
This is a repository copy of Genetic Programming + Proof Search = Automatic
Improvement.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117917/

Version: Published Version

Article:

Kocsis, Zoltan A. and Swan, Jerry (2017) Genetic Programming + Proof Search =
Automatic Improvement. Journal of Automated Reasoning. pp. 1-20. ISSN 1573-0670

https://doi.org/10.1007/s10817-017-9409-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

J Autom Reasoning

DOI 10.1007/s10817-017-9409-5

Genetic Programming + Proof Search = Automatic

Improvement

Zoltan A. Kocsis1
· Jerry Swan1

Received: 7 November 2015 / Accepted: 28 February 2017

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Search Based Software Engineering techniques are emerging as important tools

for software maintenance. Foremost among these is Genetic Improvement, which has his-

torically applied the stochastic techniques of Genetic Programming to optimize pre-existing

program code. Previous work in this area has not generally preserved program semantics

and this article describes an alternative to the traditional mutation operators used, employing

deterministic proof search in the sequent calculus to yield semantics-preserving transforma-

tions on algebraic data types. Two case studies are described, both of which are applicable to

the recently-introduced ‘grow and graft’ technique of Genetic Improvement: the first extends

the expressiveness of the ‘grafting’ phase and the second transforms the representation of a

list data type to yield an asymptotic efficiency improvement.

Keywords Program synthesis · Software maintenance · Search Based Software Engineering ·

Genetic Programming

1 Introduction

The software development lifecycle has always been dominated by maintenance costs [1,2]

and the increasingly large scale of modern software systems means that greater automation of

this maintenance burden is highly desirable. However, ‘round-trip’ software re-engineering

tools are not currently adequate to transform large volumes of legacy code written in pop-

ular languages (e.g. C/C++, Java) into a form which is amenable to automated reasoning.

Attention has therefore recently turned to the use of Search Based Software Engineering,

an increasingly popular trend for the application of optimization techniques to problems in

software engineering. In particular, Genetic Programming (GP) [3] is a stochastic approach

to program generation driven by Darwinian principles of ‘survival of the fittest’, in which

B Jerry Swan

jerry.swan@york.ac.uk

1 Department of Computer Science, The University of York, Deramore Lane, York YO10 5GH, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-017-9409-5&domain=pdf
http://orcid.org/0000-0002-5542-4156
http://orcid.org/0000-0003-1944-7147

Z. A. Kocsis, J. Swan

a collection of programs (the population) is iteratively improved via the nature-inspired

operations of recombination and mutation. The transformation of pre-existing (and typically

human-written) program source code via GP is known as Genetic Improvement (GI) [4,5].

The majority of previous work in GI has not preserved program semantics, which we believe

presents an obstacle to more widespread acceptance.

Our previous work on improvement of human-written programs that is semantics-

preserving includes: a 10,000-fold speedup of database queries on terabyte datasets within

the Apache Spark analytics framework [6]; automatic generation of an energy-efficient ver-

sion of the Quicksort algorithm (consuming half the power of the popular ‘median of first,

mid, last’ method due to Sedgewick) on pathological input distributions [7]; a 24% improve-

ment in energy consumption by optimizing a single widely-used class in Google’s Guava

collection library [8]; automatic repair of over 400 systematic errors in the implementation

of the Apache Hadoop analytics framework whilst simultaneously significantly improving

performance [9]; automated speedup of concurrent versions of divide-and-conquer algo-

rithms (Quicksort, Strassen matrix multiplication and the FFT) [10]. However, each of these

approaches require experiments to be explicitly framed (in a separate manner for each tech-

nique) in terms of semantics-preserving operations.

Type-directed approaches have the advantage of genericity and can provide stronger assur-

ance of correctness for users of search based techniques. In addition, type information can in

some cases replace the need for stochastic search altogether. In particular, it is applicable to

the recently-popularized ‘grow and graft’ strategy [11] (in which code is synthesized in a toy

environment and then transplanted into a target program) is intended to be usable by program-

mers with no deep knowledge of the target system. This cannot be achieved unless fruitful

grafting points can be identified without human intervention. We show that our approach can

address several shortcomings of ‘grow and graft’ by replacing the stochastic ‘graft’ phase

with a deterministic proof search.

We proceed to describe a general approach to synthesis by exploiting the semantics deriv-

able from a sufficiently expressive type system. In particular, we apply techniques from type

theory to perform deterministic transformations of source code. Since the transformations

we apply are semantics-preserving and their application is not strictly limited to Genetic

Programming, we have adopted the term ‘Automatic Improvement Programming’ (AIP). We

provide an overview of the theory underlying the implementation of our PolyFunic AIP

system, which operates on programs in the Scala programming language [12]. Building upon

the reflection facility of the language, PolyFunic can identify (a class of) data types and use

deterministic search in the space of logical proofs to define transformations between them.

The Scala source code for executing the transformations can then be generated from the proof

trees via the Curry–Howard isomorphism [13].

1.1 Overview

There is growing interest in automatic programming techniques for software maintenance

and evolution. In addition to the work described in the previous section, one noted success

has been a 70-fold improvement in runtime performance [14] for a 50,000 line C++ program

in widespread use. In general, the optimisation criteria can include a variety of functional and

non-functional properties [15]. This suggests that exploring the space of data types is likely to

be useful, since this allows (for example) memory to be traded for execution speed. In GP in

general, programs are typically represented as expressions trees, stack- or register-machines.

In GI, the tendency is to use Abstract Syntax Trees (AST) or e.g. delta-edit sequences of

ASTs [16]. The type system of a program can contain useful semantic information, which

123

Genetic Programming + Proof Search = Automatic Improvement

is of particularly value in a functional (referentially-transparent) context. In particular, types

can give information about what a program calculates, i.e. a denotational semantics [17]. For

example, for f : List → N, it can be determined from the type of f (via the mechanism of

‘free theorems’) that f is a function of the length of the list [18]. More expressive languages

(e.g. Agda [19]) allow even stronger inference of the underlying semantics. For example,

each of the 3 terms in the following expression are types, and the two numbers a, b ∈ N

returned by the function factor when given an argument c ∈ N are always guaranteed to satisfy

the predicate a ∗ b == c:

factor: (c ∈ N) → (a, b ∈ N) × (a ∗ b == c)

In subsequent sections, we describe a method of program transformation that operates on

algebraic data types (ADTs) and which can be considered as a semantics-preserving muta-

tion operator. Although algebraic data types share an acronym with abstract data types, they

should not be confused with the latter notion. ADTs are ubiquitous in functional program-

ming (indeed, they are the only data types in the Haskell language, for example) and with

the increasing trend for incorporating aspects of functional programming into mainstream

languages, it might be expected that ADTs will become more widely known. Although our

implementation uses Scala, the technique is applicable to any language which can express

ADTs, whether explicitly or by convention—in principle this could even be achieved in more

traditional imperative languages such as C, but the idiosyncrasies of the type system and the

lack of sophisticated reflection facilities would make the implementation a daunting prospect.

As described in more detail subsequently, ADTs are inductively-defined in terms of mul-

tiple type-constructors via choice, tupling and higher-order functions [20]. A simple example

of an ADT is the singly-linked list, having two constructors, Nil for the empty list and Cons for

combining an element with a pre-existing list to create a new list. In Scala this is expressed

as CList as shown in Listing 1. For those unfamiliar with Scala, a trait can be considered

as equivalent to a Java™ interface and the sealed keyword ensures that the only subclasses

which can exist are those given in the listing (the latter is necessary in order to guarantee

the validity of the equational derivation described in Sect. 3). A case class denotes a value (as

opposed to reference) type that can appear in pattern-matching expressions.

The term ‘algebraic data type’ arises from the fact that ADTs have an ‘equational’ rep-

resentation, viz. the notion of ‘choice of constructor’ corresponds to ‘+’, tupling of types

corresponds to ‘×’ and functions are denoted by exponentiation.

s e a l e d t r a i t C L i s t [A]

c a s e c l a s s N i l [A] () e x t e n d s C L i s t [A]

c a s e c l a s s Cons [A] (x : A , xs : C L i s t [A]) e x t e n d s C L i s t [A]

Listing 1 Scala code for the CList ADT

The transformation process is achieved via a search for a semantics-preserving mapping

which replaces a designated source type with some alternative (but functionally compatible)

target type. As detailed subsequently, the equational representations for source and target

types can be automatically derived from the type declaration and then used to guide the

search process. The search method is that of deterministic proof search [13], resulting in a

proof that the source can be transformed into the target. This proof can then be turned into a

program fragment which performs the required mapping via the Curry–Howard isomorphism

(see [13], Ch. 3). Such a mapping is desirable for two reasons:

1. It can increase the number of useful graft operations available in the ‘graft’ phase of

‘grow and graft’ GI [11].

123

Z. A. Kocsis, J. Swan

2. Being able to choose between functionally equivalent target types allows the trade-off

between non-functional properties to be explored. In particular, it may be possible to

choose a target type with asymptotically superior performance [21].

Case studies for both of these applications appear in Sect. 6. The former application is

novel and the latter provides further detail to that given in [21]. The remainder of this article

is as follows: Sect. 2 describes related work in both GI and formal methods of program

synthesis, together with some of the open issues in GI. We describe the transformation

process in Sects. 3 and 3.3 and detail the two case studies above in Sect. 6. Section 7 gives

conclusions and avenues for future work.

2 Related Work

2.1 Genetic Improvement

As discussed above, GI is the application of Genetic Programming techniques [3] to (typ-

ically human-engineered) source or object code. Although in relative infancy, GI has been

used to improve performance [14]; obtain multi-objective trade-offs between non-functional

properties [22] and fix bugs [2]. Two prevalent examples of GI systems are the GISMOE

system of Langdon and Harman [14] and GenProg by Le Goues et al. [2]. The GISMOE sys-

tem is used to improve the performance of the 50,000 lines of C++ code of the widely-used

DNA sequencing system Bowtie2. In [2], Le Goues et al. describe the latest version of their

GenProg GI software for bug repair in ‘C’ programs. GenProg employs negative test cases

for encoding the bug and a set of positive test cases describing behavioural invariants. In

order to conserve memory, program variants are represented as a sequence of edit operations

(‘patches’).

As might be expected of an emerging research topic, there are some issues with GI. The

most notable issue is loss of correctness: it is common practice in GI to validate against

a test suite (if one exists) and/or treat the seed program as an Oracle. This approach is of

course subject to the caveat that “program testing can be used very effectively to show the

presence of bugs but never to show their absence” [23]. Indeed, some results from more

popular GI systems have recently been called into question. In a study by Qi et al. [24] of

the validity of repairs generated by GenProg and the RSRepair [25] and AE [26] systems, it

was determined that these systems actually failed to produce valid repairs on at least half of

their own validation suite.

Even aside from obvious issues this raises for safety-critical systems, the potential for loss

of correctness might reasonably be expected to hinder the adoption of GI in many application

areas. For these reasons, it was suggested by White [27] that some variant of formal model-

checking be integrated into the optimization procedure.

Another significant issue is that GI often requires a degree of ‘human-in-the-loop’. One

recent approach which has the potential to reduce human intervention is the ‘grow and

graft’ (termed GGGI) of Harman et al. [11], in which base functionality is evolved via GP

(the ‘growing’ phase) and then transplanted (‘grafting’) into a pre-existing host program.

Essentially, the ‘grafting‘ consists of replacing a node of the syntax tree with a function call.

A case study is given which grows an invocation of the Google Translate API and grafts it

into the Pidgin instant messaging system, the latter being a 200 KLoC C/C++ program.

Any attendant necessity for human validation also robs GI of some of the automation that

initially motivated it. It might be hoped that GI would be easier for the untrained end-user to

123

Genetic Programming + Proof Search = Automatic Improvement

apply “off the shelf” than GP, since function and terminal sets could in principle be obtained

from the host program. In current practice, a higher degree of human intervention is typically

required: e.g. in Langdon and Harman [14], it was necessary to provide ‘match templates’

and perform profiling in order to constrain the space of possible mutations. Since the methods

presented here are constrained by the type system, no such configuration activity is necessary.

A third issue (somewhat shared with plain GP) is the trade-off between modularity, expres-

siveness and readability. It is well-known that GP tends to suffer from bloat and also poor

module induction [3]. Insofar as these properties are inherited by GI, there is clearly the

potential to degrade the readability of the source program. This effect can be addressed at the

potential expense of expressiveness by limiting the permissible mutation operators and/or

the scope within which variables can be referenced [14,28]. By contrast, the technique we

describe in this article is intrinsically modular: a direct mapping (a wrapper or adaptor func-

tion) is generated between types, which is always representable as a subroutine call. As such,

our technique improves upon the state of the art by providing a more adaptable ‘grafting’

phase for ‘grow and graft’ GI, which nonetheless leads to human-readable end results.

2.2 Program Synthesis

There is of course a very large body of pre-existing work on formal approaches to pro-

gram synthesis. Building on work by Summers [29], there has been much research under the

umbrella term of inductive programming [30]. Initial approaches essentially performed sym-

bolic regression and avoided search (stochastic or otherwise) via inductive inference followed

by a semantics-preserving construction. This was made possible by two means: a judiciously-

chosen set of input–output pairs and a restricted space of programs. More recently, Jha et

al. [31] give a method (which they term ‘Iterative Synthesis’) for the construction of loop-free

programs from input–output pairs, driven by a SMT solver. The PROSPECTOR system of

Mandelin et al. [32] performs type conversion via a collection of operations obtained from

existing source code. Perelman et al. [33] and Givero et al. [34] both provide code-completion

assistants via type-assisted ranking of API calls for the completion of partial code fragments.

In terms of hybridizations between formal and generative techniques, the IGOR II system

of Katayama [35] employs an approach termed ‘analytically-generate-and-test’, in order to

synthesise programs from input–output pairs.

Of greatest relevance to this article is Djinn [36], which uses a decision procedure to

automatically construct functions that map between ADTs in the Haskell language. Since this

decision procedure is based on proof search in the intuitionistic propositional calculus [37],

Djinn will always find such a function if one exists, or else terminate after constructing

an implicit proof of non-existence. However, Djinn does not work with recursive types,

since there is no termination guarantee in this case. In the following section, we present our

algorithm, which extends Djinn’s approach to deal with a family of recursive types. As a

result, our approach is able to generate proofs that Djinn cannot, as described in detail in the

following section and illustrated in detail in Sect. 3 and in the case study of Sect. 6, where it

is used to synthesize a mapping between two recursively-defined list variants.

2.3 Type Isomorphism

Two types are said to be isomorphic iff. they contain the same information, that is, a pair of

mutually inverse conversion functions can be defined between them. Considering types up

to isomorphism allows us to ignore superfluous details in data representation. For example,

functions that solely disagree in their argument order have isomorphic types.

123

Z. A. Kocsis, J. Swan

Describing when two types are isomorphic (and witnessing the isomorphism with conver-

sion functions) is an active research area. An important technique is to associate an equational

theory to the types of the language such that the equality A = B follows from the axioms

of the theory precisely when the types A and B are isomorphic. Since recursive types can be

characterized as fixed-points of equations, a similar association will prove useful in Sect. 3.2.

Bruce and Longo [38] showed that the simply typed lambda calculus admits such theories

with a single axiom. The result was subsequently extended to the lambda calculus with

surjective pairing [39], and later to several different combinations of type constructors.

Among programming languages, ML’s type system has been the main subject of research.

Type isomorphism algorithms have found important applications in API search engines. The

idea of using types as keys in a database was first proposed by Rittri [40]. Di Cosmo [41]

gave an efficient algorithm for deciding type isomorphism in ML-style polymorphic type

assignment frameworks, and applied it to API search engines.

On the logic side, type isomorphism corresponds to the existence of proofs A ⊢ B and

B ⊢ A that reduce to the axiom rule when cut against each other. Finding such proofs is

possible using the Proof Search paradigm presented in the article. One should note, however,

that some of our grow-and-graft applications are not direct instances of the type isomorphism

problem. For example, many types used in the case studies of Sect. 6 fail to be isomorphic,

yet one can still derive useful injections and partial inverses between them.

3 The Algorithm

3.1 Algebraic Data Types

We now describe our approach, the concrete implementation of which we call PolyFunic.

First of all, we associate an algebraic equation to each type. The latter stages of our algorithm

(the so-called Proof Search phase) will operate directly on this algebraic representation. In

the following, we distinguish between data types and function types (exponentials). Each

data type is associated with a finite set of constructors, and the constructor arguments can

be accessed positionally during pattern matching. There are three fundamental constructions

for defining new types based on existing ones S and T :

1. Disjoint union: a data type with two constructors, one having an argument of type S, the

other an argument of type T . Denoted S + T .

2. Cartesian product: a data type whose only constructor is a pairing operation with two

arguments, having types S and T respectively. Denoted S × T .

3. Exponentiation: the type whose inhabitants are functions from S to T . Denoted T S .

With this notational convention, any data type can equivalently be characterized using

an algebraic equation given in terms of its constructors. Let S be a data type with two

constructors, c1: A1 × A2 → T and c2: A3 → T . Then the corresponding algebraic equation

is

S = A1 × A2 + A3

Generally: take a data type T and denote its set of constructors by CT . For c ∈ CT , let

the list of arguments of c be given by Ac (the arguments themselves may be function types

as well). The algebraic equation for the type T is then given by

T =
∑

c∈CT

∏

a∈Ac

a (1)

123

Genetic Programming + Proof Search = Automatic Improvement

Constructors without any arguments are traditionally denoted by 1 in the algebraic equa-

tion, since such constructors arise from the vacuous product. To illustrate this, first consider

a data type describing a Vehicle: two constructors, Bicycle which takes no arguments, and Car

which takes two arguments, the colour and the plate number. The Scala declaration of this

type can be seen on Listing 2. The corresponding algebraic equation is simply

Vehicle = 1 + Color × String (2)

sealed trait Vehicle

case class Bicycle () extends Vehicle

case class Car(color : Color , plate : String) extends Vehicle

Listing 2 Scala code for the Vehicle type

Now consider the data type of natural numbers. In Scala, this can be described as per the

Nat data type of Listing 3. The type has two constructors, i.e. Zero, and the Succ constructor

which gives the successor of its argument, another Nat. The argument of the constructor Succ

is another Nat. The associated algebraic equation is therefore

Nat = 1 + Nat (3)

sealed trait Nat

case class Zero() extends Nat

case class Succ(x: Nat) extends Nat

Listing 3 Scala code for the Natural Numbers

Unlike Eq. 2, Eq. 3 is “recursive” since the term Nat occurs on both sides. Normally, the

Proof Search is non-terminating in the presence of such self-reference. Fortunately, in many

cases, it is possible to eliminate the self-reference using a technique from category theory.

3.2 Categories and Functors

To explain the elimination of self-reference, it is necessary to briefly introduce some category-

theoretic notions. We will attempt to convey the essential concepts without undue technical

detail. Category theory has served as a formidably-powerful unifying mechanism in mathe-

matics, but also has widespread applications in software engineering [42], where it provides

principled constructions for many kinds of software artifacts. The reader who desires a more

in-depth introduction is referred to Pierce [43] or Bird and de Moor [20].

Formally, a category is formed by a collection of objects, and an associated collection

of morphisms, mapping objects to objects. It is required that there is an identity morphism,

i.e. id: X → X for all objects X and that morphisms compose, i.e. for objects A, B, C ,

given morphisms f : A → B and g: B → C , a composite morphism g ◦ f : A → C can be

constructed. The most well-known category is the category having all sets as objects and all

functions as morphisms. Up to technical considerations, it is possible to consider a category

having Scala types as objects, and Scala functions as morphisms.

A functor F is a mapping between categories: it associates to every object A of the source

category an image object F[A] of the target category, and to every morphism m: A → B in

the source category an image morphism mapF [m] in the target category. The image of an

identity morphism is required to be an identity morphism.

123

Z. A. Kocsis, J. Swan

Intuitively, we can imagine a functor F as a generic container.1 The notation F[T] denotes

a container F parametrised by the type variable T . The container F can be then instantiated

with any of a family of types, e.g. the List data type is a functor, which can be instantiated as

a list of integers List[Int], a list of strings List[String] and so on.

Functors must provide a structure-preserving map operation which, when provided with

F[T] and a means of conversion between the type T and the type U , yields an isomorphic

container of type F[U]. For example, the map operation of the List functor preserves the

order of the elements:

mapList (f, [e1, e2, . . . en]) �→ [f (e1), f (e2), . . . f (en)] .

The concepts of strong typing and type constructors are of course entirely familiar within

the formal methods community. The GP community has become familiar with the use of

types to constrain the search space of programs [44] and the notion of a type constructor

has also become a familiar concept via its incorporation into object-oriented languages. The

same holds for parametric polymorphism, known as “generic types”, or sometimes simply

“generics” in the object-oriented context. In terms of foundational computer science, many

typed programming languages (e.g. the simply-typed lambda-calculus [45] or intuitionistic

type theory [46]) give rise to corresponding categories: the objects are types and morphisms

are functions between types.

The following steps (see Bird and de Moor [20] for further detail) allow us to eliminate

self-reference from a recursive type T when our goal is to find a mapping to another type R:

1. Define a functor BT , called the base functor associated with the type T .

2. Every function f : BT [R] → R naturally gives rise to a function, called a catamorphism,

cata(f): T → R.

3. The proof search will look for a proof of the non-recursive sequent2 BT [R] ⊢ R, yielding

a function of type BT [R] → R. By constructing the corresponding catamorphism, we

obtain a function of type T → R.

Unless certain technical conditions apply [20], the base functor for T can be obtained from

the right-hand side of the algebraic equation of T by replacing the recursive occurrences of

type constructors with an additional type parameter R. For example, in the case of Nat , the

base functor is defined by the equation

BNat[R] = 1 + R (4)

The ultimate goal of PolyFunic is transforming a given ADT T (or a set of ADTs Γ) to

some other ADT U . Equipped with the base functor and the cata function, we can reduce

the associated proof search for T ⊢ U to a search for a proof of BT [U] ⊢ U . Notice that this

latter sequent does not contain the recursive data type T , and is thus amenable to Djinn-style

proof search.

This simplification is made possible by virtue of the fact that the fixed point of the functor

BT is isomorphic to the type T. Naturally, the fixed point X of a functor F is defined by the

property3 F[X] = X . The Scala code corresponding to these constructions can be seen in

1 We freely skip technical considerations that are irrelevant for our purposes. For example, the notion that’s

really described here is that of an endofunctor in the category of Scala types.

2 Sequent notation is described thoroughly in Sect. 3.3.

3 It is possible to express the fixed-point construction internally in Scala, using a type-level operation com-

monly referred to as Mu or Fix.

123

Genetic Programming + Proof Search = Automatic Improvement

/ / NatF and subclasses correspond to BNat[R]

sealed trait NatF[R] {

def map[T](f : R => T) : NatF[T]

}

case class ZeroF[R]() extends NatF[R] {

override def map[T](f : R => T) =

ZeroF[T]()

}

case class SuccF[R](recurse : R) extends NatF[R] {

override def map[T](f : R => T) =

SuccF(f (recurse))

}

def from(n: Nat) : NatF[Nat] = n match {

case Zero() => ZeroF[Nat]()

case Succ(n) => SuccF[Nat](n)

}

def cata [A](f : NatF[A] => A) : Nat => A = {

n => f (from(n) .map(cata [A](f)))

}

Listing 4 Scala code for the Nat base functor

Listing 4. In general, the code for BT [R] can be synthesized from the data type definition

of T (e.g. as obtained by Scala’s reflection mechanism [47]). The from function can be

derived for any data type by the trivial bijection between the constructors of T and BT [R].

The version of cata given is a specific case of the general parametric cata function, which

can operate on any base functor.

3.3 The Search Process

A sequent is of the form Γ ⊢ ∆, where Γ and ∆ are comma-separated lists of Scala

ADTs.4 The intended reading of the sequent is that “given instances of all types in Γ ,

we can construct an instance of some type in ∆”. Therefore, commas on the left of the ⊢

symbol correspond to products, on the right of the ⊢ to sums. Many readers will be familiar

with the concept of pattern matching in functional languages, which is essentially an ordered

sequence of condition-action rules mapping from patterns (as described by type constructors)

to executable code.

In our proof search, the types are manipulated using left and right rules of inference derived

mechanically from the definition of the corresponding data types. The search starts from the

root of the tree (i.e. the rules are meant to be read from bottom to top): it is sufficient to prove

the sequents above the horizontal line to conclude the sequent below the horizontal line. Left

rules corresponds to pattern-matching on the type, while right rules corresponds to invocations

of a constructor of the type. The left rule for a general ADT T can be seen below: every branch

corresponds to a constructor c of T , and Ac is the corresponding set of constructor arguments.

A single branch corresponds to one possible result of pattern matching.

… Γ, Ac ⊢ ∆ …
(T − le f t)

Γ, T ⊢ ∆

4 Proof-theoretically, this corresponds to the sequent calculus for propositional logic.

123

Z. A. Kocsis, J. Swan

The right rule for a general ADT T is similarly derived. In this case, branches correspond

to elements P of the Cartesian product
∏

c∈C Ac, thus accounting for all the possible ways

of supplying arguments to the constructors:

… Γ ⊢ P …
(T − right)

Γ ⊢ T

There are separate left and right rules for dealing with function types, given below:

Γ, A ⊢ B
(→ −right)

Γ ⊢ A → B

Γ ⊢ A Γ, B ⊢ ∆
(→ −le f t)

Γ, A → B ⊢ ∆

In order to preserve termination in the case of recursive types, the application of left rules

has to be forbidden. Instead of left rules, the synthetic rule seen below must be used. This

synthetic rule is derived from the catamorphic substitution technique explained in Sect. 3.2,

and corresponds to an invocation of the parametric cata function presented there.

FT [B] ⊢ B
(T − cata)

T ⊢ B,∆

By repeated applications of these rules of inference, a branching proof tree is constructed.

A branch of the search is terminated when reaching an axiom (a sequent such that Γ ∩ ∆ is

non-empty), or when no further rules are applicable. A proof tree is valid if and only if all

the branches terminate in axioms. A sequent with a valid proof tree is said to be proven, the

corresponding proof tree being the proof.

3.4 Proof Search and Code Generation

As described in the previous section, proofs in the sequent calculus are constructed in a

bottom-up fashion, starting from the conclusion and repeatedly applying inference rules

until axioms are reached. At every stage of the search, only finitely-many rules are available.

PolyFunic uses a simple deterministic search procedure with backtracking, which is able

to exhaust all possible proofs of a given sequent. An overview of the usual techniques of

proof search is given in Paulson [48]. Using a proof of the sequent A ⊢ B, one can derive

Scala functions of signature f : A → B. A single proof always corresponds to a single5

such function and the correspondence between left rules/pattern matching and right rules/

constructor invocations can be used to procedurally generate the corresponding transforma-

tion. Having factored out recursion as described above, the generating procedure is precisely

that implemented by Djinn [36].

Example As a simple worked example of the search process and corresponding code gener-

ation, consider the data types IaS and IoS defined in Listing 5.

5 To be precise, up to a minor ambiguity handled by explicitly identifying the type on which the axiom is

invoked.

123

Genetic Programming + Proof Search = Automatic Improvement

sealed trait IaS / / int and string case class IaSC(i : Int , s :

String) extends IaS

sealed trait IoS / / int or string

case class IoSC1(i : Int) extends IoS

case class IoSC2(s : String) extends IoS

Listing 5 Example data types for Proof Search

For these types, the general construction outlined above gives the following left and right

rules of inference:

Γ, Int, String ⊢ ∆
(I aS − le f t)

Γ, IaS ⊢ ∆

Γ ⊢ String,∆ Γ ⊢ Int,∆
(I aS − right)

Γ ⊢ IaS,∆

Γ, String ⊢ ∆ Γ, Int ⊢ ∆
(I oS − le f t)

Γ, IoS ⊢ ∆

Γ ⊢ Int, String,∆
(I oS − right)

Γ ⊢ IoS,∆

Clearly, an instance of the class IoS can be extracted from an instance of the class IaS in

two ways: one can extract either the Integer or the String. However, it is not possible to extract

an IaS instance from an IoS instance: one would need to create either the Integer or the String

(neither of which are ADTs) from scratch. These results are easily established via Proof

Search. We try to prove the sequents I aS ⊢ I oS and I oS ⊢ I aS respectively. In the first

case, the resulting proof will generate the code for the two possible extraction functions. In

the second case, the search will fail when the pool of possible rules is exhausted. The search

for I aS ⊢ I oS yields the following proof (the LaTeX code for the proof trees was generated

by PolyFunic):

int, string ⊢ int, string
(I oS − R)

int, string ⊢ I oS
(I aS − L)

I aS ⊢ I oS

There are two Scala functions corresponding to this proof, one for each type that occurs

on both sides of the axiom, as follows:

def extract1 (x : IaS) : IoS =

x match { case IaSC(i , s) => IoSC1(i) }

def extract2 (x : IaS) : IoS =

x match { case IaSC(i , s) => IoSC2(s) }

Here is an invalid proof tree, corresponding to a failed search for a proof of the false

implication I oS ⊢ I aS:

string ⊢ string

FAILED

string ⊢ int
(I aS − R)

string ⊢ I aS

FAILED
int ⊢ string int ⊢ int

(I aS − R)
int ⊢ I aS

(I oS − L)
I oS ⊢ I aS

123

Z. A. Kocsis, J. Swan

3.5 Limitations

The algorithm presented above is a simple extension of Proof Search in the LJT calculus

to deal with recursively defined types. While every valid proof tree of conclusion A ⊢ B

corresponds to a Scala function of type A → B, it should be clear that the converse fails in

the presence of recursive types. Finding an explicit counterexample is left as an exercise to

the reader. As such, implementing some of the type isomorphism approaches presented in

Sect. 1 could be a useful—if somewhat ad-hoc—way to further increase the capabilities of

the algorithm.

Notice also that the FAILED branches correspond to the cases where either an Integer

or a String would have to be generated from scratch, which suggests an opportunity for

hybridization with some kind of generative technique, e.g. traditional GP. In the following

sections, we present two case studies that reveal how the Proof Search algorithm can be used

in the ‘grafting’ phase of ‘grow and graft’ GI.

4 Implementation

PolyFunic is designed to extend and replace the grafting phase of GGGP. As such, the output

of the growing phase is assumed to be available in the form of a Scala module (class file).

The runtime reflection facilities of the language are used to extract the data type declarations

and function definitions from the module, which works even if the source code of the grown

function is not available.

The other required input is the host program. Since PolyFunic emits Scala code, the

source code of the host program has to be available. However, there are no theoretical

obstructions that would prevent future version of the tool from providing bytecode output,

thus making the source code unnecessary.

4.1 Restrictions

PolyFunic ignores data types that do not confirm to the following rules:

1. The base class T has the sealed flag.

2. All proper subclasses of T have the case flag.

3. All subclasses extend T directly (i.e. no nested chains T2 ⊆ T1 ⊆ T).

These rules are required because algebraic data types (and by extension, the emitted code)

have to support pattern matching. If the conditions are violated, pattern matching could fail to

work in the expected manner. In fact, the Scala compiler statically forbids pattern matching

unless Rule 2 is satisfied, although it allows partial pattern matches that may result in runtime

errors if Rule 2 is satisfied but the other rules are violated.

The restriction is harmless in Scala, but it may cause problems once PolyFunic is extended

to work with other languages. For example, Java has no analogues of the sealed or case

keywords, so new ways of detecting suitable data types will have to be devised. In the worst

case, one could always fall back to manual hints and annotations.

4.2 Usage

PolyFunic is designed to be used as a library, integrated with other tools into some GGGP

toolchain. The three phases (extraction and grafting, proof search and code generation) are

123

Genetic Programming + Proof Search = Automatic Improvement

implemented separately and independently. At the time of writing, two code generators are

available: one emits executable Scala code based on a proof tree, the other emits LaTeX for

pretty-printing proof trees.6 Once the input and output modules are designated, the three

phases can be executed without human intervention. The implementation achieves good

performance by using a functional variant of backtracking: the proof search produces a

lazily-evaluated stream of proof trees until the caller finds one acceptable and terminates the

process.

4.3 Planned Changes

As noted above, the current PolyFunic implementation uses runtime reflection. Compile

time reflection (macros) [49] would allow finer-grained inspection of class declarations, and

interfacing with the compiler would allow us to treat extraction, grafting and code generation

in a simple, uniform manner. Indeed, the macro approach proved to be extremely versatile

in another application of Proof Search to Software Engineering, the Proofbox Dependency

Injection container.7 As such, it is anticipated that PolyFunic will be extended to use macro-

based reflection in the future.

5 Case Study: Intelligent Grafting

A fundamental issue in the grafting phase of ‘grow and graft‘ is type discrepancy: we want

our grown programs to work with inputs on which the desired operations are easily expressed

and efficiently implemented: the data structures optimal for the grow phase may be different

from the ones used in the host program.

Consider a function, grown in isolation, for computing the Body Mass Index8 with type

signature bmi: Weight × Height → BMI. Grafting such a function to a host program seems

like a simple matter: the possible graft points are the ones in which a variable of type Weight

and a variable of type Height are both in scope.

Unfortunately, the useful graft points in a real application are extremely unlikely to be in

such scopes. In object-oriented code, properties are not always directly available: in some

stages of execution, Weight and Height may appear as member fields of a Person object, while

in other stages, only the Person’s name is in scope, the actual data being stored in a database,

and accessible indirectly through a function such as getPersonByName(cfg : DatabaseConfig, name

: Name): Person.

As stated in the introduction, the ‘grow and graft‘ strategy is intended to be usable without

specialist knowledge of the target system [11]. This cannot be achieved unless the grafting

procedure can identify valid grafting points without human intervention, while automatically

generating the necessary boilerplate code for the appropriate state of execution (extraction

methods for member fields,query calls for databases, etc.).

Duplication of effort (evolving a separate function for each different graft point) cannot

solve this problem without significant performance and correctness trade-offs. For example,

Body Mass Index depends on height and weight only, so a grown program with signature

bmi: DatabaseConfig × Name → BMI is a priori less likely to be correct than one with

signature bmi: Weight × Height → BMI . Even if both functions pass the same test cases,

6 As mentioned earlier, the proof trees in the present article were generated directly by this backend.

7 See https://github.com/zaklogician/Proofbox/.

8 body weight in kilograms divided by the square of the height in meters.

123

https://github.com/zaklogician/Proofbox/

Z. A. Kocsis, J. Swan

the former could still depend on the database configuration (or something more extreme, like

the eye color field retrieved from the database) in an unforeseeable manner.

PolyFunic can identify eligible graft points by searching for separate proofs of

Γp ⊢ Weight and Γp ⊢ Height at each candidate graft point p. The symbol Γp denotes

the set of variables in scope at the given graft point. If both proofs are successful, then it is

possible to extract Height and Weight objects from the variables in scope, so the grafting

can proceed. As detailed in Sect. 3.3, the necessary boilerplate can be derived from the proof

trees found by the search procedure.

PolyFunic is able to find non-trivial scopes eligible for grafting, and can automatically

generate the boilerplate code necessary for the grafting to proceed. This functionality was

tested on the code of Listing 6. The software correctly identified the designated graft point

as eligible, even though no explicit variables of type Weight or Height are in scope. It

generated and inserted boilerplate (programmed against a database query interface) that

makes the grafting possible. This avoids the need for duplication of effort, and preserves

tight correctness guarantees achieved by a good choice of data structures in the grow phase.

PolyFunic finds and evaluates all potential graft points in less than a second for the code

considered above.9 Being type-aware significantly reduces the size of the search space for

possible insertion points and for identifying the shared parameters between the donor and

the host. In particular, insertion locations that would normally result in an expensive failed

compilation are guaranteed to be skipped.

c a s e c l a s s Name (v a l u e : S t r i n g)

c a s e c l a s s Weight (v a l u e : Double)

c a s e c l a s s H e i g h t (v a l u e : Double)

c a s e c l a s s P e r s o n (name : Name , w e i g h t : Weight , h e i g h t : H e i g h t)

c a s e c l a s s DBConfig (s e r v e r : S t r i n g)

o b j e c t L o c a l e x t e n d s DBConfig (" l o c a l h o s t ")

o b j e c t JohnDoe e x t e n d s Name (" John Doe ")

o b j e c t DB {

d e f getByName (c f g : DBConfig , name : Name) : P e r s o n =

P e r s o n (name = name

, w e i g h t = Weight (7 8 . 5)

, h e i g h t = H e i g h t (1 . 8 0)

)

}

o b j e c t Main {

/ / GRAFT POINT

/ / g r a f t e d f u n c t i o n s i g n a t u r e :

/ / d e f bmi (w e i g h t : Weigh t , h e i g h t : H e i g h t) : BMI

/ / g e n e r a t e d b o i l e r p l a t e :

bmi (DB . getByName (Loca l , JohnDoe) . w e i g h t

, DB . getByName (Loca l , JohnDoe) . h e i g h t

)

}

Listing 6 Scala example for grafting into non-obvious scopes by generating boilerplate against a database

query interface

9 Test environment: Intel Core™ i7-4712MQ CPU @ 2.3 GHz and 8 GB RAM.

123

Genetic Programming + Proof Search = Automatic Improvement

6 Case Study: Asymptotic Improvement

The grafting phase of ‘grow-and-graft’ presents some other challenges as well. For example,

if the desired functionality is grown in sufficient isolation, the grafting will never succeed,

since the grown subroutine will be unaware of the types/data structures used by the parent

program. Even if we restrict the data structures to ADTs, there are many inequivalent ways

of implementing e.g. a list as an ADT. This is a serious concern, especially since different

implementations place different constraints on the grown programs.

PolyFunic can use proof search to automatically identify which data types of a host

program can be substituted for data types of the grown program, even if the desired function-

ality was grown in isolation, and the data structures don’t share a common interface. This

effectively reduces the number of useless graft operations by ruling out grafts between prov-

ably incompatible types, while increasing the number of potentially useful graft operations:

PolyFunic will create mappings between data structures that are implemented differently,

but are otherwise compatible.

This allows exploration of the various trade-offs between different implementations of a

data structure. For example, the ubiquitous heap data structures provide a variety of operations

such as insert, findMin, deleteMin etc. with many possible concrete implementations (e.g.b̃inary,

binomial, Fibonacci) each exhibiting a different trade-off in asymptotic performance [50].

Without PolyFunic, graft operations would not be able to satisfy the intended semantics

if the types used by the parent program and the grown program are not compatible at the

level of interfaces.10 Fortunately, the PolyFunic implementation can automatically extract

the data type definitions from the source code of the programs, and identify which ADTs

are compatible (by attempting to prove Ti ⊢ T j for every ADT Tn). As seen in Sect. 3.3,

the successful proofs give rise to appropriate type conversion functions. If the data types are

recursively defined, it is necessary to factor out recursion using the catamorphism approach

described in Sect. 3.3.

6.1 ConsList and SnocList

As a concrete instance of this problem, take the two ways of building linked-lists as ADTs:

the constructors correspond either to prepending or appending an element, yielding what are

traditionally called ConsList and SnocList respectively and are given in Listing 7. The two types

are, of course, isomorphic, and PolyFunic is able to derive conversion functions between

them.

s e a l e d t r a i t C o n s L i s t [A]

c a s e c l a s s C o n s N i l [A] () e x t e n d s C o n s L i s t [A]

c a s e c l a s s ConsCat [A] (x : A , xs : C o n s L i s t [A]) e x t e n d s C o n s L i s t [A]

s e a l e d t r a i t S n o c L i s t [A]

c a s e c l a s s S n o c N i l [A] () e x t e n d s S n o c L i s t [A]

c a s e c l a s s SnocCa t [A] (xs : S n o c L i s t , x : A) e x t e n d s S n o c L i s t [A]

Listing 7 Scala declarations for the ConsList and SnocList ADTs

When asked to prove ConsList ⊢ SnocList , PolyFunic returns the following proof

tree (among others). For reasons of space, SnocList and ConsList are abbreviated by S and C

respectively in the proof below.

10 This happens often when a program implements its own container types for efficiency purposes.

123

Z. A. Kocsis, J. Swan

/ / grown reverse function

def reverse (xs : SnocList[A]) : SnocList[A]

/ / conversion functions derived from PolyFunic proof tree

def consToSnoc[A](xs : ConsListF[A, SnocList[A]]) : SnocList[A] = xs match {

case ConsNilF() => SnocNil()

case ConsCatF(y, rec) => SnocCat(rec ,y)

}

def snocToCons[A](xs : SnocListF[A, SnocList[A]]) : ConsList[A] = xs match {

case SnocNilF() => ConsNil()

case SnocCatF(rec ,y) => ConsCat(y, rec)

}

/ / output of a successful grafting

def program(input : ConsList[Char]) : Unit = {

val chunkLength : Int = 5

val chunk : ConsList[Char] =

cata (snocToCons) (reverse (

cata (consToSnoc) (input . take(chunkLength))))

broadcast (chunk)

}

Listing 8 Grafting a ‘reverse’ function grown in isolation

A, S[A] ⊢ 1, S[A] A, S[A] ⊢ 1, A
(S − R)

A, S[A] ⊢ S[A]

1 ⊢ 1, S[A] 1 ⊢ 1, A
(S − R)

1 ⊢ S[A]
(C − L)

C F[A, S[A]] ⊢ S[A]
(C − cata)

C[A] ⊢ S[A]

This proof corresponds to the obvious conversion function between ConsList and SnocList

—in the specific case of lists, the cata function corresponds to the ubiquitous higher-order

fold function, which turns iteration over the list into recursion. In the case of ConsList, fold

acts on the constructors by replacing ConsNil with a value initialValue and ConsCat with a

binary operation op. Hence, for the list [1, 2] given by ConsCat(1,ConsCat(2,ConsNil)), fold yields

op(1, op(2, ini tialV alue)). The conversion function derived by PolyFunic is equivalent

to a fold with initialValue = SnocNil and op = (x,xs)=> SnocCat(xs,x). In the program of Listing 8,

the ini tialV alue and the op correspond to the branches of the pattern matching.

6.2 Asymptotic Efficiency Improvement

As discussed above, the naïve application of GI suffers from a lack of guarantees: most

notably of correctness, but also of efficiency. Even when the latter is an explicit objective,

it is typically the case that this objective is obtained on some training set, in anticipation

that this will generalize to the scenario of end-use. In closing, we describe a transformation

that is not only semantics-preserving, but which also leads to an asymptotic improvement in

efficiency.

Many immutable data structures, such as ConsList above, or regular Java™’s String class,

have poor asymptotic performance on common functionality such as repeated concatenation

or even the reverse function (for a broader discussion of this phenomenon the reader is referred

to [51]). This motivates alternative data representations, such as the infamous StringBuilders,

and the difference lists presented below.

123

Genetic Programming + Proof Search = Automatic Improvement

A difference list is a functional data structure introduced by Hughes [51], which supports

constant-time concatenation operations.11 Every difference list f represents an underlying

linked list L f . The difference list itself is implemented as a function f : ConsList[A] →

ConsList[A] which works by prepending L f to its argument. As such, only some functions

with that signature represent linked lists, i.e. the types ConsList[A] => ConsList[A] and ConsList

[A] are not isomorphic. The Scala declaration for a difference list ADT is the following:

sealed case class DiffList[A](f: ConsList[A] => ConsList[A])

Concatenation of difference lists is simply composition of their associated functions.

As such, a grown code fragment which uses difference lists for a function that requires

many concatenation operations will be asymptotically superior to one that works directly on

linked lists. Such operations are required even for relatively common functionality such

as reverse, see [51]. As discussed at the beginning of this section, there is a need for

grown functionality to use types that achieve good asymptotic performance, but this is prob-

lematic since the data structures of the host program are fixed. The grafting phase must

therefore accommodate this type discrepancy. Given the declaration of DiffList above, Poly-

Funic’s proof search is able to derive the proof for converting between the ConsList and

DiffList data structures, which allows the grown functionality to work on the latter ADT,

even though the host program uses the former, thus allowing for asymptotically superior

performance.

7 Conclusion

In this article, we presented a deterministic search method for deriving semantics-preserving

transformations via proof search in the sequent calculus and use of the correspondence

between Scala case classes and algebraic data types. We demonstrated that this approach can

be used to address important shortcomings of Genetic Improvement and more specifically,

the recently developed ‘grow and graft’ Genetic Improvement [11].

The main limitations of PolyFunic are external: as discussed in Sect. 1, the software

preserves only the semantic content that is made explicit in the type declarations. This limits

applicability to programs which reveal significant amounts of semantic information in their

type signatures. Fortunately, modern object-oriented applications developed in Scala invari-

ably belong to this class. Another limitation is that the method relies on the powerful type

system and reflection capabilities of the Scala programming language. Writing an implemen-

tation of the algorithm used in PolyFunic that works with more widely-used languages with

simpler type systems (such as C and Java) is expected to be difficult, although with Java this

issue can be circumvented to some degree by the bytecode-compatibility between Java and

any generated Scala code.

In its present form, the proof search can sometimes stall for want of an instance of a

non-algebraic data type (e.g. an integer argument determining the size of an array). There

are opportunities to overcome this problem by hybridizing with generative techniques.

Another possible direction of future work is extending PolyFunic to automatically har-

vest and reassemble code fragments taken from the open-source code bases available on the

Internet.

11 For comparison: concatenation is linear time for the two linked lists as algebraic data types introduced in

the previous section.

123

Z. A. Kocsis, J. Swan

Our case study shows that it is possible to transform invocations of the list data type to yield

an asymptotic efficiency improvement. We intend to extend this application of PolyFunic

to a variety of other data types such as various heaps, binary trees and finger trees [52].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Glass, R.L.: Frequently forgotten fundamental facts about software engineering. IEEE Softw. 18(3),

112–111 (2001)

2. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software repair. Softw. Qual. J.

21, 421–443 (2013)

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection

(Complex Adaptive Systems), 1st edn. MIT Press, Cambridge (1992)

4. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with evolutionary compu-

tation. Commun. ACM 53(5), 109–116 (2010)

5. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement and code transplants to

specialise a C++ program to a problem class. In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M.,

Garcia-Sanchez, P., Merelo, J.J., Santos, V.M.R., Sim, K. (eds.) Genetic Programming. Lecture Notes in

Computer Science, vol. 8599, pp. 137–149. Springer, Berlin (2014)

6. Kocsis, Z.A., Drake, J.H., Carson, D., Swan, J.: Automatic improvement of Apache Spark queries using

semantics-preserving program reduction. In: Petke, J., White, D.R., Weimer, W. (eds.) Genetic Improve-

ment 2016 Workshop. ACM, Denver (2016)

7. Swan, J., Burles, N.: Chapter Templar—a framework for template-method hyper-heuristics. In: Genetic

Programming: 18th European Conference. EuroGP 2015, Copenhagen, Denmark, Proceedings, pp. 205–

216. Springer, Cham (2015)

8. Burles, N., Bowles, E., Brownlee, A.E.I., Kocsis, Z.A., Swan, J., Veerapen, N.: Chapter Object-oriented

genetic improvement for improved energy consumption in Google Guava. In: Search-Based Software

Engineering: 7th International Symposium. SSBSE 2015, Bergamo, Italy, Proceedings, pp. 255–261.

Springer, Cham (2015)

9. Kocsis, Z.A., Neumann, G., Swan, J., Epitropakis, M.G., Brownlee, A.E.I., Haraldsson, S.O., Bowles, E.:

Repairing and Optimizing Hadoop hashCode Implementations, pp. 259–264. Springer, Cham (2014)

10. White, D.R., Joffe, L., Bowles, E., Swan, J.: Deep parameter tuning of concurrent divide and conquer

algorithms in Akka. In: Evo-* 2017, LNCS, Porto. Springer, Berin (2017)

11. Harman, M., Jia, Y., Langdon, W.B.: Babel Pidgin: SBSE can grow and graft entirely new functionality

into a real world system. In: Le Goues, C., Yoo. S. (eds.) Search-Based Software Engineering, Volume

8636 of Lecture Notes in Computer Science, pp. 247–252. Springer, Berlin (2014)

12. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive Step-by-Step Guide, 1st

edn. Artima Incorporation, Walnut Creek (2008)

13. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, New York (1989)

14. Langdon, W.B., Harman, M.: Optimising existing software with genetic programming. IEEE Trans. Evol.

Comput. 19(1), 118–135 (2013)

15. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The GISMOE challenge:

constructing the Pareto program surface using genetic programming to find better programs (keynote).

In: ASE, pp. 1–14 (2012)

16. Ackling, T., Alexander, B., Grunert, I.: Evolving patches for software repair. In: Proceedings of the 13th

Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, pp. 1427–1434. ACM, New

York (2011)

17. Krivine, J.-L., Parigot, M.: Programming with proofs. J. Inf. Process. Cybern. 26(3), 149–167 (1990)

18. Wadler, P.: Theorems for free! In: Proceedings of the Fourth International Conference on Functional

Programming Languages and Computer Architecture, FPCA ’89, pp. 347–359. ACM, New York (1989)

19. Norell, U.: Dependently typed programming in Agda. In: Proceedings of the 4th International Workshop

on Types in Language Design and Implementation, TLDI ’09, pp. 1–2. ACM, New York (2009)

123

http://creativecommons.org/licenses/by/4.0/

Genetic Programming + Proof Search = Automatic Improvement

20. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice Hall International Series in Computer Science.

Prentice Hall, Englewood Cliffs (1997)

21. Kocsis, Z., Swan, J.: Asymptotic genetic improvement programming with type functors and catamor-

phisms. In: Workshop on Semantic Methods in Genetic Programming, Parallel Problem Solving from

Nature, Ljubljana (2014)

22. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The GISMOE challenge:

constructing the Pareto program surface using Genetic Programming to find better programs. In: Pro-

ceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE

’12) (Keynote), Essen. ACM (2012)

23. Dijkstra, E.W.: On the Reliability of Programs. https://www.cs.utexas.edu/~EWD/transcriptions/

EWD03xx/EWD303.html, circulated privately(n.d.). Accessed 6 Nov 2015

24. Qi, Z., Long, F., Achour, S., Rinard, M.: An analysis of patch plausibility and correctness for generate-

and-validate patch generation systems. In: Proceedings of the 2015 International Symposium on Software

Testing and Analysis, ISSTA 2015, pp. 24–36. ACM, New York (2015)

25. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: The strength of random search on automated program repair.

In: Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pp. 254–265.

ACM, New York (2014)

26. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive program repair: mod-

els and first results. In: Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International

Conference on, pp. 356–366 (2013)

27. White, D.R.: Genetic Programming for Low-Resource Systems, Ph.D. thesis. University of York (2009)

28. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for automatic software

repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

29. Summers, P.D.: A methodology for LISP program construction from examples. J. ACM 24(1), 161–175

(1977)

30. Kitzelmann, E.: Inductive programming: a survey of program synthesis techniques. In: Schmid, U.,

Kitzelmann, E., Plasmeijer, R. (eds.) Approaches and Applications of Inductive Programming, Volume

5812 of Lecture Notes in Computer Science, pp. 50–73. Springer, Berlin (2010)

31. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthesis. In:

Software Engineering, 2010 ACM/IEEE 32nd International Conference on, vol. 1, pp. 215–224 (2010)

32. Mandelin, D., Xu, L., Bodík, R., Kimelman, D.: Jungloid mining: helping to navigate the API jungle.

In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and Imple-

mentation, Chicago, pp. 48–61 (2005)

33. Perelman, D., Gulwani, S., Ball, T., Grossman, D.: Type-directed completion of partial expressions.

SIGPLAN Not. 47(6), 275–286 (2012)

34. Gvero, T., Kuncak, V., Piskac, R.: Interactive synthesis of code snippets. In: Gopalakrishnan, G., Qadeer,

S. (eds.) Computer Aided Verification, Volume of 6806 Lecture Notes in Computer Science, pp. 418–423.

Springer, Berlin (2011)

35. Katayama, S.: An analytical inductive functional programming system that avoids unintended programs.

In: Proceedings of the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation,

PEPM ’12, pp. 43–52. ACM, New York (2012)

36. Augustsson, L.: Djinn, a Theorem Prover in Haskell, for Haskell. http://hackage.haskell.org/package/

djinn (2005)

37. Dyckhoff, R., Pinto, L.: Cut-elimination and a permutation-free sequent calculus for intuitionistic logic.

Stud. Log. 60(1), 107–118 (1998)

38. Bruce, K.B., Longo, G.: Provable isomorphisms and domain equations in models of typed languages. In:

STOC: ACM Symposium on Theory of Computing (STOC) (1985)

39. Bruce, K.B., Di Cosmo, R., Longo, G.: Provable isomorphisms of types. Math. Struct. Comput. Sci. 2(2),

231–247 (1991)

40. Rittri, M.: Using types as search keys in function libraries. In: Proceedings of the Fourth International

Conference on Functional Programming Languages and Computer Architecture, FPCA ’89, pp. 174–183.

ACM, New York (1989)

41. Di Cosmo, R.: Deciding type isomorphisms in a type-assignment framework. J. Funct. Program. 3, 485–

525 (1993)

42. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Berlin (2005)

43. Pierce, B.C.: Basic Category Theory for Computer Scientists. MIT Press, Cambridge (1991)

44. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995)

45. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68 (1940)

46. Martin-Löf, P., Sambin, G.: Intuitionistic Type Theory. Studies in Proof Theory. Bibliopolis, Napoli (1984)

123

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD303.html
http://hackage.haskell.org/package/djinn
http://hackage.haskell.org/package/djinn

Z. A. Kocsis, J. Swan

47. Swan, J., Epitropakis, M.G., Woodward, J.R.: Gen-O-Fix: An Embeddable Framework for Dynamic

Adaptive Genetic Improvement Programming. Technical Report CSM-195, University of Stirling (2014)

48. Paulson, L.C.: Designing a theorem prover. In: Abramsky, S., Gabbay, D.M., Maibaum, S.E. (eds.)

Handbook of Logic in Computer Science, vol. 2, pp. 415–475. Oxford University Press, New York

(1992)

49. Burmako, E.: Scala macros: let our powers combine! In: Proceedings of the 4th Workshop on Scala,

SCALA ’13, pp. 3:1–3:10. ACM, New York (2013)

50. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT

Press, Cambridge (2009)

51. Hughes, R.J.M.: A novel representation of lists and its application to the function “reverse”. Inf. Process.

Lett. 22(3), 141–144 (1986)

52. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data structure. J. Funct. Program. 16(2),

197–217 (2006)

123

	Genetic Programming + Proof Search = Automatic Improvement
	Abstract
	1 Introduction
	1.1 Overview

	2 Related Work
	2.1 Genetic Improvement
	2.2 Program Synthesis
	2.3 Type Isomorphism

	3 The Algorithm
	3.1 Algebraic Data Types
	3.2 Categories and Functors
	3.3 The Search Process
	3.4 Proof Search and Code Generation
	3.5 Limitations

	4 Implementation
	4.1 Restrictions
	4.2 Usage
	4.3 Planned Changes

	5 Case Study: Intelligent Grafting
	6 Case Study: Asymptotic Improvement
	6.1 ConsList and SnocList
	6.2 Asymptotic Efficiency Improvement

	7 Conclusion
	References

