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Abstract

The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the

future colony’s fitness. To date, the nest-site selection process has mostly been modelled and theoretically

analysed for the case of binary decisions. However, when the number of alternative nests is larger than two,

the decision process dynamics qualitatively change. In this work, we extend previous analyses of a value-

sensitive decision-making mechanism to a decision process among N nests. First, we present the decision-

making dynamics in the symmetric case of N equal-quality nests. Then, we generalise our findings to a

best-of-N decision scenario with one superior nest and N – 1 inferior nests, previously studied empirically

in bees and ants. Whereas previous binary models highlighted the crucial role of inhibitory stop-signalling,

the key parameter in our new analysis is the relative time invested by swarm members in individual discovery

and in signalling behaviours. Our new analysis reveals conflicting pressures on this ratio in symmetric and

best-of-N decisions, which could be solved through a time-dependent signalling strategy. Additionally,

our analysis suggests how ecological factors determining the density of suitable nest sites may have led to

selective pressures for an optimal stable signalling ratio.
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I. INTRODUCTION

Collective consensus decision-making [1], in which all members of a group must achieve agree-

ment on which of several options the group will select, is a ubiquitous problem. While groups may

be subject to conflicts of interest between members (e.g. [2, 3]), in groups where individuals’ inter-

ests align it is possible to look for mechanisms that optimise group-level decisions [4]. In this paper

we model collective consensus decision-making by social insect colonies, in the form of house-

hunting by honeybee swarms [5, 6], but similar decision-making problems manifest in diverse

other situations, from societies of microbes [7] to committees of medical experts [8, 9]. Much at-

tention has been paid to optimisation of speed-accuracy trade-offs in such situations (e.g. [10–14])

but theory shows that where decisions makers are rewarded by the value of the option they select,

rather than simply whether or not it was the best available, managing speed-accuracy trade-offs

may not help to optimise overall decision quality [15]. Here we analyse a value-sensitive decision-

mechanism inspired by cross-inhibition in house-hunting honeybee swarms [5, 6]. One instance

of value-sensitivity is the ability to make a choice when the option value is sufficiently high—i.e.,

it exceeds a given threshold. In case no option is available with high-enough value, the decision

maker may refrain from commitment to any option, in the expectation that a high-quality option

may later become available. As a consequence, value-sensitivity is relevant above all in scenarios

in which multiple alternatives exist and possibly become available at different times. Another in-

teresting property of the investigated decision-making mechanism is its ability to break decision

deadlocks when the available options have equal quality. Deadlock breaking has been shown to

be of interest in a series of scenarios, including collective motion [16, 17], spatial aggregation

[18, 19] and collective transport [20]. Previous studies of value-sensitive decision-making have

been limited to binary decision problems, although it is known that honeybee swarms and other

social insect groups are able to choose from among many more options during the course of a

single decision [21–25]. Here, we generalise the model of [6] and examine its ability to exhibit

value-sensitive deadlock-breaking when choosing between N equal alternatives, and also to solve

the best-of-N decision problem in which one superior option must be selected over N – 1 equal

but inferior distractor options.
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II. MATHEMATICAL MODEL

A. General N-options case

Our work builds on a previous model that describes the decentralised process of nest-site se-

lection in honeybee swarms [5]. The decentralised decision-making process is modelled as a

competition to reach threshold between subpopulations of scout bees committed to an option (i.e.,

a nest). The model is described as a system of coupled ordinary differential equations (ODEs),

with each equation representing the subpopulation committed to one option; an equation describ-

ing how the subpopulation of uncommitted scout bees changes over time is implicit, since the

total number of bees in the system is constant over the course of a decision. Uncommitted scout

bees explore the environment and, when they discover an option i, estimate its quality vi, and may

commit to that option at a rate γi. The commitment rate to option i for discovery is assumed to

be proportional to the option’s quality, that is, more frequent commitments to better quality nests

(γi ∝ vi). Committed bees may spontaneously revert, through abandonment, to an uncommitted

state at rate αi. Here, the abandonment rate is assumed to be inversely proportional to the option’s

quality, that is, poorer options are discarded faster (αi ∝ v−1
i ). This abandonment process allows

bees quickly to discard bad options, and endows the swarm with a degree of flexibility since bees

are not locked into their commitment state. In addition to these two individual transitions, which

we label as spontaneous, scout bees interact with each other to achieve agreement on one option.

In particular, the model proposed in [5] identifies two interaction forms: recruitment and cross-

inhibition, which give rise to interaction transitions. Recruitment is a form of positive feedback, by

which committed bees actively recruit, through the waggle dance, uncommitted bees [21, 26, 27].

Therefore, the rate by which uncommitted bees are recruited to option i is determined by both the

number of bees committed to i and the strength of the recruitment process for i, labelled as ρi.

Similarly to discovery, recruitment is assumed to be proportional to the option’s quality (ρi ∝ vi).

The other interaction form that occurs in this decision process is cross-inhibition. Cross-inhibition

is a negative feedback interaction between bees committed to different options; when a bee com-

mitted to option i encounters another bee committed to another option j, (with j 6= i), the first may

deliver stop signals to the second which reverts to an uncommitted state at a rate βi j. For binary

choices stop-signalling has previously been shown to be a control parameter in a value-sensitive

decision-making mechanism, in particular setting a value threshold for deadlock maintenance or
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breaking in the case of equal-quality options [5, 6]. In this study, in agreement with the assump-

tions made above, we assume cross-inhibition proportional to the quality of the option that the

bees delivering the stop signal are committed to. In other words, bees committed to better options

will more frequently inhibit bees committed to other options (βi j ∝ vi, see Section II B for more

details).

As described above, the set of bees committed to the same option is considered as a sub-

population, and the model describes changes in the proportion of bees in each sub-population with

respect to the whole bee population. We assume that a decision is reached when one decision

sub-population reaches a quorum threshold [28–30]. Precisely, xi and xu denote the proportion of

bees committed to option i and uncommitted bees, respectively, with N options and i ∈ {1, . . . ,N}.

A version of the model that we analyse in this study has been originally proposed for the binary

decision case (i.e., N = 2) in [5] and, later, extended to a more general case of N options in [31].

Analysis of the value-sensitive parameterisation has been presented by Pais et al. in [6]. Here we

generalise this model, and extend its analysis to the best-of-N case. The general models is:























dxi

dt
= γi xu −αi xi +ρi xu xi −

N

∑
j=1

x j β ji xi , i ∈ {1, . . . , N} ,

xu = 1−
N

∑
i=1

xi

(1)

B. A novel parameterisation for value-sensitive decision-making

Following earlier work [5, 6, 12], we assume a value-sensitive parameterisation by which the

transition rates are proportional (or inversely proportional) to the option’s quality vi, as mentioned

above. Previous work investigated the dynamics of the system (1) with vi = γi = ρi = α−1
i and

βi j = β for two options (i.e., N = 2) [6]. Such a parameterisation displays properties that are

both biologically significant, and of interest for the engineering of artificial swarm systems [31,

32]. One of the main system characteristics is its ability to adaptively break or maintain decision

deadlocks when choosing between equal-quality options, as a function of those options’ quality.

In fact, it has been shown that when the swarm has to decide between two equally and sufficiently

good options, it is able to implement the best strategy: that is, to randomly select any of the two

options in a short time. However, in Appendix B we show that the system’s dynamics qualitatively

change for more than two options, i.e., N > 2: by adopting the parameterisation proposed in [6],
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the swarm cannot break a decision deadlock for more than two equally good options (see Figure 5

and Appendix B).

In this study, we extend previous work by introducing a novel parameterisation that features

value-sensitivity also for N > 2. Unlike [6], we investigate a more general parameterisation in

which we decouple the rates of spontaneous transitions (i.e., discovery and abandonment) from

the rates of interaction transitions (i.e., recruitment and cross-inhibition), similarly to [31]. The

proposed parameterisation is γi = k vi, αi = k/vi and ρi = hvi, where k and h modulate the strength

of spontaneous and interaction transitions, respectively.

For the cross-inhibition parameter, we consider the general case in which βi j is the product of

two components: βi j = [A ·D]i j, where A and D are two matrices and βi j is the i jth element of

their product. The former, A, is an adjacency matrix that expresses how subpopulations interact

with each other. Therefore, the entries ai j of A are either 1 or 0 depending on whether interactions

between subpopulations i and j can occur or not. The introduction of the adjacency matrix allows

us to define if inhibitory messages are delivered only between bees committed to different options

(i.e., cross-inhibition), or also between bees committed to the same option (i.e., self-inhibition, as

self refers to the own subpopulation). In this study, in accordance with behavioural results in the

literature [5], we do not include self-inhibitory mechanisms; thus the adjacency matrix contains

zeros along its diagonal (i.e., aii = 0,∀i). On the other hand, we consider that interactions between

different subpopulations are equally likely, and this is reflected by having ai j = 1,∀i 6= j. The

second component, D, is a matrix that quantifies the stop-signal strength, and allows us to define,

if needed, different inhibition strengths for each sender/receiver couple. In other words, through

D the inhibitory signals can be tuned not only as a function of the option quality of the inhibiting

population, but also as a function of the option quality of the inhibited population. In this analysis,

we model dependence of cross-inhibition strength solely on the value of the option that inhibiting

bees are informed about; thus we investigate the system dynamics for a diagonal cross-inhibition

matrix with values hv1, . . . ,hvN along its diagonal, where h is a constant interaction term (as for

recruitment), and the vi, i ∈ {1, . . . ,N}, are qualities of the options the inhibiting populations are

committed to. Hence we parameterise the cross-inhibition term as βi j = AikDk j = hvi, which

determines the other parameters of the system as (1)

γi = k vi, αi = k v−1
i , ρi = hvi, βi j = hvi . (2)

In the following, we introduce the ratio r = h/k between interaction and spontaneous transi-
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tions. The ratio r acts as the control parameter for the decision-making system under our new

formulation, whereas the strength of cross-inhibition (stop-signalling rate) was the control param-

eter in the original analysis [6]. This new control parameter has a simple and natural biological

interpretation, as the propensity of scout bees to deliver signals to others (here, represented by the

interaction term h), relative to the rate of spontaneous transitions (here, represented by the term k).

We show that the novel parameterisation displays the same value-sensitive decision-making

properties of the binary system that are shown in previous studies [6]. In particular, we confirm

that, in the symmetric case of two equal-quality options, the ratio of interaction/spontaneous tran-

sitions, r = h/k, determines when the decision deadlock is maintained or broken (see Figure 6(a)).

Additionally, we show in Figure 6(b) that the interaction ratio r determines the just-noticeable

difference to discriminate between two similar value options, in a manner similar to Weber’s law,

as demonstrated for the cross-inhibition rate in [6].

C. The best-of-N decision problem

As well as presenting a general analysis of the system dynamics for small N (N = 3), for larger

values of N we next analyse the best-of-N decision scenario with one superior and N −1 inferior

options. This scenario is consistent with empirical studies undertaken with bees [23], ants [24, 25]

and with neurophysiological studies [33]. Considering such a scenario allows us to investigate the

system dynamics as a function of four parameters: (i) the number of options N, (ii) the superior

option s’s quality v = vs, (iii) the ratio between the quality of any of the equal-quality inferior

options and of the superior option κ = vi/vs (with i 6= s), and (iv) the ratio between interaction and

spontaneous transitions r = h/k. The system of Equation (1) with the parameterisation given in

(2) can be rewritten in terms of these four parameters as:















































dx1

dτ
= vxu −

x1

v
+ r vx1

[

xu − ∑
j 6=1

κ x j

]

,

dxi

dτ
= vκ xi −

xi

vκ
+ r vxi

[

κ(xu − ∑
j 6=1,i

x j)− x1

]

, i = 2, ... , N ,

xu = 1−
N

∑
i=1

xi

(3)

where x1 is the population committed to the best (superior) option (i.e., v = v1 ≥ vi, ∀i ∈
{2, . . . ,N}) and τ = kt is the dimensionless time.
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The system in (3) is characterised by N coupled differential equations and one algebraic equa-

tion. In Equations (A9), we reduce this system to a system of two coupled differential equations

by aggregating the dynamics of the populations committed to the inferior options. In Section III,

we show that this system reduction allows us to attain qualitatively correct results for arbitrarily

large N.

III. RESULTS

We first investigate the system dynamics for the case of N = 3 options, then we generalise

our findings to arbitrarily large N. The reduced system (Equation (A9)) allows us to investigate

the dynamics for arbitrarily large numbers of options N without increasing the complexity of the

analysis. In Section III A, we show the analysis results for the symmetric case of N equally good

options, while in Section III B, we report the results for different quality options.

A. Symmetric case

We start by analysing the symmetric case of N equal-quality options (i.e. κ = 1). The simplicity

of the reduced system (Equation (A9)) allows us to determine the existence of two bifurcation

points which are determined by the parameters r, v and N, and we show the bifurcation conditions

in terms of the control parameter r as:

r1 = f1(v,N), r2 = f2(v,N) . (4)

In Appendix D, we report the complete equations for (4) as functions of (v,N) (see Equation (D4))

or, more generally, of (γ ,α ,ρ,β ) (see Equation (D2)). In Figure 1(a), we show the stability diagram

of the system (3) in the parameter space (r,v), for N = 3. When the pair (r,v) is in area I, the system

cannot break the decision deadlock but remains in an undecided state with an equal number of bees

in each of the three committed populations. This result can be also seen in Figure 1(b), where we

display the bifurcation diagram for the specific case v = 5. Here, low values of r correspond to a

single stable equilibrium representing the decision deadlock. Increasing the signalling ratio, the

system undergoes a saddle node bifurcation when r = r1 in Figure 1(b), at which point a stable

solution for each option appears and the selection by the swarm of any of the N equally-best

quality options is a feasible solution. However, for (r,v) in area II of Figure 1(a), the decision-

deadlock remains a stable solution and only through a sufficient bias towards one of the options
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FIG. 1. Dynamics of the complete decision system of Equation (3) for the symmetric case κ = 1 (i.e., v1 =

v2 = v3 = v). Panel (a) shows the stability diagram as a function of the parameter r and the quality v for N = 3

options. The two curves represents the two bifurcations r1 (blue solid) and r2 (red dashed) of Equations (4).

There are three possible system phases: (I) decision-deadlock, (II) coexistence of decision deadlock and

stable solutions for any option, and (III) decision for any option. Panel (b) shows the bifurcation diagram

for N = 3 and v = 5 as a function of the parameter r. This illustrates the three system phases when varying

the control parameter r. Note that, due to the 2D visualisation, some equilibria overlap and thus the bottom

branches in panel (b) correspond to the two overlapping equilibria for the options x2 and x3. Panel (c) shows

a stability diagram that visualises the dependence of the bifurcation points r1 (solid lines) and r2 (dashed

lines) as a function of N for varying v ∈ {1,2,3,5,10}, and reports the same three system phases.

the system converges towards a decision. This system phase can be visualised in the bifurcation

diagram of Figure 1(b) and in the phase portrait of Figure 2(b): The system escapes from the

decision-deadlock attraction basin if noise leads the population to jump into a neighbouring basin

corresponding to a unique choice.

The system undergoes a second bifurcation at r = r2 in Figure 1(b), that changes the stability

of the decision-deadlock from stable (r < r2) to partially unstable (saddle, r > r2). Therefore, for

sufficiently high values of the signalling ratio (area III in Figure 1(a)), the unique possible outcome

is the decision for any of the equally best quality options. The central solution of indecision

remains stable (i.e., attracting) with respect to only one manifold, i.e., the line for equal-size

committed populations, while it is unstable with respect to the other directions (see the phase

portraits of Figures 2(c)-(d) and the video in the supplemental material [34]). Instead, the unstable

saddle points that surround the central solution have opposite attraction/repulsion manifolds. For

this reason, several unstable equilibria can be near to each other, as in Figure 1(b).
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(a) (b) (c)

FIG. 2. Phase portraits of the complete system (3) for N = 3 op-

tions in the symmetric case κ = 1 (i.e., v1 = v2 = v3 = v = 5).

Blue dots represent stable equilibria, and green dots represent un-

stable saddle points. Saddle manifolds are shown as red (repul-

sive) and blue (attracting) lines. Panel (a) shows the system in a

decision deadlock phase (i.e., phase I of Figure 1(b), r = 1), in

fact, there is only one stable solution with all the three committed

population with equal size. Panel (b) shows the coexistence of

the decision deadlock and the decision for any option (phase II,

r = 3). Panel (c) shows the system for high values of r in which

the decision deadlock solution is an unstable saddle point, and

therefore the only stable solutions are the decision for any option

(phase III, r = 10). The same phase portrait from another perspec-

tive is shown in panel (d) where a set of trajectories (red lines) are

shown. Looking at panel (d), the central unstable saddle node is

unstable on the displayed plane while is stable (i.e., attracting) on

the direction orthogonal to the field of view of the plot (d) (i.e.,

the attraction manifold is the line x1 = x2 = x3). The system does

not possess any periodic attractors.

(d)
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The analysis of the system with three options reveals three system phases as a consequence of

the two bifurcations determined by f1 and f2 (Equation (4)). Increasing the number of options,

the number of system phases increases. In particular, for every other N, at odd values (i.e., N ∈
{5,7,9, . . .}), a new bifurcation point between r1 and r2 appears. In Figure 10, we report the

bifurcation diagrams for v = 5 and N ∈ {4,5,6,7}. Despite the system phase increase, the main

dynamics for any N > 2 can be described by the three macro-phases described above: (I) decision-

deadlock only, (II) coexistence of decision-deadlock and decision, and (III) decision only. In fact,

the additional equilibria that appear for odd N are all unstable saddle solutions (with orthogonal

attraction/repulsion directions with each other) which do not change the stability of other solutions.

Therefore, we focus our study on the bifurcations defined by Equations (4) (i.e., Eq. (D4)) which

determine the main phase transitions.

Figure 1(c) shows the relationship between the bifurcation points r1 and r2, the options’s quality

v and the number of options N. The effect of v on r1 and r2 remains similar to that seen in

Figure 1(a), i.e., the bifurcation points vary as a function of v when v is low, while they are

almost independent of v when it is large. More precisely, the influence of the quality magnitude

v on the system dynamics decreases quadratically with v (see Equation (D4)). The number of

options, N, influences differently the two bifurcation points. While r1 grows quasi-linearly with

N, instead r2 grows quadratically with N. Therefore, in the symmetric case, the number of options

that the swarm considers plays a fundamental role in the decision dynamics. In fact, too many

options preclude the possibility of breaking the decision-deadlock and selecting one of the equally-

best options. This result suggests a limit on the maximum number of equal options that can be

concurrently evaluated by the modelled decision-maker.

B. Asymmetric case

We next analyse the system dynamics in the asymmetric best-of-N case where option 1 is

superior to the other N−1 same-quality, inferior options i (with i∈ {2, . . . ,N}). Figure 3 shows the

stability diagram for N = 3 options in the paremeter space r,κ . The results show that low values of

r allow the system to have a unique solution, (area A in the left panel of Figure 3). This is especially

true when the difference between the options is larger (i.e., low values of κ). However, such stable

solutions may not correspond to a clear-cut decision, as the population fraction committed to

the best alternative may be too low to reach a decision threshold, as indicated by the underlying
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FIG. 3. Dynamics of the complete decision system of Equations (3) for N = 3 options for the asymmetric

case (κ < 1) and superior option’s quality v = 5. The left panel shows the stability diagram as a function

of the parameter r and the ratio between qualities κ . The parameter space is divided in five different areas

(see Figure 8 to see a representative 3D phase portrait for each area). In area A, the system has a unique

solution corresponding to selection of the best option; in areas B and C, the system may select any of the

possible options; in areas D and E the system may end in a decision deadlock. The underlying density map

show the population size of the stable solution for the best option. For low values of r and similar options

(top-left corner), this population is relatively small and may be not enough to reach a quorum threshold. The

right panels show three bifurcation diagrams as a function of the parameter r for κ ∈ {0.5,0.9,0.97}. Note

that, due to the 2D visualisation, some equilibria overlap and thus the bottom branches of the bifurcation

diagrams correspond to two overlapping equilibria for selection of options x2 and x3.
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density map in Figure 3: if r is small and κ sufficiently high, only about half of the population

will be committed to the best option. Hence, a sufficiently high value of r is required for the

implementation of a collective decision. For larger values of r, the system undergoes various

bifurcations leading to N stable solutions corresponding to the selection of each available option

(areas B and C of the left panel in Figure 3). Therefore, there is the possibility that an inferior

option gets selected. For high values of κ , two additional areas appear, labelled D and E in

Figure 3. These areas correspond to the co-existence of an undecided state together with a decision

state for the superior and/or the inferior options, similarly to area II in Figure 1(a). The bifurcation

diagrams in the right panels show the effects of r for fixed values of κ . When the best option

has double quality than the inferior options (i.e., κ = 0.5, see the bottom-right panel), a low value

of r guarantees selection of the best option, whereas a sufficiently high r may result in incorrect

decisions by selecting any of the inferior options (which are considerably worse than the best one).

As the inferior options become comparable to the superior one, the range of values of r in which

there exists a single stable equilibrium in favour of the best options gets reduced (see the middle-

right panel for κ = 0.9 in Figure 3), up to the point that there is no value of r in which the choice

of the superior option is the unique solution (see the top-right panel for κ = 0.97 in Figure 3). In

this case, however, there is little difference in quality between the superior and inferior options,

and the system dynamics are similar to the symmetric case in which it is most valuable to break a

decision deadlock, hence to choose a sufficiently high value of r.

The dynamics observed for N = 3 options are consistent in the case of N > 3. Figure 4(a)

shows the stability diagram for varying number of options N ∈ {2, . . . ,7} (see also Figure 9). It is

possible to note that areas D and E get larger as N increases, leading to a larger range of values

in which one or more stable decision states coexist with a stable undecided state, up to the point

that area C disappears for N ≥ 5. This means that, as the number of inferior options increases,

the probability of making a wrong decision increases as well, especially for high values of κ .

To minimise the probability of wrong decisions, the value of r should be maintained as small

as possible, but still high enough to ensure that a decision is taken (i.e., with a sufficiently large

population committed to one option, see the density map in Figure 9). Finally, in Figure 4(b) we

show how the ability to solve hard decision problems varies with r and N. To this end, for each

point in the space r,N, we show the highest value of κ for which there exists a unique attractor for

the superior option corresponding to at least 75% of the population committed (i.e., x1 ≥ 0.75).

Figure 4(b) demonstrates an approximately linear relationship between r and N for a given value
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FIG. 4. (a) Stability diagram for best option quality v = 5 in the parameter space r, κ for varying number

of options N ∈ {2, . . . ,7}. For each option, the system has five possible phases that are consistent with the

phases described in caption the of Figure 3. Here we label only areas A (monostability) and B (multista-

bility) to facilitate readability. (b) Maximum value of κ as a function of N ∈ {2, . . . ,7} and r ∈ (0,20] for

which the system has a unique attractor for the selection of the best quality option, defined as the best option

attracting commitment from at least 75% of the total decision-making population.

of κ .

IV. DISCUSSION

We have analysed a model of consensus decision-making which exhibits useful value-sensitive

properties that have previously been described for binary decisions [6], but generalises these to

decisions over three or more options. In order to preserve these properties the single control pa-

rameter in the original model of [6], the rate of cross-inhibition between decision populations,

is replaced by a parameter describing the relative frequencies with which individual group mem-

bers engage in independent discovery and abandonment behaviours, compared to positive and

negative-feedback signalling behaviours. This new control parameter is biologically meaningful

and experimentally measurable, so should be of interest for further empirical studies of house-

hunting honeybee swarms.
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Previous work has investigated the role of signalling in collective decision making in a some-

what different framework. Galla [35] has analysed a model of house-hunting honeybees [36]

where the cross-inhibition mechanism was not included. In this model, increasing signalling (re-

ferred to as interdependence) allows the swarm to select the best quality option more reliably.

The interdependence parameter modulates the strength of positive feedback; the higher the inter-

dependence is, the more a bee is influenced by other bees’ opinion in determining a change of

commitment. There are similarities and differences between the meaning of the interdependence

parameter and the signalling ratio r that is introduced in this paper. Similarly to [35, 36], increas-

ing the value of the ratio r corresponds to an increase in the signalling behaviour but, in contrast to

previous studies, r is a weighting factor of both positive and the negative feedback. However, note

that positive and negative feedback are not necessarily equal in our model, as these mechanisms

are also modulated by the option’s quality. In agreement with [35, 36], our results underline the

importance of interactions among honeybees in the nest-site selection process. However, given the

different meanings of the control parameters, we find that increased signalling behaviour helps to

break decision deadlocks (in case of equal alternatives) but too high signalling might reduce the

decision accuracy when the decision has to be made among different quality options.

We also note some similarities between our results and the bifurcation analysis of a model of

the collective decision making process in foraging ants Lasius niger [37]. This model describes

the temporal evolution of the pheromone concentration along N alternative trails, each of which

leads to a different food source. The bifurcation parameter in the analysis is an aggregate variable

composed of the total population size, the options’ qualities and the pheromone evaporation rate.

Not all of these components are under the direct control of the decision maker, and thus cannot be

varied during the decision process. In contrast, the control parameter in our analysis, the signalling

ratio r, can be modulated in a decentralised way by the individual bees. Comparing the bifurcation

diagrams for deadlock breaking of Fig. 3(a) in [37] with Fig. 10(a), the two models present similar

dynamics. The authors also present a hysteresis loop as a function of relative food source quality

(Fig. 4 in [37]), which is similar to that found as a function of relative nest-site quality in [6] (Fig.

5). Collective foraging over multiple food sources is a fundamentally different problem to nest-

site selection, with exploitation of multiple sources frequently preferred in the former whereas

convergence on a single option is required in the latter [12]. Nevertheless it could be interesting

to make further comparisons of the dynamics of the model presented here and other nonlinear

dynamical models exhibiting qualitatively similar behaviour.
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A crucial point in our model is that honeybees need to interact at a rate that is high enough to

break decision deadlock in the case of equal options, in addition to the influence of nest-site quali-

ties. This follows from our analysis of the symmetric case (Section III A), where we observed that

high signalling ratio r allows the system to break the decision deadlock and to select any of the

equally best options. However, the analysis of the asymmetric case (Section III B) revealed that a

frequent signalling behaviour may have a negative effect on the decision accuracy, and low r values

should be preferred to have a systematic choice of the best available option. These results suggest

that a sensible strategy may be to increase r through time. An organism may start the decision

process applying a conservative strategy which reduces unnecessary costs of frequent signalling

behaviour and that, at the same time, allows quickly and accurately to select the best option if it is

uniquely the best. Otherwise, in the case of a decision deadlock (due to multiple options having

similar qualities), the system may increase its signalling behaviour in order to break symmetry and

converge towards the selection of the option with the highest quality. This strategy is reminiscent

of the suggested strategy of increasing cross-inhibition over time to spontaneously break dead-

locks in binary decisions [6]. Further theoretical evidence supporting such a strategy comes from

the bifurcation diagrams presented in the middle- and top-right panels in Figure 3, corresponding

to asymmetric case with N = 3 similar options, with κ = 0.9 and κ = 0.97, respectively (see also

Figure 11 for further bifurcation diagrams with N ∈ {4,5,6,7}). In these cases, an incremental

increase in r would allow the system to converge accurately towards the best option. In contrast,

immediately starting the decision process with a high value of r might decrease the decision ac-

curacy. For instance, in Figure 3 (right-center), starting with low values of r (i.e., r < 2.1) would

bring the system to the stable attractor (blue line) with less than half of the population committed

to the best option. A gradual increase of r lets the process follow the (blue, stable) solution line

which leads to the selection of option 1. On the other hand, a process that starts from a totally

uncommitted state with a value of r > 2.1 may end in the basin of attraction corresponding to

selection of an inferior option, as a consequence of stochasticity of the decision process. Such

a strategy could easily be implemented in a decentralised manner by individual group members

slowly increasing their propensity to engage in signalling behaviours over time; such a direction

of change, from individual discovery to signalling behaviour, is also consistent with the general

requirement of a decision-maker to gather information about available options, but then to be-

gin restricting consideration to these rather than investing time and resources in the discovery of

further alternatives. Theorists and empiricists have previously concluded that honeybee swarms
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achieve consensus through the expiration of dissent [38], which occurs as bees apparently exhibit a

spontaneous linear decrease in number of waggle runs for a nest over time [27]. However, the dis-

covery of stop-signalling in swarms requires that this hypothesis be re-evaluated, since increasing

contact with stop-signalling bees over time will also decrease expected waggle dance duration [5].

Field observations report that recruitment decreases over time in easy decision problems while

it increases overall in difficult problems (e.g. five equal-quality nests) [39]. Further theoretical

work with our model would reveal whether it is capable of explaining these empirically-observed

patterns.

Our analyses also suggest an optimal stable signalling ratio that the decision-making system

might converge to. While the level of signalling required to break deadlock between N equal

options increases quadratically with N (Figure 1(c)), the level of signalling that optimises the

discriminatory ability of the swarm in best-of-N scenarios increases only linearly (Figure 4(b)).

Optimising best-of-N decisions therefore seems at odds with optimising equal alternatives scenar-

ios. However in natural environments the probability of encountering N (approximately) equal

quality nest options will decrease rapidly with N. On the other hand the best-of-N scenario here,

while still less than completely realistic, should still provide a better approximation to the natural-

istic decision problems typically encountered by honeybee swarms. Our analysis shows that the

level of signalling that swarms converge to may be tuned appropriately by evolution according to

typical ecological conditions, namely the number of potentially suitable nest sites that are typically

available within flight distance of the swarm. Swarms of the European honeybee Apis mellifera

are able to solve the best-of-N problem with one superior option and four inferior options [23],

presumably reflecting the typical availability of potential nest sites in their ancestral environment.

While our model is inspired by nest-site selection in honeybee swarms, we feel its relevance

is potentially much greater. For example, as mentioned in the introduction, decision-making in

microbial populations may share similarities with decisions by social insect groups [7]. In addition

cross-inhibitory signalling is a typical motif in intra-cellular decisions over, for example, cell fate

[40], and single cells can exhibit decision behaviour similar to Weber’s law [41, 42]. Weber’s law

describes how the ability to perceive the difference between two stimuli varies with the magnitude

of those stimuli, and may have adaptive benefits [43]. Several authors have also noted similarities

between collective decision-making and organisation of neural decision circuits, where inhibitory

connections between evidence pathways are also typical [12, 44–47]. Similarly, neural circuits

following the winner-take-all principle have dynamics regulated by the interplay of excitatory and
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inhibitory signals and present interesting analogies to the present model [48, 49]. Since organisms

at all levels of biological complexity must solve very similar statistical decision problems that

relate to fitness in very similar ways, we feel there is definite merit in continuing to pursue the

analogies between collective decision-making models such as that presented here, and models

developed in molecular biology and in neuroscience. Finally, we suggest that the simplicity of the

model presented here and its adaptive decision-making characteristics might inform the design of

artificial decentralised decision-making systems, particularly in collective robotics (e.g. [31, 32,

50, 51]) and in cognitive radio networks (e.g. [52]).
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APPENDICES

The appendixes are organised in five sections. In Appendix A, we present the complete model

in all the parameterisations discussed in the article (from the most general to the most specific).

Then, we report the reduced model in a similar set of parameterisations. In Appendix B, we show

that the parameterisation used in the literature [6] cannot break the decision deadlock in the sym-

metric case when the number of options is larger than two. In Appendix C, we study the dynamics

of the system in the selected parameterisation for the binary case, i.e., N = 2. In Appendix D,

we report the formulas of the two main bifurcation points for the symmetric case. This formula

is particularly significant because it is valid for any number of options. In Appendix E, we report

additional results on the system dynamics: we report additional analysis performed on the system

deciding between three options, and we show that the results for N = 3 options are qualitatively

similar for N > 3.
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Appendix A: Complete model and reduced model

The general model for N options is:























dxi

dt
= γi xu −αi xi +ρi xu xi −

N

∑
j=1

x j β ji xi , i ∈ {1, . . . , N} ,

xu = 1−
N

∑
i=1

xi

(A1)

where xi represents the subpopulation committed to option i and xu the uncommitted subpopu-

lation. γi represents the discovery rate for option i, αi the abandonment rate for option i, ρi the

recruitment rate for option i and β ji the cross-inhibition from subpopulation j to subpopulation i.

We introduce a first parameterisation as:

γi = k vi αi = k v−1
i ρi = hvi βii = 0 βi j = β (A2)

with i 6= j. By applying Equation (A2) in (A1), we obtain:























dxi

dτ
= vi xu −

xi

vi

+ r vi xu xi −
N

∑
j=1, j 6=i

xi β x j , i ∈ {1, . . . , N} ,

xu = 1−
N

∑
i=1

xi

(A3)

where r = h/k is the ratio of interaction over spontaneous transitions, and τ = kt is the dimen-

sionless time. The parameterisation of Equation (A2) is a generalisation of the one proposed in

the literature [6], since, using r = 1, the system (A1) reduces to the old one, and thus displays the

same dynamics.

This intermediate steps allows us to visualise that for r ≤ 1 there is no value of β that allows to

break the decision deadlock in the case of N > 2 same-quality options (see Figure 5). This result

motivates the change of parameterisation with respect to previous work [6]. Additional analyses

that confirm the presence of the decision deadlock for values of r = 1 are provided in Appendix B.

We modify the parameterisation of Equation (A2) by linking the signalling behaviours (recruit-

ment and cross-inhibition) with the same value. The modified parameterisation is:

γi = k vi αi = k v−1
i ρi = hvi βi j = hvi (A4)

and by applying Equation (A4) in (A1), we obtain:
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FIG. 5. Bifurcation diagram in 3D of the system (A3) with N = 3 equal-quality options (i.e., v1 = v2 = v3 =

v) as a function of r = h/k ∈ (0,10] and β ∈ (0,10]. The vertical axis shows x ∈ [0,1], which represents the

proportion of bees committed to one of the three identical options. Blue surfaces represent stable equilibria,

while green surfaces are unstable equilibria. We can see that for r = 1, the decision deadlock is stable for

any tested values of β . See Section B for a formal proof of the decision deadlock for r = 1 and N = 3.























dxi

dτ
= vi xu −

xi

vi

+ r vi xi

[

xu −∑
j 6=i

κ ji x j

]

, i, j = 1, ... , N ,

xu = 1−
N

∑
i=1

xi

(A5)

where κi j = vi/v j the ratio between options’s values (and τ = kt, again, is the dimensionless time).

The reduced model. In this study, we investigate the scenario in which there is one superior

option and N −1 equal-quality inferior options. Assuming that the best option is the option 1, the

Equation (A1) can be simplified through the following variable change:

xA = x1 xB =
N

∑
i=2

xi, λ1 = λA λi = λB λ ∈ {γ,α,ρ,β} i ∈ {2, . . . ,N} . (A6)

By applying Equation (A6) to the complete system (A1), we obtain:


























dxA

dt
= γA xu −αA xA +ρA xA xu −βB xA xB ,

dxB

dt
= (N −1)γB xu −αB xB +ρB xB xu −

N −2

N −1
βB x2

B − xA xBβA ,

xu = 1− xA − xB ,

(A7)
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Similarly, Equation (A5) can be simplified through the following variable change:

xA = x1 xB =
N

∑
i=2

xi, v = v1, κ =
v1

vi

vi = κ v, i ∈ {2, . . . ,N} . (A8)

By applying Equation (A8) to the complete system (A5), we obtain:



























dxA

dτ
= vxu −

xA

v
+ r vxA [xu −κ xB] ,

dxB

dτ
= (N −1)κ vxu −

xB

κ v
+ r vxB

[

κ

(

xu −
N −2

N −1
xB

)

− xA

]

,

xu = 1− xA − xB ,

(A9)

Appendix B: Need for a novel parameterisation: Decision deadlock for N = 3

In this appendix, we show that the model of Equation (A3) with r = 1 and N = 3 cannot break

the decision deadlock for any values of β ≥ 0.

To prove this, we start from the reduced system given in Equation (A7) (we could also use the

full three-dimensional system but due to the higher number of equilibria this is more difficult).

Note that Equation (A7) describes the reduced system before value-sensitivity is introduced. In

this form it is also equivalent to the case r = 1.

We assume that αA = αB = α , βA = βB = β , γA = γB = γ , and ρA = ρB = ρ . If we calculate the

equilibria we find that there are up to four different points. One is always negative and unstable.

Depending on the other three stationary states (the symmetric solution, and two more) and their

stability, we determine if the decision maker ends up in decision-deadlock, or not.

Investigating the existence of the equilibrium points we can write down a generalised condi-

tion determining the existence of the two non-symmetric equilibrium solutions that evolve at the

bifurcation point (cf. [5, 6]). This reads:

(−αβ+2βγ +αβN −3βγN +βγN2 +βρ −βNρ)2

−4(αγ −2αγN +αγN2)(−2β 2 +β 2N −βρ +βNρ) = 0 .
(B1)

We may resolve this equation with respect to β .

(1) If we let N = 2 we obtain

β =
4αγρ

(ρ −α)2
, (B2)
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as in the original model in [5].

(2) If we now introduce value-sensitivity, i.e. v1 = v2 = v (2 equal options), and let N = 2,

ρ = v, γ = v, α = 1/v we get:

β =
4v3

(1− v2)2
, (B3)

which coincides with the result reported in [6].

(3) If we let N = 3 (and accordingly v1 = v2 = v3 = v (3 equal options)), ρ = v, γ = v, α = 1/v,

which is the extension from 2 options (see model in [6]) to 3 options we obtain for v > 1/2:

8v3

1−4v2
< β < 0 . (B4)

In Eqs. (B2) - (B4) we gave the condition for the existence of the two stationary points which

might be reached by the decision-maker in addition to the symmetric solution. These are related

to pitchfork (N = 2) or limit point (N = 3) bifurcations. If the parameter β does not range in these

intervals only the symmetric equilibrium is real and positive, which is the condition for biological

meaningful states. This symmetric equilibrium is also stable. In particular, Eq. (B4) shows that

β needs to be negative to make the stationary states in question occur. As, on the other hand, β

needs to be positive in order to describe cross-inhibition, this case has to be excluded and hence we

have shown that the parametrisation introduced in [6] cannot describe decision-deadlock breaking

for 3 options, as only one stable equilibrium exists (the symmetric solution) for r = 1 and all β ≥ 0.

Also note that the quality values associated with the available options should be v ≥ 1. Other-

wise, some of the available states may take negative values, which is not a biologically relevant

solution. This applies to all the parametrisations mentioned above.

Appendix C: Effects of the novel parameterisation for N = 2

We study the dynamics of the systems (3) that uses a novel parameterisation with respect to

previous work [5, 6]. We test if, in the binary decision case (i.e., N = 2), the system dynamics are

comparable to the dynamics reported in the literature.

Figure 6(a) shows a comparison of the stability diagrams for the symmetric case of two options

with equal value v. The system dynamics are qualitatively similar but the bifurcation parameter
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FIG. 6. (a) Comparison of the stability diagrams in the binary and symmetric case (i.e., N = 2 and v1 =

v2 = v) of the newly proposed parameterisation (Eq. (3)) and the previous work [6]. The bifurcation line

that determines the two system phases is qualitatively similar, but the bifurcation parameter is different: In

the previous work it is the cross-inhibition signal β , here it is the interaction ratio r. (b) Stability diagram of

the system (3) as a function of the average quality v̄ = (v1 + v2)/2 and the quality difference ∆v = |v1 − v2|

for varying r ∈ {0.6,1,1.4,1.8}, in the binary decision case. The lines show the relationship between the

minimum quality difference to have the system with an unique attractor for the best option and the quality

mean. This relationship resembles the Weber’s law observed in psychological studies, with r determining

the coefficient. The results are similar to the ones obtained in [6], but using a different coefficient (in the

previous work the coefficient was the cross-inhibition, β ).

is different. In Pais et al., the bifurcation is determined by the cross-inhibition β , while in our

parameterisation it is determined by the ratio of interaction/spontaneous transitions r = h/k.

Additionally, Pais et al. [6] showed that the cross-inhibition determines the minimum difference

necessary to discriminate between two similar quality options in a manner similar to the Weber’s

law. We obtain similar results but using a different parameter. In Figure 6(b) we show that the

interaction ratio r determines the just noticeable difference.
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Appendix D: Bifurcations in the symmetric case

In case of N equal-quality options, hereafter called the symmetric case, the values of every

transition rate are the same for both equation A and B, i.e., γA = γB = γ , αA = αB = α , ρA = ρB = ρ

and βA = βB = β . The reduced system of Equation (A7) becomes:



















ẋA = γxU −αxA +ρxU xA −βxAxB

ẋB = (N −1)γxU −αxB +ρBxU xB −βxB(xA +
N−1
N−2

xB)

xU = 1− xA − xB

, (D1)

System (D1) undergoes two bifurcations. The simplicity of Equation (D1) allows us to analytically

derive the formula of the two bifurcation points:

ρ1 =
α(2γ(N −1)+σ)+2

√
α
√

γ
√

α(N −1)+σ(N −2)
√

γ(N −1)+σ + γσ(N −2)

σ

ρ2 =
α
(√

γN
√

γN2 +4σ + γN2 +2σ
)

+
√

γσ(N −2)
(

√

γN2 +4σ +
√

γN
)

2σ
.

(D2)

In the symmetric case, the system (3) becomes:



























dxA

dτ
= vxu −

xA

v
+ r vxA [xu − xB] ,

dxB

dτ
= (N −1)vxu −

xB

v
+ r vxB

[

xu −
N −2

N −1
xB − xA

]

,

xu = 1− xA − xB ,

(D3)

and undergoes two bifurcations at:

r1 =
1

v2
−2+N +

2
√

2N −3

v

r2 = (N −3)N +2+
1

v2
+

N −1

v

√

(4+ v2(N −2)2) .

(D4)

Note, that here the bifurcation points are expressed as a function of N, r and v.

Appendix E: System dynamics

Best of three.

Figure 7 shows the time dependent solutions of the system with N = 3 options for varying val-

ues of κ ∈ {0.25,0.5,0.75}. The plot shows the dynamics of the population committed to the best
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FIG. 7. Time dependent solutions of the system of Equations (1)-(2) for N = 3 options, spontaneous tran-

sitions strength k = 0.1, interaction transitions strength h = 0.3, best option quality v = 10, and varying

inferior alternatives’ quality as κ ∈ {0.25,0.5,0.75}. The main plot displays the dynamics of the popula-

tion committed to the best quality option x1; the inset shows the dynamics of all populations for κ = 0.5,

note that the populations committed for the inferior alternatives, x2 and x3, have overlaying trajectories. The

horizontal dashed line shows an example quorum threshold [30].

quality option x1. For decreasing values of κ the system converges faster to the stable equilibrium

x1 = 1. The system parameters are in a plausible range for the honeybee nest-site selection process

leading to convergence times that are comparable to field experiments, interpreting t in hour units

[23].

In Figure 3, we identify five system phases (labelled as A, B, C, D and E) for the asymmetric

case and N = 3. In Figure 8, we report a representant 3D phase portrait of the system (3) for each

of the five system phases.

Best of N. Figure 9 shows the stability diagrams for N ∈ [4,7] with an underlaying density map

showing the population size for the best option. While area A corresponds to the most favourable

system phase, that is, there is one single attractor with a bias for the superior option, however,

in the dark shaded area the population size is relatively low and might be not enough to reach a

decision quorum. The dark area increases with the number of options N and decreases with the

difference in option’s qualities (i.e., higher κ). Therefore, for similar options, higher values of r

(i.e., interactions) are necessary to let the swarm make a decision.
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FIG. 8. Dynamics of the system (3) in the case of N = 3 options. In the top-left panel, we report the stability

diagram in the parameter space r, κ . The plot shows that there are five possible system phases, labelled with

letter from A to E. The other panels show a representative 3D phase portrait for each phase. The letter in

the bottom-right of each phase portrait indicates which phase they represent.

Additionally, we report the bifurcation diagram for N ∈ [4,7] for both the symmetric case (Fig-

ure 10) and for the asymmetric case (Figure 11).
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(a) (b)

(c) (d)

FIG. 9. Stability diagrams for v = 5 and N ∈ {4,5,6,7}, in panel (a), (b), (c), and (d), respectively. The area A

indicates the systems phase with a single attractor in favor of the best option. Having an unique solution, in this area

the system never converges for the selection of inferior options. The underlying density map shows the population

size of the stable solution for the best option. In the dark area the population for the best option is not sufficient to

reach a quorum to take a decision. For an increasing number of options, the dark area increases and low values of r

are not sufficient anymore to allow the swarm to take a decision for similar options (high κ). However, for sufficiently

large values of r, the area A shifts towards higher values of κ . This effect is also shown in Figure 4 of the main text.
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FIG. 10. Bifurcation diagrams of the complete system (Equation (3)) in the symmetric case (v = 5) for

number of options N = 4 in panel (a), N = 5 in panel (b), N = 6 in panel (c), and N = 7 in panel (d). Blue

curves represent stable equilibria and green lines unstable saddle points. The vertical dashed lines are the

bifurcation point predicted by the reduced system (Equation (D4)). These points always precisely match

with the bifurcation point of the complete system.
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FIG. 11. Bifurcation diagrams of the complete system (Equation (3)) in the asymmetric case for number

of options N = 4 in panel (a), N = 5 in panel (b), N = 6 in panel (c), and N = 7 in panel (d). In all plots,

the superior option’s quality is v1 = 8 while the inferior options’ quality is vi = 7.2, i ∈ [2,N], that is,

κ = vi/v = 0.9. Blue curves represent stable equilibria and green lines unstable saddle points. Notice the

increase of the range of values of r in which the undecided state persists. Note also that the stable state

at decision for the superior option appears earlier than the ones for the inferior alternatives. This supports

a strategy to deal with the uncertainty in the decision-making scenario based on the gradual increase of r,

which would initially bring the system into an indecision state and subsequently jump to the selection of the

highest quality option.
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