
This is a repository copy of Transformation-induced changes in the DNA-nuclear matrix 
interface, revealed by high-throughput analysis of DNA halos.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117872/

Version: Accepted Version

Article:

Wilson, Rosemary and Coverley, Dawn Alison orcid.org/0000-0001-8262-7023 (2017) 
Transformation-induced changes in the DNA-nuclear matrix interface, revealed by high-
throughput analysis of DNA halos. Scientific Reports. ISSN 2045-2322 

https://doi.org/10.1038/s41598-017-06459-7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Wilson and Coverley:  DNA halos 

	 1

Transformation-induced changes in the DNA-nuclear matrix interface, revealed by 

high-throughput analysis of DNA halos.  

 

Rosemary H.C. Wilson1, 2, * and Dawn Coverley1  

 

1 Department of Biology, University of York, Heslington, York, UK, YO10 5DD 

2 Current address: Sir William Dunn School of Pathology, University of Oxford, South Parks 

Road, Oxford, UK, OX3 1RE 

 

*Correspondence: rosemary.wilson@path.ox.ac.uk Tel: +44-(0)1865-618651 

 

 

Running title Analysis of changes in chromatin loops 

 

Word count 2886 not including acknowledgements, abstract and legends 

 

 

Key words Chromatin loop, Maximum Fluorescence Halo Radius, Nuclear Matrix, Cancer  

 

 

 

  



Wilson and Coverley:  DNA halos 

	 2

Abstract In higher eukaryotic nuclei, DNA is periodically anchored to an extraction-resistant 

protein structure, via matrix attachment regions. We describe a refined and accessible 

method to non-subjectively, rapidly and reproducibly measure both size and stability of the 

intervening chromatin loops, and use it to demonstrate that malignant transformation 

compromises the DNA-nuclear matrix interface.  
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Introduction The three-dimensional organization of chromatin plays a central role in the 

regulation of nuclear functions. Organization includes periodic attachment to a 

biochemically-defined, extraction-resistant structure referred to as the nuclear matrix (NM), 

via Scaffold or Matrix Attached Regions of DNA (S/MARs). However, despite extensive 

analysis of S/MAR sequences and evidence that replication and transcription take place at 

the base of chromatin loops, the concept of a NM is not universally accepted, and has been 

under investigated. As a result, we have limited information on the changing relationship 

between chromatin and the NM during development and disease1 and a very limited 

understanding of the functional significance of pathology-associated changes in nuclear 

structure2. The Maximum Fluorescence Halo Radius (MFHR) method3 has the potential to 

reveal information about the relative role of loop-base attachments in different cell types. It 

allows visualization and measurement of loops and the residual nucleus (RN), after 

unpackaging by removal of histones and other associated proteins, whilst maintaining NM 

attachment (Fig. 1a). It has been used to investigate average chromatin loop size4,5, NM 

attachment of individual genes6,7 the effect of replication rate3,8,9, and of knockdown of 

specific proteins10,11. However, its full potential to follow changes in chromatin loops has not 

been realized because traditional methods for analysis of halo images are labor intensive, 

rely on subjective visual assessment of radius measurements and are vulnerable to user 

variability. Moreover, typically only defined halo structures are quantified which omits 

important information about populations of cells. We have developed an accessible MFHR 

image analysis method and established a straightforward procedure to set threshold 

parameters. Halo Image Macro (HIM), used with NIH ImageJ12, enables rapid, non-

subjective quantification of average DNA loop size in populations, calculated from the shape 

of the whole DNA halo. We have also developed related assays that report on loop stability 

(Supplementary table 1), and applied these to reveal oncogene-induced changes in the 

chromatin-NM interface. MFHR is a conceptually simple but technically challenging method, 

which has the potential to return valuable data about an under-investigated area of cell 

biology.  

 

Results 

 

Establishment of MFHR halo edge thresholds for image analysis Accurate quantification 

of mean chromatin loop size is based on establishment of two ‘edges’; the outer threshold of 

the halo and the residual nucleus (RN) (Fig. 1a). Firstly we establish the correct exposure for 

MFHR image capture using RN size, by calibrating settings to the area occupied by the NM. 

We use a GFP-tagged NM protein (EGFP-CIZ1 C-term27413) to mark the NM, and set 
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MFHR image exposure. For our apparatus 5ms returns a mean value for RN radius that is 

100.3 % of CIZ1 NM radius (Fig. 1b).  

 

So that the pixel intensity threshold that specifies the edge of the RN is compatible with the 

wide range of intensities within a population of MFHR processed cells (Supplementary Fig. 

1a), we use an RN threshold that is related to individual image maxima. To select the RN 

threshold, RN radius measurements returned by HIM with a range of settings are compared 

to those generated by visual assessment of the RN boundary, for a training set of images. In 

the following experiments we use an RN equal to the local maxima less 55 (x=55), which 

returned 101 % of visual estimates of the training set (Fig. 1c, Supplementary Fig. 1b). 

 

The pixel intensity for the outer threshold is more difficult to determine visually, and is 

subject to both user and screen variability (Supplementary Fig. 1c). Unless indicated, we 

use an absolute pixel intensity threshold of 15, which captures ≥95% of the area under the 

curve and confidently includes the outermost DNA loop edge across a population of cells 

(Fig. 1d, e, Supplementary Fig. 1d).  

 

With a fixed image capture time, established RN and outer thresholds, HIM is capable of 

systematic comparison of multiple large data sets and automatically returns linked 

measurements for RN area and total area, for batches of submitted images (Supplementary 

Fig. 1e). Straightforward calculations convert these to halo radius (see User Guide).  

 

Cell lines derived from high grade tumors exhibit destabilized halos Comparing halo 

size within a set of breast and bladder derived cell lines revealed considerable variation 

between populations (Fig. 1f). Moreover, all cell types gave rise to two classes of product, 

differing in their RN. Class I have defined RNs while class II have a poorly defined RN and 

fail to be measured by HIMx55/15 (Fig. 1g, h). A bright, well defined RN reflects greater 

retention of DNA within the residual nucleus and implies strong DNA:NM attachments that 

withstand the extraction process. Class I cells can be further divided into Ia (bright RN) or Ib 

(pale RN) using a specialized HIM (Supplementary Fig. 2). In fact most published MFHR 

analyses do not comment on class differences, measuring only defined and regular MFHR 

entities (and showing only class Ia cells), thereby under-reporting differences between 

populations.  

 

Notably class distribution, determined by RN HIM, is significantly different between the 

poorly differentiated breast and bladder cancer cell lines MDA-MB-231 and T24/EJ, 

compared to lower grade tumor-derived lines, or cells derived from normal urothelial tissue. 
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This manifests as increased class Ib and class II cells (Fig. 1g), and suggests that 

destabilization of the DNA:NM interface is a feature of malignant transformation.  

 

Effect of introduced oncogenes To interrogate this under more defined conditions we 

used an isogenic Mesenchymal Stem Cell (MSC) series, with sequential introduction of five 

well-characterized oncogenes14 (Fig. 2 and Supplementary Figure 3a). Variation between 

the five populations, necessitated careful selection of HIM thresholds to support 

measurement of cells over the whole series under the same conditions (Supplementary 

Fig. 3). Range from local maxima was selected for both RN and outer threshold (x75/x180), 

generating data that reflect both chromatin loop size and RN intensity. This revealed 

significant shifts toward larger and more diffuse halos after expression of HPV-E6 (50% 

increase in mean halo size and 4 fold decrease in class Ia cells), and again after expression 

of H-Ras (111% increase in size and 3 fold increase in class II cells), compared to the 

starting population (Fig. 2a, b). In contrast, neither HPV-E7, nor SV40 small-t antigen had a 

measureable impact on either parameter. A second set of HIM parameters that use an 

absolute outer threshold (x75/15), making size determination independent of RN intensity, 

confirmed that halo radius is affected by H-Ras expression (Fig. 2c). However, the effect of 

E6 was not observed, suggesting that it likely reflects a complex effect on structure of the 

NM itself (RN). Consistent with this, larger RN sizes were recorded following E6 expression 

(Supplementary Fig. 3h).  

 

Stability of MFHR halos in five-member isogenic transformation series DNA halos are 

unstable structures so that class I halos transition to class II halos over time. The wavelength 

used to image ethidium bromide-stained halos (546 nm excitation) induces DNA damage15-

18, by introducing both double and single strand breaks. Cells that start with a bright RN and 

have more DNA associated to the nuclear matrix (class Ia) appear to withstand more 

stochastic damage before DNA is released and can diffuse away. This instability limits image 

capture time but, by applying HIM with an outer threshold related to the local maxima, it also 

offers a means to measure dynamic changes in halo stability (Fig. 2d, e). As DNA is 

fragmented and lost, the intensity drops until a threshold is reached when the outer edge of 

a halo can no longer be measured (<180 for HIMx75/x180), and a cell ‘fails’ to return a value 

(Fig. 2d). By comparing a series of images captured over 60s, we can classify halos into 

stable or rapidly decaying entities, allowing time to decay and percentage of surviving halos 

to be plotted. This shows that halos are much more stable in MSC1 cells than in MSC5 cells 

(Fig. 2e, f). Similar results were obtained for high-grade tumour cell lines MDA-MB-231 and 

T24/EJ (HIMx55/x240), compared to lower grade cells (Fig. 2g, h). Partial release of loop 
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DNA from the NM, and differential stability, has been noted previously but has not been 

quantified19. 

 

Discussion 

 

The isogenic MSC cell series used here are characterised by acquisition of malignant 

phenotype upon expression of defined oncogenes. Most notably, anchorage independent 

growth and tumour formation in mice both increase dramatically upon introduction of the 

GTPase H-Ras into MSC4 cells (which already harbour HPV-E6, HPVE7 and small t-

antigen) to generate MSC5 cells14. In our experiments introduction of H-RAS, which 

bypasses growth factor regulation, initiates a transition toward larger halos, identifying 

changes in S/MAR recruitment as co-regulated with these malignant characteristics. Induced 

expression of H-Ras has been previously linked with changes in the protein component of 

the NM and DNA supercoiling20, offering some precedent for these findings. We also show 

that HPV-E6 which inactivates the tumor suppressor p53, initiates a separate transition in 

size, stability and class, all of which suggest fewer or shorter interface between DNA and the 

NM. Both HPV E6 protein and viral DNA are found associated with the NM21, however, there 

is no further evidence to support a direct link with stability or structure of the nucleus.  

 

Neither H-Ras or E6 are reported to increased proliferation rate in this MSC series, 

compared to their parent line (though introduction of t-antigen to generate MSC4 did14), 

arguing that DNA:NM stability is not directly related to proliferation rate. This is important 

because cell cycle distribution might be expected to impact on the DNA:NM interface when 

replication origins are recruited to the NM during initiation of DNA replication1. In fact 

published work22, and our own analysis (not shown), which compared unsynchronised cells, 

and G1 or S-phase cells did not support global MFHR loop size differences during the mitotic 

cell cycle. 

 

There has been some genome wide analysis of NM-attached DNA in two of the breast-

derived lines used here23, which reports differences that compare well with our results. 

Specifically, in MCF10A cells NM-DNA was more likely to map to gene rich regions and to 

expressed genes than in MDA-MB-231, where NM-DNA was enriched in non-expressed 

genes. However, in both lines H3K4me3, H3K27me3 and H3K9me2 were appropriately 

associated with expressed and non-expressed genes, suggesting that NM attachment is not 

closely related to epigenetic landscape. The relationship may not be clear cut however, 

because analysis of methylation status of LINE1 and Sat2 elements in the MSC1-5 cell 

series revealed hypomethylation in the MSC5 line24. Though a direct correlation between this 
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study of DNA methylation and our study of NM-attachment cannot be drawn, DNA 

methylation of specific S/MARs has been reported to affect function25. 

 

The molecular basis for the increases in loop size and decrease in stability remains to be 

determined. Clearly, global changes in transcription rate, reported in cancer cells26, could 

affect the DNA:NM interface, and there are numerous published examples of tumour-

associated changes in nuclear matrix protein composition2,27-30 or sub-nuclear architecture at 

the level of domain organization2. Moreover, there are specific examples of diseases that are 

associated with loss of S/MAR sequences31. Despite the strong correlation between 

degeneration of nuclear architecture and cancer, there is little evidence that distinguishes 

cause and effect. Loss of stabilizing architecture could facilitate loss of cellular identity 

through relaxation of spatial control over gene expression30, or reduced anchorage of 

chromatin loops might directly support emergence of genome instability through inaccurate 

repair of strand breaks. Alternatively, loss of stable structure is a consequence of cancer-

associated changes in gene expression. Here we present evidence that introduction of a 

transforming oncogene causes (directly or indirectly) disruption of the DNA:NM interface. 

Moreover, the approach described here offers a well-defined methodology with which to 

further dissect malignancy-associated changes in nuclear structure, starting with the 

previously unrecognised trigger, H-Ras. 

 

Methods  

 

Cells and cell culture Cells were obtained from ATCC or JCRB cell banks and grown on 

glass coverslips to 50-70 % confluence, as recommended. Sequentially transformed 

mesenchymal stem cells14 (MSC) were kindly provided by Dr Juan Funes and Prof Chris 

Boshoff, and normal human urothelial cells (NHU), derived from tissue biopsies32, by Edward 

Bowen and Prof Jennifer Southgate. Breast cells lines were derived from normal breast 

tissue (MCF10A33), low grade breast cancer (MCF734) or oestrogen receptor negative 

metastatic breast cancer (MDA-MB-23135). Bladder cell lines were from metastatic bladder 

cancer (T24/EJ36) or lower grade bladder cancers (RT4 and RT11236).  

 

Maximum Fluorescence Halo Radius extraction method The ethidium bromide MFHR 

method has been described previously4,9. For the analysis performed here, the following 

changes were made: 0.25 % Igepal (NP40 substitute, Fluka 56741) was used instead of 0.5 

% NP40, and a development incubation was included (5 mins in the dark) to enable halos to 

reach a stable expanded state prior to imaging. All incubations were performed on ice using 

ice-cold buffers. Briefly, cells on coverslips were washed in D-PBS followed by 1 min 
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incubation in detergent extraction buffer (0.25 % Igepal, 10 mM MgCl2, 0.5 mM CaCl2, 50 

mM Tris-Cl pH 7.5). Coverslips were then incubated for 30 s in series in each of 0.5 M NaCl, 

1.0 M NaCl and 1.5 M NaCl extraction buffers, followed by 2.0 M NaCl extraction buffer (all 

made up in 0.2 mM MgCl2, 10 mM Tris-Cl pH 7.5). The last incubation lasts for 2 min, 

including 1 min exposure to 240 nm UV treatment, and is done in the presence of 100 µg/ml 

ethidium bromide. Coverslips were then mounted on slides, sealed with nail varnish and 

matured in the dark for 5 min.  

 

Microscopy and image capture Halos were imaged using a Zeiss Axiovert 200M 

fluorescent microscope using Zeiss filter set 15 (Excitation filter: band pass 546/12 nm, 

Emission filters: beam splitter 580 nm and emission long pass 590 nm) and AxioCam HRm 

digital camera with Openlab software (PerkinElmer). Images were acquired using constant 

exposure (5ms unless stated otherwise), taking care to image only ‘fresh’ fields that were not 

previously viewed. 50-80 images (RGB 8-bit, file size 1388 x 1040 pixels) were acquired 

from each sample, within 10 min of preparation. Raw Openlab LIFF files were saved for 

reference but files were transferred with no additional processing as RGB 8-bit TIFF files for 

analysis in ImageJ. 

 

Visual size estimates For analysis by eye, MFHR files were opened in ImageJ 1.46 for Mac 

OS X (NIH). Halo areas were calculated using the ‘polygon’ function to draw around the 

whole of the visible RN and halo (Supplementary Fig. 1b), quantified using the ‘measure’ 

function, and radius measurements derived using the formula in HIM User Guide. 

Alternatively halo radius measurements were estimated using the ‘line’ function to draw a 

vertical line from the outer edge of the RN to the outer edge of the visible halo, at the lowest 

position in each image (Supplementary Fig. 1b), followed by the ‘measure’ function. 

Irregularities in structure have significantly more impact when using a single radius 

measurement.  

 

Halo Image Macro (HIM) analysis Image files were processed using ImageJ macro HIM to 

calculate average halo radius, class percentages or stability of halos as described. HIM 

versions for each type of analysis are indicated in main text and see Supplementary Table 

1. HIM set up and validation is described in results and supplementary information. Briefly, 

HIM defines RN and outer halo edges, creating an ROI for both regions. HIM matches RN 

and outer regions where possible using halo positional information. Output is a RN threshold 

analysis picture and outer threshold analysis picture for each image, and a .csv file 

containing RN and outer area measurements. Users then derive the halo radius. MSC cell 
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lines were processed for halo radius size using HIM x75/15 or HIM x75/x180 as indicated. 

Other cell lines were processed for halo radius analysis using HIM x55/15. 

 

Using HIM to calculate halo class distribution In addition to a range of halo diameters, 

populations of cells processed by MFHR return two classes of product (Fig. 1h). Class I 

have defined RNs and class II have an ill-defined RN with poor structure. Class I is further 

subdivided into Ia (bright) where >50% of the returned RN from local maxima is above 220 

intensity and Ib (pale) where <50% of their RN above 220 intensity. Visual designation can 

be subject to user variability (not shown), therefore we designed a specialised classification 

HIM (RN HIM) which uses RN intensity to non-subjectively classify halos into class Ia, Ib or II 

(Supplementary Fig. 2, 3, Supplementary Table 1). MSC cell lines were processed for 

classification analysis using HIM RNx75/RN220, other cell lines were processed using HIM 

RNx55/RN220.  

 

Using HIM to measure stability For halo size the time each halo is exposed to light 

before/during imaging is 1-2 seconds, therefore the opportunity for halo degradation is 

minimal. In contrast, for stability measurements, halos are imaged through a 60 second 

window to reveal time-dependent decay, as seen in figure 2d-h. A series of images collected 

over time can be used to quantify stability and rate of halo decay. We typically collect 7 

images of individual cells from 0 s to 60 s at 10 s intervals using 546 nm light (see 

microscopy and image capture), typically from 8 cells per coverslip for at least four 

coverslips. Users should decide if they wish to sample from the whole population or from one 

class. After curation (identification of whole image ROIs derived from failed cells), we plotted 

surviving halos as percentage of the population for each time point. Alternatively, halo failure 

time can be used to plot average time to decay. Where halos did not fail, and remained 

measureable at 60s, they were given a fail time of 70s. MSC cell lines were processed using 

HIM x75/x180, other cell lines were processed using HIM x55/x240. 

 

Western blotting Whole cell lysates were generated from asynchronously growing MSC 

cells, cultured as recommended14. Equal amount of sample were run on SDS-PAGE and 

transferred to 0.1 µm nitrocellulose before being probed for introduced oncogenes, to 

validate MSC cell line identity. Antibodies used were mouse anti-PCNA (PC10, abcam), 

rabbit anti-HRAS (18295-1-AP, Proteintech), E6 (N17, Santa Cruz) and mouse anti-actin 

(A4700, Sigma) as a loading control. 

 

Sample numbers and statistics Mean halo radius data, classification data and stability 

data were generated from image sets derived from four coverslips, comprising two technical 
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replicates from each of two biological replicates. Stability data are presented as percentage 

of surviving halos at each time point or average time to decay. These were typically 

generated from 32 cells, comprising 8 cells (each followed for 60s) from each coverslip. All 

error bars are SEM. Powers were calculated using Student’s t-test, where * p,0.05, ** 

p<0.005, *** p<0.0005. 

 

Supplementary information More detailed descriptions of the setup and validation of HIM 

methods are included in supplementary information, as well as a HIM user guide. 
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Figure legends  

 

Figure 1: Calibration and edge determination. a) Example MFHR image. b) NM marker 

(green) and DNA in MFHR-extracted nuclei (white). Histogram shows mean RN radius as 

percentage of NM marker, +SEM. c) RN and d) outer threshold positions, determined by 

HIM, using indicated pixel threshold values. Histograms show mean derived radius as 

percentages of visually-derived values. e) Pixel intensity plot across an MFHR-processed 
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nucleus, showing outer threshold (II), RN threshold (III), and typical outer threshold 

estimated by eye (z). f) Mean halo radius and g) class distribution for indicated cell lines, 

+SEM. h) Examples of class Ia, Ib and II MFHR-processed cells. 

 

Figure 2: Transformation-induced changes in chromatin loop size and stability. a) 

Class distribution for Mesenchymal Stem Cell (MSC) series, with introduction of the 

indicated oncogenes14. b) Mean halo radius using HIM x75/x180 or c) HIM x75/15. d) 

Example MFHR stability over time, showing edges determined by HIM x75/x180. e) Halo 

measurements over 60s time-course for individual MSC1 and MSC5 cells. f) Stability 

measurements plotted as percentage of surviving halos (left), and average time to decay 

(right). g) and h), as in f, for breast and bladder-derived cell lines respectively. i) Possible 

effects of transformation on DNA:NM interface. 
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Legends to supplementary figures 

 

Supplementary figure 1: Validation of HIM a) Pixel intensity plots across example MFHR 

images, showing intensities across the whole of the image (upper), flattening out over the 

higher intensity RNs. The lower plot shows captured RNs after application of local maxima 

less 55 (x55) threshold. Plots show representative sample class Ia (RN reaching maximal 

255 intensity) and class Ib (RN maxima less than 255) images. b) Schematic shows RN and 

halo boundaries. c) Six data sets extracted from the same population of images, expressed 

as frequency distribution of halo radius measurements. Results were generated using visual 

or HIM analysis as indicated, or by different users and screens. d) The effect of RN and 

outer threshold settings on average halo radius for the same population of images, showing 

little variation associated with changes in RN threshold intensity setting, and a more 

dramatic dependence on outer threshold setting. Our default HIM setting of x55/15 is shown 

in black. e) Schematic shows images produced by ImageJ during HIM process. HIM selects 

an ROI for the input image (left), using either a threshold related to the local maxima (RN, 

top set) or an absolute pixel intensity threshold (outer threshold, lower set). The ROI edge is 

closed and set to 255 (only required for threshold related to local maxima). HIM then 

measures the ROI area and produces a numbered ROI image (analyse particles). f) Average 

RN radius, halo radius and total radius for a sample data set of 3T3 cells, shown as mean 

(upper), or frequency distribution (lower). g) Graphs show pixel intensity across an MFHR 

treated nucleus (left) and one that was treated only up to 0.5M NaCl, so that histones are not 

extracted and DNA does not expand beyond the RN. Boundaries selected by HIM x55/15 

are indicated. 

 

Supplementary figure 2: HIM based classification of class Ia and Ib halos a) Left: 

Histogram shows the percentage of the RN area captured by HIM x55/15, that is also 

captured using an absolute intensity value for RN threshold (as indicated), for a 

representative set of 3T3 images. This effectively separates class Ia and Ib cells, because 

for Ia cells the two measurements are similar, and the % is close to 100. RN 220 was 

selected for separation of class Ia and Ib cells and validated (using HIM RNx55/RN220) by 

comparing results to visual classification of a 3T3 image training dataset (right). The two 

outputs were aligned with no ‘false Ib’ or ‘false Ia’ (where HIM classification does not match 

visual assessment). b) Histogram shows mean RN, halo and total radius measurements for 

class Ia and class Ib 3T3 cells, using x55/15. c) Histogram shows mean halo radius for class 

Ia, class Ib or both class Ia and b for a set of non-cancer cell lines, using x55/15. The same 

trend is observed when independent of class used. d) Histogram shows classification for 

non-cancer cell lines used in c.  



 

Supplementary figure 3: Customization of HIM for analysis of linked set of MSC lines 

a) Western blot validation of MSC lines 1-5 showing introduced oncogenes as indicated. b) 

Graph shows RN radius calculated by HIM using the indicated RN thresholds (local maxima 

less x) for a sample set of MSC1 (n=100) and MSC3 (n=66) images. Values are plotted as 

percentage of RN radius calculated using visual assessment. c) Histogram shows average 

halo radius for MSC1 and 3 cells, with the indicated HIM threshold settings. MSC1 and 3 

return a difference regardless of settings. We prefer x75/x180 as this allows a greater 

proportion of cells to return a measurement. For MSC1, n=41 with x55/x240, n=44 with 

x75/x240, n=83 with x75/x180. For MSC3, n=2 with x55/x240, n=2 with x75/x240, n=16 with 

x75/x180. d) Graph shows percentage of MSC1 and 3 cells measureable, with the indicated 

outer thresholds (using constant RN of x75). At x230 and x240 most MSC3 cells fail to return 

a value. For analysis of the full MSC series, shown in Fig. 2b, x75/x180 was applied. e) 

Establishing settings for classification of Ia and Ib by HIM. Histogram shows the percentage 

of the captured RN (local maxima less 75) that is also captured when using the indicated 

absolute intensities for RN, for a representative set of MSC1 images. f) Histogram shows 

classification of MSC1 images using the indicated HIM parameters compared to visual 

assessment of the training set. Images that were visually scored to be class Ia but by HIM 

were scored to be class Ib are defined as ‘false Ib’, and those visually scored to be Ib but by 

HIM scored as Ia are defined as ‘false Ia’. RN 220 most accurately separates the classes. g) 

As e) for representative MSC1, MSC3 and MSC5 images, using HIM RNx75/RN220. h) 

Histogram shows mean RN radius (for class Ia and b) across the MSC series using 

HIMx75/15, also used to generate the data in Fig. 2c. 

 

Supplementary figure 4: Analysis of variance for MSC lines a) Frequency distribution 

graph shows data for all five MSC cell lines, each combined from four replicate experiments. 

b) Frequency distribution graph shows individual replicates for MSC1 and MSC2. c) As b for 

MSC4 and MSC5. d) As b for MSC2 and MSC4. e) Table shows ANOVA results for the 

indicated groups. f) Histograms show average halo size for MSC1 and MSC4 (left) and 

MSC4 and MSC5 (right) when pairs were processed together and imaged on the same slide 

at the same time. Data collected from three replicates for each pair of cell lines. Error bars 

are SEM, * p<0.05, *** p<0.0005. No significant difference between MSC4 collected with 

MSC1 or MSC4 collected with MSC5. 

  



Supplementary Methods - ImageJ HIM setup and validation:  

 

RN edge determination In ImageJ, thresholds can be set based on absolute intensity 

values or at an intensity relative to the local maxima for each individual image. Due to the 

wide range of maximal intensities within a population of MFHR processed cells, an absolute 

pixel intensity threshold is usually not applicable to the whole population. In fact, the intensity 

range within an RN is more similar in a halo population than is the maximal (Supplementary 

Fig. 1a), meaning an RN threshold related to the individual maxima is useful. To set the RN 

threshold we compared RN radius measurements returned by HIM with different settings, to 

visual assessment of the RN boundary (Fig. 1c, Supplementary Fig. 1b), for training 

images.  

 

Choice of measurements MFHR image files were analysed in ImageJ using HIM, as 

described in the User Guide. HIM allows separate radius measurements to be derived from 

the RN and the total area (Supplementary Fig. 1f), and therefore the calculation of a 

derived halo radius. Radius measurements are calculated by fitting HIM output areas to 

circles (User Guide). However, we note that a significant minority of entities are elliptical. 

Application of an elliptical formula does not significantly change halo radius measurements 

(not shown), so we chose to perform circle formula based calculations throughout. Circles 

allow the whole area to be taken into consideration rather than just x- and y-axes, which like 

single visual radius measurements, are more affected by structural irregularities. In most 

cases we choose to present our results in terms of derived halo radius, as this reflects the 

theoretical chromatin loop size and has biological implications. If desired, and perhaps 

applicable to certain specific analyses, HIM allows different types of measurements to be 

made quickly and easily. For example RN radius or area measurements could be used to 

interrogate NM volume and compaction. Note that our standard combination of settings (HIM 

x55/15) systematically incorporates pixels at the outer halo edge that are not visible by eye 

(Fig. 1e), meaning halo measurements are systematically larger than those generated by 

eye.  

 

Effect of flare The effect of flare from a bright RN on halo measurement was assessed 

using unexpanded 3T3 cell halos (treated only up to 0.5 M NaCl), in which histones are not 

extracted1, and chromatin remains packaged within the nucleus. HIM x55/15 returned a halo 

radius that is approximately 5-fold less than that created by loop expansion, indicating a 

small but significant, systematic contribution to halo measurements (Supplementary Fig. 

1g). 

 



Using HIM to determine classifications Specialist HIMs were designed which use RN 

intensity to non-subjectively classify halos. Populations of cells processed by MFHR return 

two classes of product (Fig. 1h). Class I have defined RNs and class II have an ill-defined 

RN with poor structure and fail to return a value using HIM. Class I is further divided into 

class Ia (bright RN) and Ib (pale RN, Fig. 1h). Class Ia halos are defined as those in which 

>50% of the returned RN from local maxima is above 220 intensity. Class Ib halos have 

<50% of their RN above 220 intensity. Validation is shown in Supplementary Fig. 2a. RN 

HIM was trialled with different absolute intensity values (180-250 Supplementary Fig. 2a) 

and 220 chosen. For an example training set of visually defined Ia and Ib images, HIM 

RNx55/RN220 returned a value of 89% for class Ia, but only 7% for class Ib. Therefore using 

a cut off of 50% HIM RNx55/RN220 effectively separates class Ia and Ib halos and we show 

that HIMRNx55/RN220 classifies the whole 3T3 dataset the same as visual scoring 

(Supplementary Fig. 2a right). Nevertheless, other cell lines are less easy to classify by 

eye so RN HIM provides rapid, non-subjective classification by application of a constant 

intensity threshold. 

 

HIM measurements for a panel of non-cancer cell lines Application of HIM x55/15 to a 

panel of cell lines returned significant, reproducible differences in both halo size and 

proportions of class Ia, Ib and II (Supplementary Fig. 2b-d), implying global differences in 

the frequency or nature of their MARs. We considered whether changes in halo size might 

reflect differing proportions of classes across populations, as we find that class Ia cells return 

slightly larger RN radius values and slightly smaller halo radius values than Ib cells using 

standard HIM x55/15 (Supplementary Fig. 2b). However the differences we observe in halo 

size across cell lines is not attributable to differing distribution within class I, because 

separate analysis returns similar trends (Supplementary Fig. 2c). In fact there is not a 

straightforward correlation between mean halo size and classification (compare 

Supplementary Fig. 2c and 2d). For example, NHU and MCF10A have a similar 

percentage of class Ia cells (78% and 88% respectively), but different mean halo radius (16 

μm and 13 μm respectively), while BJ-hTERT has only 42% class Ia cells, and a mean halo 

size similar to MCF10A. The differences in halo parameters that we observe across a panel 

of non-cancer cell lines therefore shows that choice of ‘normal’ comparison is highly 

important.  

 

Customization of HIM for MSCs Cell types respond to MFHR differently, in some cases 

requiring HIM thresholds to be fine-tuned for particular analyses. Mesenchymal Stem Cells 

(MSCs)2 were observed to produce MFHR images with pale RNs, requiring the RN threshold 

criteria to be adapted so that it supports analysis across the whole diverse series. Different 



RN values, based on range from local maxima (where x=55, 70, 75, or 100) were compared 

for measurement of MSC1 and MSC3 cell lines (Supplementary Fig. 3b). The HIM default 

threshold (x55) gave a smaller than visual measurement for both cell lines, while RN x75 

gave a similar value to visual assessment (100.7% for MSC3). MSC1 RN measurements are 

still somewhat smaller than visual measurements at x75, which will lead to slight 

overestimation of halo size. In fact several sets of HIM settings were trialled on the MSC 

series data (Supplementary Fig. 3c). HIM x75/x180 (Fig. 2b) was used to derive a halo 

measure in which both parameters are related to RN intensity. For this analysis, the range 

settings for outer threshold (x180) was chosen to support inclusion of a greater proportion of 

cells across the series. Outer range settings higher than 180 incorporate smaller 

percentages of the population, but still report differences in halo measurements between 

MCS1 and 3 (Supplementary Fig. 3c, d). A different version of HIM (x75/15, Fig. 2c) uses 

an outer threshold with absolute pixel intensity of 15, which reflects the point at which 

intensity increases over background, where background is set at 5% AUC for a training 

population (Fig. 1e). Here outer threshold is unaffected by RN intensity and reports only on 

differences in RN and halo size. We remind readers that data collected using different 

thresholds should not be compared. For example, mean halo measurements in figure 2c 

cannot be directly compared to figure 2b, except to evaluate the effect of the different 

settings.  

 

Customisation of classification HIM for MSCs To establish suitable parameters for 

classification of MSCs by HIM, data collected using different absolute RN pixel intensity 

thresholds were compared to classifications by eye for a representative set of images for 

MSC1 (Supplementary Fig. 3e, f). Those that were visually scored as class Ia, but by HIM 

were scored as class Ib, are defined as false Ib, and those visually scored as Ib, but by HIM 

scored as Ia, are defined as false Ia. For MSC1, classification based on a 50% cut off, using 

intensity above 180 or 200 caused significant percentages of false Ia images. Likewise, 

above 230 produced a significant percentage of false Ib images (Supplementary Fig. 3f). 

We chose 220 intensity as our parameter, as this minimized ‘false’ classification with the 

training set, and confirmed that this is suitable across the full range of the MSC series 

(Supplementary Fig. 3g), before application to test populations. 

 

Validation of biological differences As with all analysis methods that image slides 

prepared in different sessions, we considered whether biological differences could be seen 

above the level of variability between replicate experiments. To illustrate this, frequency 

distributions were plotted for halo size measurements generated using HIM x75/x180 from 

MSC cell lines, for complete data sets (Supplementary Fig. 4a) and individual biological 



and technical replicates (Supplementary Fig. 4b, c, d), and variance calculated using 

ANOVA (Supplementary Fig. 4e). Graphs show that individual replicates from the same cell 

line overlay well and are more similar to each other than to data sets from a different cell 

line, compare MSC1 and 2 (Supplementary Fig. 4b) and MSC4 and 5 (Supplementary 

Fig. 4c). Furthermore, individual data sets return the same results as the mean of each set 

of replicates (Supplementary Fig. 4a, Fig. 2b). ANOVA results confirm that MSC1 halo size 

data set is statistically different from MSC2, and that MSC4 is statistically different from 

MSC5, but MSC2 is not different to MSC4. Overall, this shows that variation inherent in 

preparation conditions is far less than biological differences between cell lines.  

 

In addition, we processed and imaged MSC1/MSC4 and MSC4/MSC5 as pairs, in order to 

ensure identical reagents and process. As expected, we find the same statistical differences 

as when processed independently (compare Supplementary Fig. 4f and Fig. 2b). Taken 

together this allows us to conclude that the differences we observe between cell lines is not 

due to slide to slide variability but statistically robust biological differences due to cell type. 

 

Supplementary Table 1: Versions of HIM, with their applications  

 

HIM title Usage 

HIM x55/15 Halo size for non-cancer and cancer cell lines 

 Defines RN (local maxima less 55) and outer threshold (intensity 

15) areas 

HIM x75/15 Halo size for MSC series 

 Defines RN (local maxima less 75) and outer threshold (intensity 

15) areas 

HIM x75/x180 Halo size for MSC series (includes effect of RN intensity) 

Stability for MSC series 

 Defines RN (local maxima less 75) and outer threshold (local 

maxima less 180) areas 

HIM x55/x240 Stability for non-cancer and cancer cell lines 

 Defines RN (local maxima less 55) and outer threshold (local 

maxima less 240) areas 

HIM 

RNx55/RN220 

Classification for non-cancer and cancer cell lines 

 Defines the RN percentage above 220 intensity 

HIM 

RNx75/RN220 

Classification for MSC series 

 Defines the RN percentage above 220 intensity 



User Guide:  Halo Image Macro for ImageJ  

 

File output HIM opens each image file, selects a region of interest (ROI) within each image 

based on the ‘RN threshold’, measures the RN area and saves a copy of the new file, with 

the ROI shown, in the ‘RN threshold’ folder. This is repeated for the ‘outer threshold’, saving 

the new file in the appropriate folder. The ‘setBatchMode’ command in the HIM code stops 

the visual opening and processing of each file. This command may be removed to visualize 

the steps and allow troubleshooting. 

 

The output for each file is a RN threshold analysis picture, an outer threshold analysis 

picture, and area measurements for each. Measurements are initially recorded in the 

‘Results’ dialogue box. HIM then matches RN and outer area measurements for each cell 

and exports the data to a .csv (comma-separated values) file which can be read by excel. 

Users should then save this file as a .xlsx file or other excel file type as some excel features 

are not compatible with .csv files.  

 

Matching RN and outer measurements RN and outer area measurements from the same 

cell are matched by using x- and y- positional information for the centre of each ROI. The 

HIM queries a possible pair (from within the same image) and if the x- and y- centre 

coordinates of the RN and outer differ by less than 5% of the square root of the total image 

area, measurements are linked with the outer data moved to the same row as the RN data. If 

the pair fail to fulfil this criteria, HIM will query any other RN measurements from the image 

(ie if multiple cells are present on the image) to see if they match with the outer 

measurement. If no matching RN is found, the outer measurement data are not moved and 

they remain on their own row of the output .csv file. HIM is therefore capable of dealing with 

images with multiple cells which may or may not record both an RN and outer measurement 

and which may not be recorded in the same order. However, users are advised to prepare 

slides using a cell plating concentration that does not result in excessive cells per image as it 

is more likely that cells will be touching. HIM cannot discriminate a pair of touching cells from 

one single cell and images should be quickly checked for any such occurrences. 

 

In addition, when HIM has finished processing each file within the source folder, any images 

where a RN and outer pair was not found for all ROIs will be listed in a dialogue box titled, 

"Files requiring manual curation". Images will also be listed here for which no RN, or no 

outer was detected. 

 



Images which 'fail' HIM also checks any outer measurements which 'fail' (see description of 

stability measurements and class II cells) in that the outer measurement occupies more than 

80% of the image area. This happens typically for pale cells when outer measurements are 

measured using the local maxima less x method eg when unstable cells decay during 

stability analysis. Outer measurements that are larger than 80% of the image area are 

replaced by 'fail' under outer area measurement heading. This is applied to all RNs on an 

image for which an outer area measurement is classified as a fail. 

 

Results column headings For cells with a matched RN and outer measurement, the cell 

returns recordings under the following headings; 

 

Label - this is the image name followed by RN indicating a unique RN 

Area - RN area 

X - central x- position of RN ROI - used for positional information 

Y - central y- position of RN ROI - used for positional information 

Image No. - this refers to the numbered RN on the RN threshold analysis image saved in the 

'RN' folder and maybe used to match cell data back to the original image 

Outer Area - matching outer area measurement 

Outer X - central x-position of outer ROI - used for positional information 

Outer Y - central y-position of outer ROI - used for positional information 

Outer Image No. - this refers to the numbered outer on the outer threshold analysis image 

saved in the 'Outer' folder. Note: outers from different images may have the same number, 

this is due to results being recorded and then being moved to the appropriate RN row. 

Therefore, if wishing to refer back to outer threshold images users should check the image 

name and outer number carefully.   

 

Headings are slightly different for classification HIM output with outer replaced by absolute 

RN. This refers to the ROI generated using an absolute pixel intensity threshold rather than 

one related to the local image maxima. 

 

To run HIM: 

• Install ImageJ from http://rsb.info.nih.gov/ij/download.html. HIM is compatible with 

ImageJ for Mac OS X or Windows, version 1.47o or later. Previous versions do not 

accept strings in the Results table data columns (for example, used here for ‘fail’). 

 



• Download appropriate HIM .txt file from supplementary files, into a dedicated folder. If 

desired, replace default threshold settings (x55/15), chosen after calibration to your 

cell type. 

 

• Create a source folder for MFHR images that are to be analysed, and three 

destination folders for 'RN threshold' and 'outer threshold' respective output pictures 

and a folder for excel readable files. 

 

• Populate source folder with a set of MHFR image files. We use ‘TIFF For Publication’ 

files, derived from Openlab image acquisition software for Mac, however HIM will 

analyse any high resolution ImageJ compatible file types. Please note, the first image 

to be analysed must contain at least one cell otherwise HIM will not return any 

information for that image. Images without a cell are tolerated after the first image 

and the HIM will return *no RN and *no outer for such images. 

 

• Open ImageJ and load HIM with the command:  

Plugins –  

Macros –  

Install...  

Then select the appropriate HIM .txt file. 

 

Run HIM in ImageJ with the command:  

Plugins –  

Macros -  

then select the HIM you have just loaded.  

  

 When measuring different sets of images with the same HIM, the HIM file only 

 needs loading at the beginning of the session. However, if changing between 

 different HIMs then they will need to be reloaded each time. 

 

• After selecting the HIM to run, a dialogue box opens. Select the appropriate source 

folder, then when prompted, select the RN and outer threshold destination folders. 

Finally, select the results folder and type your desired name for the .csv results file. 

HIM then runs without further prompting.  

 

• When HIM is running, the ImageJ results table is visible. However, once the HIM 

saves these data into the .csv file the results table closes. On completion of HIM, a 



dialogue box entitled "Files requiring manual curation" appears highlighting any files 

that proved difficult to analyse, either due to *no RN or * no Outer being measured, or 

if pairs of RN and outers could not be linked. Upon completion the user should check 

these images and respective RN and outer threshold analysis files and adjust the 

.csv file accordingly. Output images should also be checked for joined cells, cells cut 

by the edge of the picture and occasional extraneous particles which should all be 

removed. This can also be done at the image acquisition stage, though random 

acquisition is preferred.  

 

• Calculate halo radius using the formula;  

Halo radius = !"√$%&'() +)(+,
- . − "√$01 +)(+,

- .2  ×  4 

where c is a conversion factor between pixels and μm 

 

Determine conversion factor for your imaging equipment and software using 

automated scale bar functions, or directly by imaging a graticule under the same 

conditions used to image halos. Calibration between pixels and micrometers should 

be made following consistent file transfer protocols, as pixel measurements are not 

always consistent between software.  

 

Micrometer measurements can be converted to an estimate of chromatin loop size in 

kilobases using conversion factors published previously. These range from 1 μm = 3 

kbp3,4, to 1 μm = 2.3 kbp5. We chose to use the former, based on 10.4 bp per helical 

turn in B-form DNA6 with a helical turn of 3.4 nm7. Note that radius values should be 

doubled to reflect the fact that loops are composed of two radii. 

 

These steps take about 5 minutes per coverslip including ~1 minute of macro running time. 

 

Analysis specific to classification The classification HIM generates the standard RN area 

measurement based on local maxima and a second RN area based on an absolute intensity 

threshold, from which are % is derived. If this is above 50%, the RN is designated as class 

Ia, if this is equal to or below 50%, the RN is designated as class Ib. 

 

Analysis specific to stability measurements Data from stability measurements can be 

presented as time to fail, or percentage of surviving halos as described earlier.   

 



Manual execution Instructions for manual execution of the steps carried out automatically 

by HIM x55/15 are detailed below (direct instructions in italics). Where both thresholds are 

relative to the local maxima (for example HIM x55/x240), outer threshold is measured in the 

same way as RN using appropriate threshold. This does not include the matching of RN and 

outer measurements which can be found in the HIM .txt file. 

 

Open file in ImageJ  

Select ImageJ: Image: Type: 8-bit 

This converts the image to greyscale 8-bit values from RGB. 

ImageJ: Process: Find maxima 

Dialogue box opens, select Noise tolerance 55, Maxima within tolerance, nothing ticked. 

This results in a new picture, and selects the pixels within a tolerance of 55 from the local 

maximal intensity of the image. The area in white will be measured.  

ImageJ: Process: Binary: Close 

The individual pixels selected will then be closed as an ROI.  

ImageJ: Image: Adjust: Threshold 

In Threshold dialogue box, Set thresholds at 255, default, red, box not ticked, Apply, close 

box 

ImageJ: Analyze: Analyse Particles 

In dialogue box, Size 3000-Infinity, Pixel units ticked, Circularity 0.00-1.00, Show Outlines, 

Only Display results and Exclude on Edges ticked. 

This results in area measurements taken for white areas bigger than 3000 pixels. 

Save new picture in Threshold RN, Close all open files except raw image. 

To measure outer threshold area… 

Image: Adjust: Threshold… 

In Threshold dialogue box, Set, in Set Threshold Levels dialogue box Lower Threshold Level 

at 15, Upper Threshold Level at 255, ok. In Threshold dialogue box, default, red, Dark 

background ticked, apply, close box. In NaN Background dialogue box ensure Background 

Pixels to NaN is not ticked, ok. 

Note that this results in an absolute pixel intensity threshold unlike that for RN. 

ImageJ: Process: Binary: Convert to Mask 

ImageJ: Process: Binary: Close- 

ImageJ: Analyze: Analyze Particles 

In dialogue box, Size 3000-Infinity, Pixel units ticked, Circularity 0.00-1.00, Show Outlines, 

Only Display results and Exclude on Edges ticked. 

Save new picture in Threshold Outer, Close all open files. 

  



Technical tips for MFHR processing and image generation  

 

These are provided to help minimize other sources of variability.  

• The pH of buffers should be checked carefully as this can affect halo stability 

• Buffers should be made up in advance and stored in aliquots at -20ºC, to generate 

complete data sets with one batch. Working aliquots may be kept at 4°C for one 

week  

• Buffers should be pre-cooled on ice, and all processing performed on ice 

• Process and image one coverslip at a time 

• Carefully lower coverslips into solutions to prevent loss of cells. Do not pipette buffers 

onto coverslips. 

• Standardise distance from cells to UV light source  

• Seal mounted coverslips with clear nail varnish to prevent buffer flow 

• Keep slides in the dark during the development period  

• Collect images within a limited time period (we use 10 minutes) to prevent analysis of 

degraded halos. 

• Minimize time between visualization of a halo and image capture  

• Take care not to re-image areas of the coverslip that have already been exposed to 

microscope light.  

• For class analysis no halo should be excluded from image capture. These image sets 

can also be used for size analysis. If only size analysis will be performed, joining 

halos can be excluded at image capture, since HIM cannot measure these halos. 

• Exposure time, and RN and outer thresholds should be set using a training set.  
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