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Evaluating balance on social networks from their simple cycles
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Signed networks have long been used to represent social relations of amity (+) and enmity (-) between
individuals. Group of individuals who are cyclically connected are said to be balanced if the number of
negative edges in the cycle is even and unbalanced otherwise. In its earliest and most natural formulation,
the balance of a social network was thus defined from its simple cycles, cycles which do not visit any
vertex more than once. Because of the inherent difficulty associated with finding such cycles on very
large networks, social balance has since then been studied via other means. In this article we present
the balance as measured from the simple cycles and primitive orbits of social networks. We specifically
provide two measures of balance: the proportion R` of negative simple cycles of length ` for each `6 20
which generalises the triangle index, and a ratio K` which extends the relative signed clustering coefficient
introduced by Kunegis. To do so, we use a Monte Carlo implementation of a novel exact formula for
counting the simple cycles on any weighted directed graph. Our method is free from the double-counting
problem affecting previous cycle-based approaches, does not require edge-reciprocity of the underlying
network, provides a gray-scale measure of balance for each cycle length separately and is sufficiently
tractable that it can be implemented on a standard desktop computer. We observe that social networks
exhibit strong inter-edge correlations favouring balanced situations and we determine the corresponding
correlation length ξ . For longer simple cycles, R` undergoes a sharp transition to values expected from
an uncorrelated model. This transition is absent from synthetic random networks, strongly suggesting
that it carries a sociological meaning warranting further research.
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1. Introduction

1.1 Balance in networks

Relations of amity and enmity between individuals are well represented by signed networks, where an
edge is assigned a positive value if two individuals are acquainted and in good terms, and a negative one
if they are instead enemies [9, 19, 21, 24, 37]. Such networks provide a natural setting to study inter-
personal relationships and their correlations. For example, one could expect that people are friendly
towards the friends of their friends, a situation that is said to be “balanced”. More generally, on signed
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networks, a group of individuals who are cyclically connected—i.e. forming a triangle, a square, a
pentagon etc.—are said to be balanced if the number of negative edges in the cycle is even. Otherwise
the cycle is said to be unbalanced. Sociologists have suggested that such negative cycles are the cause
of tension and thus, that social networks should evolve into a state where balanced cycles are largely
predominant [2, 3, 9, 24]. The question of whether this holds for real-social networks and if not, by how
much this fails to be true, arose from these considerations in the 1940s [24].

Mathematically speaking, this sociological question translates into the following problem: on a
signed network G, determine for all ` the percentage of negative simple cycles of length `. This prob-
lem remains largely unsolved owing to its natural formulation in terms of simple cycles—cycles which
do not visit any vertex more than once. Unfortunately, enumerating all the simple cycles of a network
exactly is computationally intractable. Indeed, this includes counting all the Hamiltonian cycles of the
graph, a problem known to be #P-complete [8]. For this reason, we need to seek more efficient meth-
ods, which inevitably lead to some approximations. Two strategies are implemented in this work: i)
approximate the balance of the network to within any desired accuracy by evaluating the balance on a
large sample of subgraphs of the network; or ii) compute the balance exactly from objects which are not
simple cycles, but should carry a similar information.

We successfully implemented the first strategy thanks to a novel exact formula for counting simple
cycles on any (weighted directed) graph in conjunction with a Monte Carlo approach. This method
is presented in Section 2. It effectively solves the mathematical problem enunciated earlier since the
quality of the obtained approximation is controlled and can be improved at will. For the second strategy,
we relied on the primitive orbits of the graph, cycles which contain no backtracking steps or tail, and
are not the multiple of any other cycle. This is presented in Section 3. The results produced by both
approaches on four social networks are discussed and compared in Section 4.

1.2 Notation

Throughout this article, we consider signed directed networks G = (V ;E ), of which undirected net-
works are a special case. The adjacency matrix of G is denoted AG or simply A. Each edge of the
network is weighted with a value +1 or -1 indicating a positive or negative interaction. A cycle is posi-
tive if the product of its edge values is positive, and otherwise it is negative. A cycle is simple if it does
not visit any vertex more than once. The starting point of a simple cycle is irrelevant but its orientation
is retained. For example, v0v1v2v0 and v1v2v0v1 represent the same triangle, which is however distinct
from v0v2v1v0. The number of positive and negative simple cycles of length ` on G are designated by
N+
` and N−` , respectively.

When discussing the balance of a network, we refer to the ratio R` of the number of negatively
signed simple cycles of length ` to the total number of simple cycles of length `, i.e.

R` :=
N−`

N−` +N+
`

, `> 1.

In particular, R` = 0 when the network is perfectly balanced for length `, while R` = 1 indicates a
totally unbalanced situation. To facilitate comparisons with existing results, we will also provide the
ratio of negative to positive simple cycles U` := N−` /N+

` and the relative signed clustering coefficient
K` := (N+

` −N−` )/(N
−
` +N+

` ) in Appendix C. In the next section, we will see that, for ` = 3, the
coefficients R` and K` are related to two measures of balance in social networks: the triangle index and
the relative signed clustering coefficient (for triads), respectively.
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1.3 Existing approachs

The study of balance in social networks has a long history and has been studied via a variety of
approaches and we can thus only mention the latest works on the subject here. Of fundamental impor-
tance was the introduction of grayscale measures of balance, which quantify how balanced any given
social network is [10, 31, 34]. Many such measures have been proposed, of which we shall briefly
review a few important ones here.

The signed clustering coefficient and algebraic conflict evaluate the balance of a network locally—
at the level of triangles—and globally, respectively [30, 31]. The former is defined as the number T+

of positive triangles minus the number T− of negative ones divided by the total number of triplets of
vertices connected by at least two edges. In other terms, the signed clustering coefficient takes into
account the sign and the tendency to form small clusters (the triangles), putting both considerations on
an equal footing. The relative signed clustering coefficient separates the two contributions, being the
ratio of T+−T− to the total number of triangles, that is exactly the coefficient K3 introduced earlier.
The values of K` for `6 20 provided in this study can thus be seen as an extension of the relative signed
clustering coefficient to larger clusters of up to 20 individuals. In general, the relative signed clustering
coefficient K3 is exactly accessible via the signed adjacency matrix, see Appendix C.

The algebraic conflict is defined on Harary’s basic premise that ”in a balanced network, all vertices
can be divided into two groups such that all positive edges connect vertices within the same group, and
all negative edges connect vertices of the two different groups” [18]. Kunegis [31], observed that this
condition was fulfilled if and only if the smallest eigenvalue of the graph signed Laplacian is nil. This
eigenvalue, called the algebraic conflict, thus carries information about balance and its distance to zero
measures the failure of the network to be perfectly balanced.

Cycle-based approaches have also been devised, which evaluate various ratios involving the positive
and negative cycles of a signed graph. These include the degree of balance and its weighted coun-
terpart, arising either from weights attached to the graph edges or from additional length-dependent
weights attached to the cycles, see e.g. [13]. The triangle index is the fraction of positive triangles on a
graph to the total number of triangles. This index is 1−R3 and can therefore be seen as a special case of
the balance ratios studied in this work. Formally, obtaining the triangle index is a tractable task taking
at most O(N3) time, see Appendix C for a formula giving R3. This computational cost may nonetheless
be too high on very large real-life networks. Instead, recent research has shown it could be reliably
approximated by computing only the k most dominant eigenvalues of the signed adjacency matrix of
the network, thereby reducing the time needed to O(N2k) [43]. Alternatively, the triangle index can be
approximated via the Monte Carlo approach presented here.

In a 2011 study, Facchetti, Iacono, and Altafini [14] studied the global balance of social networks
using the number of edges whose sign must be changed so that all the simple cycles—and hence all the
cycles—be positive. This measure and its close variants are known as the frustration index [26, 33] and
line index of balance [19, 20]. Although these were believed to be computationally intractable to obtain
exactly [14], recent research shows otherwise [39], putting these quantities within reach on networks
with a few thousands nodes. By studying the frustration index, Facchetti et al. found that social networks
are indeed strongly balanced.Their conclusions were called into question in a recent work by Estrada
and Benzi [13] who rather concluded that social networks are not so well balanced using a completely
different cycle-based measure of balance, while still other studies employing the frustration index have
instead confirmed the conclusion of Facchetti et al. [3]. As noted earlier, since counting all the simple
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cycles of a large graph exactly is intractable, one may instead count objects which are not simple but
carry a similar information when it comes to balance. In this vein, Estrada and Benzi [13] proposed the
use of

D = Tr exp(A) =
∞

∑
`=0

1
`!

TrA`, (1.1)

as a method of counting the number of balanced and unbalanced cycles, also known as closed walks,
in a network. They show that, by computing the ratio K = D/D+ with D+ := Tr exp(|A|), called the
weighted degree of balance, then the ratio of negative to positive cycles can be obtained as

U walks :=
1−K
1+K

.

This is an extremely efficient method which simply requires the evaluation of the eigenvalues of the
adjacency matrix. In practice, this could be expensive on very large networks, but it is sufficient to
compute only a few of the largest eigenvalues of A, as D and D+ are dominated by those [13].

Expression (1.1) counts all closed walks (weighted by a factor 1/`! for a walk of length `). Because
of this, backtracking steps and multiple cycles are counted. For example, the non-simple cycle v0v1v2v0v1v2v0 =
(v0v1v2v0)

2 is part of the sum. Such cycles are positive, and so they do not upset the balance of an
already balanced network, but they do have an effect on the (global) balance ratio(s) for an unbalanced
network. In other words, the cycle-sum embodied in (1.1) contains non-simple cycles from the order
2 onwards, effectively mixing the balance ratios R` at all lengths. In addition, the global signature of
balance Uwalks further mixes the contributions of the various cycles lengths. Figure 1 illustrates this
issue in a triad. Whilst the network is completely unbalanced for triangles, we get U walks = 0.19, a
number that is not easy to interpret.

These difficulties cannot be resolved easily using walks. In an attempt to better account for the
length dependency of the balance, we define D` :=TrA`, D`

+ :=Tr |A|` and Kwalks
` :=D`/D`

+, U walks
` :=

(1−Kwalks
` )/(1+Kwalks

` ) and

Rwalks
` :=

D`
+−D`

2D`
+

. (1.2)

These quantities only take walks of length ` into account when calculating the balance. Yet, since short
cycles and their multiples are typically much more abundant than long cycles, the values of U walks

` and
Rwalks
` are still largely dominated by the contributions from self-loops, backtracks and triangles. Conse-

quently Rwalks
` will be depressed as compared to the true balance ratio R`, that is, Rwalks

` overestimates
the proportion of balanced cycles. We demonstrate this concretely in Section 4, Figures (2) and (3),
where we compare Rwalks

` with R` calculated from the simple cycles on two social networks.
While one may empirically argue that long cycles are less relevant than short ones in real social

networks [13, 47], it seems better to offer as detailed a mathematical analysis as possible before deciding
this issue. For these reasons, we found it necessary to abandon the use of walks and rather recur either
to the simple cycles themselves or to primitive orbits.

1.4 Motivating our approach

1.4.1 On using simple cycles Earlier this year, Aref and Wilson [3] have produced a global study
of existing measures of balance. In particular, they recommended the use of the frustration index as a
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FIG. 1. An unbalanced network of three vertices. The dotted line represents a negative relationship. The exponential unbalance
ratio is Uwalks = 0.19 while in fact R2 = 0 and R3 = 1.

measure of balance and raised several issues affecting cycle-based methods, which we briefly discuss
below.

First, Aref and Wilson make an essential point concerning directed networks: many of the existing
cycle-based studies do not take into account the fact that some edges are not reciprocated. It could be
that an individual feels in good terms with someone who, in fact, feels negatively towards him. Or it
could be that someone has passed a (positive or negative) judgment about someone else, whose attitude
towards the first person is not reported in the data. This makes it difficult to interpret the results of
approaches assuming edge-reciprocity, which should thus be, strictly speaking, limited to undirected
networks. Second, Aref and Wilson write [3] “cycle-based measures [...] are difficult to compute and
do not provide a proper range of values, whether weighted or not.” Finally, they note that such measures
must be improved to avoid or diminish the influence of closed-walks with repeated edges or cycles—
which they call cycle double-counting—as these are always balanced.

These observations are central to the present study, which addresses all of them. First, our approach
is valid on directed signed networks, i.e. we do not assume nor need reciprocity of the edges1. Remark
that an undirected graph is a special case of a directed one, where each directed edge ei j from i to j
has a corresponding edge e ji of opposite orientation. It follows that any method for evaluating some
indicator of balance that is valid on directed graphs gives rise to a valid approach for undirected graphs.
Furthermore, a simple cycle on an undirected graph corresponds to two cycles with identical signs on the
directed version of the same graph. Consequently, the balance ratios R` can always be calculated from
the directed form of an undirected graph. Second, our approach offers a proper range of values, since
0 6 R` 6 1 for all `, which permits a gray-scale distinction between balanced or unbalanced situations
on the one hand and the null hypothesis on the other. In the results, we will see that R` typically varies
between 0 and 0.6, exploiting much of its theoretical range. Third, our method is sufficiently tractable
that it can be implemented on a standard desktop computer (see below), even on large networks, thanks
to a recent breakthrough in the combinatorics of cycles. Finally, our simple-cycle based method is
rigorously free from the double-counting problem.

1.4.2 On studying cycle-lengths separately Existing approaches to social balance tend to fall into
two categories, both of which provide useful but incomplete information:

I Methods based on small structures in social networks, in particular triads, are only sensitive to

1In other terms, the situations described by Aref and Wilson are exactly taken into account in our analysis. This motivated us
to define the balance ratios R`, for `> 1 rather than `> 3. And indeed, we will see below that R2 > 0 in three of the four networks
analysed, indicating that the lack of edge-reciprocity does occur in practice
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local interactions in small groups of individuals. For this reason they are unable to detect long range
correlations in relationships as well as characterise the dynamics of larger groups of individuals.

I Global measures of balance such as the degree of balance and algebraic conflict, are sensitive to
social tensions occurring on all scales (that is group-sizes) but do not yield much information on where
those tensions might be, as well as on the groups of individuals typically involved in balanced or unbal-
anced relations.

The approach recently taken by Facchetti and coworkers [14] is a step towards bridging this divide,
as it provides both global and local information on the network balance. Yet, Estrada and Benzi have
observed that the frustration index seems to be mostly determined by triads, leaving the influence of
larger groups in the final result in doubt. In this work we have taken another route by extending two
measures that have been developed for triads, the relative signed clustering coefficient and triangle
index, to longer cycles. These longer cycles are sensitive to long range correlations between edge signs,
and, by studying each length separately, provide a wealth of information on where social tension occurs
by disentangling the influence of the various cycle-lengths on the overall balance.

2. Balance from simple cycles

2.1 Core combinatorial result

One possible strategy to estimate the balance ratios R` consists of approximating them from a large
sample of subgraphs of the network under study. The main novelty permitting this straightforward
approach in practice is a recently developed mathematical formula for counting simple cycles of any
length on weighted directed graphs. Rather than sampling the simple cycles directly, the formula allows
for a rapid and exact evaluation of the balance ratios on subgraphs of the original network. We show
below that this strategy is much better from a computational standpoint than sampling the simple cycles
themselves.

2.1.1 Formula for counting simple cycles Let P(z) be the ordinary generating function of the simple
cycles of any weighted directed graph G, that is

P(z) := ∑
c: simple cycle

w(c)z`(c),

where w(c) is the weight of c, that is the product of the weights of its edges, z is a formal variable and
`(c) is the length of c. By exploiting algebraic structures associated with walks on graphs, P(z) can be
shown to be

P(z) =
∫ 1

z ∑
H≺G

H connected

Tr
((

zAH
)|H|(I− zAH

)|N(H)|
)

dz. (2.1)

In this expression H is a connected2 induced subgraph of G, AH its adjacency matrix, |H| the number
of vertices in H and |N(H)| the number of neighbours of H in G. A neighbour of H in G is a vertex v
of G which is not in H and such that there exists at least one edge, possibly directed, from v to a vertex
of H or from a vertex of H to v. The result of Eq. (2.1), as well as further exact formulas for P(z), is
presented in [16] and shall not be proven here.

2If G is directed, then the subgraphs H should be weakly connected induced subgraphs of G. Recall that a digraph is said to be
weakly connected if replacing all its directed edges by undirected edges produces a connected undirected graph.
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2.1.2 Computational cost Let nH(G) be the number of connected induced subgraphs of a graph G
and let nc(G) be the total number of simple cycles on G. The main advantage of Eq. (2.1) is that,
if we use a direct algorithm for finding all the connected induced subgraphs of a graph, for exam-
ple using reverse-search, the time complexity is O

(
N + |E| +N2nH(G)

)
, with N and |E| the number

of vertices and of edges of the graph, respectively [4, 11, 45]. In comparison a direct search of the
simple cycles themselves must have a time complexity scaling with nc(G). The best general purpose
algorithm for finding such cycles, Johnson’s 1975 landmark algorithm [29, 35], has time complexity
O
(
(N + |E|)(nc(G) + 1)

)
, and on undirected graphs there exists an algorithm achieving the optimal

O
(
N(nc(G) + 1)

)
time complexity [6]. In spite of the fact that these algorithms can find the sim-

ple cycles, they are also commonly used when counting them is sufficient. In this situation however,
Eq. (2.1) with its time complexity scaling with nH(G) represents a substantial speed-up since in gen-
eral nH(G)� nc(G). This is best demonstrated on the complete graph KN on N vertices—which is the
worst case scenario. On KN we have nc(G)' e× (N−1)! where e' 2.71828 is the base of the natural
logarithm, while nH(G) = 2N is “only” exponential3 Furthermore, in practice, the computational cost is
much smaller as real networks are typically sparse.

Besides Johnson’s algorithm, the most efficient general purpose4 algorithm for counting simple
cycles is that of Bax and Franklin [5]. This algorithm evaluates a formula counting the simple cycles
that involves a sum over all induced subgraphs of the graph, as opposed to only the connected ones
appearing in Eq. (2.1). On sparse graphs, there are far more induced subgraphs than connected induced
subgraphs and evaluating Eq. (2.1) yields a significant speed-up as compared to Bax and Franklin’s
algorithm.

Most importantly for applications, Eq. (2.1) is well suited to truncations: only those connected
induced subgraphs H of G for which |H| 6 ` 6 |H|+ |N(H)| can possibly contribute to the coefficient
of z` in P(z). This means that if one is interested in the first ` terms of P(z)—that is in the simple cycles
of length up to `—it suffices to consider those connected induced subgraphs of G with |H| 6 `. Using
reverse search, this has time complexity O(N+ |E|+`2nH: |H|6`(G))6 O(N2+`2nH: |H|6`(G)) [11, 45].
Since furthermore only the small adjacency matrices AH enter Eq. (2.1), each term of the equation costs
O(|H|3)6 O(`3) to evaluate. Thus, getting the first ` terms of P(z) from Eq. (2.1) has time complexity
bounded by O(`3N`) in the worst case scenario of the complete graph, and far less on sparse graphs.
Instead, the computational cost on sparse graphs can be bounded as follows: let ∆ be the maximum
vertex-degree on the network. Then the number of connected induced subgraphs on at most ` vertices
is bounded by O

(
N∆ `/((∆ −1)`2)

)
[45]. In addition, the time complexity of reverse search in this case

is O(N(∆ +1)+N∆ `) [4, 11, 45]. Consequently Eq. (2.1) can be shown to produce P(z) exactly up to
order ` in O

(
N∆ `/`

)
time.5 For a more detailed analysis of the algorithmic implementation of Eq. (2.1)

together with comparison with other algorithms for the same task, see [38].

To give concrete examples, with an Intel Core i7-4790 CPU @ 3.60 GHz desktop computer, evaluat-
ing Eq. (2.1) on the complete graph on 15 vertices took on average∼0.7sec, yielding 255,323,504,932'

3One should keep in mind that since P(z) determines the existence and number of Hamiltonian cycles on G, under the expo-
nential time hypothesis [28] this exponential cost is, in principle, the best possible.

4In particular, the remarkable algorithm of Alon, Yuster and Zwick [1], which is extremely efficient for counting simple cycles,
is not a general purpose one. Rather, it is limited to undirected graphs and cycle lengths of at most 7.

5The properties of Eq. (2.1) contrast it with other analytical formulas for counting simple cycles of small lengths [1, 22, 36].
First, these formulas work only on undirected graphs. Second, these formulas comprise a large number of terms, e.g. 160 terms
for simple cycles of length 10, all of which involve the adjacency matrix of the full graph.
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2.5×1011 for the total number of simple cycles, which we verify analytically to be exact. This went up
to∼25sec for the complete graph on 20 vertices where 349,096,664,728,623,336' 3.5×1017 simple
cycles were counted, a number that is, once again, exact. In both cases about half of the computer time
was spent looking for the connected induced subgraphs and the other half implementing Eq. (2.1). For
the real-world networks analysed below, a randomly chosen induced subgraph on 30 vertices is typically
analysed in 0.001−0.3seconds on the same computer, depending on its sparsity.

2.2 Monte Carlo implementation

When the size of the network to study is large—what “large” means here strongly depends on the graph
sparsity—an exact calculation of the desired terms of P(z) from Eq. (2.1) becomes intractable and the
core combinatorial result must be supplemented by a Monte Carlo approach.

The reader may have noticed upon close inspection of Eq. (2.1) that P(z) results from subtle cancel-
lations between the contributions of the various connected induced subgraphs H of G. For this reason,
Eq. (2.1) is not directly amenable to a Monte Carlo method which would consist of randomly selecting
a sample of connected induced subgraphs H of the whole network G and estimating P(z) from this sam-
ple. Eq. (2.1) can however be evaluated very quickly on graphs of “reasonable” size—once again this
depends on the sparsity of the underlying graph and the available computational resources.

Our strategy is therefore to sample N induced subgraphs of the network under study and to calculate
the balance ratios R` exactly up to the desired length ` on each of these samples via Eq. (2.1). The
average value of all the R` then converges to that of the whole network as N grows. The quality of
this approximation is appraised by repeating the whole procedure N′ times and extracting the standard
deviation on the averaged R`. If this deviation is too large, the number N of samples is increased and
the standard deviation is reevaluated. Once the deviation is below the desired accuracy, the method is
deemed to have converged. We also systematically tested the method against bias by comparing it with
exact results whenever available, see Appendix A.

Firstly, we decided to limit our study to simple cycles of length up to 20. Longer cycles are both
rare and largely irrelevant since, as will see, at such lengths ` > 20 all the social networks follow the
null hypothesis. There remains three important parameters controlling the Monte Carlo approach which
we can choose using a qualitative analysis:

1) Number of samples N: it is the total number of subgraphs on which the simple cycles are counted.
The larger this number, the more simple cycles are found and the smaller the variance var(R`)
of the R` ratios, that is the better the results. Following well established principles, we expect
var(R`) ∝ 1/

√
|Cycle`|, |Cycle`| being the total number of simple cycles of length ` found in all

samples.

2) Size Nvertices of each sample: it is the number of vertices in each sampled subgraph. Since the
longest simple cycle on a graph on Nvertices has length ` 6 Nvertices, we must have Nvertices > 20.
Letting f`(Nvertices) be the average number of simple cycles of length ` found on all sampled
subgraphs, we have |Cycle`|=Nsample f`(Nvertices). In addition, we can expect f` to be monotonous
increasing function of Nvertices, in particular f`(Nvertices) is at most O(N`

vertices) on complete graphs.

3) Time τ`(Nvertices) spent per sample: we have shown in the preceding section that this time obeys
τ`(Nvertices) = O

(
Nvertices∆

`/`
)
, where ∆ is the average maximum degree of any vertex in the
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sampled subgraph. On average, ∆ 6 Nvertices is expected to be a monotonous increasing function
of Nvertices.

Taking these three quantities into account, we end up with the following trade-off between accuracy
of the results and time taken to reach them

var(R`) ∝
1√

N f`(Nvertices)
⇐⇒ Total time = O

(
N

N`+1
vertices
`

)
,

from which we deduce that N should be large while Nvertices should be as small as possible. Indeed, the
time taken to count simple cycles of length ` can scale as badly as N`+1

vertices while the variance cannot

diminish faster than
√

f`(Nvertices) 6 N`/2
vertices. In consequence increasing N is a better way to improve

the accuracy of the results than increasing the size of each sampled subgraph, since the overall compu-
tation time scales only linearly with N.

Empirically, we confirmed the qualitative analysis outlined above as we found that a large number
N of samples of size Nvertices ∼ 20−30 vertices offered the best trade-off between accuracy and compu-
tation time. Note, in practice τ20(Nvertices) is found to be between a millisecond and a tenth of a second
time.

3. Balance from primitive orbits

3.1 Background

A primitive orbit 6 on a network is a cycle which contains no backtracking steps or tail, and is not a
recurrence of any other cycle, e.g. (v0v1v2v0)

2 [42]. It is important to note that this is not the same
as a simple cycle—for example if c1 and c2 are simple cycles sharing an edge, then c1c2 is a primitive
orbit. However, primitive orbits are identical to simple cycles up to order five 7. The (inverse) Ihara zeta
function of a graph is given by [27]

ζ
−1
|G| (z) = ∏

c∈[C]

(
1− z`(c)

)
, (3.1)

where `(c) is the length of the primitive orbit and |G| denotes the unsigned version of G. The notation
[C] designates the set of equivalence classes of primitive orbits, i.e. the set of primitive orbits where all
starting points on the same cycle are considered equivalent. The zeta function ζ

−1
|G| (z) can be expanded

into terms representing each primitive orbit; to first order the expansion is ζ
−1
|G| (z) = 1−∑c∈[C] z`(c)+

O(z6). Therefore, up to order 5, the zeta function corresponds to a sum over simple cycles, and non-
simple cycle contamination only occurs at order 6 and higher. Because of this, the Ihara zeta function
will provide a more precise measure of balance than a walk-based one.

6Unfortunately, primitive orbits are also known as “prime cycles”, which is, strictly speaking, a misnomer. Indeed, primitive
orbits do not satisfy the fundamental definition of a prime element, namely p is prime if and only if p|a.b ⇐⇒ p|a or p|b for all
a, b. Ironically, the only objects obeying this definition on a graph are the simple cycles, see [15].

7This is true if and only if the graph has no self-loops, i.e. length 1 cycles. In the presence of such loops, we can simply remove
them by replacing A by A−Diag(A) in the calculations of R`>3.
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To approximate the balance ratios R` using primitive orbits, we begin by introducing a modified
version of the Ihara zeta function for signed networks

ζ
−1
G (z) = ∏

c∈[C]

(
1− s(c)z`(c)

)
,

where s(c) is the sign of the primitive orbit c. We now need an efficient way of evaluating the zeta
function. This can be achieved using its determinant form

ζ
−1
G (z) = det(I− zT) ,

where T is the Hashimoto matrix of the network, also known as edge adjacency matrix [23]. Let us
recall the standard definition of T here. We designate by ei, 1 6 i 6 |E|, an edge of the graph equipped
with a randomly chosen orientation, and by e−1

i the edge ei with the opposite orientation. Then T is the
2|E|×2|E| matrix defined as [42]:

Ti j :=

{
1, if and only if the end vertex of edge ei is the start vertex of edge e j and e j 6= e−1

i

0, otherwise.

In other words, T is the adjacency matrix of the oriented line graph (OLG), that is its vertices correspond
to the directed edges of the original graph. In the OLG, vertices are connected if there is an allowed two-
step walk along the corresponding edges in the original graph and backtracking steps are not allowed
(so ab,bc is allowed if ab and bc are edges, but ab,ba is not allowed).

To incorporate the edge signs into the matrix, we use forward sign assignment. Since all terms in
the zeta function are cycles, we can uniquely place the sign of edge ab into any edge in T which begins
from ab, and the sign of the cycle in T will be the same as the sign of the original cycle.

3.2 Computation

In principle, the number of primitive orbits of any length is easily determined from traces of powers of
T. We have the following result, which we prove in Appendix B.

PROPOSITION 3.1 Let G be a signed directed graph, T its Hashimoto adjacency matrix and N+
ob;` and

N−ob;` be the number of positive and negative primitive orbits of length ` on G, respectively. Then

N+
ob;`−N−ob;` =

1
` ∑

d|`
µ(`/d)TrTd ,

where µ(.) is the number-theoretic Möbius function. A similar result holds for N+
ob;` + N−ob;` upon

replacing T by |T|.

This formula is particularly revealing as to the connection between the Hashimoto matrix and the
primitive orbits. Traces of powers of T count all cycles in the OLG, i.e. the backtrackless closed walks,
including the so-called power orbits, e.g. (c1)

2 and (c1c2)
2, which are not primitive. The set of cycles

of length ` contains such power orbits if and only if there are orbits whose length is a divisor of `.
These divisors are removed via a Möbius inversion in the above sum. For moderately sized graphs, it is
straightforward to compute T and its spectrum, and so to compute the number of primitive orbits of any
length. However, since T is the adjacency of the OLG, its size is equal to the number of edges in the
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original network. In practice, it can therefore become difficult to compute the eigenvalues of this matrix.
Since TrT= TrT2 = 0, we need only concern ourselves with third and higher powers of the eigenvalues.
The spectrum can therefore be effectively truncated, considering only the largest magnitude eigenvalues,
thereby reducing the computational burden. Nevertheless, this can be computationally demanding for
large networks.

For undirected unsigned graphs, Stark and Terras [41] provide a way to compute the number of all
orbits (i.e. TrT`), which we adapted to count the number of positive and negative primitive orbits in a
signed but undirected network. Let D be the diagonal degree matrix of |G| and let Q = D− I. Further
let A+ be the adjacency of only the positive edges in G and similarly A− be the adjacency of only
the negative edges in G (coded as -1). Then the following iteration counts the number of positive and
negative backtrackless closed walks (orbits) between any two vertices, denoted W+

ob;` and W−ob;`,

A+
2 = A+A++A−A−− (Q+ I),

A−2 = A−A++A+A−,
A+
` = A+

`−1A++A−`−1A−−A+
`−2Q,

A−` = A−`−1A++A+
`−1A−−A−`−2Q,

W+
ob;` = Tr

(
A+
` − (Q− I)

(`−1)/2

∑
j=1

A+
`−2 j

)
,

W−ob;` = Tr

(
A−` − (Q− I)

(`−1)/2

∑
j=1

A−`−2 j

)
.

Since W+
ob;`−W−ob;` = TrT` and W+

ob;`+W−ob;` = Tr |T|`, using these results in conjunction with Propo-
sition 3.1 counts the primitive orbits. This method is very efficient thanks to its use of A rather than T,
but remains limited to undirected networks.

Armed with the number of positive and negative primitive orbits of length `, we compute the
primitive-orbits-based ratios Rob

`>3 :=N−ob;`/(N
−
ob;`+N+

ob;`). We will see that these provide better approx-
imations of the true balance ratios R` than walk-based ones Rwalks

` .

4. Results

In this section we present the evolution of the balance ratios R` with ` on several social networks. As
detailed in §1.4, we aim, on each network, at determining the evolution of R` with `. We will see that
on all the large social networks studied here, R` exhibits a sharp transition around ` ∼ 10− 12, which
is absent from synthetic networks. We discuss the relation between this observation and past studies in
§4.7, concluding with a possible structural interpretation for it. Tables with full numerical results for R`,
K` and U` are included in Appendix C.

4.1 Data sets

Following the precedent studies by Facchetti et al. [14], Estrada and Benzi [13] and Aref and Wilson
[3], we have analysed four social networks: i) Gahuku-Gama with 16 vertices [44]; ii) WikiElections
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with 8297 vertices [46]; iii) Slashdot with 82,144 vertices [40]; and iv) Epinions with 131,828 vertices
[12]. Note that among these, only the Gahuku-Gama network is undirected.

4.2 Null-hypothesis

In order to meaningfully determine if social networks are balanced, we compare our results to the
balance that would be obtained on a graph with the same proportion p of negative directed edges than
the real network under study, but where the sign of any directed edge is negative with probability p. In
particular, in the null-hypothesis model, the signs of any two directed edges are independent random
variables. Then the probability that a simple cycle c of length ` be negative is

Prob(c negative) =
d`/2e−1

∑
i=0

(
`

i

)
p2i+1(1− p)`−2i−1. (4.1)

Supposing for simplicity that the signs of any two simple cycles are independent random variables then
the probability distribution for N−` /(N

−
` +N+

` ) in the null-hypothesis is a binomial law with expectation
value Rnull

` given by Eq. (4.1). Consequently, in this simple model the null-hypothesis is compatible up
to a near 95% confidence level with any value of R` within the 2σ interval

Rnull
` ±2

√
Rnull
` (1−Rnull

` )√
N−` +N+

`

. (4.2)

The assumption that the signs of any two simple cycles are independent random variables is not
true on real social networks. Calculating the null-hypothesis without this assumption is very difficult in
practice however. Indeed, a more accurate null model is given by evaluating the average balance ratios
of all lengths over all random shufflings of the edges-signs from the social network under study. We
implemented this more accurate model on the WikiElections network and found it to yield null balance
ratios that are up to 9% lower than the values predicted by Eq. (4.1) when ` . 10, while differences
diminish for longer simple cycles. Yet, all the conclusions that can be drawn from comparing the simple
null model Eqs. (4.1, 4.2) with the computed balance ratios are unchanged, since the relative positions
of the two are unaltered by the more accurate model.

4.3 Gahuku-Gama network

The Gahuku-Gama network represents the relation between sixteen tribes living in the eastern central
highlands of New-Guinea [17]. Since the network is very small, the Monte Carlo approach is not
necessary and we obtained the exact balance from simple cycles of all lengths thanks to Eq. (2.1). The
results are shown on Fig. (2). Observe how the balance ratios Rwalks

` and Rob
` respectively calculated

from the walks and primitive orbits overestimate the proportion of balanced cycles.
The exact results show that up to length ` = 7, the actual ratio R` is well below that of the null-

hypothesis, indicating strong inter-edges correlation in favour of balanced cycles. This observation can
be made more precise on noting that the balance is well fitted by a simple exponential model

Rmodel
` =

(
1− e−(`−2)/2ξ

)
, (4.3)
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FIG. 2. Exact percentage R` of negatively signed simple cycles on the Gahuku-Gama network calculated from Eq. (2.1) (red
squares) as compared to the null-hypothesis (blue circles). The dashed black curve is a simple exponential fit of R` yielding the
correlation length ξ ' 2.08. Also shown are the percentages Rwalks;` (blue triangles) and Rob;` (black diamonds) calculated from
the walks and primitive orbits, respectively.

where ξ ' 1.04 is the correlation length. In this context, ξ characterises the distance between two edges
of the graph such that their signs are correlated. Note, the maximum distance between any two vertices
on a cycle of length ` is b`/2c, hence Eq. (4.3) fits 2ξ . This indicates that tribes of the Gahuku-Gama
network are mostly sensitive to the relations with all their first degree neighbours. Furthermore, while
the network is less balanced than might seem to be the case when considering only the triangles, Fig. (2)
suggests that much of the imbalance is shifted to long-length simple cycles. In particular, the rebound of
R` above 50% for 7 < `. 13 shows that long negative simple cycles are over-represented as compared
to a totally uncorrelated model (the null hypothesis). This means that negatively signed situations are
slightly favoured in cyclic groups involving 7 < ` . 13 tribes. We will discuss the significance of this
observation in the Section 4.7.

4.4 WikiElections network

The WikiElections network represents the votes of Wikipedia users during the elections of other users
to adminship. The network is obtained as follows: when a user votes against the candidate, an edge
with a negative weight is created from the voting user to the candidate. If instead the user is neutral or
supports the candidate, a positive weight is given to this edge. The network counts 8,297 vertices and is
thus too large for a direct exact calculation of the balance ratios beyond `= 6 and we employed a Monte
Carlo approach in tandem with Eq. (2.1). In total we evaluated the balance on 1,800,000 graphs on 20
vertices. The results are shown on Fig. (3).

We find the balance ratio R` to evolve with ` in three major phases, which we will also observe on
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FIG. 3. Computed percentage of negatively signed simple cycles on the WikiElection network for cycle length up to 17 (red line
and error bars). The blue shaded region bordered by dashed blue lines shows the values of R` compatible with the null-hypothesis,
as determined by Eqs. (4.1, 4.2). Also shown are the percentages Rwalks

` (blue triangles) and Rob
` (black diamonds) calculated from

the walks and primitive orbits, respectively. In inset, a subgraph of the WikiElections network.

the Slashdot and Epinions networks. For short simple cycles `. 12, R` increases slowly and smoothly
with ` and is also well approximated by the primitive orbits results. In addition, within this range
of cycle lengths, R` is always much smaller than predicted by the null-hypothesis, witnessing a strong
inter-edge correlation in favour of balance. A sharp transition to R` values circa 50% then occurs around
`∼ 12−14. This transition is not an artefact of our algorithm as it is not observed on synthetic networks,
see Appendix A for details.

The transition demonstrates that at `∼ 12−14, the simple cycle length becomes longer than twice
the inter-edge correlation length ξ , which must thus be around 6−7.8 Following the sharp transition, R`

is reliably found to be over 50%, only to slowly decay to results consistent with null-hypothesis 9. This
last behaviour, which is also present on the Gahuku-Gama network, suggests that much of the imbal-
ance is shifted to long simple cycles for which edges signs appear to be weakly correlated in favour of
imbalance.

8Indeed, although the network is directed, many of its edges are bidirectional so that the maximum distance between any two
vertices on a cycle of length ` is around b`/2c. We emphasise that ξ = 6−7 does not mean that individuals participating in the
WikiElections network are sensitive to all the relations between their neighbours up the 6th or 7th degree. Rather, ξ only provides
an upper bound on the depth of the correlation. This is because simple cycles of length ` typically sustain shortcuts which lower
the average distance between the individuals participating in the cycle. The inset of Fig. 3 illustrates this phenomenon with a
subgraph of the WikiElections network sustaining an octagon, but where the average distance between any two vertices is only
∼ 2.5.

9This effect becomes even more pronounced when R` is compared with the more accurate null model that takes the structural
correlations between simple cycles into account.
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FIG. 4. Computed percentage of negatively signed simple cycles on the Slashdot network for cycle length up to 18 (red line and
error bars). The blue shaded region bordered by dashed blue lines shows the values of R` compatible with the null-hypothesis,
as determined by Eqs. (4.1, 4.2). Also shown is the percentage Rob

` determined from the primitive orbits of the graph (black
diamonds).

4.5 Slashdot network

The Slashdot network is a large directed graph on 82,144 vertices representing relations of amity/enmity
between the users of the Slashdot website [31, 32]. For the Monte Carlo implementation of Eq. (2.1),
we sampled 20,000,000 graphs on 20 vertices from this network. We present the balance ratio R` up to
`= 20 on Fig. (4).

The balance ratio on this network exhibit a behaviour similar to that observed on the WikiElection
network: at first R` increases smoothly with ` 6 10. Then R` undergoes a rapid transition to higher
values broadly consistent with the null hypothesis. This indicates a correlation length between the
edges of ξ ' b11/2c= 5 and thus a correlation depth of 5 or less. It is also remarkable that the balance
ratios for 14 6 `6 16 are once more notably higher than 50%, indicating, as in the Gahuku-Gama and
WikiElections networks, that much of the imbalance is shifted to long-length cycles.

4.6 Epinions

The Epinions network is a large directed graph on 131,828 vertices representing relations between the
users of the consumer review website Epinions.com. For the Monte Carlo implementation of Eq. (2.1),
we sampled 1,000,000,000 (one billion) graphs on 30 vertices from this network. We present the result-
ing balance ratio R` up to ` = 15 on Fig. (5). We were not able to compute the balance ratio Rob

` using
primitive orbits, owing to the very large size of this network. Indeed, recall that in order to compute the
number of primitive orbits, one needs the spectrum of the Hashimoto edge adjacency matrix of the net-
work. This matrix has size |E|× |E|, with |E| the number of (directed) edges of the graph. Counting the
primitive orbits thus takes O(|E|3) time and on Epinions |E| = 841372. Preliminary calculations indi-
cate that it would take well over a week of computation to get sufficiently many eigenvalues to obtain a
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reliable approximation of Rob
` . For this reason, we decided not to seek the primitive orbits results in this

case.
Broadly speaking, the balance ratio R` behaves similarly on this network as it does on the WikiElec-

tions and Slashdot ones. The transition of R` from small to high values indicates a correlation length ξ

circa 10/2 = 5, and thus a correlation depth of 5 or less. Strikingly, for 4 6 `6 9, R` is almost constant
around 15% witnessing a very strong, almost length-independent, inter-edge correlation.

4.7 Comparison with past studies and interpretation of the results

Past studies of the WikiElections, Slashdot and Epinions networks have shown them to be very well
balanced or quite unbalanced, depending on the measure studied. Kunegis [30] found that these three
networks were globally well balanced, with algebraic conflicts on the order of 10−3 that is a hundred
time smaller than in the case of Gama-Gahuku. Kunegis further confirmed this with the signed clus-
tering and relative signed clustering coefficients, which are sensitive to local structures at the level of
triads, and were found to be at least five times smaller on WikiElections, Slashdot and Epinions than on
Gama-Gahuku. Similar conclusions had been reached by Facchetti et al. [14], who showed using the
frustration index that the percentage of perfectly balanced nodes was well over 50% on the three online
social networks.

At the opposite, Estrada and Benzi [13] who studied the degree of balance, argued that these net-
works are less-well balanced than concluded so far.10 In particular they found highly unbalanced sub-
networks of individuals in WikiElections, Slashdot and Epinions, which we can put in relation with the
results presented here. Indeed, Estrada and Benzi predict ”the existence of many negative cycles respon-
sible for the global lack of balance” in these networks. They further remark that finding and studying
these negative cycles would be extremely expensive computationally. It is tempting to relate the negative
cycles predicted by Estrada and Benzi and the cyclic groups of over circa 10 individuals responsible for
the overrepresentation of unbalanced simple cycles at such lengths as visible in our results.

This suggests a possible structural interpretation for the sharp transition of R` and the ensuing over-
representation of unbalanced cycles that we have observed. Consider a network comprising well bal-
anced, relatively dense clusters of individuals with negative edges mostly located in between these
clusters. Then most short simple cycles will exist inside the dense clusters, consequently appearing
strongly balanced. At the opposite, simple cycles whose lengths exceed the typical cluster size, being
simple, are forced to cross cluster boundaries, thereby appearing mostly unbalanced. As a corollary,
the highly unbalanced subnetworks of individuals are those that include individuals from different well
balanced clusters and are visited mostly by long simple cycles. This kind of cluster structure can be
confirmed in the case of the Gama-Gahuku network. There, Kunegis’ in-depth analysis has shown that
the network comprises three dense, perfectly balanced clusters with negative edges only between them.
The average size of these clusters is 5.3 with the largest one regrouping 7 tribes, in line with our analysis
which shows that R` & 50% from `= 7 onwards.

10The difference of conclusion might originate from that the degree of balance is sensitive to cycles of all lengths, when the
signed clustering and relative signed clustering coefficients are only influenced by triads. Estrada and Benzi argued that a similar
observation could be made for the frustration index, which appeared to follow closely what could be predicted from triads only.
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FIG. 5. Computed percentage of negatively signed simple cycles on the Epinions network for cycle length up to 15 (red line and
error bars). The blue shaded region bordered by dashed blue lines shows the values of R` compatible with the null-hypothesis, as
determined by Eqs. (4.1, 4.2).

5. Conclusion

5.1 Balance

Ever since relations of amity and enmity between individuals have been modelled as positive and nega-
tive signs attached to the edges of a network, the possibility of finding patterns in these signs has arisen.
In one of the earliest formulation of the theory of balance, Heider proposed that most groups of individ-
uals whose relationships form a cycle, should evolve into a state where this cycle has a positive overall
sign [24]. While much research on the subject has appeared since then, altering the concept of social
balance and of Heider’s initial conjecture as well as questioning its validity, this very earliest statement
remained largely unverified owing to its natural formulation in terms of simple cycles. Contrary to
closed walks, that is ”ordinary” cycles, simple cycles may not visit any vertex more than once and most
problems concerning them are difficult, indeed NP-hard and #P-complete.

We thus saw Heider’s earliest conjecture as a well posed challenge of network analysis and while
its relevance to modern sociology is open for debate, simple cycles undeniably offer several advantages
over other cycle-based studies. They are indeed free from the double-counting problem, work on undi-
rected and directed networks alike, and the resulting balance indicators K` and R` take on a range of
values, offering a gray-scale measure of the state of the network. Furthermore, distinguishing the con-
tributions of the cycles based on length bridges the divide between local and global balance indices,
since e.g. doing so probes edge-correlations on a wide range of length scales. Consequently we sought,
as network analysts, to provide the most detailed possible study of social balance using hitherto unac-
cessible objects, the simple cycles, via novel combinatorial techniques. We hope that our results will
stimulate further research into simple cycles on the one hand, and will be exploited by sociologists in
the light of the latest developments in this field on the other.
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We have studied the proportion R` of negative simple cycles of length `6 20 and its variants K` and
U`; so as to be as close as possible to Heider’s original conjecture, while also relating our results to the
latest research. For exemple, 1−R3 equals the triangle index and K3 is the relative signed clustering
coefficient. Our results show that R` is greatly depressed as compared to an independent sampling sce-
nario (the null hypothesis), typically up to lengths of circa `∼ 10. This means that balanced situations
are strongly favoured when short simple cycles are considered. It is interesting that on the three large
networks analysed here (Wikielections, Slashdot and Epinions), a rapid transition from balance (small
R` values) to random (R` ∼ Rnull

` ) occurs around ` ∼ 10. This is a signature of strong inter-edges cor-
relations with correlation length ξ ' 10/2 = 5. The correlation depth, which quantifies the degree up
to which individuals are correlated with their neighbours, is thus less than or equal to 5. A rebound of
the balance ratio over 50% following the transition is also clearly detectable in the data. This means
that unbalanced situations are over-represented for long-length simple cycles as compared to the null-
hypothesis.

While the relevance of cyclic clusters of individuals in social networks beyond triads is currently
controversial, we believe that these do contain sociological information: we observe there is no mathe-
matical reason why R` should undergo a sharp transition as seen in the data. In particular, this transition
does not exist in the null-hypothesis model, where edge signs are attributed randomly to a real social
network, nor does it exist on synthetic networks where both edges and their signs are random. We there-
fore hope that researchers with a more sociological background than ours will consider the results of
this work.

5.2 Functions on simple cycles and simple paths

Technically, the approach presented here to study the balance in networks is generally applicable to
estimate any function of the simple cycles of a graph. Furthermore, the core combinatorial result of our
method immediately extend to vertex-specific questions, e.g. for evaluating the balance of the simple
cycles passing through some specified vertex. It also remains valid when asking questions pertaining
to simple paths (also known as self-avoiding walks). Both of these observations stem from a matrix
extension of Eq. (2.1) which is presented in [16]. This extension provides a matrix P(z) whose entry
P(z)i j is the ordinary generating function of the simple paths from i to j (i 6= j) or of the simple-cycles
from i to itself (i = j). Note, the matrix extension is not obtained upon just removing the trace from
Eq. (2.1).

This matrix formulation should permit the calculation of such functions as the all-paths kernel [7]
for data-mining algorithms. The all-paths kernel is a positive semi-definite function on pairs of graphs
aimed at measuring their degree of similarity via the similarity between their simple paths:

kall paths(G,G′) = ∑
p simple path on G

∑
p′ simple path on G′

k(p, p′),

with k(p, p′) a kernel on pairs of paths. Another example is the cyclic pattern kernel [25] which evaluates
the similarities between the simple cycles of a pair of graphs. Both of these examples currently suffer
from efficiency problems which one should overcome (at least partially) with Eq. (2.1) and its matrix
extension, possibly in conjunction with a Monte Carlo approach as effected here.
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A. Checking the method against bias

While the convergence of our calculations can be assessed via the standard deviation of the results,
Monte Carlo approaches are not immune to bias. It is thus necessary to verify the quality of the results
independently of the method itself:

i) We computed the exact balance ratios R1, R2 and R3 via conventional means and verified our
results to be consistent with these, see Appendix C, Tables A.4, A.7 and A.10. In the case of
WikiElections, we also computed R4, R5 and R6 exactly using Eq. (2.1).

ii) When available, we used the primitive orbits results to verify that the balance ratios R4 and R5
predicted by the algorithm were consistent with the exact results. Indeed, recall that up to `= 5,
Rob
` = R` exactly.

iii) On the Gahuku-Gama network, we verified that the Monte Carlo results are consistent with the
exact balance ratios at all lengths.

In addition, we found the WikiElections, Slashdot and Epinions networks to exhibit sharp transitions
of their balance ratios from low values R` ∼ 10−30% up to values consistent with the null-hypothesis
circa 50%. Given the importance of this observation, it is necessary to check that it is not an artifact of
the algorithm we employed:

i) In the case of the WikiElections network, we reallocated the edge signs randomly and ran our
approach on the resulting signed graph. The balance ratios did not exhibit any sharp transition
anymore but rather were consistent with the more accurate null model. This indicates that the
transition is not an artifact of our method.

ii) We should expect a transition of R` to values consistent with the null hypothesis as the cycle length
becomes longer than the correlation length. Indeed, if there was no sharp transition, a simple
extrapolation of the trend exhibited by the first five (exactly known) balance ratios, suggests that
R` would not be reach 50% until at least ` & 50. This conservative estimate would mean that
ξ & 25 or more, a number that is far too large to be plausible.

B. Proof of Proposition 3.1

The proposition results from equating the product and determinant forms of the Ihara zeta function.
Recall that

ζ
−1
|G| (z) = ∏

c∈[C]

(
1− z`(c)

)
= ∏

`

(
1− z`

)Nob;`
,

where Nob;` = N+
ob;`+N−ob;` is the total number of primitive orbits of length `. Thus we have

ζ
−1
|G| (z) = ∏

`

(
1− z`

)Nob;`
= det(I− z|T|) . (A.1)
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Now, on taking the logarithm on both sides we obtain

∞

∑
i=1

1
i

zi Tr |T|i =
∞

∑
j

∞

∑
k=1

Nob; j
zk j

k
.

Equating the coefficient of z` on left and right hand sides then gives

1
`

Tr |T|` =
∞

∑
k|`

1
k

Nob;`/k,

and a Möbius inversion finally provides Nob;`

N+
ob;`+N−ob;` =

1
` ∑

k|`
µ(`/k)Tr |T|k.

The proof is entirely similar on signed networks, where T replaces |T| and N+
ob;`−N−ob;` is obtained

instead of N+
ob;`+N−ob;`.

C. Full numerical results

In this section we present the full numerical results obtained on the four networks mentioned earlier,
which include the balance ratios, R` = (N−` )/(N

−
` +N+

` ), ratios of negative to positive simple cycles
U` = N−` /N+

` and the relative signed clustering coefficient K` := (N+
` −N−` )/(N

−
` +N+

` ) up to `= 20.
We also give the exact values of R`, U` and K` for the self-loops, backtracks and triangles (`= 1,2,3).
These are respectively given by

R1 =
Tr(|A|−A)

2Tr |A|
, R2 =

Tr(|Ã|2− Ã2)

2Tr |Ã|2
, R3 =

Tr(|Ã|3− Ã3)

2Tr |Ã|3
,

U1 =
Tr(|A|−A)

Tr(|A|+A)
, U2 =

Tr(|Ã|2− Ã2)

Tr(|Ã|2 + Ã2)
, U3 =

Tr(|Ã|3− Ã3)

Tr(|Ã|3 + Ã3)
,

K1 =
Tr(A)

Tr(|A|)
, K2 =

Tr(Ã2)

Tr(|Ã|2)
, K3 =

Tr(Ã3)

Tr(|Ã|3)
,

where Ã = A−Diag(A).
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Self-loops R1 Backtracks R2 Triangles R3 Squares R4 Pentagons R5

Exact 0% 13.24% 27.92% 37.93%

R6 R7 R8 R9 R10

Exact 44.47% 48.64% 51.10% 52.33% 52.7%

R11 R12 R13 R14 R15

Exact 52.43% 51.77% 51.03% 50.46% 50.09%

R16 R17 R18 R19 R20

Exact 49.74%

Table A.1. Exact balance ratios R` for 1 6 `6 20 obtained on the Gama network using Eq. (2.1).

Self-loops U1 Backtracks U2 Triangles U3 Squares U4 Pentagons U5

Exact 0% 15.3% 38.7% 61.1%

U6 U7 U8 U9 U10

Exact 80.1% 94.7% 104.5% 109.8% 111.4%

U11 U12 U13 U14 U15

Exact 110.2% 107.3% 104.2% 101.9% 100.3%

U16 U17 U18 U19 U20

Exact 99%

Table A.2. Exact ratio of negative to positive simple cycles U` for 1 6 `6 20 obtained on the Gama network using Eq. (2.1).

Self-loops K1 Backtracks K2 Triangles K3 Squares K4 Pentagons K5

Exact 1 0.735 0.442 0.241

K6 K7 K8 K9 K10

Exact 0.111 0.027 −0.022 −0.047 −0.054

K11 K12 K13 K14 K15

Exact −0.049 −0.035 −0.021 −0.009 −0.002%

K16 K17 K18 K19 K20

Exact 0.005

Table A.3. Exact relative signed cluster coefficient K` for 1 6 `6 20 obtained on the Gama network using Eq. (2.1). Recall that
−1 6 K` 6 1 and that K` = 1 designates a totally balanced situation, while K` =−1 characterises a totally unbalanced one.
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Self-loops R1 Backtracks R2 Triangles R3 Squares R4 Pentagons R5

Monte Carlo 45.488±0.048% 3.436±0.006% 13.075±0.014% 16.862±0.098% 20.421±0.052%
Exact 45.455% 3.438% 13.068% 16.875% 20.393%

R6 R7 R8 R9 R10

Monte Carlo 23.43±0.05% 26.22±0.03% 28.84±0.19% 31.2±0.31% 32.82±0.54%
Exact 23.401%

R11 R12 R13 R14 R15

Monte Carlo 33.95±0.9% 35.89±0.9% 40.96±0.9% 50.16±0.19% 57.3±0.36%

R16 R17 R18 R19 R20

Monte Carlo 54.38±3.41% 53.85±4.57%

Table A.4. Computed balance ratios R` for 1 6 ` 6 20 on the WikiElections network together with twice the standard deviation
exhibited by the Monte Carlo results. We found no simple cycle of length 18, 19 or 20 on this network.

Self-loops U1 Backtracks U2 Triangles U3 Squares U4 Pentagons U5

Monte Carlo 83.45±0.17% 3.56±0.006% 15.04±0.02% 20.3±0.14% 25.7±0.08%
Exact 83.33% 3.56% 15.03%

U6 U7 U8 U9 U10

Monte Carlo 30.7±0.05% 35.5±0.06% 40.5±0.37% 45.3±0.7% 48.9±1.2%

U11 U12 U13 U14 U15

Monte Carlo 51.4±2% 56±2.2% 69.4±2.5% 100.7±0.8% 134.2±2%

U16 U17 U18 U19 U20

Monte Carlo 119±15% 116±20%

Table A.5. Computed ratio of negative to positive simple cycles U` for 1 6 ` 6 20 on the WikiElections network together with
twice the standard deviation exhibited by the Monte Carlo results. We found no simple cycle of length 18, 19 or 20 on this
network.

Self-loops K1 Backtracks K2 Triangles K3 Squares K4 Pentagons K5

Monte Carlo 0.0902±0.0014 0.9312±0.0001 0.7385±0.0004 0.663±0.003 0.592±0.001
Exact 0.0909 0.9312 0.7386

K6 K7 K8 K9 K10

Monte Carlo 0.53±0.001 0.476±0.001 0.423±0.005 0.376±0.009 0.344±0.015

K11 K12 K13 K14 K15

Monte Carlo 0.321±0.025 0.282±0.025 0.181±0.025 −0.003±0.005 −0.146±0.01

K16 K17 K18 K19 K20

Monte Carlo −0.088±0.096 −0.077±0.129

Table A.6. Computed relative signed cluster coefficient K` for 1 6 ` 6 20 on the WikiElections network together with twice the
standard deviation exhibited by the Monte Carlo results.
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Self-loops R1 Backtracks R2 Triangles R3 Squares R4 Pentagons R5

Monte Carlo 3.9995±0.001% 6.352±0.017% 7.108±0.013% 8.192±0.013%
Exact 4.0003% 6.3608%

R6 R7 R8 R9 R10

Monte Carlo 9.37±0.06% 10.55±0.12% 11.82±0.15% 13.3±0.09% 15.32±0.46%

R11 R12 R13 R14 R15

Monte Carlo 16.5±0.8% 21.3±2.6% 32.7±1.5% 52.9±3.6% 58.4±2.6%

R16 R17 R18 R19 R20

Monte Carlo 54.5±4.3% 50.0±6.6% 50.0±9.4%

Table A.7. Computed balance ratios R` for 16 `6 20 on the Slashdot network together with twice the standard deviation exhibited
by the Monte Carlo results. We found no simple cycle of length 19 or 20 on this network.

Self-loops U1 Backtracks U2 Triangles U3 Squares U4 Pentagons R5

Monte Carlo 4.166±0.001% 6.783±0.019% 7.552±0.015% 8.923±0.015%
Exact 4.167% 6.793%

U6 U7 U8 U9 U10

Monte Carlo 10.34±0.07% 11.79±0.15% 13.40±0.19% 15.3±0.12% 18.09±0.64%

U11 U12 U13 U14 U15

Monte Carlo 19.8±1.1% 27.1±4.1% 48.6±3.2% 112.3±6.7% 140±15%

U16 U17 U18 U19 U20

Monte Carlo 120±20% 100.0±25% 100±31%

Table A.8. Computed ratio of negative to positive simple cycles U` for 1 6 ` 6 20 on the Slashdot network together with twice
the standard deviation exhibited by the Monte Carlo results. We found no simple cycle of length 19 or 20 on this network.

Self-loops K1 Backtracks K2 Triangles K3 Squares K4 Pentagons R5

Monte Carlo 0.92001±0.00003 0.8730±0.0005 0.8578±0.0004 0.8362±0.0004
Exact 0.92000 0.8728

K6 K7 K8 K9 K10

Monte Carlo 0.813±0.002 0.789±0.003 0.764±0.004 0.734±0.003 0.694±0.013

K11 K12 K13 K14 K15

Monte Carlo 0.67±0.023 0.574±0.074 0.346±0.042 −0.058±0.102 −0.168±0.074

K16 K17 K18 K19 K20

Monte Carlo −0.09±0.122 0±0.187 0.001±0.266

Table A.9. Computed relative signed cluster coefficient K` for 16 `6 20 on the Slashdot network together with twice the standard
deviation exhibited by the Monte Carlo results.
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Self-loops R1 Backtracks R2 Triangles R3 Squares R4 Pentagons R5

Monte Carlo 6.1082±0.0002% 2.0857±0.0003% 11.2355±0.0016% 14.17±0.002% 15.61±0.007%
Exact 6.1082% 2.0858% 11.2343%

R6 R7 R8 R9 R10

Monte Carlo 16.07±0.02% 15.99±0.12% 15.97±0.58% 17.30±1.58% 21.83±2.84%

R11 R12 R13 R14 R15

Monte Carlo 43.8±2.3% 48.1±0.5% 52.9±1.2% 62.2±0.4% 47.6±0.4%

R16 R17 R18 R19 R20

Monte Carlo 50% 44.4%

Table A.10. Computed balance ratios R` for 1 6 ` 6 20 on the Epinions network together with twice the standard deviation
exhibited by the Monte Carlo results. We found no simple cycle of length 16, 18 or 20 on this network. Furthermore, we
were unable to determine the standard deviation of the balance for R17 and R19. Regardless of the accuracy on these results,
the small numbers of simple cycles of such lengths that we found imply that the null-hypothesis is compatible with all values
15% . R` . 85%, as per Eq. (4.2).

Self-loops U1 Backtracks U2 Triangles U3 Squares U4 Pentagons U5

Monte Carlo 6.5056±0.0003% 2.1301±0.0004% 12.658±0.0028% 16.51±0.004% 18.50±0.014%
Exact 6.5056% 2.1302% 12.656%

U6 U7 U8 U9 U10

Monte Carlo 19.15±0.04% 19.03±0.24% 19.01±1.16% 20.96±3.27% 28.09±5.58%

U11 U12 U13 U14 U15

Monte Carlo 78.2±10.3% 92.7±2.6% 112.5±7.7% 164.6±4.0% 90.9±2.1%

U16 U17 U18 U19 U20

Monte Carlo 100% 79.9%

Table A.11. Computed ratio of negative to positive simple cycles U` for 1 6 `6 20 on the Epinions network together with twice
the standard deviation exhibited by the Monte Carlo results.

Self-loops K1 Backtracks K2 Triangles K3 Squares K4 Pentagons K5

Monte Carlo 0.87784±0.00001 0.95829±0.00001 0.77529±0.00005 0.7166±0.0001 0.6878±0.0002
Exact 0.87784 0.95828 0.77531

K6 K7 K8 K9 K10

Monte Carlo 0.679±0.001 0.68±0.003 0.681±0.016 0.654±0.045 0.563±0.08

K11 K12 K13 K14 K15

Monte Carlo 0.124±0.065 0.038±0.014 −0.058±0.034 −0.244±0.011 0.048±0.011

K16 K17 K18 K19 K20

Monte Carlo 0 0.112

Table A.12. Computed relative signed cluster coefficient K` for 1 6 ` 6 20 on the Epinions network together with twice the
standard deviation exhibited by the Monte Carlo results.
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