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ABSTRACT: We show that sequential protein deposition is
possible by photodeprotection of films formed from a
tetraethylene-glycol functionalized nitrophenylethoxycarbon-
yl-protected aminopropyltriethoxysilane (NPEOC-APTES).
Exposure to near-UV irradiation removes the protein-resistant
protecting group, and allows protein adsorption onto the
resulting aminated surface. The protein resistance was tested
using proteins with fluorescent labels and microspectroscopy
of two-component structures formed by micro- and nano-
patterning and deposition of yellow and green fluorescent
proteins (YFP/GFP). Nonspecific adsorption onto regions
where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods.
Because reading and writing can be decoupled in a near-field microscope, it is possible to carry out sequential patterning steps at
a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field
lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns
consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be
resolved by fluorescence microscopy.

■ INTRODUCTION

Patterned assemblies of biomolecules have attracted a great deal
of interest for applications in biosensors and in clinical
diagnostics.1−4 For example, arrays of antibodies are selected
to bind antigens that are markers for disease. Patterned
assemblies of proteins have also been used to investigate a
variety of interfacial biological phenomena including inflam-
mation,5 cellular attachment,6−9 and thrombogenesis,10,11

which are regulated by the presentation of proteins at
interfaces. The spatial arrangement of proteins is often
important in biological mechanisms, for example in photo-
synthetic membranes where protein organization determines
mechanisms of photon capture and energy transfer.12−14 By
forming spatially organized assemblies of proteins on chips, it is
possible to explore the relationship between their function and
their spatiotemporal organization.15,16

Proteins are irreversibly adsorbed to many surfaces, and the
most basic criterion for achieving effective spatial organization
is to prepare a protein-resistant substrate into which binding
sites may be introduced selectively. The most widely used
approaches have utilized poly(ethylene glycol) and deriva-
tives,6,17−21 although other polymers have been found to
provide resistance to protein adsorption, including poly(sulfo
betaines)22,23 and zwitterionic polymers such as poly(2-

(methacryloyloxy)ethylphosphorylcholine)24,25 and poly-
(cysteine methacrylate).26 Preferably, protein immobilization
should be achieved via a site-specific binding mechanism (for
example, histidine tags bind strongly to nitrilotriacetic acid
(NTA) groups27−31). Finally, it is desirable to be able to
deposit multiple different proteins in a spatially organized array.
In analytical devices, some degree of multiplexing is usually
desirable, as it also is in fundamental studies, because biological
systems typically utilize multiple different molecular inter-
actions.
While there has been significant success in achieving these

goals at micrometer length-scales, protein patterning remains
challenging on smaller length scales. A variety of approaches
have been explored, including dip-pen nanolithography,32−34

electron beam lithography,35−38 nanoimprint lithography,39,40

near-field optical methods,41−43 microcontact printing44 and
interferometric lithography.26,45 Despite significant effort, the
challenge of forming submicrometer scale patterns that consist
of multiple different protein components remains largely
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unsolved. Perhaps the best results to date have been achieved
by Maynard and co-workers.37,38 They utilized electron beam
lithography to pattern biotin, maleimide, aminoxy or nitrilotri-
acetic acid groups onto protein-resistant surfaces, and then used
these to bind proteins with biotin binding sites, a free cysteine,
an N-terminal α-oxoamide, and a histidine tag, respectively.37

However, a limitation of such an approach is that there is a
finite range of suitable affinity tags. In order to eliminate the
need for affinity labels, they described an alternative approach,
based on multiple electron beam exposures of films protected
by spin-coating with trehalose,38 which protects proteins from
the damaging effects of high vacuum.
Here we describe an alternative approach to label-free

multiple-component protein patterning, based on photo-
chemistry. Photochemical methods are an attractive route to
the patterning of biological interactions at surfaces,46−55

offering the capacity to execute specific chemical trans-
formations through strategies such as the use of nitrophenyl
protecting groups,56−64 and they have been found to facilitate
the formation of multiple-component biological assemblies at
micrometer length scales.51 Photopatterning at the nanometer
scale is feasible through the use of near-field optical
methods31,41,42,65 and through the use of interferometric
lithography.26,66 In the present study we demonstrate that
both methods may be applied to enable selective deprotection
of (methoxyheptaethylene glycol)nitrophenylethoxycarbonyl-
protected aminopropyltriethoxysilane (henceforth OEG-
NPEOC-APTES), an aminosilane bearing a photoremovable
nitrophenyl group derivatized with an oligo(ethylene glycol)
adduct.61 Intact OEG-NPEOC-APTES has been shown
previously to be highly protein resistant.31,61 However, on
exposure to UV light, the nitrophenyl protecting group is
removed, exposing an amine group (Scheme 1). The
deprotected surface is thus no longer protein-resistant. In the
present work we describe how sequential deprotection of OEG-
NPEOC-APTES using both interferometric and near-field
methods followed by protein adsorption facilitates the
fabrication of multiple component submicrometer protein
patterns.

■ EXPERIMENTAL SECTION
Film Preparation. Sulfuric acid (1.83 S.G. 95+ %), hydrogen

peroxide solution (100 volumes 30+ %), ammonia solution (S. G. 0.88,
35%), and toluene (HPLC grade) were supplied by Fisher Chemical
and used as received. Ethanol (absolute) and glutaraldehyde (GA)
solution (Grade II, 50% in water) were obtained from VWR
international S.A.S. Phosphate buffered saline (PBS) tablets,
ammonium acetate and HEPES were supplied by Sigma-Aldrich and
prepared into buffer solutions (pH 7.4). Oligo (ethylene glycol)
modified 2-nitrophenylethoxycarbonyl protected aminopropyltriethox-
ysilane (OEG-NPEOC-APTES) was synthesized by AF ChemPharm
Ltd. Streptavidin and NeutrAvidin were supplied by Life Technologies
and used as received.
Silicon wafers (reclaimed, p-type, < 100>) were supplied by

Compart Technology and coverslips (22 × 50 mm # 1, 5) were
supplied by Menzel-Glas̈er. Quartz slides (50 mm × 25 mm × 1 mm),

1000 mesh and 2000 mesh copper grids with diameter of 3.05 mm for
micrometer-scale patterning were supplied by Agar Scientific Limited.
Water was deionized using an ELGA Veolia water system (PURELAB
Ultra). Silicon wafers, quartz or glass slides were cleaned with piranha
solution, a mixture of 30% hydrogen peroxide and 95% concentrated
sulfuric acid in the ratio of 3:7 (caution: piranha solution is a strong
oxidizing agent and reacts violently with organic matter) and RCA
solution, a mixture of water, 30% hydrogen peroxide, and 35%
ammonia solution in the ratio of 5:1:1. After cleaning, the substrates
were rinsed with copious amounts of deionized water and dried
overnight in an oven. Clean, dry substrates were immersed in a 0.1%
(v/v) solution of OEG-NPEOC-APTES in toluene for 48 h. After
reaction, the substrates were washed by rinsing with toluene and
ethanol several times and dried under a stream of nitrogen. Finally, the
samples were annealed by heating to 120 °C for 1 h in a vacuum oven.

Proteins. The gene sequence of yellow fluorescent protein (YFP)
was amplified by PCR from pCS2-Venus vector (a kind gift from Dr.
Atsushi Miyawaki, RIKEN Brain science institute, Japan). The
resulting Nde I /BamHI fragment was cloned into a pET14b
expression vector (Novagen). Introducing the combined F64L,
S65T, V68L, S72A, M153T, V163A, S175G, and A206K mutations
into the YFP gene resulted in enhanced green fluorescent protein
(GFP) gene.67 Both His6-YFP and His6-GFP proteins were produced
by heterologous expression in Escherichia coli (BL21); cells were
grown to an OD680 of 0.6 at 37 °C then induced using isopropyl β-D-1-
thiogalactopyranoside (IPTG; 0.4 mM) for 12 h at 25 °C. Pelleted
cells (19000g/20 min) were lysed by sonication, and the resulting
lysate was clarified by a further spin (33000g/30 min). Both His-
tagged fluorescent proteins were purified to homogeneity from
clarified lysate using a Chelating Sepharose Fast Flow Ni-NTA gravity
flow column (GE Healthcare) as detailed in the manufacturer’s
instructions. Protein purity was assessed by gel electrophoresis (SDS-
PAGE).

FITC-conjugated antisheep IgG, Neutravidin, and streptavidin-
Alexa Fluor 750 were obtained from Life Technologies. Streptavidin-
Atto 488 and streptavidin-Atto 655 were obtained from Sigma-Aldrich
(Poole, UK).

Photolithography. Glass slides modified by OEG-NPEOC-
APTES were cut into small pieces. For micropatterning, samples
were exposed to light from a Coherent Innova 300 FreD frequency-
doubled argon ion laser emitting at 244 nm through a copper grid
mask with a variable power in the range 1−100 mW.

For interferometric lithography, a Lloyd’s mirror interferometer,
consisting of a sample and mirror set at an angle 2θ relative to each
other, was used in conjunction with the same laser.

Near-field lithography was carried out using two different systems. A
home-built optical fiber scanning near-field optical microscope was
used for patterning at 244 nm. The instrument was constructed using a
Digital Instruments Multimode atomic force microscope (AFM) base
with a NanoScope IIIa controller and Basic extender. A home-built,
tuning fork based shear-force detection system68 was used in place of
the AFM head. The probe is attached to one leg of a quartz crystal
tuning fork (32768 Hz resonant frequency, 12.5 pF capacitance,
Farnell) using UV curing epoxy (Norland 81). The tuning fork is
mounted on a small shaker piezo, driven by the tapping drive signal
from the AFM. The response of the tuning fork is measured by passing
the current from each contact through a transimpedance amplifier
(Analog Devices AD823) with a gain of 108 V/A, placed as close as
possible to the tuning fork to reduce stray capacitance. The resulting
voltage signals are subtracted using an instrumentation amplifier

Scheme 1. Photodeprotection of OEG-NPEOC-APTES
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(Analog Devices AMP02) with a gain of 100 to give a signal
approximately proportional to the differential displacement of the
tuning fork legs. This amplitude signal is fed into the AFM feedback
channel using a homemade patch cable connected to the extender
module. The shear force system was controlled through the AFM
software, operating in tapping mode. The amplitude sensitivity of this
system, measured in the AFM software, is approximately 1 Å/V, and
scans were typically performed with a free amplitude of 1 V and a set
point maintained at 80−90% of this throughout the scan. Probes were
prepared by etching optical fiber in HF, followed by deposition of 20
nm Al by thermal evaporation. Apertures were created by colliding the
probe with a surface.
For patterning at 325 nm, a HeCd laser (IK 3202R-D, Kimmon,

Tokyo, Japan) was coupled to a WiTec AlphaSNOM scanning near-
field optical microscope (WiTec, Ulm, Germany). The laser power was
11 mW. WiTec AlphaSNOM cantilever-type probes were used
(WiTec, Ulm, Germany), with a writing rate of 1 μm s−1. These
probes have pyramidal tips with apertures at their apexes. The
resolution is defined by the aperture size, which was ca. 150 nm. After
exposure, the samples were immersed into PBS solution (pH 7.4) for
15 min then transferred to a solution of the appropriate protein. After
protein adsorption, the samples were rinsed with PBS solution (pH
7.4) or HEPES buffer (pH 7.4) and stored in PBS solution or HEPES
buffer at 4 °C in a fridge prior to analysis. For sequential protein
patterning by near-field lithography, it was necessary to locate the
same position on the sample after immersion in a protein solution. To
aid this, a “finder grid” was formed on the sample surface prior to
commencing lithography, by shadow deposition of metal through a
suitable mask.
Friction force microscopy (FFM) and tapping-mode AFM images

were acquired on a Veeco Multimode atomic force microscope with a
Nanoscope IV controller (Veeco, Cambridge, UK), using Si3N4

cantilevers (NP-10, nominal spring constant 0.06 N m−1, Veeco) for
FFM measurements and silicon tapping-mode cantilevers (Veeco
MPP- 11100-W; spring constant between 20 and 50 N m−1).
Confocal Microscopy. Confocal microscopy was carried out using

an LSM 510 laser scanning confocal microscope (Carl Zeiss, Welwyn
Garden City, UK). Lasers emitting at 488 nm (GFP) and 543 nm

(CpcA-PEB) were used for excitation. A 40× or 63× magnification oil
immersion lens was used for imaging the samples, which were
mounted in an antifade reagent (glycerol-PBS solution, AF1)
(Citifluor Ltd., London, United Kingdom). The captured images
were analyzed using Zeiss LSM image browser software. Samples
stored in HEPES buffer (pH 7.4) were rinsed with 100 mM
ammonium acetate solution (pH 7.4) and dried by nitrogen gas, to
eliminate deposits from the buffer remaining at the surface after
protein adsorption. Ammonium acetate is volatile and leaves no
residue, and effectively displaces materials deposited from buffer
solutions.

■ RESULTS AND DISCUSSION

The methods used for protein nanopatterning are shown
schematically in Figure 1. Near-field lithography allows the
fabrication of arbitrary patterns, but patterning large areas can
be slow because the method is serial. A parallel near-field
lithography device, the “Snomipede”, has been described, which
allows patterning over areas 1 mm wide.69 However, in the
present work patterning is confined to a single probe. By
contrast, interferometric lithography does not permit arbitrary
pattern formation, but does facilitate rapid patterning over
macroscopic areas (cm2). Sequential exposures enable the
fabrication of a variety of different morphologies (Figure 1c).

Proof of Concept Using Micropatterned Structures.
To demonstrate the general efficacy of the patterning
methodology utilized here, patterns were formed first by
using an electron microscope grid as a mask. An OEG-
NPEOC-APTES coated substrate was exposed to UV light
from a frequency-doubled argon ion laser (244 nm) through
the mask, causing localized photodeprotection. The kinetics of
the photodeprotection process have been described else-
where;31,61 a dose of 3 J cm−2 is required for full deprotection
of OEG-NPEOC-APTES. The sample was immersed in a
solution of Alexa Fluor 750-labeled streptavidin, which emits

Figure 1. Schematic diagram showing the fabrication methods used in the present work. (a) Near-field lithography with a fiber or cantilever probe
leads to selective photoremoval of OEG-NPEOC protecting groups, exposing a protein-adhesive aminated surface onto which protein is adsorbed.
(b) In two-beam interferometric lithography using a Lloyd’s mirror apparatus, a laser beam is directed at a sample and mirror set at an angle 2θ to
each other. Half the beam falls on the sample, while the other half falls on the mirror from where it is reflected onto the sample to interfere with the
first half of the beam. (c) The resulting interferogram has a sinusoidal cross-section with a pitch λ/2 nsin θ, where n is the refractive index of the
medium. By carrying out two exposures, and rotating the sample through an angle ϕ between exposures, a variety of pattern morphologies can be
fabricated.
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red fluorescence. Figure 2(a) shows a confocal fluorescence
image of the resulting micropattern. Bright red fluorescence is
observed from the square regions that were exposed to UV
light, but dark contrast is observed elsewhere. Flooding the
sample with light from an HeCd laser (λ = 325 nm) leads to
deprotection of the dark bars, which were masked during the
first exposure. A longer wavelength that is not damaging to the
adsorbed protein is used for this second step, but the first step
is carried out at 244 nm because patterning is more rapid with
these more energetic photons. This enables adsorption of
polymer nanoparticles coated with yellow-green fluorescent
Neutravidin. Yellow-green fluorescence is observed only from
the bars, because streptavidin adsorbed during the first
patterning step blocks the square regions against adsorption
of Neutravidin-coated particles.
It is known that during photoremoval of nitrophenyl

protecting groups a side reaction occurs that leads to the
formation of a nitroso derivative. Nevertheless, it was
determined for OEG-NPEOC-APTES using XPS that ∼70%
of adsorbates undergo complete deprotection to expose the
amine group.31 Xia et al. demonstrated that this side reaction
did not impede surface functionalization of deprotected films
with nitrilotriaceticacid (NTA) or subsequent site-specific
attachment of histidine-tagged proteins. Protein binding was
reversed by treatment with imidazole, suggesting that the
presence of nitroso byproducts did not have a significant impact
on the utilization of the films form protein binding.31 The data
presented in Figure 2 demonstrate that if the side reaction does
occur, it does not inhibit the physical adsorption of protein
either.
To provide a more rigorous test for the efficacy of this

patterning method, microspectroscopy was used to characterize
patterns consisting of discrete regions to which green
fluorescent protein (GFP) and yellow fluorescent protein
(YFP) had been adsorbed. After an initial exposure of the
sample through a mask, GFP was adsorbed onto the exposed
regions (squares). The sample was then flooded with near-UV
light from an HeCd laser, to deprotect the remaining intact
OEG-NPEOC-APTES regions and immersed in a solution of
YFP. GFP and YFP have distinct emission spectra, with
emission maxima at 509 and 527 nm, respectively. Con-
sequently, if the integrity of masked OEG-NPEOC-APTES is
not preserved during the adsorption of GFP, the masked
regions (bars) would contain both proteins, leading to the
observation of two peaks in spectra recorded from those
regions.

Figure 3 shows a fluorescence image of a patterned sample
consisting of GFP (squares) and YFP (bars). There is a small

difference in the intensity of fluorescence observed from
regions covered with the different adsorbed proteins. Spectra
acquired from the square regions yielded a single maximum at
510 nm, corresponding to the emission maximum of GFP, and
spectra acquired from the bars exhibited a single emission
maximum at 527 nm corresponding to the emission maximum
of YFP. These data provide very strong evidence that the
methodology described here is effective in controlling the
regions of the surface to which the different proteins are
adsorbed.

Near-field lithography. It is possible to write arbitrary
nanostructures using a near-field probe, while interferometric
lithography (see below) enables the fabrication of periodic
structures over macroscopic areas. Using a commercial
cantilever-based near-field microscope, coupled to an HeCd
laser (325 nm), features were written into an OEG-NPEOC-
APTES film and imaged using friction force microscopy70−72

Figure 2. Two-component patterning. An OEG-NPEOC-APTES film was exposed at 244 nm through an electron microscope grid mask and
immersed in a solution of Alexa Fluor 750-labeled streptavidin. Subsequently, the sample was exposed at 325 nm and immersed in a solution of
yellow-green fluorescent Neutravidin-coated polymer particles. (a) Pattern of red fluorescence from Alexa Fluor 750-labeled streptavidin. (b)
Fluorescence from Neutravidin-coated polymer particles. (c) Overlay of micrographs in (a) and (b).

Figure 3. Two-component patterning. Fluorescence microscopy of
pattern consisting of GFP (squares) surrounded by YFP (bars),
together with spectra acquired at selected locations as shown.
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(Figure 4a). The exposed regions (lines) exhibit bright contrast
relative to the unmodified regions of the film. The feature size

is limited by the aperture size of the probe. Using commercial
cantilever probes, with aperture sizes of ca. 200 nm, feature
sizes of ca. 200 nm were achieved, as determined from friction
force microscopy images such as the one in Figure 4a. Figure 4b
shows a confocal fluorescence image of two geometric
structures (overlaid triangles) formed by near-field lithography
followed by immersion of the sample in a solution of FITC-
labeled IgG in buffer. There is a clear contrast difference
between the bright features formed in the lithographic process
and the dark background, confirming the selectivity of
attachment of protein to regions exposed to the near-field
probe.

The smallest feature sizes were achieved using a custom-built
shear-force near-field microscope fitted with an optical fiber
probe. Figure 4c shows a tapping mode phase image of three
lines formed by using a near-field probe to expose a PEG-
NPEOC-APTES film followed by immersion of the sample in a
solution of YFP in buffer. The YFP exhibits brighter contrast,
indicative of a higher rate of energy dissipation in the tip−
sample contact than is the case for the silane film. The mean
value of the full width and half-maximum height (fwhm) of
these lines is 80 nm.
A distinctive feature of near-field microscopy is that the

processes of reading and writing can be decoupled. By
switching off the excitation source, it is possible to image the
surface in shear-force mode, or in a cantilever-type system by
operating the probe in the same way that an AFM is used. This
makes it possible to fabricate a pattern, remove the sample from
the microscope for functionalization of the pattern, return it to
the microscope, and then relocate the same region in a sample,
before proceeding to fabricate a second structure. To aid
relocation of the precise same point on the surface, a metallic
finder structure was first deposited by shadow deposition onto
the substrate, prior to formation of the OEG-NPEOC-APTES
film.
Figure 5 shows the stepwise assembly of a variety of overlaid

geometrical patterns formed using a SNOM system with a
cantilever probe. In Figure 5a, a triangle was first fabricated by
near-field exposure of OEG-NPEOC-APTES. The sample was
removed from the microscope and immersed in a solution of
GFP overnight. After rinsing, the sample was dried and placed
in the near-field microscope. Using the finder structure, the
position at which the first lithographic process had been
performed was located, and a second patterning process was
implemented. A series of parallel lines was overlaid on the first
pattern. The sample was then removed from the near-field
microscope and placed in a solution of streptavidin labeled with
Atto 655. The emission maximum of this dye lies far enough
from the emission maximum of GFP that their fluorescence
signals could be separated during confocal microscopy, enabling
the different, discrete locations of the two protein patterns to
be confirmed.

Figure 4. (a) Friction force microscopy image of a pattern fabricated
by near-field exposure of an OEG-NPEOC-APTES film. (b)
Fluorescence microscopy image showing bright contrast from
geometric shapes formed by near-field lithography followed by
adsorption of FITC-labeled IgG. (c) Tapping-mode phase image of
YFP adsorbed to nanolines fabricated using an optical fiber probe in
shear-force mode to modify OEG-NPEOC-APTES. (d) Tapping
mode height image of the lines shown in panel c.

Figure 5. Stepwise assembly of multiple component protein nanopatterns using near-field lithography. (a) GFP + streptavidin-Atto 655. (b) IgG-
FITC + streptavidin-Atto 655 + streptavidin-Atto 488 (c) IgG-FITC + streptavidin-Atto 655 + streptavidin-Alexa Fluor 488 + streptavidin-Alexa
Fluor 750. A representative line section is provided beneath each micrograph, measured between the white arrowheads marked on each.
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Figure 5b shows a similar pattern, fabricated in the same
fashion, but with a third protein component added. In this case,
the IgG and streptavidin-Atto 488 have very similar emission
spectra, and only the series of parallel lines (formed by the
adsorption of streptavidin-Atto 655) may be distinguished
using a filter. Finally Figure 5c shows a four-component
pattern, consisting of a single triangle of IgG-FITC, a circle of
streptavidin-Atto 655, eight lines of streptavidin-Alexa Fluor
488, and a double-triangle structure consisting of adsorbed
streptavidin-Alexa Fluor 750.
These data clearly demonstrate the feasibility of executing

lengthy sequences of lithographic processes using near-field
methods. The use of a finder grid, combined with the
decoupling of reading and writing in the near-field microscope,
enables accurate registry to be achieved. Importantly for protein
patterning, the unmodified OEG-NPEOC-APTES regions in
Figure 5c exhibit dark contrast, indicating minimal nonspecific
adsorption, even after four sequences of protein adsorption.
Two-Component Nanopatterning over Macroscopic

Areas by Interferometric Lithography (IL). Interferometric
lithography does not permit arbitrary pattern formation, but it
does enable the rapid fabrication of patterns over macroscopic
areas. In the apparatus used in the present study, an area of ca.
1 cm2 was exposed. In a Lloyd’s mirror interferometer, two
coherent laser beams interfere to produce an interferogram that
consists of alternating bands of constructive and destructive
interference with a sinusoidal cross-section of pitch λ/2n sin
θ,73,74 where λ is the wavelength of the incident light, n is the
refractive index of the medium (1 for air) and 2θ is the angle
between the sample and the mirror. To identify the proteins in
multiple-component nanopatterns, it is necessary to use optical
microscopy; the features in the interferogram should thus have
a pitch greater than the width of the point spread function of
the microscope.
Figure 6 shows single-component protein patterns formed by

interferometric exposure of OEG-NPEOC-APTES films. The
interferometer conditions have been selected such that the
features produced are likely to be just resolvable when
characterized by optical microscopy. After exposure of the
film, bands of alternating contrast are observed in a friction
force microscopy image. Bright contrast is associated with
regions where the film has been deprotected (see Figure 4a).
The fwhm of these lines was 234 nm. After adsorption of GFP,
a tapping-mode phase image (Figure 6b) reveals bands of
alternating bright and dark contrast. The bright bands, thought
to correspond to the protein, have a mean fwhm of 218 nm,
indicating effective confinement of the protein to the regions
that were deprotected during exposure.
A grid structure was formed by carrying out a double

exposure and rotating the sample through 90° between
exposures. After adsorption of GFP, the grid pattern could be
resolved in a fluorescence image (Figure 6c). The pitch of the
interferogram was 750 nm. Tapping mode phase images
revealed protein-free regions with a fwhm of 290 nm (Figure
6d, dark contrast) corresponding to regions of the OEG-
NPEOC-APTES film that were not exposed during either of
the two interferometric patterning steps.
The protein-free regions observed in Figure 6d can be

deprotected by exposure at 325 nm. Light at this wavelength is
not expected to be damaging to the proteins, especially after
short exposures. Two-component patterns were thus prepared
by preparing a sample like the one shown in Figure 6c, followed
by flooding of the sample with near-UV light and adsorption of

streptavidin-Alexa Fluor 750. The sample was imaged by
confocal microscopy (Figure 7), using a filter to separate the
emission from the two proteins. The GFP is clearly resolved
(Figure 7a). The streptavidin-coated regions are much more
challenging, because their widths are slightly less than those of
the GFP lines. However, an image of the red fluorescence
(Figure 7b) reveals an array of points of fluorescence
corresponding to the array of GFP-free regions defined in the
first lithographic process. An overlay of the fluorescence signal
acquired from the two proteins (Figure 7c) confirms that the
streptavidin is located at the interstices in the GFP structure.
While the formation of two-component patterns is

demonstrated here, it is possible to conceive of methods for
the production of surfaces with larger numbers of constituent
components, for example by adsorption of two different
proteins to form a grid pattern, or by the introduction of
surface hererogeneity (for example, self-cleaning Ti nanostruc-
tures66).
In summary, the present work has demonstrated that a

variety of methods may be used to expose OEG-NPEOC-
APTES films. Mask-based exposure yields micrometer-scale
patterns; sequential exposure enables the adsorption of proteins
to form multiple-component patterns. A number of approaches
exists to the patterning of proteins at micrometer length-scales,
but by contrast, there are few methods that offer a capacity for
repeatable nanopatterning of proteins on submicrometer length
scales, and still fewer that offer a capability for the sequential
deposition of multiple different proteins. Of the published
studies, Maynard’s work using electron beam lithography is the
most complete.37,38 Photolithographic approaches offer an
alternative approach that requires comparatively inexpensive
equipment and also the possibility for scaleability to cover large
areas. Interferometric lithography offers a rapid route for the
organization of proteins over macroscopic (>cm2) areas, while

Figure 6. Patterns fabricated by IL. (a) Friction force microscopy
image of parallel bands of amine functional groups produced by
exposure of an OEG-NPEOC-APTES film (bright contrast). (b)
Tapping mode phase image of lines of GFP after adsorption onto the
sample shown in panel a. (c) Confocal fluorescence micrograph of a
grid of orthogonal lines of GFP produced by carrying out a double-
exposure of an OEG-NPEOC-APTES film, with a rotation of the
sample through 90° between exposures. (d) Tapping-mode phase
image of a region of the sample shown in panel c, revealing an array of
protein-free spots (dark contrast).
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near-field methods offer the capacity for arbitrary pattern
formation. Both enable deposition of different proteins using
very simple, generic strategies. In the present work, proteins are
adsorbed simply by physical adsorption, which is favored
following removal of the OEG-NPEOC protecting group.
However, it would also be possible to introduce approaches to
the site-specific binding of proteins, via elaboration of the
surface chemistry as described in previous studies, to enhance
the biological activity of the immobilized biomolecules.31,61

Moreover, the capacity of near-field lithography for parallel
implementation over macroscopic areas under water69 presents
the exciting prospect of its development into a high-throughput
fabrication technology capable of producing complex bio-
logically functional surfaces.

■ CONCLUSIONS
Films formed by the adsorption of OEG-NPEOC-APTES
demonstrate exceptional protein-resistance, enabling the
execution of multiple lithographic processing steps with little
diminution of their performance. Microspectroscopy of two-
component GFP/YFP patterns formed by sequential exposure
and adsorption steps confirms that the proteins are found only
in the desired locations, with no evidence of cross-
contamination. Using near-field lithography, a series of
photopatterning steps, each followed by adsorption of a
different protein, may be carried out, leading to the fabrication
of elaborate multiple-component nanostructures that exhibit
clear fluorescence and suggest minimal adsorption to
unmodified regions of the surface despite the use of up to
four overnight adsorption steps. Interferometric lithography
may be used to carry out multiple exposures over macroscopic
areas.
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Maan, J. C.; Nüsse, D.; Schröder, H.; Wacker, R.; Voges, E.;
Breinbauer, R.; Kunz, H.; Niemeyer, C. M.; Waldmann, H. Preparation
of Biomolecule Microstructures and Microarrays by Thiol−ene
Photoimmobilization. ChemBioChem 2010, 11, 235−247.
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