is slightly
better for core counts of 4, 8, and 16. This result provides evidence that all-on
initialisation may be beneficial, but requires further investigation to confirm the
generality.

5 Related Work

Research into parallel functional programming has been an active research area
since the early 1980s. Before research into implicit parallelism fell out of favor,
much of the work focused on the use of static analysis alone in parallelising
programs [7,10]. Harris and Singh used runtime feedback to find parallelism in
functional programs without the use of static analysis [8]. Our approach can
be seen as reversal of their approach, introduce parallelism at compile-time and
remove parallelism using runtime feedback.

A number of researchers in the late 1990 s applied metaheuristic search to
transform serial imperative programs into parallel ones. Both Nisbet [18] and



Weaving Parallel Threads 75

Williams [28] independently targeted FORTRAN programs using metaheuris-
tics to find an appropriate sequence of code transformation to enable the pro-
gram to take advantage of a target parallel architecture. The Paragen framework
described by Ryan and his collaborators applies genetic programming to opti-
mise a tree-like representation of parallelising transformations that are applied
to blocks of code, and a linear representation of transformations that are applied
to loops in the program [22]. The fitness used by Paragen is a combination of the
speed-up obtained and the equivalence of the serial and parallel versions of the
program based on a post hoc analysis of data dependencies. The two key differ-
ences from the work described in this paper are that: (a) here the search does
not derive a sequence of transformations, but instead determines which poten-
tial transformations, found by prior static analysis, are enabled; and, (b) any
transformed parallel program is guaranteed to be equivalent to the original ser-
ial program by construction. We believe that these differences may facilitate
scalability in our approach.

6 Conclusions

We have shown in this paper that the combination of static analysis and search
can parallelise programs. For some programs we are able to achieve close to linear
speed-ups which is as performant as can expected. As future work we will investi-
gate more sophisticated algorithms, including genetic algorithms and estimation
of distribution algorithms; and confirm the scalability of our approach.

References

1. Augustsson, L., Johnsson, T.: Parallel graph reduction with the 〈v, G〉-machine. In:
Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture. FPCA 1989, pp. 202–213. ACM, New York
(1989)

2. Burn, G.L., Hankin, C., Abramsky, S.: Strictness analysis for higher-order func-
tions. Sci. Comput. program. 7, 249–278 (1986)

3. Calderón Trilla, J.M., Runciman, C.: Improving implicit parallelism. In: Proceed-
ings of the ACM SIGPLAN Symposium on Haskell. Haskell 2015 (2015). Under
submission

4. Clack, C., Peyton Jones, S.: The four-stroke reduction engine. In: Proceedings of
the 1986 ACM Conference on LISP and Functional Programming, pp. 220–232.
ACM (1986)

5. Clack, C., Peyton Jones, S.L.: Strictness analysis-a practical approach. In:
Jouannaud, J.-P. (ed.) Functional Programming Languages and Computer Archi-
tecture. LNCS, vol. 201, pp. 35–49. Springer, Heidelberg (1985)

6. Hammond, K.: Parallel functional programming: an introduction (1994). http://
www-fp.dcs.st-and.ac.uk/∼kh/papers/pasco94/pasco94.html

7. Hammond, K., Michelson, G.: Research Directions in Parallel Functional Program-
ming. Springer-Verlag (2000)

8. Harris, T., Singh, S.: Feedback directed implicit parallelism. SIGPLAN Not. 42(9),
251–264 (2007). http://doi.acm.org/10.1145/1291220.1291192

http://www-fp.dcs.st-and.ac.uk/~kh/papers/pasco94/pasco94.html
http://www-fp.dcs.st-and.ac.uk/~kh/papers/pasco94/pasco94.html
http://doi.acm.org/10.1145/1291220.1291192


76 J.M. Calderón Trilla et al.

9. Hinze, R.: Projection-based strictness analysis: theoretical and practical aspects.
Inaugural dissertation, University of Bonn (1995)

10. Hogen, G., Kindler, A., Loogen, R.: Automatic parallelization of lazy functional
programs. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS, vol. 582, pp. 254–268.
Springer, Heidelberg (1992)

11. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107
(1989)

12. Hughes, R.J.M.: The design and implementation of programming languages. Ph.D.
thesis, Programming Research Group, Oxford University, July 1983

13. Jones, M., Hudak, P.: Implicit and explicit parallel programming in haskell (1993).
Distributed via FTP at http://nebula.systemsz.cs.yale.edu/pub/yale-fp/reports/
RR-982.ps.Z. Accessed July 1999

14. Knuth, D.E.: Textbook examples of recursion. In: Lifschitz, V. (ed.) Artificial Intel-
ligence and Theory of Computation, pp. 207–229. Academic Press, Boston (1991)

15. Marlow, S., Maier, P., Loidl, H., Aswad, M., Trinder, P.: Seq no more: better strate-
gies for parallel haskell. In: Proceedings of the Third ACM Haskell Symposium on
Haskell, pp. 91–102. ACM (2010)

16. Mycroft, A.: The theory and practice of transforming call-by-need into call-by-
value. In: Robinet, B. (ed.) International Symposium on Programming. LNCS,
vol. 83, pp. 269–281. Springer, Heidelberg (1980)

17. Naylor, M., Runciman, C.: The reduceron reconfigured. ACM Sigplan Not. 45(9),
75–86 (2010)

18. Nisbet, A.: GAPS: A compiler framework for genetic algorithm (GA) optimised
parallelisation. In: Proceedings of the International Conference and Exhibition on
High-Performance Computing and Networking, pp. 987–989. HPCN Europe 1998
(1998)

19. Peyton Jones, S.L.: Parallel implementations of functional programming languages.
Comput. J. 32(2), 175–186 (1989)

20. Plasmeijer, R., Eekelen, M.V.: Functional Programming and Parallel Graph
Rewriting, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1993)

21. Runciman, C., Wakeling, D. (eds.): Applications of Functional Programming. UCL
Press Ltd., London (1996)

22. Ryan, C., Ivan, L.: Automatic parallelization of arbitrary programs. In:
Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS,
vol. 1598, pp. 244–254. Springer, Heidelberg (1999)

23. Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in soft-
ware. Dr. Dobbs J. 30(3), 202–210 (2005)

24. Tremblay, G., Gao, G.R.: The impact of laziness on parallelism and the limits
of strictness analysis. In: Proceedings High Performance Functional Computing,
pp. 119–133. Citeseer (1995)

25. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton Jones, S.L.: Algorithm + strat-
egy = parallelism. J. Funct. Program. 8(1), 23–60 (1998)

26. Wadler, P.: Strictness analysis on non-flat domains. In: Abramsky, S.,
Hankin, C.L. (eds.) Abstract Interpretation of Declarative Languages,
pp. 266–275. Ellis Horwood, Chichester (1987)

27. Wadler, P., Hughes, R.J.M.: Projections for strictness analysis. In: Kahn, G. (ed.)
FPCA 1987. LNCS, vol. 274, pp. 385–407. Springer, Heidelberg (1987)

28. Williams, K.P.: Evolutionary algorithms for automatic parallelization. Ph.D. the-
sis, Department of Computer Science, University of Reading, December 1998

http://nebula.systemsz.cs.yale.edu/pub/yale-fp/reports/RR-982.ps.Z
http://nebula.systemsz.cs.yale.edu/pub/yale-fp/reports/RR-982.ps.Z

	Weaving Parallel Threads
	1 Introduction
	2 Implicit Parallelism in Functional Languages
	2.1 Background
	2.2 Strictness, Demand Context, and Strategies
	2.3 The Granularity Problem

	3 Overview
	4 Experimental Setup and Results
	4.1 Research Questions
	4.2 Algorithms
	4.3 Software-Under-Test
	4.4 Method
	4.5 Results
	4.6 Discussion

	5 Related Work
	6 Conclusions
	References


