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In recent years gain-of-function driver mutations in JAK2, MPL and CALR 

have been identified that constitutively activate JAK/STAT pathway 

signaling.1,2 Collectively, these mutations lead to the development of the vast 

majority of myeloproliferative neoplasms (MPNs), a group of related diseases 

including polycythemia vera (PV), essential thrombocythemia (ET) and 

primary myelofibrosis (MF). Patients with MPNs have higher mortality rates, 

primarily due to cardiovascular complications, infections and transformation to 

other hematological malignancies such as leukaemias.3 They also suffer 

significant constitutional symptoms including pruritus, headaches, weight loss, 

loss of appetite, fatigue and night sweats. Current MPN therapeutics include 

venesection to control blood counts in PV, aspirin to reduce the risk of 

thrombosis in both PV and ET and cytoreductive agents such as 

hydroxycarbamide to reduce blood counts. However, these treatments do not 

slow disease progression and provide little relief from sometimes debilitating 

constitutional symptoms. Recently, the JAK1/2 inhibitor ruxolitinib (rux) has 

emerged as a molecularly targeted therapy option. In trials, rux delivers 

significant survival benefits to MF patients, as well as a decrease in spleen 

size and constitutional symptoms.4 Similarly, randomized trials in advanced 

PV patients also showed significant decreases in constitutional symptoms, 

spleen size and control of hematocrit in those receiving rux.5 However, while 

effective, access to rux remains restricted and is not available to all patients 

that might benefit. Given these limitations, access to more affordable 

JAK/STAT pathway inhibitors would potentially address a significant unmet 

clinical need. 
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We have previously identified methotrexate (MTX) as a dose-dependent 

inhibitor of STAT phosphorylation in JAK2 V617F positive erythroleukemia-

derived HEL cells (Fig 1A, Ref 6). Originally developed as an anti-folate and 

chemotherapy agent, MTX was repurposed during the 1980’s at doses around 

1% of chemotherapy levels and is now widely used to treat multiple auto-

immune and inflammatory diseases including rheumatoid arthritis.7 Given that 

JAK/STAT pathway signaling is fundamental to both immune regulation and 

inflammatory responses8 we hypothesize that the effectiveness of MTX in 

these diseases is likely to be a consequence of JAK/STAT pathway 

suppression in vivo. As such, we reasoned that other diseases featuring 

inappropriate pathway activation may also respond to low-dose MTX 

treatment. 

Consistent with its role in disease, transgenic mice whose endogenous JAK2 

locus has been replaced by the human JAK2 V617F allele develop ET-like 

disease when heterozygous and PV-like symptoms, including erythrocytosis 

and splenomegaly, when homozygous (Fig S1, Ref 9). Both homozygotes and 

heterozygotes also have increased white cell counts (Fig S1). We therefore 

treated wild type and hJAK2 V617F age-matched littermates with either MTX 

or vehicle control (PBS) for 28 days using a low-dose regime previously 

shown to reduce rheumatoid arthritis-like symptoms in mouse models.10,11 

Compared to controls, spleens of homozygous hJAK2 V617F mice contain 

increased levels of pSTAT5 and pSTAT3 (Fig 1B) while mRNA levels of the 

JAK2/STAT5 target gene PIM1 is also increased (Fig 1C). Strikingly, and 

consistent with in vitro results, homozygotes treated with MTX have reduced 

levels of pSTAT5 and pSTAT3 (Fig 1B) and express significantly lower levels 
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of the pathway target gene PIM1 (Fig 1C) suggesting that low-dose MTX also 

inhibits the JAK/STAT pathway in vivo. 

We next tested hJAK2 V617F-expressing mice treated with MTX or rux as a 

positive control.12 Increased hemoglobin levels in both heterozygous and 

homozygous hJAK2 V617F mice are significantly reduced following treatment 

with MTX (Fig 1D), as are red blood cell counts and hematocrit levels (Fig 

S2A,B). Importantly, despite being as effective than rux under these 

conditions, MTX treatment does not result in the general myelosuppression of 

wild type controls (Fig 1D, Fig S2) and both controls and MTX treated mice 

continued to gain weight throughout the course of the experiment (not shown). 

While platelet numbers and mean corpuscular volume are not significantly 

affected (Fig S2C,D), MTX treatment is sufficient to normalize white cell 

counts (WCC) in both heterozygous and homozygous hJAK2 V617F mice, but 

does not affect the differentiation or relative levels of individual white blood 

cell subtypes (Fig S3). Consistent with these findings, histological analysis of 

bone marrows (Fig 1E and S4) shows no reduction in cellularity or 

differentiation in any of the three hematopoietic lineages in MTX-treated 

animals. Homozygous animals do however have erythrocytic and 

megakaryocytic hyperplasia and polylobated nuclei in a proportion of 

megakaryocytes, as previously described9, phenotypes that are subjectively 

reduced in MTX-treated animals. As such, bone marrow morphology is 

consistent with a disease-specific effect of MTX, rather than non-specific 

myelosuppression. 

Another MPN-related phenotype, and cause of considerable constitutional 

symptoms in patients, is splenomegaly.13 By 10-11 weeks of age homozygous 
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hJAK2 V617F mice have spleens around 3 times larger than wild type 

littermates, an enlargement that is strongly reduced by treatment with both 

MTX and rux (Fig 2A-B). Histological analysis of these spleens shows that 

homozygotes have erythroid hyperplasia with red pulp expansion and loss of 

normal architecture, with occasional megakaryocyte clusters9, features which 

are mitigated by MTX treatment which show reduced erythroid infiltration and 

a correspondingly improved morphology of white pulp (Fig 2C and S5).  

Although MTX treatment reduces spleen weight and reticulocyte numbers in 

JAK2 V617F homozygous mice (Fig S6A-B), we also observed modest 

increases in reticulocyte numbers and spleen size and in wild type littermates 

(Fig S6A,B). Although the precise basis of these phenotypes is unclear, it is 

possible that splenic enlargement in wild type mice is associated with 

hypersplenism and increased red cell destruction. In this scenario, the 

elevated reticulocyte count is notable as it supports a model in which 

methotrexate is not causing myelosuppression, with the marrow being able to 

increase erythropoiesis and mount an appropriate reticulocyte response. 

Intriguingly, we also observed slight increases in pSTAT5 and PIM1 mRNA 

levels in MTX-treated wild type animals (Fig S6C,D), changes that are not 

mirrored in JAK2 V617F homozygotes. While a detailed molecular analysis of 

the interactions between MTX and wild type JAK2 will be needed to elucidate 

the basis of these observations, it is possible that this observation may be 

relevant to the rare cases of MTX-induced lymphoma previously described in 

RA patients.14 

Finally, in order to gain insight into the potential mechanistic basis of MTX-

mediated effects we observed in vivo, we undertook an in silico study in which 
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a high resolution structure of the human JAK2 JH1 kinase domain15 was used 

as a target onto which to dock MTX and ATP (Fig 2D-G, Table S1). Although 

such studies can only ever be indicative of potential interactions, it is intriguing 

to note that MTX is predicted to occupy the ATP binding pocket of the kinase 

with a binding affinity higher than ATP itself, suggesting that MTX may 

potentially be acting directly as a Type 1 kinase inhibitor in vivo. 

Taken together, our results show that low-dose MTX not only acts as an 

inhibitor of JAK/STAT signaling in vivo, but also strongly reduces the 

hematological phenotypes and splenomegaly associated with this hJAK2 

V617F-based mouse model of human MPNs. Moreover, these effects are not 

a consequence of drug-induced myelosuppression. While JAK/STAT pathway 

activity has clearly been reduced in these JAK2 V617F mice, it remains a 

possibility that at least some of the disease-related responses observed are a 

consequence of reduced systemic inflammation mediated by MTX. 

Interestingly, previous studies have also demonstrated striking reductions in 

the levels of pro-inflammatory biomarkers such as C-Reactive protein, TNFα 

and IL6 in human MF patients treated with ruxolitinib.4 However, the link 

between MPN-related phenotypes and inflammatory markers remains to be 

elucidated. 

Although not curative, ruxolitinib is clinically valuable in multiple MPN patient 

populations, reducing mortality, normalizing hematological values and strongly 

reducing constitutional symptoms.4,5,13 However, concerns regarding cost-

effectiveness have limited availability even in well-funded healthcare systems. 

By contrast, MTX is a low cost generic on the World Health Organization list 

of essential drugs. It is routinely prescribed for millions of patients worldwide 
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and has a well understood toxicology and safety profile. Here we have shown 

that low-dose MTX suppresses JAK/STAT pathway activity in vivo and is able 

to normalize hematological and splenic hyperplasia in mouse models of 

human MPNs. Consistent with our results, a recent case study has 

demonstrated significant hematological and symptomatic improvements in two 

Italian MPN patients following low-dose MTX treatment.16 In the light of these 

results, we suggest that clinical trials should be undertaken to assess the 

safety and efficacy of low-dose MTX as a JAK/STAT inhibitor in human 

myeloproliferative neoplasms. If results are promising, repurposing MTX has 

the potential to provide a new, molecularly targeted treatment for MPN 

patients within a budget accessible to healthcare systems throughout the 

world - a development that may ultimately provide substantial clinical and 

health economic benefits. 
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Figure Legends 

Figure 1: Methotrexate is a JAK/STAT inhibitor that reduces hJAK2 

V617F-induced erythrocytosis in vivo 

(A & B) Western blots of the indicated total (t) and phosphorylated (p) STAT 

proteins in extracts from HEL cells (A) or the spleens of 10-11 week old mice 

of the indicated genotypes (B) following treatment with the indicated 

concentrations of methotrexate and ruxolitinib. β-Actin serves as a loading 

control and apparent molecular weights are indicated in kDa. 

(C) Levels of PIM1 mRNA expressed by spleen cells harvested from mice of 

the indicated genotype and drug treatments. Results are expressed as a fold 

change following normalization to β-actin mRNA and PBS treated wild type 

mice. 

(D) Hemoglobin concentration in blood from individual 10-11 week old mice of 

the indicated genotypes treated with either phosphate buffered saline carrier 

control (PBS, grey), methotrexate (MTX, green) or ruxolitinib (rux, orange) for 

28 days. Individual values, mean and standard deviations are shown. 

Samples were compared by one-way Anova. 

(E) Hematoxylin and eosin stained sections through decalcified tibia from 

mice of the indicated genotypes treated with the indicated compounds for 28 

days. No marrow fibrosis was observed in either treated or untreated 

homozygous animals. Scale bar is 50μm. Images were obtained from a Zeiss 

Axioskop 2 with a 20x/0.5NA objective, a MicroPublisher  5.0 RTV camera 

and Qimaging v3.1.3.5 software. Brightness and contrast were adjusted in 
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Photoshop CS5  

 

 

Figure 2: Methotrexate reduces splenomegaly  

(A) Weight of individual spleens from 10-11 week old mice of the indicated 

genotypes shown relative to wild type controls treated with phosphate 

buffered saline carrier control (PBS, grey), methotrexate (MTX, green) or 

ruxolitinib (rux, orange) for 28 days. Samples were compared by one-way 

Anova. 

(B) Representative spleens from mice of the indicated genotypes and 

treatments immediately after dissection showing differences in size and 

reduction in spleen size following MTX treatment. Scale bar is 5mm 

(C) Hematoxylin and eosin stained sections through formalin fixed spleens 

from mice of the indicated genotypes treated with the indicated compounds 

for 28 days. Images were obtained from a Zeiss Axioskop 2 with 5x/0.15NA 

(top row, scale bar is 1mm) and 20x/0.5NA (lower row, scale bar is 100μm) 

objectives, a MicroPublisher  5.0 RTV camera and Qimaging v3.1.3.5 

software. Brightness and contrast were adjusted in Photoshop CS5 

(D-G) Predicted interactions of methotrexate with JAK2 occludes ATP-binding 

site. (D) Cartoon representation of the human JAK2 JH1 (kinase) domain 

(from 5TQ8.pdb). Methotrexate (magenta sticks) is predicted to bind between 

the N and C lobes of the kinase in the ATP-binding site (cyan sticks). (E) 

Molecular surface of kinase with ligands bound in the cleft between N and C 

lobes (carbon grey, nitrogen blue and oxygen atoms shown in red). (F) MTX 
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showing predicted H-bonding (orange dashes) to labelled residues within the 

binding site and ion-pair interaction with lysine 882. Residues shown in sticks 

are within 5 Å of the bound ligand. (G) View of bound MTX as in (F) rotated 

90° about the Y axis.  

 

 

 







Supplementary Information 
 
Methods  
 
Mice 
Groups of 6-7 week old male and female wildtype, heterozygote or 
homozygote JAKV617F mice were treated for 4 weeks with either vehicle 
(PBS), 5 mg/kg MTX (Sigma-Aldrich) given 3 times a week by intraperitoneal 
injection or 90 mg/kg Rux (SelleckChem, Houston,Texas,USA) given 5 times 
a week by oral gavage. All treatment protocols involving animals were 
approved by the UK Home Office (project licence PPL 70/8799/3-M).	
Blood and histological analysis	
Peripheral blood was taken by cardiac puncture from isoflurane sedated mice 
into EDTA coated tubes. Total and differential blood cell counts were 
measured by an automated Sysmex XN-10 FBC analyser. For histological 
analysis, tibiae and spleens were fixed in 10% formalin and processed for 
hematoxylin and eosin staining before imaging using a Zeiss Axioskop 
microscope and Q-imaging camera system. 
Western Blots 
Cells or mouse spleens were lysed in RIPA buffer containing proteinase and 
phosphatase inhibitors and processed for western blot analysis as previously 
shown8. Antibodies for pSTAT5, tSTAT5, pSTAT3, tSTAT3 (Cell signalling) 
and Actin (Abcam) were used. 
Cell culture 
Erythroleukaemia-derived JAK2 V617F-homozygous HEL cells were cultured 
and treated as described previously.1. 
Real-time PCR 
Quantitative real-time PCR was performed with a Biorad CFX96 as previously 
described2, using the ΔΔCt formula with actin as the housekeeping control 
gene. 
Statistics and graphical representation	
Graphs and the indicated statistical analyses were generated in Prism Version 
5.01 (GraphPad software). Significance was determined using one-way 
Anova. 	
in silico modelling 
We used protein structure 5TQ8 from the Protein Database3 as the target for 
docking using Autodoc Vina software4 implemented from the PyRx interface.5 
The protein structure was first prepared using pdbcur from the CCP4 suite.6 
Ligand structures were obtained from the RCSB website and processed with 
obabel v2.3.1 with correct protonation for pH 7. An exhaustiveness level of 16 
was used for docking of all ligands.  
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Figure Legends 
Figure S1: Baseline blood cell numbers in hJAK2 V617F mouse. 
(A-D) Hemoglobin (A), hematocrit (B), platelet number (C) and white blood 
cell counts (D) of blood from individual 10-11 week old mice of the indicated 
genotypes. Individual values, mean and standard deviations are shown. 
Samples were compared by one-way Anova. 

 
Figure S2: Effect of MTX on blood counts from hJAK2 V617F mice 
Red blood cell count (A), hematocrit (B), platelet numbers (C) and mean 
corpuscular volume of individual 10-11 week old mice of the indicated 
genotypes treated with either phosphate buffered saline carrier control (PBS, 
grey dots), methotrexate (MTX, green dots) or ruxolitinib (rux, orange dots) for 
28 days. 
 

Figure S3: Effect of MTX on white blood cell counts from hJAK2 
V617F mice 
White blood cell counts (A) of blood from individual 10-11 week old mice of 
the indicated genotypes treated with either phosphate buffered saline carrier 
control (PBS, grey dots) or methotrexate (MTX, green dots) for 28 days. 
Individual values, mean and standard deviations are shown. Samples were 
compared by one-way Anova. 
(B-C) Stacked bar graphs for each individual mouse of the indicated genotype 
and drug treatment. Graphs show the % (B) and absolute numbers (C) of the 
indicated white blood cell types where BAS=basophil, EO=eosinophil, 
MONO=monocyte, NEUT=neutrophil, LYMPH=lymphocyte. The mean total of 
all white blood cells is shown by the blue bar in C 

 
Supplemental Figure S4: Bone Marrow Histology 
Haematoxylin and eosin stained sections through de-calcified and 
formalin fixed tibia from mice of the indicated genotypes treated with the 
indicated compounds for 28 days. Scale Bar= 50μm 
 
Supplemental Figure S5: Spleen Histology 
Haematoxylin and eosin stained sections through formalin fixed spleens from 
mice of the indicated genotypes treated with the indicated compounds for 28 
days. Scale bars in larger sub-panels =200μm and in smaller high 
magnification panels 50μm 
 
Figure S6: Effect of MTX on wild type mice 
(A) Spleen weights of 10-11 week old mice of the indicated genotypes and 
drug treatments shown as a % of body mass. The increased mass of MTX 



treated wild type and heterozygous spleens is not statistically significant. 
(B) Number of circulating reticulocytes in 10-11 week old mice of the indicated 
genotypes and drug treatments. The increase in MTX treated wild type and 
heterozygous spleens is statistically significant as determined by one-way 
Anova. 
Western blot analysis of tSTAT5 and pSTAT5 (C) as well as Q-PCR analysis 
of the pathway target gene PIM1 mRNA (D) from spleens of mice of the 
indicated genotype and drug treatment. Low levels of pathway activation may 
be present in wild type mice treated with MTX. 
 
 

Table S1: Binding of ligands to JAK2 kinase domain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comparison of predicted binding modes of ligands ranked by Autodock Vina 
scoring (kcal/mol). Methotrexate and ATP results are shown for the top nine 
scores of each. 
 
	

Ligand Binding Affinity 
MTX -9.1 
MTX -9.1 
MTX -8.9 
MTX -8.8 
MTX -8.8 
MTX -8.7 
MTX -8.7 
MTX -8.6 
MTX -8.6 
ATP -8.5 
ATP -8.2 
ATP -8.1 
ATP -7.8 
ATP -7.8 
ATP -7.7 
ATP -7.7 
ATP -7.6 
ATP -7.5 
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