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Hardware-accelerated analysis of real-time

Networks-on-Chip
Yunfeng Ma and Leandro Soares Indrusiak

Department of Computer Science, University of York

Email: {ym608, leandro.indrusiak}@york.ac.uk

Abstract—A real-time Network-on-Chip (NoC) must guarantee
that it is able to execute a set of tasks and deliver the com-
munication packets that they generate, all within the respective
deadlines even under a worst-case scenario. End-to-End Response
Time Analysis (E2ERTA) is a mathematical formulation that
can be used to test whether a particular NoC configuration
is able to guarantee the timely execution of tasks and delivery
packets. The complexity of E2ERTA calculation increases with
the increase of the number of tasks and packet flows, and with
the core count of the NoC. This paper presents an approach
to accelerate E2ERTA calculations through the use of custom
hardware and efficient implementation of its mathematical oper-
ations. We explore the performance of the proposed approach,
and analyse its effectiveness against the state-of-the-art in the
field. The results show a significant improvement in testing NoC
guarantees, thus potentially enabling the use of E2ERTA as a
fast and guaranteed deterministic admission controller for open
and dynamic real-time systems. As a case-study, we integrate the
proposed approach to a NoC optimisation framework aiming to
accelerate the search for NoC configurations that meet all the
NoC’s hard real-time requirements.

I. INTRODUCTION

Networks-on-chip (NoCs) can be designed to guarantee

performance of real-time applications. Most of them use ar-

chitectural features such as time-division multiplexing of links

(TDM) [12], traffic regulators or virtual channels (VCs) [3]. A

number of analytical techniques have been proposed to eval-

uate whether a specific NoC configuration can guarantee the

performance of a specific application. Kiasari et al review them

in [8]. In this paper, we focus on wormhole-switching NoCs

with priority-preemptive VCs, which can be analysed using

schedulability analysis [13]. More specifically, we use end-

to-end response time analysis (E2ERTA) because it performs

schedulability analysis of tasks running on NoC cores as well

as packets flowing through NoC links, and is able to predict

whether all tasks and packet flows can meet their deadlines

even under a worst-case scenario.

Increases in the number of cores and links in NoCs, as

well as in the complexity of applications (i.e. increasing

number of tasks and communication flows), make E2ERTA

calculation significantly harder. This cost is not critical if

one is interested in evaluate the schedulability of a system

during design time, in what is referred as the in static task

allocation problem. However, the execution time of applying

E2ERTA can be vital in other areas, such as in dynamic

admission controllers. Such controllers are used to decide,

during runtime, whether a system can successfully admit new

applications without jeopardising the timeliness of previously

admitted ones. Longer analysis directly increases waiting time

before an admission decision can be made. Therefore, whether

the computation time of E2ERTA can be reduced and the

magnitude of such reduction are important issues.

The goal of this paper is to explore the possibility of

applying custom parallel hardware to reduce the computa-

tion time of E2ERTA. It details and extends the approach

first introduced in [15], using a hardware implementation of

E2ERTA to enhance its timing performance and considering

two variations of E2ERTA which accelerate it even further

while providing less tight results. The performance of the

hardware accelerated implementations are compared against a

software-only baseline implementation of E2ERTA presented

in [14]. Furthermore, we present a novel case study showing

the benefits of integrating the hardware-accelerated imple-

mentation of E2ERTA into a NoC task mapping optimisation

framework.

The paper is organised as follows: Section II reviews the

related work and is followed by the system model in Section

III; in Section IV, the problem will be discussed. The proposed

hardware architecture and implementation are presented in

Section V; the experimentation platform and results analysis

are listed in Section VI. Section VII presents a case study

with the integration of the hardware-accelerated E2ERTA into

an optimisation framework. The paper is then closed with

conclusions and future work.

II. RELATED WORK

A. Schedulability test for priority-preemptive NoCs

Classic response-time analysis for fixed-priority tasks run-

ning on a single processor was first introduced in Liu and

Layland’s seminal paper [9]. Numerous extensions to that

analysis were published over the past decades, considering for

instance release jitters, offsets and multiple processors.

In NoCs, network links are shared by various packet flows.

In [13], the authors modelled the links and flows as shared

processors and tasks, respectively, and extended classic re-

sponse time analysis to obtain the worst-case communication

delay of each packet flow. In [7], the classic analysis from [9]

and the analysis from [13] were combined to cover a task’s

end-to-end latency, which includes not only its computation

time but also the time it takes for its packets to reach their

destination. We refer to that analysis as E2ERTA, and we use

it to test whether a set of communicating sporadic tasks is



end-to-end schedulable on a NoC, i.e. all their computations

and communications finish by the respective deadlines.

B. Speed-up methods for response time analysis

The calculation of response time analysis is based on an

iterative calculation. Since this iterative calculation needs an

arbitrary number of iterations to compute the final results,

the efficiency of the response time analysis is low. Therefore,

Bini and Baruah [2] presented a pre-check metric to avoid

the exact result computation in order to reduce the running

time of the response time analysis. Besides, in [4], Davis et al.

presented a lower bound of worst-case response time to reduce

the number of iterations needed when executing the worst-case

response time analysis. In [14], both these speed-up methods

were combined with E2ERTA to improve its efficiency in a

software implementation.

III. SYSTEM MODEL

The timing performance of a NoC system can be evaluated

by the worst-case end-to-end response times of its tasks. This

means the time between the release of a task on its processor

and the reception of the last flit of its longest packet by the

destination processor, under the worst-case situation [7]. For

a task to be schedulable on a NoC, its end-to-end response

time has to be less than or equal to its deadline even under

the worst-case situation.

A. NoC platform model

The configuration of a NoC can be presented by several

parameters such as topology, routing algorithm, flow control,

arbitration, and switching techniques. These can affect the

structure of NoCs and further influence the performance. In

this paper, we focus on NoC platform which has:

• mesh topology;

• XY routing algorithm;

• virtual channels and credit-based flow control;

• fixed-priority arbitration;

• wormhole switching.

B. Sporadic communication task model

Since the E2ERTA can be divided into tasks’ response time

analysis and flows’ response time analysis, we need to model

these two parts separately.

1) Task Model: Following the system model of tasks’

response time analysis in the paper [1], the tasks can be

modelled as Taski = {ci, ti, pi, di, ri}.

• ci is the worst-case computation time of Taski;

• ti is the period of Taski;

• pi is the priority of Taski;

• di is the deadline of Taski;

• ri is the response time of Taski;

• Bi is the maximum blocking time of Taski;

• lep(k) is the set of tasks with the priority lower than or

equal to Taski;

• hp(i) is the set of tasks with higher priority than Taski;

• ui is the utilization of Taski, it equals to ci
ti

.

2) Flow Model: According to the schedulability analysis in

the paper [13], the traffic flows can be presented as:

Flowi = {Ci, Ti, Pi, Di, J
R
i , JI

i , Ri, Sid, Sii}.

• Ci is the basic latency of Flowi;

• Ti is the period of Flowi;

• Pi is the priority of Flowi;

• Di is the deadline of Flowi;

• JR
i is the release jitter of Flowi;

• JI
i is the interference jitter of Flowi;

• Ri is the response time of Flowi;

• Sid is the direct interference set of Flowi;

• Sii is the indirect interference set of Flowi;

• Li is used to calculate Ci, if Ci is not given;

• Ui is the utilization of Flowi, it equals to Ci

Ti

.

The Sid and Sii present the direct and indirect interference

set of Flowi. The flows in these two sets can affect the worst-

case response time of Flowi by pausing Flowi’s communi-

cation. The definitions of them are based on the relationship

between Flowi and higher priority flows.

• The flows in the direct interference set:

– having higher priority than Flowi;

– sharing at least one link with Flowi.

• The flows in the indirect interference set:

– having higher priority than Flowi;

– having no shared link with Flowi;

– interfering with the flows in the direct interference

set of Flowi.

Figure 1 illustrates an example with four traffic flows, with

P1 > P2 > P3 > P4. In this example, the Task3 and Task4
are allocated to IP(8); Task2 and Task1 are allocated to IP(5)

and IP(2) respectively. The direct interference set and indirect

interference set for each Flowi are listed in Table I.
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Fig. 1: Traffic Flow Relationship Example.

IV. PROBLEM STATEMENT

The complexity of calculation of E2ERTA is affected by two

aspects, the characteristic of E2ERTA and the implementation

method.



TABLE I: Traffic Flow Example

Flowi Direct interference set Indirect interference set

Flow1 {φ} {φ}

Flow2 {Flow1} {φ}

Flow3 {Flow2} {Flow1}

Flow4 {Flow3} {Flow2}

A. Characteristic of E2ERTA

The E2ERTA can be divided into tasks and flows response

time analysis. On each node, the tasks are released according

to the priority order. Hence, the higher priority tasks can

easily preempt lower priority tasks. This phenomenon can be

seen in Figure 2 which follows the example of Figure 1 and

considering the deadlines of all tasks are same and equal to

period. Tasks 3 and 4 are released at the same time. However,

as Task 3 has higher priority than Task 4, it can directly take

the node and preempt the release of Task 4. Therefore the

response time of tasks can be calculated by Equation 1.

Task 1

Task 2

Task 3

Task 4

Task Released Task Deadline

Task Computation 

Time

Flow Computation 

Time

Computation 

Interference

Communication 

Interference

Communication 

Interference

Communication 

Interference

Priority

H

Fig. 2: E2ERTA Example.

rn+1
i = ci +

∑

∀j∈hp(i)

⌈
rni
tj

⌉cj (1)

Similarly, the higher priority flows can interrupt lower

priority flows’ transmission. In Figure 2, Tasks 2, 3 and 4

are all suffering the interferences from higher priority flows.

The response time of flows can be calculated by Equation 2.

Rn+1
i = Ci +

∑

∀j∈Sid

⌈
Rn

i + JR
j + JI

j

Tj

⌉Cj (2)

The authors in [7] assume that the release jitter of a traffic

flow can be replaced by the worst-case response time of the

initial task of the flow, that is JR
i = ri. Therefore, the E2ERTA

can be written as Equation 3.

Rn+1
i = Ci +

∑

∀j∈Sid

⌈
Rn

i + rj + JI
j

Tj

⌉Cj (3)

We could conclude the characteristic of E2ERTA from Equa-

tion 3 that the computation of E2ERTA is based on an

iterative calculation. In the processing of this iterative cal-

culation, a number of intermediate results are needed to be

calculated before we can obtain the final results. The more

intermediate results are required, the longer computation time

will be cost. According to the requirement of E2ERTA, the

termination condition of this iterative calculation is either

Rn+1
i = Rn

i or Rn+1
i > Di. It means that for each calculation,

the number of iterations is not fixed and consequently the

number of intermediate results is not a constant. We make an

assumption that we only consider the termination condition as

Rn+1
i = Rn

i and ignore Rn+1
i > Di, since smaller D can

terminate the iterative calculation early. Under this assumption,

the lower priority a task has, the more number of intermediate

results and more computation time it will suffer. Thus, the

complexity of calculation of E2ERTA will be increased with

the extended size of task set.

B. Implementation method

From the working process of the software version of

E2ERTA (SW-E2ERTA) shown in Algorithm 1, we notice that

before we can calculate the response time (line 6) by using

Equation 3, we have to calculate the direct interference set

(line 10) and indirect interference set (line 11). Additional

computation processes such as routing (line 7), get task

interference (line 3) and basic latency calculation of flows

(line 9) should also be included if the E2ERTA starts from

task mapping.

Algorithm 1 Software Version of E2ERTA Working Process

Input:

• Task Mapping,

• Task Information,

• Application Information.

Output:

• Response Time of Each Task,

• Response Time of Each Flow,

• Number of Unschedulable Tasks and Flows.

1: function CALCULATE TASK RESPONSE TIME

2: for each task, in priority order do

3: Get Task Interference

4: Get Task Response Time Analysis

5: Store Results

6: function CALCULATE FLOW RESPONSE TIME

7: Perform Routing Algorithm

8: for each flow, in priority order do

9: Get Flow Basic Latency

10: Get Direct Interference Set

11: Get Indirect Interference Set

12: Get Flow Response Time Analysis

13: Store Results

Note: Task Mapping refers to Task Allocation. Task Information includes

c,t,d. Application Information includes Initial Task, Destination Task

and L.

Naturally, software implementation is not designed to sup-

port parallel computing. Hence, the next computing block can

not start until the previous block has finished. However, some

calculations of E2ERTA do not depend on each other. For

example, the Task Response Time Analysis is not related

to the partial blocks of Flow Response Time Analysis such



as Routing Algorithm, Get Flow Basic Latency, Get Direct

Interference Set and Get Indirect Interference Set. In practice,

the computation time of E2ERTA can be reduced if these

blocks can be launched in parallel.

Besides, the efficiency of processing vector in software is

low. For example, if we use the binary coding style to encode

the results of Routing Algorithm, the results could be similar

to what is shown in Figure 3a which follows the example in

Figure 1 and others hidden links are not used and set as 0.

To identify the relationship between Flow3 and Flow4, the

SW-E2ERTA has to compare these two flows bit by bit. Even

if we use integer coding style (an example presented in Figure

3b), the computation cannot be finished within one clock

cycle. Similar phenomenon can also be found in Get Indirect

Interference Set and Get Flow Basic Latency computation

blocks. In addition, this phenomenon will become worse when

the size of NoC increases, since larger size refers to more

links and then results in more computation time. So, using the

software method to implement E2ERTA suffers the limitation

of computation time.

20 19 18 15 12 6 3 2 1

Flow 4

42 36 33

0 0 1 0 0 1 0 0 00 1 0

Flow 3 0 0 1 0 0 0 1 0 00 1 1

(a)

Flow 2 1 0 0 1 0 0 0 1 00 0 1

Flow 1 1 1 0 0 1 0 0 0 10 0 0

Link Set

{6,18,36}

{3,18,33,36}

(b)

{2,15,20,33}

{1,12,19,20}

Link 

Number

Fig. 3: (a) Binary Coding Example, (b) Integer Coding Exam-

ple.

V. HARDWARE IMPLEMENTATION AND SPEED-UP

COMPONENTS OF E2ERTA

As analysed in the previous section, the characteristic

of E2ERTA and the state-of-the-art implementation method

cannot efficiently improve the computation time when the

size of a task set and the size of a NoC are increased. In

order to solve this problem, we discuss the possibility of

using hardware method to implement E2ERTA and introduce

a hardware architecture named as HW-E2ERTA. To alleviate

the limitation of the characteristic of E2ERTA, we suggest two

speed-up components which are Pre-Check (PRE) and New

Lower Bound (NLB).

A. Hardware Implementation of E2ERTA

In the calculation process of E2ERTA, not all computation

processes have to be launched sequentially. As discussed in

Section IV, the Task Response Time Analysis and partial

processes of Flow Response Time Analysis can be loaded

simultaneously. Thus, we proposed a hardware implementation

architecture of E2ERTA which has been shown in Figure 4.

In this Figure, we could find that the Task and Flow Response

Time Analysis can be released at the same time. In Flow

Get Task 

Interference Set

Get Task 

Response Time

Routing 

Algorithm

Get Direct 

Interference Set

Get Indirect 

Interference Set

Get Flow Basic 

Latency

Get Flow 

Response Time

Store Results

HW-E2ERTA

Task Mapping Task Information Application Information

Inputs

Task Response 

Time Analysis

Flow Response 

Time Analysis

Fig. 4: HW-Architecture of E2ERTA.
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Fig. 5: (a) Example of Get Direct Interference Hardware Im-

plementation Operation, (b) and (c) Examples of Get Indirect

Interference Hardware Implementation Operation.

Response Time Analysis process, the two components Get

Direct Interference Set and Get Flow Basic Latency can start

in the meantime after they receive the results of Routing

Algorithm. The Get Flow Response Time component will

be launched when the Task Response Time Analysis, Get



Indirect Interference and Get Flow Basic Latency components

are finished. Its results and the results from Task Response

Time Analysis will be organised and stored.

As aforementioned, parallel computing is not the unique

aspect that the software version fails to support. Vector opera-

tions are also the bottle-neck we need to make a breakthrough.

We apply some logic gate operations to solve this problem.

One example has been shown in Figure 5. In this Figure, the

routing results are following the results in Figure 1. The width

of interference vector is 4. An example has been shown in

Figure 5a. The right end of the interference vector is Flow1.

The flow with value ‘1’ (Flow3) refers to this flow can

interrupt the observed flow (Flow4).

For Get Direct Interference Set component, we use the ‘and’

gate to identify the direct relationship between two flows,

which has been shown in Figure 5a. We apply the logic ‘and’

operation between the routing results of Flow4 and Flow3.

If these two flows have shared links which have been labelled

in block rectangles, the result is not all zero. The relevant

bit position is set as ‘1’ in Flow4’s Direct Interference Set.

Otherwise, the result is all zero and the relevant bit is set as

‘0’.

When identifying the indirect relationship between two

flows, we select the logic ‘or’ gate and the logic ‘xor’ gate,

which has been described in Figure 5b and 5c to implement

this operation. The example in Figure 5b inherits the sources

from Figure 1, Figure 3 and Figure 5a. In this example,

Flow4’s Direct Interference Set is one of the inputs of ‘or’

gate and ‘xor’ gate. If Flow3 can directly interrupt Flow4 and

its Direct Interference Set is not empty (can be preempted by

other flows), Flow3’s Direct Interference Set will be checked.

Therefore, the other input is Flow3’s Direct Interference Set.

Similar to Get Direct Interference operation, if the result is not

all zero, the relevant bit will be set as ‘1’ to indicate the higher

priority flow (Flow2) which can indirectly interrupt Flow4.

However, if Flow2 can preempt both Flow3 and Flow4, the

result will remain as 0. This phenomenon has been illustrated

in Figure 5c; Flow2 has been labelled with dark gray.

B. Speed-Up Components of E2ERTA

As discussed in Section IV, the iterative characteristic of

E2ERTA is a barrier for improving its efficiency. To alleviate

the complexity of iterative calculation, the authors [2] pre-

sented a Pre-Check (PRE) method. They use the work load to

find an upper bound of task’s response time which has been

shown in Equation 4. This can be used as a sufficient test for

the schedulability test.

rubi =
ci +

∑

∀j∈hp(j) cj(1− uj)

1−
∑

∀j∈hp(j) uj

(4)

Besides, the authors [4] explored this problem from a different

view and pointed out a lower bound of response time of a task

(referred as NLB). They use the lower bound to replace the

original start value (usually is 0 or c). The results show fewer

intermediate results and shorter computation time compared

with original response time analysis. This lower bound can be

found by using Equation 5, 6 and 7. The Ij(Ri−1) denotes

the worst-case interference due to Taskj ∈ hp(i) occurring

during the response time of Taski−1.

The authors [14] assembled these two ideas with E2ERTA

in several schemes implemented on a software experimenta-

tion platform. Although the results show these schemes can

improve the efficiency of E2ERTA, the abilities of these two

ideas are not well explore due to the sequential natural of the

software platform. Therefore, in hardware implementation, we

can obtain better performance. However, fully implementing

the NLB idea in hardware is complex. Thus, we select a

compromised method.

Ij(R(i−1)) =

⌈

R(i−1) + Jj

Tj

⌉

Cj (5)

RLB
i (k) =

Bi + Ci +
∑

∀j∈lep(k)∩hp(i) Ij(Ri−1)

1−
∑

∀j∈hp(k) Uj

+

∑

∀j∈hp(k) JjUj

1−
∑

∀j∈hp(k) Uj

(6)

RLB
i = max

∀k=1...i
RLB

i (k) (7)

1) Proposed Upper Bound and Lower Bound: The calcula-

tion of E2ERTA includes a celling function. If we can release

this celling function by using inequalities, the upper bound

and lower bound of the response time of a task can be found.

Here we modify Equation 3 and obtain the upper bound and

lower bound listed as follows:

Ri ≥ ci +
∑

∀j∈Sid

[

Ri + rj + JI
j

Tj

]

Cj (8a)

Ri ≤ ci +
∑

∀j∈Sid

[

Ri + rj + JI
j

Tj

+ 1

]

Cj (8b)

⇓

Ri ≥
ci +

∑

∀j∈Sid

(

rj + JI
j

)

Uj

1−
∑

∀j∈Sid
Uj

(9a)

Ri ≤
ci +

∑

∀j∈Sid

[(

rj + JI
j

)

Uj + 1
]

Cj

1−
∑

∀j∈Sid
Uj

(9b)

2) Selected Upper Bound and Lower Bound: In tasks’

response time analysis, the rj and JI
j are not existed and can

be set as zero. Comparing with the Equation 4, the Equation

9b is pessimistic after setting rj and JI
j to zero. Therefore,

we select Equation 4 as our upper bound of task’s response

time.

Move to lower bound, our proposed lower bound Equation.

9a is less tight than Equation 7. This is because Equation

7 select the maximum one from a series of lower bounds.

Our result is one candidate in this series and may not the

be the maximum one. However, the implementation of our

lower bound is much easier than Equation. 5, 6 and 7. In

addition, the inputs of Equation. 9a are the same as the inputs

of 4. So combing these two Equations together can save

additional resources and the upper bound and lower bound

can be calculated simultaneously. Thus, we select Equation.

9a as our lower bound of task’s response time. We can obtain



Equation 10a and b.

rlbi ≥
ci

1−
∑

∀j∈Sid
uj

(10a)

rubi =
ci +

∑

∀j∈hp(j) cj(1− uj)

1−
∑

∀j∈hp(j) uj

(10b)

In flows’ response time analysis, the rj and JI
j are existed.

We cannot directly select Equation 4 as our upper bound of

flow’s response time. In addition, considering the implemen-

tation complexity, the Equation 9a and b are similar with

Equation 10. Partial components among them can be reused.

This can further reduce the resources and implementation

complexity. Therefore we select Equation 9a and b as the lower

and upper bound of Flow’s response time respectively.

C. Assembly Schemes

As a sufficient test, PRE cannot guarantee the calculation

of response time analysis. It has to co-operate with other

components like HW-E2ERTA or NLB. Here, we list some

assembly schemes in Figure 6 which consists of four parts

(a, b, c, and d). In (a) and (c), we put PRE, HW-E2ERTA

or NLB in sequential order. If PRE has indicated the final

response time of a task or a flow, the following HW-E2ERTA

or NLB will be skipped. Otherwise, the HW-E2ERTA or NLB

will be applied.

PRE

HW-E2ERTA

PRE

NLB

NLB

(a) (b) (c)

E2ERTA

(d)

Fig. 6: Supported combinations (assemblies) of response time

analyses.

VI. EXPERIMENTATION PLATFORM AND RESULTS

ANALYSIS

In this section, experimentation platform, experimentation

configuration and results analysis will be discussed to show

the performance of our proposed implementation.

A. Experimentation Platform

To evaluate the performance of HW-E2ERTA, PRE and

NLB, we propose an experimentation platform which is an

embedded system based on Xilinx VC707 develop board

showing in Figure 7a. On this platform, we fully implement

the SW-E2ERTA in the paper [14] on MicroBlaze. To gain an

accuracy computation time, we introduce a hardware timer to

measure the running time of SW-E2ERTA in the number of

clock cycles.

The evaluations of HW-E2ERTA, PRE and NLB are also

operated on this platform. We packet our hardware implemen-

tations as customer peripherals and mount them on an AXI bus

AXI Bus

MicroBlaze
HW-Timer UART

PRE
HW-

E2ERTA

PRE

HW-

E2ERTA

PRE

NLB

NLB

MUX

PRE NLB

MUX

HW-

E2ERTA

Random task mapping 

generating

Synthetic benchmark 

generating

SW-E2ERTA

HW-

E2ERTA

PRE+HW-

E2ERTA
NLB PRE+NLB PRE||E2ERTA PRE||NLB 

(a)

(b)

Summary and output results 

through UART

Fig. 7: (a) Experimentation Platform, (b) Testing Process.

Note: The blocks labeled in gray are parallelism implementation for future

work among HW-E2ERTA and its accelerated components.

which is an on-chip interconnect link used in Xilinx system-

on-chip design.

Each testing is started from the random testing data gen-

erating process and ended when all processes or components

are tested. Figure 7b has shown the testing process. The Mi-

croBlaze firstly generates testing data (a random task mapping

and a Synthetic benchmark which include task information

and application information). Then MicroBlaze launches SW-

E2ERTA. When SW-E2ERTA has finished, MicroBlaze writes

the testing data to each component and enables all of them

simultaneously. After all tests have finished, the MicroBlaze

collects data from each hardware component, and organises

these results. The results are output through a UART port.

B. Experimentation Configuration

To measure the performance of our proposed implementa-

tion in various situations, we configure our experimentations

as follows:

• the size of NoC is 3*3, 4*4, 5*5, 10*10,

• the size of task set is 16, 32, 64, 128,

• the utilization of task and flow is from 10% to 90%,

• the number of flows is considered as the size of the task

set.

Because each experimentation will generate a random mapping

and Synthetic benchmark, one time testing cannot illustrate the

difference among all implementations and schemes. Therefore,

we increase the number of testing times to 1000000, in order

to have a better coverage.

C. Results Analysis

Figure 8 shows partial results of the experimentation, while

more details are shown in Table II. All the Y-Axis in Figure 8
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Fig. 8: (a) SW-E2ERTA on difference test benches, (b) hardware versions on 10*10 NoC. (c) SW-E2ERTA vs hardware

versions, (d) PRE+HW-E2ERTA vs NLB vs PRE+NLB vs E2ERTA.

show the numbers of clock cycles that has been used to finish

an E2ERTA computation. Because the numbers are too large,

we arrange them in log10 style (i.e. an entry of 6.1 represents

a time of 106.1 clock cycles).

Figure 8a presents the performance of SW-E2ERTA affected

by Size of NoC, Number of Task, and Utilization of Task

and Flow. From these points, we can find that the larger

size of NoC or the number of task the SW-E2ERTA has to

calculate, the more evaluation time will be required. However,

the influence from utilization of task and flow is in parabola

style instead of a linear style. This can be seen from the

examples in Table II, which are labelled in gray colour. The

reason of this phenomenon is that the extremely lower or

higher utilization can early terminate the iterative calculation

of E2ERTA. We can make an assumption as follows:

• the current observed objective (Flow as an example) is i,

• the number of iterations required by lower, moderate and

higher utilization are Nlower, Nmoderate and Nhigher

respectively,

• the number of clock cycles used to finish a single iterative

calculation is nearly the same or equal to NSIC .

When the utilization is extremely low, the E2ERTA may be

terminated by Rn+1
i = Rn

i within few iterations such as

two or three iterations. The calculation will become harder

with the utilization increased and results in more iterations

required. However, when the utilization becomes extremely

high, the complexity of E2ERTA will decrease. This is because

E2ERTA can easily determine the observed objective and will

miss deadline by finding Ri ≥ Di within few iterations.

Therefore we can get the inequality Nlower ≤ Nmoderate ≥
Nhigher and further obtain the total execution time, which is

Nlower ∗NSIC ≤ Nmoderate ∗NSIC ≥ Nhigher ∗NSIC . Thus,

the influence from utilization follows a parabola style.

Figure 8b shows the detailed performance of proposed

implementation on 10*10 NoC with difference Number of

Task, and Utilization of Task and Flow. It can be seen that

the hardware implementation follows the characteristic of SW-

E2ERTA, however, with much less computation time.

Figure 8c and d show the details of an example whose

data has been labeled in gray colour in Table II. The X-

Axis shows the different versions of E2ERTA or assembled

schemes. From Figure 8c, we can see that all the hardware

versions are much faster than SW-E2ERTA. For example,

the HW-E2ERTA’s average number of clock cycles is around

1 ∗ 103.179, while the SW-E2ERTA’s is about 1 ∗ 106.435. This

means HW-E2ERTA is approximately 1000 times faster than

SW-E2ERTA. Such significant speed-up enables a much wider

use of the E2ERTA in the optimisation process of NoC-based

systems (i.e. guiding designers towards acceptable solutions),

rather than only validating the final system. In the next section,

we will address this specific scenario.

Figure 8b presents various assembly schemes, PRENLB,

HW-E2ERTA, PRE and NLB, with the results ranking from

best to worst. The reason why the NLB obtains the worst

results is that NLB has to calculate the lower bound first

and then start the exact calculation for each computation. We

assume that:

• the number of clock cycles used to calculate the lower

bound in NLB is Nclb,

• the number of clock cycles used to compute the following

exact calculation is Ncec,

• the number of clock cycles used by HW-E2ERTA is

NE2ERTA.

We could get the total number of clock cycles used by NLB

is Nclb +Ncec. We can guarantee Ncec ≤ NE2ERTA, but we

cannot guarantee Nclb + Ncec ≤ NE2ERTA. Therefore, only

using NLB may be slower than HW-E2ERTA.

Since PRE is a significant test, only using upper bound and

lower bound cannot guarantee the final results. When PRE



TABLE II: Time to perform full response time analysis (log10 clock cycles)

3*3 4*4 5*5 10*10

# Tasks U(%) SW HW PRENLB PRE NLB SW HW PRENLB PRE NLB SW HW PRENLB PRE NLB SW HW PRENLB PRE NLB

10 6.140 3.417 3.171 3.326 3.561 6.113 3.308 3.136 3.249 3.401 6.134 3.261 3.116 3.209 3.316 6.437 3.185 3.093 3.151 3.222

20 6.136 3.409 3.160 3.319 3.554 6.113 3.305 3.133 3.245 3.399 6.135 3.261 3.114 3.208 3.319 6.438 3.190 3.093 3.158 3.228

30 6.130 3.398 3.153 3.313 3.544 6.113 3.301 3.128 3.241 3.396 6.135 3.256 3.108 3.205 3.315 6.440 3.186 3.094 3.156 3.225

40 6.120 3.373 3.136 3.301 3.524 6.110 3.292 3.121 3.237 3.390 6.132 3.250 3.104 3.197 3.308 6.438 3.189 3.092 3.154 3.226

50 6.104 3.339 3.117 3.296 3.495 6.104 3.278 3.113 3.230 3.373 6.131 3.244 3.099 3.192 3.302 6.442 3.188 3.091 3.161 3.227

60 6.087 3.294 3.101 3.287 3.458 6.094 3.255 3.099 3.215 3.350 6.126 3.232 3.094 3.185 3.288 6.438 3.181 3.088 3.153 3.220

70 6.073 3.260 3.092 3.275 3.427 6.084 3.238 3.091 3.200 3.327 6.121 3.223 3.092 3.178 3.277 6.436 3.180 3.085 3.153 3.219

80 6.060 3.230 3.079 3.263 3.398 6.079 3.227 3.089 3.201 3.311 6.117 3.209 3.083 3.166 3.261 6.438 3.181 3.086 3.155 3.222

16

90 6.053 3.210 3.072 3.261 3.380 6.071 3.209 3.080 3.182 3.288 6.112 3.202 3.082 3.165 3.254 6.435 3.179 3.084 3.152 3.220

10 6.544 4.007 3.566 3.836 4.168 6.496 3.861 3.543 3.748 4.029 6.526 3.758 3.526 3.699 3.924 6.898 3.604 3.474 3.582 3.671

20 6.537 3.998 3.607 3.875 4.160 6.494 3.859 3.541 3.746 4.026 6.523 3.750 3.516 3.683 3.917 6.896 3.598 3.470 3.579 3.665

30 6.506 3.955 3.624 3.908 4.126 6.487 3.842 3.531 3.752 4.012 6.520 3.743 3.509 3.681 3.911 6.898 3.596 3.468 3.578 3.664

40 6.466 3.890 3.576 3.906 4.078 6.469 3.807 3.513 3.754 3.986 6.513 3.724 3.494 3.675 3.896 6.897 3.597 3.466 3.579 3.666

50 6.431 3.827 3.515 3.896 4.034 6.453 3.770 3.485 3.764 3.957 6.506 3.699 3.481 3.670 3.875 6.897 3.594 3.461 3.574 3.662

60 6.399 3.766 3.458 3.879 3.993 6.432 3.719 3.463 3.758 3.921 6.494 3.664 3.466 3.661 3.848 6.896 3.587 3.458 3.571 3.655

70 6.377 3.714 3.422 3.868 3.959 6.413 3.669 3.441 3.747 3.886 6.484 3.630 3.449 3.655 3.819 6.893 3.578 3.452 3.561 3.645

80 6.362 3.678 3.398 3.857 3.937 6.403 3.633 3.425 3.740 3.862 6.473 3.598 3.438 3.645 3.790 6.894 3.575 3.449 3.561 3.642

32

90 6.347 3.641 3.381 3.851 3.915 6.391 3.594 3.412 3.733 3.837 6.470 3.580 3.429 3.646 3.776 6.891 3.568 3.445 3.557 3.637

10 7.055 4.608 4.153 4.452 4.771 6.994 4.462 4.036 4.315 4.644 7.031 4.364 3.989 4.240 4.555 7.449 4.088 3.921 4.095 4.265

20 7.005 4.546 4.268 4.541 4.722 6.986 4.451 4.120 4.373 4.634 7.027 4.358 4.019 4.263 4.549 7.450 4.083 3.916 4.087 4.262

30 6.929 4.438 4.169 4.528 4.645 6.955 4.400 4.127 4.402 4.594 7.016 4.337 4.048 4.295 4.532 7.448 4.080 3.914 4.085 4.260

40 6.870 4.341 4.049 4.498 4.581 6.921 4.333 4.068 4.396 4.547 7.002 4.295 4.032 4.306 4.500 7.448 4.074 3.903 4.077 4.255

50 6.828 4.264 3.959 4.471 4.533 6.891 4.268 4.008 4.383 4.502 6.984 4.245 3.992 4.302 4.464 7.450 4.064 3.896 4.074 4.245

60 6.806 4.212 3.898 4.455 4.504 6.870 4.211 3.949 4.368 4.465 6.970 4.198 3.951 4.296 4.432 7.447 4.045 3.885 4.065 4.228

70 6.788 4.173 3.857 4.442 4.481 6.852 4.160 3.900 4.354 4.433 6.959 4.150 3.904 4.285 4.401 7.445 4.027 3.874 4.059 4.209

80 6.774 4.140 3.823 4.431 4.463 6.839 4.117 3.863 4.341 4.408 6.948 4.105 3.867 4.274 4.371 7.444 4.013 3.864 4.055 4.191

64

90 6.766 4.119 3.800 4.426 4.452 6.829 4.086 3.833 4.334 4.390 6.941 4.074 3.841 4.267 4.352 7.443 3.996 3.855 4.049 4.175

10 7.602 5.192 4.927 5.167 5.355 7.553 5.074 4.703 4.967 5.255 7.860 4.977 4.607 4.866 5.177 8.035 4.726 4.523 4.721 4.945

20 7.445 4.974 4.733 5.126 5.201 7.503 4.993 4.775 5.038 5.193 7.840 4.956 4.701 4.936 5.157 8.036 4.722 4.517 4.712 4.941

30 7.363 4.834 4.545 5.072 5.116 7.447 4.879 4.661 5.015 5.114 7.805 4.887 4.674 4.951 5.107 8.035 4.715 4.507 4.707 4.934

40 7.325 4.758 4.447 5.044 5.074 7.409 4.783 4.549 4.983 5.054 7.773 4.809 4.600 4.936 5.053 8.032 4.697 4.496 4.712 4.920

50 7.305 4.714 4.394 5.028 5.050 7.383 4.712 4.474 4.959 5.012 7.749 4.739 4.531 4.916 5.008 8.032 4.673 4.482 4.719 4.902

60 7.294 4.687 4.363 5.020 5.036 7.367 4.658 4.419 4.941 4.981 7.728 4.680 4.474 4.898 4.972 8.030 4.641 4.465 4.721 4.879

70 7.288 4.669 4.341 5.014 5.026 7.359 4.623 4.386 4.930 4.963 7.715 4.634 4.432 4.886 4.945 8.028 4.607 4.450 4.717 4.855

80 7.284 4.657 4.329 5.010 5.020 7.353 4.598 4.362 4.922 4.949 7.704 4.597 4.398 4.875 4.924 8.027 4.574 4.434 4.714 4.832

128

90 7.280 4.648 4.320 5.007 5.016 7.349 4.579 4.345 4.917 4.939 7.694 4.570 4.376 4.868 4.909 8.029 4.549 4.424 4.711 4.816

Note: SW refers to SW-E2ERTA, HW refers to HW-E2ERTA and U refers to the utilization of task or flow.

can identify the results, the total number of clock cycles will

be reduced. However, once it cannot identify the results, a

following exact calculation will be launched. That means the

number of clock cycles will be increased resulting in that the

calculation of PRE will cost time. Therefore, the performance

of PRE can be worse than HW-E2ERTA.

Next is the PRENLB that has the abilities inherited from

both PRE and NLB. It can avoid the exact test in some

situations and guarantee the final results within a short running

time when PRE is failed. We also make an assumption that:

• the number of clock cycles used to calculate the lower

bound and upper bound is Nulb,

• the number of clock cycles used to compute the following

exact calculation is Ncec.

For a single test, the total number of clock cycles used by

PRENLB is either Nulb or Nulb + Ncec. Theoretically, the

PRENLB cannot guarantee the performance in one time test,

whether it is better than HW-E2ERTA’s performance. How-

ever, after testing for 1000000 times, the average number of

clock cycles cost by PRENLB is around 1∗103.084, while HW-

E2ERTA’s is about 1 ∗ 103.179. We can generally summarize

that PRENLB is approximately 1.25 times faster than HW-

E2ERTA.

VII. CASE STUDY

The improvement of three orders of magnitude on the

analysis time reported in the previous section might not seem

so relevant in the case this technique is used at design time, as

one would not mind waiting for a few minutes or even hours

to test whether a particular NoC task mapping is schedulable

and therefore safe to be deployed. However, as shown in

[11] and [7], the analysis can actually be used to find a

task mapping through a heuristic search approach. In such

cases, the analysis is not applied once but millions of times

before a fully schedulable mapping can be found. Within such

an approach, the achieved improvement of three orders of

magnitude means that a much wider search can be performed

within an acceptable amount of time. This is of course useful

for design-time optimisation, as it can cover a greater portion

of the mapping solution space and can potentially find more

efficient mappings. Furthermore, it opens the possibility of

addressing open systems, where the application tasks and

packet flows are not completely known at design time and may

require the optimisation of the mapping after the NoC system

has been deployed (e.g. due to the release of new tasks, or to

the increased computation or communication demands of the

existing ones).

As a case study, we implemented a heuristic search pipeline

based on a genetic algorithm (GA), and used the hardware-

accelerated analysis as its fitness function. It is effectively

a hardware-accelerated implementation of the approach pre-

sented in [11] and [7], which we describe below and illustrate

in Figure 9.

A GA works by manipulating chromosomes which represent

an individual solution to the problem we are trying to optimise.

In this case, a chromosome must represent a specific mapping

of tasks to cores over a NoC. We choose a simple encoding

also used in [11], where each gene of the chromosome
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Fig. 9: Overview of the task mapping approach based on a

genetic algorithm.

represents a task, and the contents of the gene store the

number of the processing core onto which the task will be

mapped. Therefore, the number of genes on a chromosome is

the number of application tasks we are trying to map.

The GA optimisation pipeline starts with an initial parent

population, represented by their chromosomes, which can

be randomly created (i.e. randomly selecting the value of

each gene of each chromosome). It then creates an offspring

population by operating over the parent population using

mutations (e.g. randomly changing the value of a gene) and

crossovers (e.g. combining two halves of two chromosomes

to create a new one). Finally, it applies E2ERTA as a fitness

function, which will calculate how many of the tasks are end-

to-end schedulable, and will use that to rank all chromosomes

of the combined population and thus define which of them

will be allowed into the next generation. The process is then

repeated for a fixed number of times, or until a mapping

without unschedulable tasks is found.

We implemented a GA pipeline in hardware, including all

the control as well as the operations for crossover, mutation,

ranking and selection, and we integrated the proposed E2ERTA

hardware implementation as the fitness function. Again, this

was done on a Xilinx VC709 development board. The GA

control and operators, as well as the E2ERTA fitness function,

are integrated as customer peripherals on the AXI bus, which

are then initialized and controlled by the embedded MicroB-

laze CPU.

The MicroBlaze CPU starts by loading the GA configuration

(e.g. crossover rate, mutation rate, size of population) and

stores the taskset information in custom memory structures

that follow the same structure of the ones used in the syn-

thetic benchmark generation described in Section VI. Then,

GA controller will initialize the population and trigger the

iterations that include offspring creation, application of the

E2ERTA fitness function and selection. Once the iterations

are concluded, the MicroBlaze CPU will collect data from

hardware components, and output the results through a UART

port.

To accelerate the application of the E2ERTA fitness function

over the population, we exploited the inherent parallelism

of GAs and allowed the instantiation of multiple E2ERTA

hardware components, so that multiple chromosomes (i.e.

mappings) could be evaluated concurrently. In this implemen-

tation, however, we design a simple control structure that

enforces all E2ERTA instances to work in lockstep (i.e. all

E2ERTA instance are given a chromosome to evaluate at the

same time, and will only receive the next one when all of them

are ready). In Table III we show the average number of clock

cycles taken for a single generation.

TABLE III: Performance results of hardware-accelerated task

mapping genetic algorithm

population

size

number of

E2ERTA

instances

average

execution

time of GA

operators

per generation

(clock cycles)

average

execution

time of

E2ERTA

(clock cycles)

6

2 792 243840

3 792 229760

4 792 229540

5 792 229180

8
2 1060 500711

4 1059 251672

16
2 2115 896560

4 2112 812150

Table III also shows that, despite of the hardware accelera-

tion, the fitness function still heavily dominates the execution

time of the GA pipeline, which provides evidence of the

usefulness of the approach presented in this paper. Without

the hardware acceleration, the whole GA pipeline would

effectively be three orders of magnitude slower. The results

also show that the lockstep nature of this implementation

prevents the full parallelising of the search. For example, the

E2ERTA execution time using four instances is not always

two times faster than when using two instances, because the

lockstep behaviour forces three instances to be idle until the

slowest instance finishes its execution. We leave as future

work an improvement that allows each instance of E2ERTA to

request another chromosome whenever they are ready, which

will improve the practical usefulness of this case study.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a hardware implementation

of End-to-End Response Time Analysis (E2ERTA). We also

introduce two accelerated components PRE (Pre-check) and

NLB (new lower bound). We assemble them in different

schemes and compare their performance with a software im-

plementation of E2ERTA. The results show that the hardware

version is 1000 times faster than software version. After

careful consideration, we found that only using one of the

accelerated components cannot guarantee the desired perfor-

mance. However, when combining these components together,

the PRENLB scheme can obtain the best acceleration.

Our proposed HW-E2ERTA and its accelerated components

can be used as a fast evaluation method to investigate whether



a task set is schedulable on a NoC according to a given map-

ping. To show its effectiveness, we reported a case study that

reproduced state-of-the-art GA-based mapping optimisation

for hard real-time NoCs, and showed that they can fully benefit

from the acceleration obtained by the proposed approach. We

also show that the use of parallel E2ERTA instances can be

exploited in such case study, and the use of more sophisticated

control mechanisms that avoid lockstep execution is left for

future work.
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