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Abstract
Cushing’s disease is a rare disease with a characteristic phenotype due to
significant hypercortisolism driven by over-secretion of adrenocorticotropic
hormone and to high morbidity and mortality if untreated. It is caused by a
corticotroph adenoma of the pituitary, but the exact mechanisms leading to
tumorigenesis are not clear. Recent advances in molecular biology such as the
discovery of somatic mutations of the ubiquitin-specific peptidase 8 ( )USP8
gene allow new insights into the pathogenesis, which could be translated into
exciting and much-needed therapeutic applications.
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Introduction
Cushing’s disease (CD) is caused by a pituitary corticotroph  
adenoma over-secreting adrenocorticotropic hormone (ACTH)  
leading to excess cortisol secretion1. It is a rare disease, associ-
ated with high mortality and morbidity if untreated2. Morbidity is 
mainly due to the chronic metabolic adverse effects of hypercor-
tisolism leading to the clinical features that include those due to  
protein wasting (skin thinning, myopathy), changes in fat dis-
tribution and glucose intolerance, osteoporosis, life-threatening  
infections, and psychiatric and cognitive changes, including depres-
sion and psychosis3. More than 90% of corticotroph adenomas 
present as microadenomas (that is, small tumors with a maximum 
diameter of less than 10 mm), but occasionally tumors can be 
macroadenomas of significant volume and cause pressure to sur-
rounding structures such as the optic chiasm and the cavernous 
sinuses and may have invasive features. The only curative treat-
ment is surgical resection of the tumor, usually performed through 
a transsphenoidal approach. Although initial remission is achieved 
in around 60% to 75% of patients, up to 30% experience recurrent  
disease on long-term follow-up. The treatment of recurrent disease 
is challenging, and options include radiotherapy, medical therapy, 
or additional surgery4.

The pathogenesis of corticotroph adenomas is not clear. Cortico-
troph adenomas are monoclonal in origin, meaning that they arise  
from a single cell that multiplies to cause tumor growth5–8. This 
strongly points to a single somatic genetic defect in a corticotroph 
cell as the etiologic mechanism of disease5 and implies that tum-
origenesis occurs at the level of the pituitary. However, it is pos-
sible that other hypothalamic factors allow or facilitate this process.  
Genetic mutations have been identified in corticotroph adenomas; 
however, we are far from completely understanding the mechanisms 
leading to tumorigenesis, ACTH hyper-secretion, and invasiveness.

A better understanding of the pathogenesis could help identify new 
therapeutic targets. Existing medical treatments aim to control the 
hypercortisolemia associated with this condition and its devastating 
long-term effects but are not always effective. In this report, we 
present the current understanding of the pathogenesis of CD with 
an emphasis on molecular discoveries that have been reported in 
the last few years. These discoveries have created new possibili-
ties for therapeutic targets, much needed for patients who cannot be 
cured by surgery. We will provide an overview of corticotroph tum-
origenesis in the context of hypothalamic-pituitary-adrenal (HPA) 
axis regulation with an emphasis on the role of the glucocorticoid 
receptor in the resistance to the negative feedback of cortisol that 
occurs in CD, and we will explore the role of epidermal growth 
factor receptor (EGFR) signaling in ACTH hyper-secretion and 
corticotroph cell proliferation and the recent discovery of somatic  
ubiquitin-specific peptidase 8 (USP8) mutations in a signifi-
cant number of patients with sporadic CD with an emphasis on  
therapeutic implications.

Corticotroph adenoma pathogenesis and the 
hypothalamus-pituitary-adrenal axis
Normal physiology
Corticotroph cell function is tightly regulated as part of the HPA 
axis. Hypothalamic corticotropin-releasing hormone (CRH) and 
arginine vasopressin (AVP) stimulate pituitary corticotroph cells 

to secrete ACTH9. CRH acts by binding to a G protein-coupled  
receptor on the cell surface of the corticotroph cells, CRH-R1.  
Ligand binding to CRH-R1 activates stimulatory G-protein alpha 
subunit (G

as
), causing downstream intracellular signaling through 

cAMP and protein kinase A10,11. The final event of the signaling  
cascade is promotion of proopiomelanocortin gene (POMC) 
transcription and ACTH release11,12. POMC is a precursor  
polypeptide and upon cleavage produces ACTH13. In turn, ACTH 
binds to melanocortin 2 receptor (MC2R) on the surface of 
adrenocortical cells and stimulates the steroidogenesis pathway. 
The end product, cortisol, is released to the circulation and reg-
ulates the HPA axis by negative feedback through the glucocor-
ticoid receptor type 2 (NR3C1) at the level of the hypothalamus 
and the pituitary. The NR3C1/cortisol complex translocates from 
the cytoplasm to the nucleus to bind to regulatory areas on the  
DNA and inhibits synthesis of POMC, CRH, and AVP mRNA and 
therefore reduces ACTH secretion. In theory, deregulation of any 
part of this complex process at the level of hypothalamus, pituitary, 
or negative glucocorticoid feedback mediated by NR3C1 could lead 
to tumorigenesis.

The role of cortisol-negative feedback in corticotroph 
tumorigenesis
Loss of sensitivity to the negative cortisol feedback at the level of 
the pituitary and hypothalamus is a key feature of CD and is used 
for biochemical diagnosis14. Normally, in vivo administration of 
an exogenous glucocorticoid such as dexamethasone leads to sup-
pression of endogenous cortisol and ACTH production, whereas 
in CD there is inadequate suppression of cortisol levels3. Incuba-
tion of primary cultures from corticotroph adenomas with corti-
sol causes a reduction in ACTH levels, indicating some response 
to negative feedback15; however, dexamethasone treatment causes 
less inhibition of ACTH release and POMC mRNA levels in cul-
tured corticotroph adenoma cells than non-adenomatous pituitary 
cells16. Downregulation of the glucocorticoid receptor or mutations 
in its signaling pathway could be a plausible explanation of glu-
cocorticoid resistance; however, in ACTH-producing corticotroph  
adenomas, the expression of the receptor has been found to be 
increased, and although NR3C1 mutations have been found 
in cases of CD, these are not frequent17,18. At the pre-receptor 
level, 11β-hydroxysteroid dehydrogenase type 2, a key enzyme 
that regulates cortisol activity in the tissues by converting active  
cortisol to inactive cortisone, may also be involved as it has been 
found to be highly expressed in corticotrophinoma cells but not 
normal corticotroph cells, indicating a mechanism through which 
the feedback of cortisol to the pituitary could be compromised in 
tumor cells19,20. Recent studies elucidate other mechanisms through 
which NR3C1 is implicated in the resistance to the negative  
glucocorticoid feedback seen in CD.

Testicular orphan nuclear receptor 4
Testicular orphan nuclear receptor 4 (TR4) is a nuclear receptor  
encoded by the NR2C2 gene and acts as a regulator of transcrip-
tion (activator or repressor) in various tissues, including the  
central nervous system and reproductive tissues21. A murine 
knockout for TR4 exhibits growth retardation, weight loss, and 
reduced lipid accumulation22–24. TR4 is overexpressed in cortico-
troph adenomas and corticotroph tumor cell lines and activates 
POMC by binding to its promoter, an effect that is enhanced by  
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phosphorylation of TR4 through the mitogen-activated protein 
kinase/extracellular signal-regulated kinase (MAPK/ERK) path-
way. Overexpression of TR4 also induces ACTH secretion, cell pro-
liferation, and tumor growth in a murine animal model harboring  
ACTH-secreting tumors25. Further studies showed that TR4 inter-
acts with the glucocorticoid receptor, NR3C1, and overrides the 
negative regulation of NR3C1 on POMC transcription and ACTH 
secretion26. This indicates a pathway through which TR4 promotes  
resistance to the negative glucocorticoid feedback. Previous  
studies have shown that TR4 can be trans-activated by peroxisome  
proliferator-activated receptor-gamma (PPARγ) agonists such as 
rosiglitazone and polyunsaturated fatty acids22. In contrast to the 
mechanism described above, rosiglitazone has been shown to 
reduce ACTH secretion in cell lines, but clinical trials in patients 
with CD have had mixed results27–30. A possible explanation for this 
is that PPARγ agonists trigger multiple pathways in corticotroph 
cells, and further research into the role of TR4 may help identify 
other specific therapeutic targets for the treatment of CD.

Heat shock protein 90
The in vivo function of the glucocorticoid receptor is heavily 
dependent on its interaction with the heat shock protein 90 (HSP90). 
HSP90 is a chaperone protein that stabilizes and activates proteins 
through induction of conformational changes. HSP90 protein inter-
acts with the glucocorticoid receptor to facilitate ligand binding and 
aids its translocation to the nucleus, where NR3C1 binds to DNA 
and promotes transcription31,32. Corticotroph adenomas overexpress 
HSP90, and some inhibitors of HSP90 can enhance the transcrip-
tional activity of the glucocorticoid receptor by inducing its release 
from HSP90 in a stable and high-affinity state for ligand binding33. 
Silibinin, a C-terminal HSP90 inhibitor, increased the transcrip-
tional activity of NR3C1 in murine corticotroph cells and enhanced 
the suppression of ACTH secretion in primary corticotroph  
adenoma cell cultures, restoring glucocorticoid sensitivity in vitro. 
In keeping with the in vitro data, oral administration of silibinin 
in a murine CD model caused reductions in clinical features and 
tumor growth and in ACTH and endogenous glucocorticoid levels.  
Silibinin is a commercially available extract of milk thistle seeds 
and has been used in the treatment of prostate cancer and hepato-
toxicity with a good safety profile and therefore is an interesting 
agent for assessment in the treatment of CD34, and clinical trials 
using this agent have been proposed.

Familial endocrine syndromes and Cushing’s disease
Corticotroph adenomas are usually sporadic and only rarely have 
been observed as part of familial endocrine genetic syndromes. 
Germline mutations that cause familial endocrine syndromes affect 
different pathways, are seen infrequently in CD, and do not explain 
the majority of the corticotroph adenomas or indicate a common 
mechanistic explanation for the pathogenesis of CD. Familial CD 
has been reported in germline mutations of the tumor suppressor 
MENIN (causing multiple endocrine neoplasia type 1 syndrome, 
or MEN1), aryl-hydrocarbon receptor-interacting protein gene 
(AIP), and CDKN1B gene (or p27/Kip1) that encodes for p27, a 
cell cycle inhibitor and causes multiple endocrine neoplasia type 4  
(MEN4)35–41. McCune-Albright syndrome is caused by post-zygotic 
somatic mutations in the GNAS1 gene that encodes a stimulatory 

G
as
 and causes a constitutive activation of the Gsα-cAMP signaling  

pathway. The disease is commonly associated with somatotrophi-
nomas, and only three cases of CD have been described as  
harboring GNAS mutations in the tumor tissue35,42,43.

EGFR signaling
EGFR is a cell surface receptor with tyrosine kinase activity and  
is a member of the ErbB family of cell surface tyrosine kinase 
receptors. It is activated by ligand binding with peptide growth fac-
tors such as epidermal growth factor (EGF)44. Upon ligand bind-
ing, it forms homodimers, and the intracellular tyrosine kinase 
domain is activated. This promotes signal transduction through 
complex downstream phosphorylation pathways involving the 
MAPK pathway, the phosphoinositol kinase (PI3), phospholipase  
C gamma (PLCγ), and transcription factors, culminating in promot-
ing cell proliferation and cell differentiation in various tissues45–47. 
Following signal transduction, the ligand-activated EGFR inter-
nalizes and is tagged with ubiquitin protein and degraded in the  
lysosomes48. EGFR signaling confers a powerful proliferation  
signal; overexpression of EGFR has been found in several cancers, 
and EGFR inhibitors are used in the treatment of these tumors49–51.

EGFR signaling promotes proliferation and ACTH secretion in  
corticotroph cells. EGFR and its ligand EGF are highly expressed 
in corticotroph adenoma cells in up to 75% of corticotroph tumors 
as well as normal pituitary cells, gonadotroph, somatotroph, 
and lactotroph adenoma cells52–55. Higher levels of expression of 
EGFR/EGF in corticotroph adenoma cells are correlated with more 
aggressive tumors52,54,56–58. EGFR signaling in corticotroph cells 
could lead to proliferation by downregulation of p27/Kip1 through 
a MAPK/ERK pathway55. Low expression of p27 has been found 
in CD, and a mouse knockout model for p27/kip1 gene develops 
corticotroph tumors of the intermediate lobe and weight gain59–61. In 
humans, however, no somatic mutations of p27/kip1 were found in  
20 corticotroph adenomas62. Additionally to its proliferating effects, 
EGFR signaling promotes POMC expression and ACTH secretion 
through activation of the MAPK pathway15,57,63. In contrast, inhi-
bition of EGFR signaling by gefitinib, an EGFR kinase inhibitor, 
inhibits pomc expression in mice and corticotroph cell proliferation 
in cell cultures, decreasing tumor growth and cortisol levels with 
improvement of clinical features64.

Somatic USP8 mutations in corticotroph adenomas
Sporadic corticotroph adenomas only rarely harbor somatic muta-
tions in the genes that cause CD by germline mutations65. Recently, 
extremely elegant whole-exome sequencing and functional studies 
have shown that somatic mutations involving the USP8 gene are 
found in 35% to 62% of sporadic corticotroph adenomas, provid-
ing significant insight into the mechanisms of disease and a direct 
link with EGFR signaling66. USP8 is located on chromosome 
15q21.2 and encodes a deubiquitinating enzyme, a protein mem-
ber of the ubiquitin-specific processing protease family67. Ubiqui-
tination is a reversible post-translational modification that targets 
proteins, including cell surface receptors, for degradation by the 
endosome-lysosome system through conjugation with a single or 
multiple ubiquitin proteins at lysine residues68. USP8 catalyzes  
the cleavage of ubiquitin tags (deubiquitination) and is involved 
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in tyrosine kinase receptor trafficking and endosome-lysosome  
function, leading to receptor recycling to the cell surface69–72.

Further studies confirmed these findings; somatic USP8 muta-
tions were found in 35% of patients with CD (21 out of 60) in 
a series from Japan, 62% of corticotroph adenomas (75 out of 
120) in a large series from China, and 36% (48 out of 134) in an  
international series73–75. These mutations seem to be specific to cor-
ticotroph adenomas since no USP8 mutations were detected in 80 
non-functioning pituitary adenomas, 80 prolactinomas, 84 growth  
hormone-secreting adenomas, and 58 pituitary adenomas of other 
etiologies73,75,76. USP8 has a 14-3-3 protein-binding site, and the 
USP8 mutations found in corticotroph adenomas clustered to the 
14-3-3 protein-binding motif encoded by exon 14 of the USP8 
gene. 14-3-3 proteins are highly conserved regulatory proteins that 
bind to common recognition motifs and modify protein activity 
and interactions of the protein with other molecules; in the case 
of USP8, binding of 14-3-3 protein inhibits its deubiquitinating  
activity77–79. The USP8 mutations found in CD caused impaired 
14-3-3 protein binding which, in the majority of the mutations 
described, resulted in a proteolytic cleavage immediately upstream 
the 14-3-3 binding site because of an unidentified protease access-
ing the site. The cleavage created two fragments of USP8 protein, 
sized 40 and 90 KDa; the 40-KDa fragment possessed increased 
deubiquitinating activity and caused a significant inhibition of 
EGFR downregulation by degradation at the lysosomes, increased 
re-cycling of EGFR, and augmented EGFR-induced MAPK  
signaling leading to high POMC mRNA expression66,74,75,80.

In corticotroph adenomas, USP8 mutations were more likely in 
females, smaller-sized tumors, and microadenomas66,74,75,80. No 
difference in age, serum cortisol secretion, or Ki67 index was 
reported74. An international multicenter study in 134 secreting and 
11 silent corticotroph adenomas in 105 adults and 29 pediatric  
cases showed that 36% of secreting corticotroph adenomas  
(48 out of 134) carry USP8 mutations but that none of the silent 
corticotroph adenomas harbored mutations and that tumors  
carrying USP8 mutations were more likely in adults80.

These findings have clear implications that may translate into 
much-needed therapeutic applications since the identified signal-
ing pathways could be targeted for treatment of CD. Inhibition of 
USP8, EGFR, or downstream signaling regulators and molecules 
involved in these pathways holds promise for treating USP8-
mutated disease. In primary corticotroph cell cultures consisting of 
USP8-mutated tumor cells, USP8 small interfering RNA (siRNA) 
knockdown or blocking of EGFR attenuated ACTH secretion, 
an effect that was also achieved by treatment with the currently  
available EGFR inhibitor, gefitinib75. Furthermore, molecular  
characterization of tumors may help inform drug selection as USP8-
mutated corticotroph tumors were more likely to express somato-
statin receptor 5 (SSTR5), a receptor that can be targeted by the  

somatostatin analog pasireotide, and O6-methylguanine–DNA   
methyltransferase (MGMT) mRNA, indicating less favorable 
response to temozolomide, an alkylating chemotherapy agent 
used in aggressive CD74. More studies are needed to confirm these 
findings. However, clinical applications are already emerging;  
the EGFR inhibitor gefitinib is currently being assessed for  
the treatment of hypercortisolemia in CD in a phase 2 study in 
China81.

Conclusions
Understanding the mechanisms leading to the development of 
CD has been restricted by the low incidence of disease and lim-
ited tissue availability for research. Recent molecular develop-
ments give intriguing insights into the pathogenesis of CD in a sig-
nificant number of corticotroph tumors. However, we are still far  
from understanding the neoplastic process completely. There has 
been progress in understanding the mechanism of glucocorticoid 
feedback resistance, a central feature in CD that allows tumors 
to escape the physiological regulatory mechanisms, through the 
identification of the interaction of the glucocorticoid receptor with 
transcription regulators TR4 and HSP90. The discovery of USP8 
mutations in a significant number of corticotroph adenomas (35% 
to 62%) highlighted the role of enhanced EGFR signaling in the 
pathogenesis of CD; untangling the interactions of downstream 
signaling molecules in this pathway (or these pathways) opens up 
a new area of research into CD pathogenesis. Molecules involved 
in USP8/EGFR and TR4 signaling pathways as well as selective 
inhibitors of HSP90 are emerging as attractive therapeutic targets, 
especially as no ideal treatment exists for treating corticotroph  
adenomas not cured by surgery, possibly paving the way for person-
alized medicine in the future. The outcomes of clinical trials using 
compounds that target these pathways are keenly awaited.
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