
1

Low-complexity DCD-based sparse recovery
algorithms

Yuriy Zakharov†, Senior Member, IEEE, Vı́tor Nascimento††, Senior Member, IEEE,
Rodrigo de Lamare†‡, Senior Member, IEEE, and Fernando Goncalves de Almeida Neto?

Abstract— Sparse recovery techniques find applications in
many areas. Real-time implementation of such techniques has
been recently an important area for research. In this paper, we
propose computationally efficient techniques based on dichoto-
mous coordinate descent (DCD) iterations for recovery of sparse
complex-valued signals. We first consider `2`1 optimization that
can incorporate a priori information on the solution in the
form of a weight vector. We propose a DCD-based algorithm
for `2`1 optimization with a fixed `1-regularization, and then
efficiently incorporate it in reweighting iterations using a warm
start at each iteration. We then exploit homotopy by sampling
the regularization parameter and arrive at an algorithm that,
in each homotopy iteration, performs the `2`1 optimization on
the current support with a fixed regularization parameter and
then updates the support by adding/removing elements. We
propose efficient rules for adding and removing the elements.
The performance of the homotopy algorithm is further improved
with the reweighting. We then propose an algorithm for `2`0
optimization that exploits homotopy for the `0 regularization;
it alternates between the least-squares (LS) optimization on the
support and the support update, for which we also propose an
efficient rule. The algorithm complexity is reduced when DCD
iterations with a warm start are used for the LS optimization,
and, as most of the DCD operations are additions and bit-shifts,
it is especially suited to real time implementation. The proposed
algorithms are investigated in channel estimation scenarios and
compared with known sparse recovery techniques such as the
matching pursuit (MP) and YALL1 algorithms. The numerical
examples show that the proposed techniques achieve a mean-
squared error smaller than that of the YALL1 algorithm and
complexity comparable to that of the MP algorithm.

Index Terms— coordinate descent, DCD, homotopy, sparse
recovery

I. INTRODUCTION

Sparse recovery techniques find applications in many areas,
including channel estimation [1]–[8], array beamforming [9]–
[12], adaptive filtering [13]–[17], and many others that require
low-complexity algorithms suitable for real-time implementa-
tion. Real-time implementation of sparse recovery techniques,
particularly on Field Programmable Gate Arrays (FPGAs), has
been recently an important area for research [18]–[25]. There

†Department of Electronic Engineering, University of York, UK,
yury.zakharov@york.ac.uk, rodrigo.delamare@york.ac.uk. ††Dept.
of Electronic Systems Eng., University of São Paulo, Brazil,
vitor@lps.usp.br. ‡CETUC, PUC-Rio, Rio de Janeiro, Brazil,
delamare@cetuc.puc-rio.br. ?Federal Rural University of Pernambuco,
Brazil, fernando.galmeida@ufrpe.br. The work of Y. V. Zakharov was partly
supported by FAPESP-York-2015 grant. The work of V. H. Nascimento
was partly supported by CNPq 0306268/2014-0 and FAPESP 2014/50765-6
grants. The work of R. de Lamare was partly supported by FAPESP-York-
2015, FAPERJ, and CNPq grants. A part of the material on the `2`1
optimization was presented in the conference Asilomar-2012.

are two families of techniques for finding sparse represen-
tations: convex optimization and greedy methods. Generally,
greedy techniques have lower complexity and require lower
numerical precision [22]. Therefore, when it comes to hard-
ware (such as FPGA) implementation, the matching pursuit
(MP) algorithm [18], [20], [22] or other greedy algorithms
such as CoSaMP [21], [26] or OMP [23], [27] are considered
as the most suitable candidates. The MP is a popular greedy
technique that possesses especially low complexity and there-
fore finds many practical applications [3], [13], [22], [28]–
[30]. However, in the accuracy performance, it is inferior to
many other techniques.

In the family of convex optimization techniques, there are
many algorithms possessing high performance, and recently
the YALL1 algorithm implementing the alternating direction
method [31], has become popular due to its high accuracy [5],
[10]. We will consider the MP complexity and the YALL1
recovery performance as benchmarks when analyzing the algo-
rithms that we propose in this paper. The MP, YALL1 as well
as our algorithms can deal with complex-valued problems.
Often, applications such as channel estimation, beamforming,
equalization and many others also require solving complex-
valued problems [7], [11], [32]. The family of algorithms
capable of dealing with complex-valued problems is scarcer
than the family of algorithms for real-valued problems. Impor-
tantly, it is not always straightforward to transform real-valued
algorithms into complex-valued counterparts [7], [33]–[35]. A
complex-valued algorithm can exploit the coupling (common
support) of the real and imaginary parts of a signal [35] and
potential non circularity of a signal, whereas the real-valued
counterpart does not have such a feature. Here we will focus
on sparse recovery algorithms for complex-valued problems.

It has been previously recognized that the coordinate descent
(CD) search has an inherent property of being low complexity
when signals are sparse [36]–[40]. We derive our algorithms
applying CD iterations for solving `2`1 and `2`0 optimization
problems. Specifically, we exploit dichotomous CD (DCD)
iterations [36] that minimize the use of multiplications, thus
resulting in algorithms especially well suited to real-time
implementation, e.g. using FPGAs [41]–[44].

In the family of greedy techniques, algorithms based on
`1-homotopy [45] demonstrate high accuracy for recovering
sparse signals and are of lower complexity in comparison
with many other techniques [7], [46], [47]. It is important
to note that even if the homotopy approach requires solving
a sequence of optimization problems for a corresponding
sequence of values of a regularization parameter, due to the

2

iterative nature of the DCD algorithm, if we use the current
estimate as the initial condition for the next homotopy iteration
(warm initialization), the complexity is in fact reduced, since
only a few updates are necessary at each homotopy iteration.
We will be using this approach to derive our algorithms.

A priori information on the support of sparse signals can sig-
nificantly improve the algorithm performance. In the extreme
case, when the support is perfectly known, the performance
of the oracle algorithm is achieved. We will use the oracle
performance as another benchmark for comparison with the
performance of the proposed algorithms. However, such a
knowledge of the support is most often unavailable. There
have previously been proposed techniques for estimating and
further refining the information on the support in a set of
reweightening iterations and incorporating these estimates in
the cost function [48]–[51]. We will exploit this idea to
improve the recovery performance of the proposed algorithms.

In this paper, we first derive DCD-based algorithms for
the weighted `1 penalized regression. The `1-DCD algorithm
updates all elements of the unknown vector. As the vector
length can be high, the complexity can also be high. The
alternative is a greedy-like algorithm that only deals with
a relatively small number of elements within the currently
identified support. Therefore, we develop a greedy algorithm
that is based on homotopy with respect to the `1 regularization,
and the `1-DCD iterations are used for updating the solution
within the support. We formulate optimal rules for adding and
removing elements from the support. The performance of the
homotopy algorithm is further improved with the reweighting.
Note that after publishing the initial version of the `2`1
homotopy algorithm in the Asilomar conference [52], it was
further developed in [53]–[55] for application in radar imaging
and in [56] for application in adaptive filtering.

We then propose an algorithm for `2`0 minimization that
exploits homotopy for the `0 regularization (denoted as H`0
direct-LS algorithm). It alternates between the least-squares
(LS) optimization on the support and the support update, for
which we also propose efficient rules. We then apply the DCD
iterations to solve the sequence of LS problems and arrive at
a computationally efficient (H`0-DCD) algorithm.

The paper is organized as follows. Section II describes the
signal model. In Section III, we derive the `1-DCD algorithm
for `2`1 minimization. In Section IV, we present the homotopy
DCD (H`1-DCD) algorithm. Section V presents homotopy
algorithms for `2`0 minimization: H`0 direct-LS and H`0-
DCD algorithms. Section VI contains numerical examples and,
finally, Section VII presents conclusions.

Notation: We use capital and small bold fonts to denote
matrices and vectors, respectively; e.g. A is a matrix and x a
vector. Elements of the matrix and vector are denoted as An,p
and xn, respectively. We use I and Ic to denote a support
(indexes of non-zero elements) and its complement, respec-
tively; the cardinality of I is denoted as |I|. We also denote:
A(q) the qth column of A; AH the Hermitian transpose of
A; trace[R] the trace of R; AI the matrix obtained from A
keeping only columns corresponding to support I; RI,I the
|I|×|I| matrix obtained from R extracting elements from rows
and columns with indexes in the support I; xI the subset of

x that contains non-zero entries from x corresponding to the
support I; <{·} and ={·} are the real and imaginary parts of
a complex number, respectively.

II. SIGNAL MODEL

We consider the linear model

y = Ax + n (1)

where A ∈ CM×N is the observation matrix, n ∈ CM×1 the
noise vector, y ∈ CM×1 the observed signal, and x ∈ CN×1

the unknown signal. We are especially interested in the case,
in which M < N and all variables in (1) are complex-valued.
We also assume that only K < M elements of vector x are
non-zero, i.e. the vector x is sparse, and the support (index
set of non-zeros) is unknown.

Applications of sparse recovery algorithms differ in the
possibility of precomputing the matrix R = AHA. If R
cannot be precomputed, the complexity of algorithms may be
dominated by the on-line computation of R or its submatrices.
In other applications, R can be precomputed or updated in
real-time with low complexity, e.g. as in adaptive filtering [3],
[14], [41], [57], channel estimation [22], beamforming [9]–
[11], etc. Here we are interested in applications where R is
available.

III. DCD ALGORITHM FOR `2`1 OPTIMIZATION WITH
FIXED REGULARIZATION

We consider the minimization of the `2`1 cost function

Jw,τ (x) =
1

2
||y −Ax||22 + τwT |x| (2)

with a fixed regularization parameter τ , where |x| is a vector
of element-wise magnitudes of entries in x, and w is a
weight vector. We now present a direct (non-homotopy) DCD
approach for minimization of the cost function in (2), starting
with the weight selection and support estimation.

If wk = 1 for k = 1, . . . , N , this problem is also known as
basis pursuit denoising (BPDN) [58]. We use as benchmark
in our simulations an oracle algorithm, which knows the true
location of the nonzero entries. The oracle algorithm can be
obtained by choosing wk = 0 for k within the support, wk = 1
otherwise, and with τ very large. See other examples of the
weight vector in [40], [48], [50].

The weight vector can also be updated in Ns reweighting
iterations and in each iteration, a new problem (2) is solved [7],
[49]. We will be using the following updating mechanism. In
every reweighting iteration with index s = 1, . . . , Ns, a weight
support Γw is identified using hard thresholding:

Γw =
{
k : |xk| > (µw)sTw max

n
{|xn|}

}
(3)

where µw ∈ [0, 1] and Tw are adjusted parameters. Within the
support Γw, the weight entries are set to a value βs, where
β ∈ [0, 1) is an adjusted parameter. In the case of β = 0
and µw = 1, we arrive at the weights in [49]. In the case of
Tw = 1, β = 0 and µw = 1/2, we obtain the weights in [59].
The threshold is reduced with every reweighting iteration and
(if β > 0) the weights are also reduced. This is reasonable

3

TABLE I
GENERAL STRUCTURE OF SPARSE RECOVERY ALGORITHMS BASED ON

`2`1 OPTIMIZATION WITH REWEIGHTING ITERATIONS

Initialization: c = b = AHy, x = 0, w = 1N , R = AHA
Cu = 0, Ci = 0, Tc = µc maxk |ck|2

1: for s = 1, . . . , Ns do
2: Solve (2) using `1-DCD or H`1-DCD algorithm
3: For algorithms using i DCD iterations,

of which u iterations are successful, compute:
Cu ← Cu + u, Ci ← Ci + i

if Cu ≥ Nu then the algorithm stops
(Cu and Ci are used in the analysis of
the algorithm complexity)

4: Update the weight vector w on the support Γw using (3)
5: Debiasing according to (5)

since, in general, the estimation accuracy improves with every
reweighting iteration. The term (µw)s provides an exponential
reduction of the threshold, while βs provides an exponential
reduction of the weights. The parameter µw defines the rate of
reducing the threshold, whereas the product µwTw defines the
initial threshold. Note that by choosing β = 1/2 and all initial
weights equal to one, the application of the weights does not
require multiplications, but only bit-shifts (that are much less
costly to implement in hardware).

We are interested in applications where the objective is
a low mean squared error (MSE) on the estimated support,
e.g. such as estimation of sparse multipath communication
channels [1]–[4], [7]. Therefore, after a sparse recovery al-
gorithm identifies the support and terminates, a debiasing on
the support should be done. The final support I can be the
output of the sparse recovery algorithm itself or it can be
identified, e.g. using hard thresholding, as a set of elements in
the solution x, satisfying the condition

I =
{
k : |xk| > µd max

n
{|xn|}

}
(4)

where µd ∈ [0, 1) is a predefined parameter. Using the
finally estimated support I , the debiasing stage computes the
minimum MSE (MMSE) estimate of the vector x as the
solution to the equation:

(RI,I + νI|I|)xI = AH
I y, (5)

where ν = σ2|I|/trace[RI,I], σ2 is the noise variance and I|I|
is the |I| × |I| identity matrix.

The general structure of sparse recovery algorithms pro-
posed in this paper is shown in Table I. For minimizing
the cost function (step 2) at each reweighting iteration s, i
DCD iterations are used among which there are u successful
iterations (that is, u iterations in which the solution vector
is updated, see [36], [42], [60]; note that the term successful
iterations was introduced in [60]). We set an upper limit Nu
to the total number Cu of successful iterations (considering
all reweighting iterations); the algorithm stops as soon as
Cu = Nu. The parameter Tc is used as a threshold to stop the
minimization at step 2; this is checked within the algorithm
performed at step 2 (see step 10 in Table II). The total number
of DCD iterations Ci and the total number of successful DCD
iterations Cu determine the algorithm complexity, as detailed
later in this section.

The function in (2) is convex and we use DCD iterations
to minimize it. One difference between our DCD-based al-
gorithms and previously proposed CD algorithms [37]–[39],
[61] is that we do not optimize the step-size for every CD
iteration, but instead we use a set of step-sizes defined by the
fixed-point representation of the solution. Thus, our CD search
is an inexact line search [62], [63] as opposed to the exact line
search in most previously proposed CD algorithms. Although,
for a particular iteration, the exact line search achieves a higher
reduction of the cost function, with an inexact line search the
convergence to the true solution in a sequence of iterations
can be even faster. In [41] and [42], this was demonstrated
when comparing the exact CD search and the DCD search for
solving the LS problem. Importantly, the DCD search allows
a large reduction in the number of operations; in many cases,
the algorithm complexity is dominated by the complexity of
successful iterations, which typically represent a small part
of all DCD iterations, especially for sparse solutions [36].
Moreover, most of the operations are additions and bit-shifts
which, together with the fixed-point representation of the
solution, make DCD iterations attractive for implementation
on real-time design platforms, such as FPGAs [42].

Consider DCD iterations for minimizing the cost func-
tion (2). At every iteration, only the p-th element of the
solution vector x may be updated as x̃ = x + αep, where
α is a complex-valued scalar and the vector ep has the p-th
element equal to one and the others zero. The update should
only be done if the cost function is reduced, i.e. if

∆J = Jw,τ (x + αep)− Jw,τ (x) < 0

This can be written in the form

∆J =
1

2
|α|2Rp,p − <{α∗(bp −R(p)Hx)}

+ τwp(|xp + α| − |xp|) (6)

where b = AHy. Defining the residual vector c = b −Rx,
we obtain

∆J =
1

2
|α|2Rp,p −<{α∗cp}+ τwp(|xp + α| − |xp|) (7)

Starting from x = 0 and c = b, the residual vector can be
recursively updated at every coordinate descent iteration as
c← c−αR(p). If α is a power-of-two number, the update of
c requires M complex additions and no multiplications. Note
also that if ∆J ≥ 0, then no update is necessary - we call this
low-cost case an unsuccessful iteration. If ∆J < 0, an update
is necessary - this is a successful iteration.

When using DCD iterations, it is assumed that elements of
the solution vector have a fixed-point representation with Mb

bits within an amplitude interval [−H,H]. The choice of H
may be defined from the maximum magnitude of elements in
x. Note that the choice of H is not unique for DCD; in any
system with fixed-point representation of signals, one has to
decide on the maximum possible amplitude of the signals. It is
preferable to choose H as the smallest power-of-two number
satisfying H ≥ maxq{|<[xq]|, |=[xq]|}. However, the choice
is not very critical; see discussion on the choice of H in [42].
The DCD iterations start updates from the most significant bits

4

TABLE II
`1-DCD ALGORITHM

Input: c, R, x, H , Nu, Mb, Tc
Initialization: δ = H , u = 0, i = 0

1: for m = 1, . . . ,Mb do
2: δ = δ/2, α = [δ, −δ, jδ,−jδ], Flag = 0
3: for p = 1, . . . , N do
4: for k = 1, . . . , 4 do
5: ∆J = 1

2
δ2Rp,p −<{α∗kcp}+ τwp(|xp + αk| − |xp|)

i← i+ 1
6: if ∆J < 0 then
7: xp ← xp + αk , c← c− αkR(p)

8: Flag = 1, u← u+ 1
if u = Nu then the algorithm stops

9: if Flag = 1, go to step 3
10: if maxk |ck|2 < Tc then the algorithm stops

Output: c, x, u, i

of coordinates towards less significant bits. This is controlled
by a step-size δ > 0 that starts with δ = H and is reduced as
δ ← δ/2 for less significant bits.

In a DCD algorithm for complex-valued problems, for every
coordinate, there are four possible directions on the complex
plane for updating: 1, −1, j and −j, where j =

√
−1.

Consequently, there are four values by which a coordinate
can be updated. These are the scalar values αk, k = 1, . . . , 4,
defined by these four directions and the step-size δ as elements
of the vector α = [δ, −δ, jδ, −jδ].

There can be different strategies for selecting coordinates for
updates. The most often used are cyclic and leading [41] (also
called greedy [61]) selections. Leading CD iterations require
costly computations for selection of the best coordinate for
updating. With cyclic DCD iterations, we do not need to find
the minimum of the cost function over all possible updates.
The cyclic DCD algorithm for minimizing Jw,τ is shown in
Table II. [We have also developed a leading DCD algorithm for
minimizing the cost function in (2) that provides an accuracy
similar to that of the cyclic DCD algorithm. However, its
complexity is somewhat higher than the complexity of the
cyclic DCD algorithm. Therefore, here, we only present the
cyclic DCD algorithm.] In addition to the parameters of the
algorithm described above (Mb and H), we also introduce
the maximum number of successful iterations (i.e. iterations
where the solution is updated) Nu and a parameter µc that
defines the threshold Tc for residual magnitudes; µc ∈ [0, 1)
is a predefined parameter (see Table I). If all the magnitudes
are smaller than the threshold, the algorithm stops.

The complexity of the cyclic DCD (we call it `1-DCD)
algorithm in (real-valued) flops is given by

P`1-DCD ≈ 8MN + 4N + 11Ci + 2NCu

+ 4NMb + 2NdebLg (8)

The first and second terms in (8) are for computing c and
Tc at the initialization stage (see Table I); these operations are
multiplications and additions. The term 11Ci is the complexity
of Ci tests at steps 5 and 6 in Table II; each computation
involves analysis of one direction on the complex plane for one
element, which can be done with 11 real-valued operations,
including multiplications, additions, and square-roots (required

to compute the absolute values |xp| and |xp +αk|). The exact
value of Ci, the number of times the test at step 6 is evaluated,
is difficult to predict; Ci ≥ Nu and tends to increase as the
vector length N increases. The term 2NCu is for updating
c in the overall Cu successful (i.e. when ∆J < 0) DCD
iterations (step 7); each update requires only 2N real-valued
additions, as multiplications by αk are bit-shift operations.
The next term in (8), 4NMb, is the complexity of computing
square magnitudes |ck|2 of the residual vector and search for
the maximum to check the termination condition at step 10;
this is done for every bit m, thus the factor Mb, and involves
multiplications and additions. The debiasing (last term) can
be efficiently done by using extra Ndeb DCD iterations at the
finally fixed support of cardinality Lg using the previously
found estimate of x as a warm start. The DCD iterations
for debiasing are similar to that in Table VI below and only
involve additions.

The complexity for the `1-DCD algorithm in (8) and other
algorithms below are given in terms of flops. We are using this
measure because of the difficulty in estimating complexity for
the YALL1 algorithm (which we use here as a benchmark)
and the proposed `0 direct-LS algorithm, and because the
true complexity will depend on the particular hardware imple-
mentation (e.g., DSPs, which have one-cycle multiplication
units, or FPGAs). This way of measuring complexity tends
to overestimate the complexity for DCD-based algorithms in
FPGA implementations, because DCD avoids multiplications
and divisions, which are complicated to implement in hard-
ware [64].

Although the `1-DCD algorithm demonstrates a high recov-
ery performance and relatively low complexity (as will be seen
in Section VI), the complexity can be further reduced. Note
that for high N , Ci can be high, and in this case the main
contribution to the `1-DCD complexity are computations at
step 5 in Table II, which are repeated Ci times. Moreover,
these (and only these) computations involve the square-root
operation. Although such an operation can be efficiently imple-
mented using DCD iterations [65], it is still more complicated
for hardware implementation than addition and multiplication.
The number of these computations can be significantly reduced
if they are only performed on the currently identified support
with a size |I| that is typically significantly lower than N .
This can be done using the homotopy approach as described
in the next section.

IV. HOMOTOPY DCD ALGORITHM FOR `2`1
OPTIMIZATION

For minimization of Jw,τ in (2) with further reduced com-
plexity, we now use homotopy with respect to the regulariza-
tion parameter τ . If τ is high, the second term in (2) dominates
the cost function and forces the cardinality of the presumed
support to zero. The strategy is to select the minimum possible
value (τmax) for the regularization parameter τ , for which the
solution is still all-zeros, and, in homotopy iterations, generate
a decreasing sequence of values of τ using uniform sampling
in the log scale; this is similar to the strategy in [40]. We
will start with τ = τmax and empty support I = ∅. For every

5

τ , we will update the support and, on the updated support,
minimize the cost function Jw,τ . The algorithm will terminate
if τ ≤ τmin, where τmin = µττmax and µτ ∈ [0, 1] is a
predefined parameter, or if another termination condition is
met. Starting with zero support enables us to work always
with a small support, keeping the dimension of the problem
at each step low and significantly reducing the complexity.

We need to find rules for adding and removing elements
into/from the support.

Proposition 1: Let I be the support at some homotopy
iteration and the current solution to the `2`1 minimization be
x. Let b = AHy, R = AHA, and c = b−Rx. Adding the
t-th element, t ∈ Ic, into the support according to the rule

t = arg max
k∈Ic

(|ck| − τwk)2

Rk,k
s.t. |ct| > τwt (9)

leads to reduction of the cost function (2) for a properly chosen
xt. The value

xt =
ct
Rt,t

(
1− τwt
|ct|

)
(10)

minimizes the cost function.
Proof. To prove this proposition, we analyze the change

of the cost function due to the update x̃ = x + αet, where
t ∈ Ic, i.e. xt = 0. The cost function will be changed by
∆J = Jw,τ (x + αet) − Jw,τ (x). We need to check if an α
exists that results in ∆J < 0. We rewrite ∆J as

∆J =
1

2
|α|2Rt,t −<{α∗ct}+ τ |α|wt

=
1

2
|α|2Rt,t − |α|<{e−jarg(α)ct}+ τ |α|wt

It is seen that a minimum of ∆J over arg(α) is achieved if
arg(α) = arg(ct) and, in this case, we have

∆J =
1

2
|α|2Rt,t − |α||ct|+ τ |α|wt (11)

To find |α| minimizing (11), we solve

∂∆J

∂|α|
= |α|Rt,t − |ct|+ τwt = 0 (12)

and obtain that the minimum of ∆J over |α| is achieved at
|α| = (|ct| − τwt)/Rt,t > 0. Thus, ∆J is minimized and
negative if |ct| > τwt and

α =
1

Rt,t
(|ct| − τwt)ejarg(ct) =

ct
Rt,t

(
1− τwt
|ct|

)
In this case, the largest decrement of the cost function Jw,τ
is given by ∆J = −(1/2)(|ct| − τwt)2/Rt,t. Thus, the rule
for adding a new element into the support can be formulated
as in (9) and (10). �

Note that we are computing the minimum here just to show
that adding a new element to the support would lead to a
reduction of the cost function. In order to keep computational
complexity low, and to keep the fixed-point structure of the
solution, we do not actually update the solution using the
optimal value of xt in (10); see Table III and the discussion
further below.

This proposition also determines the starting value τmax of

TABLE III
H`1-DCD ALGORITHM

Initialization: x = 0, I = ∅, c = b = AHy, R = AHA
1: Choose the first element t into the support: I = {t}; compute τmax
2: Repeat until a termination condition is met:
3: Solve minxI ||y −AIxI ||22 + τwT

I |xI | on the support I
and update c using `1-DCD iterations

4: Update the regularization parameter: τ ← γτ
5: Remove an index t from the support I according to rule (14)
6: If the tth element is removed then

c← c + xtR(t)

7: Add an index t into the support I according to rule (9),
but keep the corresponding element xt equal to zero

the regularization parameter τ . If I = ∅, the first element to
be added into the support should be the one that maximizes
(|bt| − τwt)2/Rt,t over t = 1, . . . , N . If wt = const > 0 and
Rt,t = 1, we arrive at the rule: t = arg maxk |bk|2. In the
general case, τmax is chosen according to:

τmax = max
k∈Γw

|bk|
wk

, where Γw = {k : wk > 0} (13)

Proposition 2: Let I be the support at some homotopy
iteration and the current solution to the `2`1 minimization be
x. Let b = AHy, R = AHA, and c = b −Rx. Removing
the t-th element, t ∈ I , from the support according to the rule

t = arg min
k∈I

1

2
|xk|2Rk,k + <{x∗kck} − τwk|xk|

s.t.
1

2
|xt|2Rt,t + <{x∗t ct} − τwt|xt| < 0 (14)

reduces the cost function.
Proof. To prove this proposition, we note that when remov-

ing an element xt from the support, the solution is updated
as x̃ = x − xtet. The change of the cost function ∆J =
Jw,τ (x̃)− Jw,τ (x) due to this update can be written as

∆J =
1

2
|xt|2Rt,t + <{x∗t ct} − τwt|xt| (15)

With the condition that ∆J < 0, from (15), the rule (14)
follows. �

The homotopy DCD (we call it H`1-DCD) algorithm for
solving the `2`1 minimization problem is now presented in
Table III. This algorithm is similar to the algorithm presented
in [11] with the difference that the algorithm in [11] does not
have a mechanism for removing elements from the support. At
each homotopy iteration, the H`1-DCD algorithm first mini-
mizes the cost function on the support I for the current value
of the regularization parameter τ . Then the algorithm updates
the support by removing and/or adding elements from/into the
support with further reduction of the cost function.

The order of first removing and then adding elements is
chosen due to the following reasons. The intention here is to
keep the fixed-point Mb-bit format of elements in the solution
vector x. If we first add an element into the support, we
have to update the element as defined in (10), and this would
change the format as there is no guarantee that the update will
provide exactly an Mb-bit word. If we do the adding last, then
we do not need to do the assignment (10) and we can keep
the element equal to zero since afterward we solve the `2`1

6

minimization on the support by using DCD iterations and this
element will be properly updated within the fixed-point format.
When removing an element from the support, we assign to
this element a zero-value which is exactly described within
the Mb-bit fixed-point format. Moreover, with this order of
updating the support, we avoid the division operations in (10)
that are complicated for hardware implementation. Note that
computations in (9) do require division by Rk,k. However, if
the dictionary A is normalized so that Rk,k = 1 or if 1/Rk,k
is precomputed, the divisions are avoided.

The regularization parameter τ is reduced at each homotopy
iteration starting from the maximum value τmax found at step 1
down to a predefined value τmin using the update τ ← γτ .
The parameter γ ∈ (0, 1) determines how finely we sample
the regularization parameter. The closer γ to one, the more
accurate the sampling is, but more computations will be
required. The algorithm will terminate if τ ≤ τmin, where
τmin = µττmax and µτ ∈ [0, 1] is a predefined parameter. We
will also set a limit Lmax to the number of homotopy iterations
after which the algorithm terminates.

In this algorithm, we have to solve the minimization prob-
lem at every homotopy iteration as the parameter τ affects the
optimization result. For this purpose we can use the `1-DCD
algorithm as described above with the following modification.
The optimization is now performed on the currently identified
support I only (and not the entire vector x). This significantly
speeds up the computation as the support size is usually
smaller than N . However, we keep updating all elements of
the residual vector c as they are required for updating the
support after the `2`1 optimization step is finished.

The complexity of the H`1-DCD algorithm in terms of real-
valued flops is given by

PH`1-DCD = 8MN + 4N + 11Ci + 2NCu

+ 4NL+ 2NdebLg (16)

This is similar to the complexity of the `1-DCD algorithm
given by (8), but there are two differences. The term 4NL is
the complexity of computing square magnitudes |ck|2 of the
residual vector for checking for termination of DCD iterations;
now this is checked for every homotopy iteration, thus the
factor L (L is the total number of homotopy iterations). The
total number of DCD iterations Ci (with the complexity 11Ci)
is now significantly reduced since solving the problem in (2)
in each homotopy iteration is performed only on the currently
identified support that in general is significantly smaller than
the problem size N . The difference in complexity will be
demonstrated in Section VI.

V. HOMOTOPY DIRECT-LS ALGORITHM AND HOMOTOPY
DCD ALGORITHM FOR `2`0 OPTIMIZATION

Consider the minimization of the cost function

Jλ(x) =
1

2
||y −Ax||22 + λ||x||0 (17)

This is a non-convex problem and its solution is NP-hard. For
finding an approximate solution to this problem, we will use
homotopy in the regularization parameter λ. If λ is high, the
second term in (17) dominates the cost function and, at very

high λ, the support I of the solution must be empty, i.e., I = ∅.
Therefore, it is intuitive to start the homotopy iterations with
a high λ and zero support. We need to find a minimum value
λmax of the regularization parameter λ for which still I = ∅.
Starting from λ = λmax in the homotopy iterations, λ will be
gradually reduced using the update λ← γλ, where γ ∈ [0, 1),
so that new elements can be added into the support and/or
removed from the support. Thus we need to derive rules for
updating the support.

For fixed λ and I , the second term of the cost function
Jλ(x) in (17) is also fixed as λ|I|, and minimizing Jλ(x) is
equivalent to minimizing the first term, i.e., solving the LS
problem on the support I . We can alternate between updating
the support, which affects the second term in (17), and solving
the LS problem on the fixed support, which affects the first
term in (17). Adopting this strategy will allow arriving at a
low complexity greedy algorithm.

Proposition 3: Let I be the support at some homotopy
iteration and the current solution to the `2`0 minimization be
x. Let b = AHy, R = AHA, and c = b−Rx. Adding the
t-th element, t ∈ Ic, into the support according to the rule

t = arg max
k∈Ic

|ck|2

Rk,k
s.t. |ct|2 > 2λRt,t (18)

and assigning to xt the value ct/Rt,t reduces the cost
function (17). The value of the regularization parameter λ
for starting the homotopy iterations is given by λmax =
(1/2) maxk |bk|2/Rk,k.

Proof. (The proof is similar to the proof of Proposition 1)
We notice that xt = 0 and we want to assign to this element a
new value x̃t = α, i.e., obtain a new solution x̃ = x+αet, so
that the cost function is reduced. Denoting ∆Jλ = Jλ(x̃) −
Jλ(x), we need to check if an α exists that can reduce the
cost function, i.e., make ∆Jλ < 0. We can write

∆Jλ =
1

2
|α|2Rt,t − |α|<{e−jarg(α)ct}+ λ (19)

The minimum of ∆Jλ over arg(α) is achieved at arg(α) =
arg(ct). The value of the minimum is given by

∆Jλ =
1

2
|α|2Rt,t − |α||ct|+ λ (20)

Minimizing (20) over |α| we arrive at |α| = |ct|/Rt,t. Thus,
∆Jλ is minimized at α = ct/Rt,t and the minimum is given
by

∆Jλ = − |ct|
2

2Rt,t
+ λ (21)

Rule (18) follows from the greedy strategy of adding to the
support only the entry for which the cost reduction is biggest.
�

This is not the optimal way of finding an element to be
added into the support, however it is simple and efficient as
shown below.

This rule also determines the starting value of λ. At the start
of the homotopy iterations, the support is empty, i.e., I = ∅,
and x = 0. Therefore, the first element to be added into I is

7

TABLE IV
`0 HOMOTOPY ALGORITHM

Initialization: x = 0, I = ∅, b = AHy, R = AHA
1: t = arg maxk |bk|2/Rk,k , λ = 0.5|bt|2/Rt,t, I = {t}
2: Repeat until a termination condition is met:
3: If the support I has been updated then
4: Solve RIxI = fI , where RI = AH

I AI and fI = AH
I y

5: c← b−RIxI
6: Update the regularization parameter: λ← γλ
7: Remove from I elements satisfying the rule (23) and, for every

removed element, update c← c + xtR(t) and set xt = 0
8: Add into I elements satisfying the rule (18) and

(in the `0 direct-LS algorithm) set xt = ct/Rt,t and update
c← c− xtR(t) or (in the H`0-DCD algorithm) set xt = 0

defined as

t = arg max
k

|bk|2

Rk,k
and |bt|2 = 2λmaxRt,t (22)

Thus, the maximum value of λ at the start of the homotopy
iterations is given by λmax = (1/2) maxk |bk|2/Rk,k. The
optimal value of the first added element is xt = bt/Rt,t.

This rule is similar to the rule of adding new elements
into the support in the MP and OMP algorithms, except that
in these two algorithms the condition |ct| > 2λRt,t is not
checked, as if it had been assumed that λ = 0. Besides, in
the MP and OMP algorithms, elements cannot be removed
from the support. We now introduce a rule for removing an
element from the support, which can be important to improve
performance in some situations.

Proposition 4: Let I be the support at some homotopy
iteration and the current solution to the `2`0 minimization be
x. Let b = AHy, R = AHA, and c = b −Rx. Removing
the t-th element, t ∈ I , from the support according to the rule

t = arg min
k∈I

[
1

2
|xk|2Rk,k + <{x∗kck}

]
s.t.

1

2
|xt|2Rt,t + <{x∗t ct} < λ (23)

reduces the cost function.
Proof. To prove Proposition 4, we notice that when remov-

ing the t-th element xt from the support and making it zero,
the cost function changes by the value

∆Jλ =
1

2
|xt|2Rt,t + <{x∗t ct} − λ (24)

From (24), we obtain that the condition ∆Jλ < 0 and the
highest decrement of the cost function is achieved for the
element defined in (23). �

Note that when adding and removing elements from the
support, several elements can satisfy the conditions in (18)
and (23). Thus, several elements can be simultaneously added
and/or removed from the support.

The general structure of the proposed algorithm for solving
the `2`0 minimization problem is now presented in Table IV.
For comparison purposes, we present two options for solving
the least-squares problems that appear in Table IV: recursive
matrix inversion, as described in Table V, and DCD iterations,
as described in Table VI. As our simulations show, the per-
formance of the two algorithms is similar, but the complexity

TABLE V
SOLVING THE k-TH LS PROBLEM

Input: xk−1, Pk−1 = R−1
k−1, [ra; rb] = R

(k)
I,I , [ba; bb] = bI

1: z = Pk−1ra
2: q = 1/(rb − rHa z)
3: v = zHba
4: xb = q(bb − v)
5: xa = xk−1 − xbz
6: Compute Pk = R−1

k using (28)
Output: xk = [xa, xb]

T and Pk

TABLE VI
DCD ITERATIONS FOR LS MINIMIZATION

Input: x, c, I , R
Initialization: s = 0, δ = H

1: for for m = 1, . . . ,Mb do until s = Nu:
2: δ = δ/2, α = [δ, −δ, jδ,−jδ], Flag = 0
3: for n = 1, . . . , |I| do: p = I(n)
4: for k = 1, . . . , 4 do
5: if <{αkc∗p} > Rp,pδ2/2 then
6: xp ← xp + αk , c← c− αkR(p)

7: Flag = 1, s← s+ 1
8: if Flag = 1 go to step 3

of the latter is much smaller.
The complexity of the `0 homotopy algorithm in terms of

real-valued operations is given by

P`2`0 ≈ 8MN + 4N + PLS + 4NLg(Lg + 1)

+ 12NLg + 4L3
g (25)

The first and second terms in (25) are the complexity of
computing the vector b and selecting the first element into
the support at step 1 in Table IV. The term PLS is for solving
the LS problems at step 4. The LS problem can be solved
using a direct approach that would result in a complexity of
O(L4). This can be reduced using the Cholesky factorization
or conjugate-gradient iterations [33], [66], [67]. A low com-
plexity can also be achieved using a recursive inversion of
the matrix RI,I ; in this case, we have PLS ≈ 4L3

g , where
Lg denotes the cardinality of the finally identified support.
Details of the LS recursion are given in Appendix and the
recursion is summarized in Table V; here, it is assumed that
Rk = RI,I . The term 4NLg(Lg + 1) is for updating the
residual c at step 5 in Table IV. Adding new elements into
the support (step 8) has the complexity 12NLg . The last term
in (25) is the complexity of the debiasing after the support
is identified. Removing elements from the support does not
involve significant computations and it is not included in P`2`0 .

Similarly with the H`1-DCD algorithm, the `0 homotopy
algorithms have a combination of stopping criteria. The algo-
rithms will terminate if λ ≤ λmin, where λmin = µλλmax and
µλ ∈ [0, 1] is a predefined parameter. We will also set a limit
Lmax to the number of homotopy iterations after which the
algorithm terminates.

For a computationally efficient solution for the sequence of
LS problems in the `0 homotopy algorithm we can use DCD
iterations as shown in Table VI. The algorithm in Table VI
should replace steps 3, 4 and 5 in Table IV. With a limited

8

number of DCD iterations, one cannot guarantee obtaining
the exact LS solution at each homotopy iteration. Therefore,
the DCD iterations will be used even when the support is
not updated, i.e., step 4 and 5 in Table IV are performed in
all homotopy iterations. See more discussion on this matter
in [67]. When the DCD iterations start, the vectors x and c
are not zeros; here, a warm start of the iterations is used.
It is beneficial to use the LS solution found at the previous
homotopy iteration as initialization of the DCD algorithm
at the current homotopy iteration. As a result, a few DCD
iterations may be enough to obtain an accurate LS solution
at each homotopy iteration. Elements of x are only updated
within the support, whereas all elements of c are updated. This
is necessary for the support update stage of the `0 homotopy
to decide on new elements to be added into the support. The
algorithm requires a parameter Nu defining the maximum
number of successful DCD iterations, i.e., iterations where
the solution is updated. This is necessary for controlling the
complexity since the main contribution to the complexity is
due to the successful iterations.

The complexity of the resulting Hl0-DCD algorithm, per-
forming the `0 homotopy and using DCD iterations for solving
the LS problems, is given by

PHl0-DCD ≈ 8MN + 4N + 2CuN + Ci

+ 4NLg + 2NdebLg (26)

The first and second terms are for computation of the vector
b and selection of the first element in the support at step 1
in Table IV. The term 2CuN is for updating c in the Cu
successful DCD iterations (step 6 in Table VI). The term Ci
takes into account Ci (total number of DCD iterations) tests at
step 5 of Table VI to decide if the DCD iteration is successful.
Adding new elements into the support (step 8 in Table IV)
has a complexity given by the term 4NLg . Note that, in the
`0-DCD algorithm, we do not set xt = ct/Rt,t to keep the
fixed-point representation of the solution, but instead set xt to
zero; thus, the complexity of this step is reduced comparing to
the case of the `0 direct-LS algorithm. The debiasing (the last
term) is now done by using extra Ndeb DCD iterations at the
finally identified support. Note that, in the `0-DCD algorithm,
solving the LS problems, which is the most computationally
demanding part of the algorithm, is performed using only
addition operations. This makes the `0-DCD algorithm very
attractive for hardware design, e.g. on FPGA.

VI. NUMERICAL RESULTS

In this section, we compare the MSE performance and
complexity of the proposed `1-DCD, H`1-DCD, direct-LS `0-
homotopy, and H`0-DCD algorithms with the MP and YALL1
algorithms.

In the YALL1 algorithm, we adjust parameters to guarantee
the highest performance and low complexity. The complexity
of the YALL1 algorithm is counted based on the number of
matrix-vector products, assuming that these are general-type
products without using fast transforms, i.e., every such product
involves 8MN real-valued operations; when implementing
algorithms on FPGAs, it is sometimes preferable to avoid

5 10 15 20 25 30 35 40
−40

−35

−30

−25

−20

−15

−10

−5

0

Number of non−zeros

M
S

E
 (

dB
)

l
1
−DCD: N

s
 = 1

l
1
−DCD: N

s
 = 2

l
1
−DCD: N

s
 = 3

l
1
−DCD: N

s
 = 4

MP
YALL1
Oracle

Fig. 1. MSE performance of the `1-DCD algorithm. Parameters of the
scenario: M = 64, N = 256, σ = 0.01. Parameters of the algorithms:
Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0.02, γ = 0.9, β = 0.5,
Tw = 1, µw = 0.5, Mb = 8, H = 4, Nu = 4096.

using FFTs, but instead directly compute the products [22].
However, we will also present an example when the FFT
can be used. The MP algorithm terminates on achieving the
maximum residual magnitude equal to µc maxk |bk|, where
µc ∈ [0, 1], or a maximum number of greedy iterations Lmax.
For both the YALL1 and MP algorithms, the threshold for
debiasing is set to µd = 0.02 [see equation (4)]. On all the
plots below, we will also show the MSE performance of an
oracle algorithm that, in each simulation trial, performs the
debiasing on the true support.

We consider simulation scenarios corresponding to channel
estimation in communication systems. The channel output is
given by y = Ax0 + n, where A is a matrix defined by
pilot symbols and x0 is the channel impulse response. The
matrix A is an M × N circulant matrix generated from an
N × 1 vector of pilot symbols; for more details on generating
the matrix A in channel estimation scenarios see e.g. [1], [4],
[7]. The pilot symbols are independent zero-mean Gaussian
random numbers. In each simulation trial, a new pilot signal,
new channel impulse response x0, and new realization of noise
are generated. The positions of the K non-zero elements in
x0 are chosen randomly, the non-zero elements are generated
as independent complex-valued Gaussian zero-mean random
numbers of unit variance and then x0 is normalized to energy
K. The noise vector n contains complex-valued random
Gaussian entries of variance σ2. For a fixed K, we run 1000
simulation trials and average the MSE

MSE =
||x− x0||22
||x0||22

obtained in the trials, where x0 is the true vector (channel
impulse response to be estimated) and x is its estimate.

In the proposed DCD-based algorithms, for debiasing, we
use extra Ndeb = 256 DCD iterations.

We consider the case of N = 256 and M = 64. Fig. 1 and
Fig. 2 show the MSE performance and complexity of the pro-

9

5 10 15 20 25 30 35 40
10

5

10
6

10
7

Number of non−zeros

O
pe

ra
tio

ns

l
1
−DCD: N

s
 = 1

l
1
−DCD: N

s
 = 2

l
1
−DCD: N

s
 = 3

l
1
−DCD: N

s
 = 4

MP
YALL1

Fig. 2. Complexity of the `1-DCD algorithm. Parameters of the scenario:
M = 64, N = 256, σ = 0.01. Parameters of the algorithms: Lmax = 80,
µd = 0.02, µc = 0.02, µτ = 0.02, γ = 0.9, β = 0.5, Tw = 1, µw = 0.5,
Mb = 8, H = 4, Nu = 4096.

5 10 15 20 25 30 35 40
−40

−35

−30

−25

−20

−15

−10

−5

0

Number of non−zeros

M
S

E
 (

dB
)

Hl
1
−DCD: N

u
 = 1

Hl
1
−DCD: N

u
 = 2

Hl
1
−DCD: N

u
 = 8

Hl
1
−DCD: N

u
 = 32

MP
YALL1
Oracle

Fig. 3. MSE performance of the H`1-DCD algorithm. Parameters of the
scenario: M = 64, N = 256, σ = 0.01. Parameters of the algorithms:
Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, Ns = 1, Mb = 8,
H = 4.

posed `1-DCD algorithm. When solving the BPDN problem
(i.e., wk = 1 for k = 1, . . . , N , and Ns = 1), the YALL1
algorithm outperforms the `1-DCD algorithm. However, the
reweighting iterations allow significant improvement in the
`1-DCD performance. With one weight update (Ns = 2), the
`1-DCD performance matches the YALL1 performance. With
extra reweighting iterations up to Ns = 4, the performance is
further improved almost reaching its best at Ns = 4; additional
iterations do not bring significant improvement. Note that
the `1-DCD complexity does not increase considerably with
increasing Ns (due to the warm start of the reweighting itera-
tions) and it is considerably lower than the YALL1 complexity.
However, the complexity of sparse recovery can be reduced
when using the H`1-DCD algorithm, as shown in Fig. 4.

Fig. 3 and Fig. 4 show the MSE performance and com-
plexity of the H`1-DCD algorithm without reweighting for

5 10 15 20 25 30 35 40
10

4

10
5

10
6

10
7

Number of non−zeros

O
pe

ra
tio

ns

Hl
1
−DCD: N

u
 = 1

Hl
1
−DCD: N

u
 = 2

Hl
1
−DCD: N

u
 = 8

Hl
1
−DCD: N

u
 = 32

MP
YALL1

Fig. 4. Complexity of the H`1-DCD algorithm. Parameters of the scenario:
M = 64, N = 256, σ = 0.01. Parameters of the algorithms: Lmax = 80,
µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, Ns = 1, Mb = 8, H = 4.

5 10 15 20 25 30 35 40
10

4

10
5

10
6

Number of non−zeros

O
pe

ra
tio

ns

Hl
1
−DCD: N

u
 = 1

Hl
1
−DCD: N

u
 = 2

Hl
1
−DCD: N

u
 = 8

Hl
1
−DCD: N

u
 = 32

MP
YALL1

Fig. 5. Complexity of the H`1-DCD algorithm. Here, it is assumed that
the FFT is used for fast computation of the matrix-vector products in all the
algorithms. In the MP and H`1-DCD algorithms, there is one such a product
at the initialization stage. Parameters of the scenario: M = 64, N = 256,
σ = 0.01. Parameters of the algorithms: Lmax = 80, µd = 0.02, µc = 0.02,
µτ = 0, γ = 0.9, Ns = 1, Mb = 8, H = 4.

different limits Nu to the number of successful DCD iterations.
It is seen that the H`1-DCD algorithm achieves the YALL1
performance with as few as Nu = 2 successful DCD iterations
per one homotopy iteration. In this case, the complexity of the
H`1-DCD algorithm is close to the MP complexity or even
lower. With Nu > 2, the H`1-DCD algorithm outperforms the
YALL1 algorithm and its complexity is significantly lower
than the YALL1 complexity. It is interesting to notice that
the `1-DCD algorithm (which is a member of the convex
optimization family as all elements of the solution vector are
updated) could not achieve the YALL1 performance without
the reweighting iterations, whereas the H`1-DCD algorithm
(which belongs to the family of greedy algorithms) can. Fig. 5
shows complexity of the algorithms when the FFT is used
for computation of the matrix-vector products. It can be seen

10

5 10 15 20 25 30 35 40

−40

−35

−30

−25

−20

−15

−10

−5

0

Number of non−zeros

M
S

E
 (

dB
)

Hl
1
−DCD (no remove): N

u
 = 2

Hl
1
−DCD (no remove): N

u
 = 32

Hl
1
−DCD: N

u
 = 2

Hl
1
−DCD: N

u
 = 32

MP
YALL1
Oracle

Fig. 6. MSE performance of the H`1-DCD algorithm with and without
the procedure for removal of elements from the support. Parameters of the
scenario: M = 64, N = 256, σ = 0.01. Parameters of the algorithms:
Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, Ns = 1, Mb = 8,
H = 4.

5 10 15 20 25 30 35 40
10

4

10
5

10
6

10
7

Number of non−zeros

O
pe

ra
tio

ns

Hl
1
−DCD (no remove): N

u
 = 2

Hl
1
−DCD (no remove): N

u
 = 32

Hl
1
−DCD: N

u
 = 2

Hl
1
−DCD: N

u
 = 32

MP
YALL1

Fig. 7. Complexity of the H`1-DCD algorithm with and without the
procedure for removal of elements from the support. Parameters of the
scenario: M = 64, N = 256, σ = 0.01. Parameters of the algorithms:
Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, Ns = 1, Mb = 8,
H = 4.

that the difference in complexity is now smaller, but still the
H`1-DCD algorithm is significantly faster than the YALL1
algorithm.

Fig. 6 and Fig. 7 compare two versions of the homotopy al-
gorithm. The first one is the H`1-DCD algorithm as described
in Table III, and the other one is the H`1-DCD algorithm,
but without removing elements from the support, i.e., without
steps 5 and 6 in Table III. It is seen that, for Nu = 2,
the effect of removing the elements is significant in both
the improvement in the MSE performance and reducing the
complexity. This can be explained by the fact that, with a small
number of DCD iterations, due to inaccurate solving the `2`1
problem in every homotopy iteration, there are wrong elements
added into the support, which, when removed, improve the

5 10 15 20 25 30 35 40
−40

−35

−30

−25

−20

−15

−10

−5

0

Number of non−zeros

M
S

E
 (

dB
)

Hl
1
−DCD: N

s
 = 1

Hl
1
−DCD: N

s
 = 2

Hl
1
−DCD: N

s
 = 3

Hl
1
−DCD: N

s
 = 4

MP
YALL1
Oracle

Fig. 8. MSE performance of the H`1-DCD algorithm with reweighting
iterations. Parameters of the scenario: M = 64, N = 256, σ = 0.01.
Parameters of the algorithms: Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0,
γ = 0.9, β = 0.5, Tw = 1, µw = 0.5, Mb = 8, H = 4, Nu = 8.

5 10 15 20 25 30 35 40
10

4

10
5

10
6

10
7

Number of non−zeros

O
pe

ra
tio

ns

Hl
1
−DCD: N

s
 = 1

Hl
1
−DCD: N

s
 = 2

Hl
1
−DCD: N

s
 = 3

Hl
1
−DCD: N

s
 = 4

MP
YALL1

Fig. 9. Complexity of the H`1-DCD algorithm with reweighting iterations.
Parameters of the scenario: M = 64, N = 256, σ = 0.01. Parameters of the
algorithms: Lmax = 80, µd = 0.02, µc = 0.02, µτ = 0, γ = 0.9, β = 0.5,
Tw = 1, µw = 0.5, Mb = 8, H = 4, Nu = 8.

performance. With the larger Nu (Nu = 32 in this case), the
`2`1 problem is accurately solved at every homotopy iterations
and the removal is not that necessary; even if some wrong
elements are added into the support, the large number of DCD
iterations would drive them to zero and they are removed at
the hard thresholding of the debiasing stage.

The reweighting iterations (see Fig. 8 and Fig. 9) result in
further improvement of the MSE performance of the H`1-DCD
algorithm and the final performance is close to that achieved
by the `1-DCD algorithm (compare with Fig. 1). Notice that
with increase in Ns beyond Ns = 3, the H`1-DCD MSE curve
departs from the oracle MSE curve. This can be explained
by the less reliable support detection with higher Ns as the
threshold for support detection is reduced and thus wrong
elements are picked up in the support. Comparing Fig. 9 with

11

5 10 15 20 25 30
−40

−35

−30

−25

−20

−15

−10

−5

0

Number of non−zeros

M
S

E
 (

dB
)

Hl
0
 direct−LS

Hl
0
−DCD: N

u
 = 2

Hl
0
−DCD: N

u
 = 4

Hl
0
−DCD: N

u
 = 8

MP
YALL1
Oracle

Fig. 10. MSE performance of the `0 direct-LS and H`0-DCD algorithms.
Parameters of the scenario: M = 64, N = 256, σ = 0.01. Parameters of the
algorithms: Lmax = 80, µd = 0.02, µc = 0.02, µλ = 0, γ = 0.9, Mb = 8,
H = 4.

5 10 15 20 25 30
10

4

10
5

10
6

10
7

Number of non−zeros

O
pe

ra
tio

ns

Hl
0
 direct−LS

Hl
0
−DCD: N

u
 = 2

Hl
0
−DCD: N

u
 = 4

Hl
0
−DCD: N

u
 = 8

MP
YALL1

Fig. 11. Complexity of the `0 direct-LS and H`0-DCD algorithms. Param-
eters of the scenario: M = 64, N = 256, σ = 0.01. Parameters of the
algorithms: Lmax = 80, µd = 0.02, µc = 0.02, µλ = 0, γ = 0.9, Mb = 8,
H = 4.

Fig. 2, it is seen that the complexity of the H`1-DCD algorithm
is significantly lower than that of the `1-DCD algorithm.

Fig. 10 and Fig. 11 show MSE performance and complexity
of the H`0 direct-LS and H`0-DCD algorithms. The H`0
direct-LS algorithm shows an MSE performance similar to that
of the YALL1 algorithm. The H`0-DCD algorithm matches the
YALL1 performance and the H`0 direct-LS performance with
Nu = 8, i.e., with at most 8 DCD iterations per one homotopy
iteration. The complexity of the H`0-DCD algorithm is lower
than complexities of the other proposed algorithms. It is
comparable to the MP complexity or even lower. Note that
the LS optimization in the H`0-DCD algorithm and debiasing
are multiplication-free. Thus the number of multiplications is
only a small part of the whole complexity. E.g., for Nu = 8,
only about 20% of operations are multiplications. Thus, this

algorithm is well suited to hardware implementation, e.g. on
FPGAs.

VII. CONCLUSIONS

In this paper, we have proposed a family of computationally
efficient algorithms for recovery of complex-valued sparse
signals. The algorithms are based on solving either the `2`1
or `2`0 optimization problem using dichotomous coordinate
descent (DCD) iterations. We have first derived an algorithm
(`1-DCD algorithm) for solving the `2`1 optimization problem
with a fixed `1-regularization term. This algorithm has shown
a high recovery performance and relatively low complexity;
specifically, its performance is better and the complexity is
lower than that of the YALL1 algorithm. The complexity
has been further reduced when combining this algorithm
with homotopy with respect to the regularization term. The
combined algorithm (H`1-DCD algorithm) has demonstrated a
performance similar to that of the `1-DCD algorithm. We have
then derived an algorithm (direct-LS homotopy algorithm) for
solving the `2`0 optimization problem using homotopy with
respect to the `0 regularization term. Although the recovery
performance of the algorithm is somewhat inferior to that
of the `2`1 based algorithms, its complexity is lower and
comparable to that of the matching pursuit (MP) algorithm.
We have then incorporated DCD iterations into the direct-LS
`0 homotopy algorithm and arrived at another algorithm (H`0-
DCD algorithm) that has especially low complexity that is
comparable or even lower that that of the MP complexity.
Moreover, most operations required for implementation of
the H`0-DCD algorithm are additions, which makes it very
attractive for real-time implementation, e.g. on FPGAs.

APPENDIX I
RECURSIVE SOLUTION OF THE SEQUENCE

OF LS PROBLEMS

Let at (k − 1)-th iteration a system of equations
Rk−1xk−1 = ba be solved and the solution be xk−1 =
R−1
k−1ba, where Rk−1 ∈ C(k−1)×(k−1) and xk−1,ba ∈

C(k−1)×1. At the k-th iteration, we need to solve an augmented
system Rkxk = b, where

Rk =

[
Rk−1 ra
rHa rb

]
and b =

[
ba
bb

]
(27)

The solution can be found using the formula for inversion of
a block matrix as follows:

xk = R−1
k b =

[
R−1
k−1 + qzzH −qz
−qzH q

] [
ba
bb

]
(28)

where z = R−1
k−1ra and q = 1/(rb − rHa z). We represent the

solution in the form:

xk =

[
xa
xb

]
(29)

Then, noticing that xk−1 = R−1
k−1ba, we can write:

xa = xk−1 + qzzHba − qzbb
xb = − qzHba + qbb (30)

12

Thus, we arrive at the algorithm presented in Table V.
Complexity of the technique is mostly defined by steps 1

and 6, each of complexity O(k2). The matrix-vector multipli-
cation at step 1 involves about 8(k−1)2 real-valued operations,
and generating Pk = R−1

k at step 6, taking into account that
the matrix Rk is Hermitian, involves about 2(2k + 1)(k − 1)
operations. Complexity of the other steps is O(k). Thus, the
complexity of the LS solution update at the k-th iteration is
approximately 6(2k − 1)(k − 1) real-valued operations. If k
varies from 1 to Lg , the total complexity of the Lg updates is
about 4L3

g real-valued operations.

REFERENCES

[1] S. F. Cotter and B. D. Rao, “Sparse channel estimation via matching
pursuit with application to equalization,” IEEE Transactions on Com-
munications, vol. 50, no. 3, pp. 374–377, 2002.

[2] G. Z. Karabulut and A. Yongacoglu, “Sparse channel estimation
using orthogonal matching pursuit algorithm,” in IEEE 60th Vehicular
Technology Conference, VTC2004-Fall, 2004, vol. 6, pp. 3880–3884.

[3] W. Li and J. C. Preisig, “Estimation of rapidly time-varying sparse
channels,” IEEE J. Oceanic Engineering, vol. 32, no. 4, pp. 927–939,
2007.

[4] C. R. Berger, Z. Wang, J. Huang, and S. Zhou, “Application of com-
pressive sensing to sparse channel estimation,” IEEE Communications
Magazine, vol. 48, no. 11, pp. 164–174, 2010.

[5] J. Huang, C. R. Berger, S. Zhou, and J. Huang, “Comparison of basis
pursuit algorithms for sparse channel estimation in underwater acoustic
OFDM,” in in Proceedings IEEE OCEANS 2010, Sydney, 2010, pp.
1–6.

[6] A. Hormati and M. Vetterli, “Compressive sampling of multiple
sparse signals having common support using finite rate of innovation
principles,” IEEE Signal Processing Letters, vol. 18, no. 5, pp. 331–
334, 2011.

[7] C. Qi, X. Wang, and L. Wu, “Underwater acoustic channel estimation
based on sparse recovery algorithms,” IET Signal Processing, vol. 5,
no. 8, pp. 739–747, 2011.

[8] E. Panayirci, H. Senol, M. Uysal, and H. V. Poor, “Sparse channel
estimation and equalization for OFDM-based underwater cooperative
systems with amplify-and-forward relaying,” IEEE Transactions on
Signal Processing, vol. 64, no. 1, pp. 214–228, 2016.

[9] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruc-
tion perspective for source localization with sensor arrays,” IEEE Trans.
on Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005.

[10] G. F. Edelmann and C. F. Gaumond, “Beamforming using compressive
sensing,” J. Acoust. Soc. Am., vol. 130, no. 4, pp. EL232–EL237, 2011.

[11] C. Liu, Y. V. Zakharov, and T. Chen, “Broadband underwater localization
of multiple sources using basis pursuit de-noising,” IEEE Transactions
on Signal Processing, vol. 60, no. 4, pp. 1708–1717, April 2012.

[12] F. G. Almeida Neto, R. de Lamare, V. Nascimento, and Y. Zakharov,
“Adaptive reweighting homotopy algorithms applied to beamforming,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no.
3, pp. 1902–1915, 2015.

[13] S. Cotter and B. Rao, “The adaptive matching pursuit algorithm for
estimation and equalization of sparse time-varying channels,” in Proc.
34th Asilomar Conf. Signals Syst. Comput., 2000, vol. 2, pp. 1772–1776.

[14] D. Angelosante, J. A. Bazerque, and G. B. Giannakis, “Online adaptive
estimation of sparse signals: Where RLS meets the l1-norm,” IEEE
Transactions on Signal Processing, vol. 58, no. 7, pp. 3436–3447, 2010.

[15] E. M. Eksioglu and A. K. Tanc, “RLS algorithm with convex regular-
ization,” IEEE Signal Processing Letters, vol. 18, no. 8, pp. 470–473,
2011.

[16] Y. Zakharov and V. Nascimento, “DCD-RLS adaptive filters with penal-
ties for sparse identification,” IEEE Transactions on Signal Processing,
vol. 61, no. 12, pp. 3198–3213, 2013.

[17] J. Liu and S. L. Grant, “Proportionate adaptive filtering for block-sparse
system identification,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 24, no. 4, pp. 623–630, 2016.

[18] Y. Meng, A. Brown, R. Iltis, T. Sherwood, H. Lee, and R. Kastner, “MP
core: algorithm and design techniques for efficient channel estimation
in wireless applications,” in Proc. 42nd Design Automation Conf., June
2005, pp. 297–302.

[19] Y. Meng, W. Gong, R. Kastner, and T. Sherwood, “Algo-
rithm/architecture co-exploration for designing energy efficient wireless
channel estimator,” ASP J. of Low Power Electronics, vol. 1, no. 3, pp.
1–11, 2005.

[20] B. Benson, A. Irturk, J. Cho, and R. Kastner, “Survey of hardware
platforms for an energy efficient implementation of matching pursuits
algorithm for shallow water networks,” in Proc. 3rd ASM Int. Workshop
on Underwater Networks, 2008, pp. 83–86.

[21] J. Lu, H. Zhang, and H. Meng, “Novel hardware architecture of sparse
recovery based on FPGAs,” in 2nd IEEE Int. Conf. on Signal Processing
Systems (ICSPS), 2010, pp. V1–302–V1–306.

[22] P. Maechler, P. Greisen, N. Felber, and A. Burg, “Matching Pursuit:
Evaluation and implementation for LTE channel estimation,” in Pro-
ceedings of IEEE Int. Symp. Circuits and Systems (ISCAS), 2010, pp.
589–592.

[23] F. Ren, R. Dorrace, W. Xu, and D. Marković, “A single-precision
compressive sensing signal reconstruction engine on FPGAs,” in 23rd
IEEE International Conference on Field Programmable Logic and
Applications (FPL), 2013, pp. 1–4.

[24] Y. Quan, Y. Li, X. Gao, and M. Xing, “FPGA implementation of real-
time compressive sensing with partial Fourier dictionary,” International
Journal of Antennas and Propagation, vol. 2016, 2016.

[25] Z. Yu, J. Su, F. Yang, Y. Su, X. Zeng, D. Zhou, and W. Shi, “Fast com-
pressive sensing reconstruction algorithm on FPGA using Orthogonal
Matching Pursuit,” in IEEE International Symposium on Circuits and
Systems (ISCAS), 2016, pp. 249–252.

[26] F. Huang, J. Tao, Y. Xiang, P. Liu, L. Dong, and L. Wang, “Parallel
compressive sampling matching pursuit algorithm for compressed sens-
ing signal reconstruction with OpenCL,” Elsevier Journal of Systems
Architecture, vol. 72, pp. 51–60, 2017.

[27] D. Yang, H. Li, G. D. Peterson, and A. Fathy, “Compressed sensing
based UWB receiver: Hardware compressing and FPGA reconstruction,”
in 43rd Annual Conference on Information Sciences and Systems, CISS
2009, 2009, pp. 198–201.

[28] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Transactions on Signal Processing, vol. 41, no.
12, pp. 3397–3415, Dec. 1993.

[29] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxima-
tion,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[30] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Transactions on
Information Theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[31] Y. Zhang, “User’s guide for YALL1: Your algorithms for `1 optimiza-
tion,” downloaded at http://www.caam.rice.edu/optimization/, July 2012.

[32] Z. Yang and C. Zhang, “Sparsity-undersampling tradeoff of compressed
sensing in the complex domain,” in Proceedings IEEE Int. Conf.
Acoustic, Speech, and Signal Processing, ICASSP, 2011, pp. 3668–3671.

[33] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse
reconstruction by separable approximation,” IEEE Transactions on
Signal Processing, vol. 57, no. 7, pp. 2479–2493, 2009.

[34] J. J. Fuchs, “Convergence of a sparse representations algorithm applica-
ble to real or complex data,” IEEE Journal of Selected Topics in Signal
Processing, vol. 1, no. 4, pp. 598–605, 2007.

[35] S. Yu, K. Shaharyar, and J. Ma, “Compressed sensing of complex-valued
data,” Signal Processing, vol. 92, pp. 357–362, 2012.

[36] Y. V. Zakharov and T. C. Tozer, “Multiplication-free iterative algorithm
for LS problem,” Electonics Letters, vol. 40, no. 9, pp. 567–569, 2004.

[37] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, “Pathwise
coordinate optimization,” The Annals of Applied Statistics, vol. 1, no.
2, pp. 302–332, 2007.

[38] T. T. Wu and K. Lange, “Coordinate descent algorithms for Lasso
penalized regression,” The Annals of Applied Statistics, vol. 2, no. 1,
pp. 224–244, 2008.

[39] M. Garcia-Magarinos, R. Cao, A. Antoniadis, and W. Gonzalez-
Manteiga, “Lasso logistic regression, GSoft and the cyclic coordinate
descent algorithm: Application to gene expression data,” Statistical
Applications in Genetics and Molecular Biology, vol. 9, no. 1, Article
30, pp. 1–28, 2010.

[40] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” J. Stat. Software,
vol. 33, no. 1, pp. 1–22, 2010.

[41] Y. Zakharov, G. White, and J. Liu, “Low complexity RLS algorithms
using dichotomous coordinate descent iterations,” IEEE Transactions on
Signal Processing, vol. 56, no. 7, pp. 3150–3161, July 2008.

[42] J. Liu, Y. V. Zakharov, and B. Weaver, “Architecture and FPGA design
of dichotomous coordinate descent algorithms,” IEEE Trans. on Circuits
and Systems I: Regular Papers, vol. 56, no. 11, pp. 2425–2438, 2009.

13

[43] J. Liu, B. Weaver, Y. Zakharov, and G. White, “ An FPGA-based MVDR
beamformer using dichotomous coordinate descent iterations,” Conf.
ICC’2007, Glasgow, UK, pp. 2551–2556, 24-28 June 2007.

[44] J. Liu, Z. Quan, and Y. Zakharov, “Parallel FPGA implementation of
DCD algorithm,” in Conf. DSP’2007, Cardiff, UK, 1-4 July 2007.

[45] D. L. Donoho and Y. Tsaig, “Fast solution of `1-norm minimization
problems when the solution may be sparse,” IEEE Transactions on
Information Theory, vol. 54, no. 11, pp. 4789–4812, 2008.

[46] A. Y. Yang, S. S. Sastry, A. Ganesh, and Y. Ma, “Fast `1-minimization
algorithms and an application in robust face recognition: A review,” in
17th IEEE International Conference on Image Processing (ICIP), 2010,
pp. 1849–1852.

[47] D. A. Lorenz, M. E. Pfetsch, and A. M. Tillmann, “Solving Basis
Pursuit: Heuristic optimality check and solver comparison,” ACM
Transactions on Mathematical Software (TOMS), vol. 41, no. 2, pp. 8,
2015.

[48] E. Candès, M. Wakin, and S. Boyd, “Enchancing sparsity by reweighted
`1 minimization,” J. Fourier Anal. Appl., vol. 14, no. 5, pp. 877–905,
2008.

[49] Y. Wang and W. Yin, “Sparse signal reconstruction via iterative support
detection,” SIAM Journal on Imaging Sciences, vol. 3, no. 4, pp. 462–
491, 2010.

[50] D. Wipf and S. Nagarajan, “Iterative reweighted `1 and `2 methods for
finding sparse solutions,” IEEE J. Selected Topics in Signal Processing,
vol. 4, no. 2, pp. 317–329, 2010.

[51] X. Xu, X. Wei, and Z. Ye, “DOA estimation based on sparse signal
recovery utilizing weighted `1 norm penalty,” IEEE Signal Processing
Letters, vol. 19, no. 3, pp. 155–158, 2012.

[52] Y. Zakharov and V. H. Nascimento, “Homotopy algorithm using
dichotomous coordinate descent iterations for sparse recovery,” in
Conference Record of the Forty Sixth Asilomar Conference on Signals,
Systems and Computers (ASILOMAR), 2012, pp. 820–824.

[53] T. Wang, X. Lu, Z. Xi, Z. Song, H. Tong, and W. Chen, “Off-grid sparse
ISAR imaging by Hlog-DCD algorithm,” in IEEE International Radar
Conference (Radar), 2014, pp. 1–4.

[54] T. Wang, X. Lu, X. Yu, Z. Xi, and W. Chen, “A fast and accurate
sparse continuous signal reconstruction by homotopy DCD with non-
convex regularization,” Sensors, vol. 14, no. 4, pp. 5929–5951, 2014.

[55] X. Lu, T. Wang, X. Yu, C. Chen, and W. Chen, “Sparse reconstruc-
tion based reweighted non-convex optimization using homotopy-DCD
algorithm,” in International Radar Conference (Radar), 2014, pp. 1–4.

[56] Y. Zakharov and V. H. Nascimento, “Homotopy RLS-DCD adaptive
filter,” in Proceedings of the Tenth International Symposium on Wireless
Communication Systems (ISWCS), 2013, pp. 1–5.

[57] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The sparse RLS
algorithm,” IEEE Trans. Signal Processing, vol. 58, no. 8, pp. 4013–
4025, 2010.

[58] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[59] J. Meng, W. Yin, Y. Li, N. Nguyen, and Z. Han, “Compressive sensing
based high resolution channel estimation for OFDM system,” IEEE
Journal of Selected Topics in Signal Processing, vol. 6, no. 1, pp. 15–
25, Feb. 2012.

[60] F. P. Vasiliev, “Numerical methods for solution of extreme problems,”
Nauka, Moscow (in Russian), 1980.

[61] Y. Li and S. Osher, “Coordinate descent optimization for `1 mini-
mization with application to compressed sensing; a greedy algorithm,”
Inverse Problems and Imaging, vol. 3, no. 3, pp. 487–503, 2009.

[62] M. Al-Baali, “Descent property and global convergence of the Fletcher-
Reeves method with inexact line search,” IMA Journal of Numerical
Analysis, vol. 5, pp. 121–124, 1985.

[63] Z. J. Shi and J. Shen, “Convergence of nonmonotone line search
method,” Journal of Computational and Applied Mathematics, Elsevier,
vol. 193, pp. 397–412, 2006.

[64] U. Meyer-Baese, Digital signal processing with field programmable gate
arrays, Springer, 2007.

[65] F. Auger, Z. Lou, B. Feuvrie, and F. Li, “Multiplier-free divide, square
root, and log algorithms,” IEEE Signal Processing Magazine, vol. 28,
no. 4, pp. 122–126, 2011.

[66] D. L. Donoho, I. Drori, Y. Tsaig, and J. L. Starck, Sparse solution
of underdetermined linear equations by stagewise orthogonal matching
pursuit, Department of Statistics, Stanford University, 2006.

[67] T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Transac-
tions on Signal Processing, vol. 56, no. 6, pp. 2370–2382, 2008.

