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Abstract
Transactional Memory (TM) is a high-level programming abstraction for concurrency control that
provides programmers with the illusion of atomically executing blocks of code, called transactions.
TMs come in two categories, optimistic and pessimistic, where in the latter transactions never
abort. While this simplifies the programming model, high-performing pessimistic TMs can be
complex. In this paper, we present the first formal verification of a pessimistic software TM
algorithm, namely, an algorithm proposed by Matveev and Shavit. The correctness criterion
used is opacity, formalising the transactional atomicity guarantees. We prove that this pessimistic
TM is a refinement of an intermediate opaque I/O-automaton, known as TMS2. To this end, we
develop a rely-guarantee approach for reducing the complexity of the proof. Proofs are mechanised
in the interactive prover Isabelle.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.1.2 Modes of Com-
putation, F.3.1 Specifying and Verifying and Reasoning about Programs, H.2.4 Concurrency

Keywords and phrases Pessimistic STMs, Opacity, Verification, Isabelle, Simulation, TMS2

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.35

1 Introduction

Transactional memory (TM) is a mechanism that provides an illusion of atomicity in
concurrent programs. It aims to reduce the burden on programmers of implementing
complicated, error-prone synchronization mechanisms. TMs are analogous to database
transactions in the sense that both perform a series of updates to data in an all-or-nothing
manner — if a transaction succeeds, all its operations succeed, and otherwise, it aborts and
all its operations fail. Since the first proposal of a software transactional memory (STM)
[28], a number of STM algorithms have been developed [16], and many have made their
way into mainstream programming, e.g., the ScalaSTM library, a new language feature in
Clojure that uses an STM implementation internally for all data manipulation, the G++ 4.7
compiler (which supports STM features directly in the compiler) and others.

∗ Doherty and Dongol are supported by EPSRC Grants EP/M017044/1 and EP/N016661/1, respectively.
Wehrheim is supported by DFG grant WE2290/8-2.

© Simon Doherty, Brijesh Dongol, John Derrick, Gerhard Schellhorn, and Heike Wehrheim;
licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).
Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


35:2 Proving Opacity of a Pessimistic STM

Intuitively, the purpose of an STM is that the transactions appear to be executed
sequentially, i.e., as if their sections of code were protected by locks. However, unlike
conventional locking mechanisms, STMs typically allow multiple transactions to be executed
concurrently. The desired atomicity property for STMs is opacity [14, 3], which requires
that all transactions (including aborting transactions) agree on a single sequential history of
committed transactions. From a verification perspective opacity proofs represent a challenge
beyond correctness conditions such as linearizability [10] due to interleaving at the level of
operations as well as transactions.

There are two categories of STM designs: optimistic and pessimistic. Optimistic STMs
assume that conflicts are rare, and when a conflict occurs some transaction is aborted.
Transactional aborts cause work to be wasted, and interact badly with operations that are
immediately visible outside of a transaction (e.g., consuming input from a stream, or printing
to a console). Pessimistic STMs guarantee that no transaction ever needs to abort, thereby
avoiding these difficulties. This can be easily achieved at the cost of sacrificing concurrency.
For example, it is simple to implement a pessimistic STM that prohibits concurrency between
read-only and writing transactions (e.g., by using a read/write lock). However, because
conflicts between transactions are rare, overall performance can be improved by allowing
read-only transactions to execute concurrently with writers. Supporting this concurrency
can involve significant additional complexity, and this additional complexity can make the
problem of verifying pessimistic algorithms significantly more difficult.

A number of approaches have so far studied verification of STMs, none of them, however,
a pessimistic STM1. Here, we present a fully mechanised proof of correctness (i.e., opacity)
of a pessimistic STM algorithm, namely that by Matveev and Shavit given in [24]. It poses a
significant verification challenge due to the subtle nature of the synchronisation techniques it
uses. Particularly difficult is showing that opacity holds when a writing transaction commits
(see Listing 4), which may synchronise with another committing writer and all active readers.

Our proof of opacity proceeds via showing refinement (more precisely, a forward simulation)
between the STM algorithm and a high-level opaque specification. This follows a general
scheme for showing opacity proposed in [9], which used a specification called TMS2. Since
the development of the TMS2 specification, there has been just one example of its use in
a refinement-style verification of opacity [19], where the (simpler) NoRec STM is verified.
Here, we present its first application to a pessimistic STM. To this end, both the STM
implementation and the abstract specification are given as I/O-automata. This allows us to
leverage existing theories within the interactive prover Isabelle [26] for our mechanised proof.
The proof of refinement – as usual – requires a large number of invariants, both about the
shared and local data of transactions. These invariants need to be shown to be preserved
by all operations of all transactions. In order to decrease the complexity associated with
such cross-preservation proofs (which are similar to interference-freedom proofs of [27]), we
introduce a rely principle for transactions into invariance proofs (similar to rely-guarantee
reasoning [17]). This provides a systematic way of stating assumptions on transactions as
well as proving invariants. The work in this paper shows that this rely principle can make
refinement-based proofs scale, even for complex STMs. All of our proofs have been carried
out in Isabelle and can be found online [8].

Our presentation of the Matveev-Shavit algorithm is more precise than the original, and
resolves certain ambiguities in the original description. In particular, a naive interpretation
of the original description would result in an algorithm that was not opaque.

1 A discussion of related work can be found in the conclusion.
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Listing 1 Initialisation.
(globalVersion = 1) and (lock = free) and (∀ loc • (version (loc) = 0)) and
(∀ t • (txnVersion(t) = Idle) and (not writerWaiting(t)) and

(t.wrSet = {}) and (not t.progressSeen))

Listing 2 Reader transaction’s operations.

1: procedure READ BEGIN (t)
2: txnVersion(t) ←Reading . Inform others that reader t has started
3: t.temp ← globalVersion . Read the global version
4: txnVersion(t) ← t.temp . Set t’s txnVersion to stored global version

5: procedure READ READ (t, loc)
6: READ FROM MEM (t, loc) . Execute as procedure READ FROM MEM

7: procedure READ COMMIT (t)
8: txnVersion(t) ← Idle . Inform others that reader t has finished

9: procedure READ FROM MEM (t, loc)
10: if not t.progressSeen then . Check if committing writer’s progress has been seen
11: if version(loc) = txnVersion(t) then . Check if loc is potentially being written
12: await txnVersion(t) 6= globalVersion . Wait for committing writer to finish
13: t.progressSeen ← true . Inform t’s next READ FROM MEM that

the writer’s commits have completed
14: return mem(loc) . Read value of loc from the memory

The structure of the paper is as follows. In Section 2, we introduce our running example
and discuss the choices we made resolving the ambiguities in the original presentation of the
algorithm. In Section 3, we introduce I/O automata as a model for opacity and the TMS2
specification. Section 4 develops our methodology based on refinement and rely-guarantee
methods for proving opacity for pessimistic STMs. This is applied to the pessimistic STM of
Matveev and Shavit [24] in Section 5. Finally, we conclude in Section 6.

2 A Pessimistic STM

In this section, we present the pessimistic STM by Matveev and Shavit [24] (which we
will refer to as MSPessTM ) where no transaction ever aborts. MSPessTM distinguishes
between read-only (which perform no writes) and write transactions. A read-only transaction
starts by calling READ BEGIN , performs a number of READ READ operations, then completes
using the operation READ COMMIT (see Listing 2). Similarly, a write transaction starts using
operation WRITE BEGIN , performs some number of reads and writes using WRITE READ and
WRITE WRITE , respectively (Listing 3), then completes using WRITE COMMIT (Listing 4).

Synchronisation is achieved using shared variables globalVersion, txnVersion(t) (t being
a transaction), etc. as well as transaction-local variables t.temp, t.progressSeen etc, which
are initialised as in Listing 1. Some variables such as t.temp are unrestricted initially, and
hence, do not appear in Listing 1.

(1) MSPessTM uses a deferred update strategy: a write transaction t caches all its writes
(pairs of locations loc and values v) in t.wrSet, which are committed to the shared memory
when executing WRITE COMMIT .
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35:4 Proving Opacity of a Pessimistic STM

(2) Readers and writers are synchronised via the counter globalVersion. A committing writer
will increment globalVersion prior to updating mem (with writes from its write set) and
after these updates are completed. Thus, globalVersion is even iff there is a committing
writer.

(3) After invoking WRITE BEGIN , a writer transitions through three main phases: waiting,
active and committing. There may be multiple waiting writers, but at most one active
writer and at most one committing writer. Only the active writer may read or write,
and only the committing writer may modify the shared memory. A waiting writer must
not have progressed beyond line 18. A writer t becomes active when shared variable
writerWaiting(t) becomes false (either at line 19, or due to another writer executing
line 39), and becomes committing by incrementing globalVersion (line 36).

(4) Synchronisation between writers is achieved as follows. Initially, there is neither an
active nor a committing writer. Waiting writers compete for the shared lock (at line
18), and the winner becomes active. An active writer may enter the “critical section”
for a committer by progressing beyond line 32 (which can only happen if there is no
committer). The active writer actually becomes committing after executing line 36 (the
first increment of globalVersion). At this point the writer is both active and committing,
and only ceases to be an active writer after executing the code block in lines 37-41. Here,
it either makes another writer active (line 39), or if no waiting writers are found, it simply
releases lock (line 41). Matveev and Shavit refer to the mechanism at line 39 as “passing
the baton” because lock is effectively transferred from the current active writer to some
other waiting writer. Note that because lines 37-41 are executed after the first increment
of globalVersion, there is no danger of there being more than one committing writer. A
committing writer may need to synchronise with reads of another active writer; this is
achieved using the mechanism described below.

(5) Synchronisation between readers and writers is the most complex mechanism of the
algorithm. To understand this, we first note that from the perspective of a writer, there
are two abstract versions of the memory: the current memory (which is the value of
the shared mem variable) and the new memory (which is the mem updated with all
writes in the write set). The synchronisation mechanisms ensure no transaction reads
from both current memory and the new memory in an inconsistent manner. Note that a
reader can read from the current and new memory without violating consistency if all
of the locations read are unchanged (and MSPessTM allows this). Therefore, a writer
distinguishes between current and new readers, which access the current and new memory,
respectively.
A writer that has entered the critical section of WRITE COMMIT (i.e., progressed beyond
line 33) goes through four distinct phases: blocking new readers from accessing changed
locations in the new memory (lines 34-35), waiting for quiescence from readers of the
current memory (lines 42-43), installing the current memory (lines 44-45), and signalling
completion (lines 46-47). Note that lines 36-41 deal with a writer committing then
becoming inactive (but still committing) as described above.
A reader t must also wait if t detects that a new memory is being installed as the current
memory (lines 10–12), which is true if the version number of the location loc that t wants
to read is the same as t’s transaction version. Such a reader must have read globalVersion
after the first (but before the second) increment within WRITE COMMIT . On the other
hand, a writer waits for all readers that may be accessing the current memory during its
quiescence phase. These are determined as non-idle transactions with a version number
smaller than the writer’s version number.
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Listing 3 Writer transaction’s begin, read and write operations.
15: procedure WRITE BEGIN(t)
16: writerWaiting(t) ← true . Inform others that writer t has started
17: while writerWaiting(t) do . Check that t has become active
18: atomic{if lock = free then lock ← taken else goto 17} . Try to acquire lock
19: writerWaiting(t) ← false . t has acquired lock, so can become active
20: t.temp ← globalVersion . Read globalVersion
21: txnVersion(t) ← t.temp . Set txnVersion(t) to the globalVersion read

22: procedure WRITE READ(t,loc)
23: if loc ∈ dom(t.wrSet) then
24: return t.wrSet(loc) . If possible return value of loc from own write set
25: else
26: READ FROM MEM (t, loc) . Otherwise return value of loc from the memory

27: procedure WRITE WRITE(t,loc,v)
28: t.wrSet ← t.wrSet ⊕ {loc 7→ v} . Store new value of loc in the write set

. Notation f ⊕ {x 7→ a} denotes functional override

(6) A transaction t executing READ FROM MEM must wait for a committing writer at most
once (line 12), i.e., after the current writer has committed, a reader will not need to wait
for new active writers since any new active writer u is guaranteed to wait for the older
reader t when u enters its quiescence phase. Hence, a variable t.progressSeen is used to
improve efficiency; once t.progressSeen is set to true, future reads may safely read from
memory without making further checks.

An intuitive English description of this algorithm is given in [24], but no more precise
description is provided. In our work we have developed both a pseudocode description and a
formal model of the algorithm. This has allowed us to resolve certain ambiguities in the original
presentation. Our presentation is explicit about when the shared variables globalVersion and
txnVersion need to be accessed. A direct implementation of the WRITE COMMIT operation
as presented in [24] would result in a procedure with several superfluous accesses to these
variables, causing unnecessary and potentially inefficient memory activity. In the version of
the algorithm that we verify, txnVersion(t) is saved in the local variable t.temp at line 30,
and then this value is used throughout the operation.

Perhaps more importantly, Matveev and Shavit [24] do not detail how globalVersion
should be copied into txnVersion(t) at the beginning of a read-only transaction. A naive
implementation that implemented this copy non-atomically (by first loading globalVersion
into a local register and then writing the resulting value into txnVersion(t)) would not be
opaque. To see this, consider the following execution: (1) some reader t2 begins and reads
globalVersion to a local register; (2) an already executing writer t1 enters its commit operation
and passes through the blocking phase (setting the version number of locations in its write
set and incrementing globalVersion); and finally (3) t1 checks for quiescence. Assuming that
no other reader is currently active, t1 sees quiescence as it cannot detect that t2 has already
read globalVersion and exits the loop in lines 42/43. If t2 next executes the other half of the
non-atomic statement, setting txnVersion(t2) to its old copy of globalVersion, we arrive at a
situation where the reader t2 can continue while the writer t1 copies the values in t1.wrSet to
the shared store. The fact that txnVersion(t2) is stale means that t2 will be able to read
from locations in t1.wrSet without becoming blocked at line 12 in READ FROM MEM , and may
observe inconsistent values. We avoid this problem by using the special Reading value to
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Listing 4 Writer transaction’s commit operation.
29: procedure WRITE COMMIT(t)
30: t.temp ← txnVersion(t) . Load t’s transaction version into a temporary variable
31: if even(t.temp) then . Check for a committing writer
32: await t.temp 6= globalVersion . Wait for committing writer to finish
33: t.temp ← globalVersion . Re-read global version
34: for all loc ∈ dom t.wrSet do . Prepare to write each loc in t’s write set
35: version(loc) ← t.temp + 1 . Inform other readers that loc is being updated
36: globalVersion ← t.temp + 1 . Update global version and become a committing writer
37: if ∃ u • writerWaiting(u) then . Check for a waiting writer
38: choose t.txn ∈ {u | writerWaiting(u)} . Pick some waiting writer
39: writerWaiting(t.txn) ← false . Make the selected waiting writer active
40: else
41: lock ← free . Free the lock if no waiting writers seen
42: for all t.txn ∈ {u | t 6= u and READING(t, u)} do
43: await not READING(t, t.txn)) . Wait for each potential reader of current memory

to finish or signal that it will read the new memory
44: for all (loc, v) ∈ t.wrSet do
45: mem(loc) ← v . Update memory with new value for each element in the write set
46: globalVersion ← t.temp + 2 . Inform others that commits have finished
47: txnVersion(t) ← Idle . Inform others writer t has finished

48: function READING(t, u)
49: return txnVersion(u) 6= Idle and txnVersion(u) ≤ t.temp

indicate when a beginning transaction is copying globalVersion (see line 2 of READ BEGIN).
This technique is used explicitly in Matveev and Shavit’s lock-eliding STM [1] to solve
essentially the same problem.

3 Modelling STMs as Input/Output Automata

To show that the MSPessTM algorithm satisfies opacity, we prove that it is a refinement
of an intermediate opaque I/O-automaton, known as TMS2. In this section we introduce
I/O-automata (IOA) [22] and the TMS2 specification [9], then give examples of the (straight-
forward) IOA encoding of MSPessTM.

The correctness condition we need to prove about MSPessTM is opacity [14]. Overall
opacity guarantees that committed transactions should appear as if they are executed
atomically, at some unique point in time, and aborted transactions, as if they did not execute
at all. Amongst other things, opacity also guarantees that all reads that a transaction
performs are valid with respect to a single memory snapshot.2 Opacity is formulated as a
condition on histories, i.e. sequences of operations of transactions. In the following, we will
use the term trace to stand for such sequences. When proving opacity of an STM, we thus
need to show that all traces an STM allows are opaque.

We do not give a formal definition of opacity here because our proof does not make use
of it directly. Instead, our proof strategy leverages two existing results from the literature:

2 In addition, opacity provides meaning to aborted transactions, but because our case study MSPessTM
is a pessimistic algorithm, we elide these details.
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the definition of the TMS2 specification by Doherty et al. [9], and the mechanised proof that
TMS2 is opaque by Luchangco et al. [23]. Using these results, trace refinement between
MSPessTM and the TMS2 specification proves opacity of MSPessTM.

TMS2 is formalised using input/output automata [22], and hence, our formalisations also
use IOA. Moreover, Müller [25] has mechanised the IOA theory (including its simulation rules)
in Isabelle, which is now part of the standard Isabelle distribution [26]. As our objective is a
mechanised proof using an interactive theorem prover, we thus chose to carry out our proofs
within Isabelle. Overall, we obtain a fully mechanised verification of opacity for MSPessTM.

I/O automaton (IOA). An IOA is a labeled transition system P with a set of states ΣP , a
set of actions acts(P) (partitioned into internal and external actions), a set of start states
start(P) ⊆ ΣP and a transition relation trans(P) ⊆ ΣP × acts(P)× ΣP .

The TMS2 specification. The TMS2 specification is given in Figure 1. In IOAs, transitions
are typically specified in an operational style: every IOA has a number of variables and
transitions are formulated by giving a precondition and an effect of the transition stated in
terms of these variables. For each transition, the first line in Figure 1 gives the action name.
The transition is enabled if all its preconditions, given after the keyword Pre, hold in the
current state. The state modifications (effect) of the transition are given as a number of
assignments after the keyword Eff. In that, the index t refers to the transaction executing
the operation.

The transitions of TMS2 are designed to capture the structural patterns common to
most STM implementations defined in terms of read and write operations. The state of
TMS2 therefore includes a statust, which is ‘notStarted’ initially. The status enforces that
each transaction must execute TMBegin, then some number of TMRead and TMWrite
operations, and finally TMEnd.3 The status is ‘ready’ in between reads and writes, and
‘committed’ after the end of the transaction (i.e., when it has committed). Since operations
of different transactions may execute concurrently, the abstract specification splits executing
an external operation into several steps, including an invocation and a response. For example,
for TMRead, the external step invt(TMRead(loc)) represents the invocation when reading
from location loc, and respt(TMRead(v)) represents a read returning with value v. In between,
an STM implementing TMS2 must at some time determine the value it reads. In TMS2 this
is represented by the internal step DoReadt(loc,n), which computes v by setting statust to
readResp(v). The internal actions of TMS2 (those prefixed by Do) correspond to the points
at which operations “take effect”.

Like opacity, TMS2 guarantees that transactions satisfy two critical requirements: (R1 )
all reads and writes of a transaction work with a single consistent memory snapshot that is the
result of all previously committed transactions, and (R2 ) the real-time order of transactions
is preserved.

To ensure (R1 ), the state of TMS2 includes 〈mems(0), . . . ,mems(maxIdx)〉, which is a
sequence of all possible memory snapshots. Initially the sequence consists of one element, the
initial memory mems(0). Committing writer transactions append a new memory newmem
to this sequence (cf. DoCommitWritert), by applying the writes of the transaction to the last
element mems(maxIdx). To ensure that the writes of a transaction are not visible to other
transactions before committing, TMS2 (like MSPessTM) uses a deferred update semantics:

3 The full TMS2 specification [9] includes transitions for cancelling and aborting a transaction, which we
do not present here, since we do not need them for our pessimistic algorithm.
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invt(TMBegin)
Pre: statust = notStarted
Eff: statust := beginPending

beginIdxt := maxIdx

respt(TMBegin)
Pre: statust = beginPending
Eff: statust := ready

invt(TMRead(loc))
Pre: statust = ready
Eff: statust := doRead(loc)

respt(TMRead(v))
Pre: statust = readResp(v)
Eff: statust := ready

invt(TMWrite(loc, v))
Pre: statust = ready
Eff: statust := doWrite(loc, v)

respt(TMWrite)
Pre: statust = writeResp
Eff: statust := ready

invt(TMEnd)
Pre: statust = ready
Eff: statust := doCommit

respt(TMEnd)
Pre: statust = commitResp
Eff: statust := committed

DoCommitReadOnlyt(n)
Pre: statust = doCommit

dom(wrSett) = ∅
validIdx(t,n)

Eff: statust := commitResp

DoCommitWritert

Pre: statust = doCommit
rdSett ⊆ mems(maxIdx)

Eff: statust := commitResp
mems := mems ⊕ newmem

DoReadt(loc,n)
Pre: statust = doRead(loc)

loc ∈ dom(wrSett) ∨ validIdx(t,n)
Eff: if loc ∈ dom(wrSett) then

statust := readResp(wrSett(loc))
else v := mems(n)(loc)

statust := readResp(v)
rdSett := rdSett ⊕ {loc → v}

DoWritet(loc, v)
Pre: statust = doWrite(loc, v)
Eff: statust := writeResp

wrSett := wrSett ⊕ {loc → v}

where maxIdx =̂ max(dom(mems))
newmem =̂ {maxIdx + 1 7→ (latestMem ⊕ wrSett)}

validIdx(t,n) =̂ beginIdxt ≤ n ≤ maxIdx ∧ rdSett ⊆ mems(n)

Figure 1 The transition relation of TMS2.

writes are stored locally in the transaction t’s write set wrSett and only published to the
shared state when the transaction commits.

All reads in TMS2 must be consistent (i.e., occur from a single memory snapshot),
therefore each transaction t keeps track of all its reads from memory in a read set rdSett.
A read of location loc by transaction t checks that either loc was previously written by t
itself (then branch of DoReadt(loc)), or that all values read so far, including loc, are from
the same memory snapshot n, where beginIdxt ≤ n ≤ maxIdx (predicate validIdx(t,n) from
the precondition, which must hold in the else branch). In the former case the value of
loc from wrSett is returned, and in the latter the value from mems(n) is returned and
the read set is updated. The read set of t is also validated when a transaction commits
(cf. DoCommitReadOnlyt and DoCommitWritert). Note that when committing, a read-only
transaction may read from a memory snapshot older than mems(maxIdx), but a writing
transaction must ensure that all reads in its read set are from most recent memory (i.e.,
mems(maxIdx)), since its writes will update the memory sequence with a new snapshot.

To ensure (R2 ), if a transaction u commits before transaction t starts, then the memory
that t reads from must include the writes of u. Thus, when starting a transaction (cf.
invt(TMBegin)), t saves the current last index of the memory sequence, maxIdx, into a local
variable beginIdxt. When t performs a read, the check validIdx(t,n) ensures that that the
snapshot mems(n) used has beginIdxt ≤ n, which implies that the writes of u are included.
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invt(TMWrite(loc, v))
Pre: statust = Ready

t ∈Writers
Eff: statust :=

pending(28, loc, v)

write writet(28)

Pre: statust = pending(28, loc, v)
Eff: statust := writeResp

wrSett :=

wrSett ⊕ {loc → v}

respt(TMWrite)
Pre: statust = writeResp
Eff: statust := ready

Figure 2 Transitions of MSPessTM for operation WRITE WRITE.

Encoding MSPessTM as an IOA. The state of the IOA representing MSPessTM contains
local variables statust , wrSett , progressSeent and tempt , and shared variable writerWaitingt
and txnVersiont for each transaction t. Note that statust (with initial value NotStarted) is
used to model control flow within each transaction, and hence, does not appear explicitly
within the pseudocode in Listings 1-4. The state of the IOA also contains synchronisation
variables globalVersion (which models the shared global version counter) and lock (which
models the active writer lock). Finally, the IOA must make the shared memory explicit, thus
the state includes two shared variables: mem (which maps locations to values) and version
(which maps each location to a version number).

The IOA models execution by representing each atomic step of the MSPessTM algorithm
(typically every line in the algorithm) as single IOA transition. As in TMS2, for each
MSPessTM operation, the invocations and responses are external; all other lines of code map
to internal actions.

Input arguments to an operation executed by transaction t are modelled as part of the
statust variable. In particular, whenever t is executing an operation, the value of statust
is of the form pending(pc, <input values>), where pc is the line number of the next step
to be executed, and <input values> are the input arguments. Note that for MSPessTM,
<input values> is none for the begin and end operations, a location loc for read operations,
and a location loc and value v for write operations. As an example, Figure 2 shows the
three transitions for the WRITE WRITE operation from Listing 3: an invocation action
invt(TMWrite(loc, v)), an internal action write writet(28) (corresponding to line 28 in the
algorithm, hence the name), and a response action respt(TMWrite). The set Writers in the
precondition of invt(TMWrite(loc, v)) is used to denote the set of writer transactions; we
assume that this set is predetermined in some manner.

4 Verifying opacity as Input/Output automata refinement

We are now equipped with two IOA specifications, one for MSPessTM and one for TMS2.
Of the latter we already know that its traces are opaque. Our next objective is to show that
MSPessTM refines TMS2 from which opacity of MSPessTM follows. The standard way of
verifying a refinement is to use a forward simulation between the implementation and the
specification, as this allows one to verify the refinement in a stepwise manner. In this section
we define forward simulations, and then develop a novel method for verifying some of the
invariants that one needs as part of the proof of forward simulations. Details of how we
apply this to the simulation proof between MSPessTM and TMS2 are given in Section 5.

4.1 Proving opacity via refinement.
To verify that pessimistic STM algorithms are opaque we verify that their IOA representations
(in this case MSPessTM) are a refinement of TMS2. To define refinement formally we need
some definitions. An execution of an IOA P is a sequence σ of alternating states and
actions, beginning with a state in start(P), such that for all states σi except the last,
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(σi , σi+1, σi+2) ∈ trans(P). A reachable state of P is a state appearing in an execution of P.
An invariant of P is a predicate satisfied by all reachable states of P. A trace of P is any
sequence of (external) actions obtained by restricting the actions of P to its external actions.
The set of traces of P represents P’s externally visible behaviour.

Refinement is a property between the visible behaviours of abstract an IOA A and a
concrete implementation IOA C . In particular, we say C refines A iff every trace of C is
also a trace of A. In our setting, each externally visible behaviour consists of a sequence of
invoke and response events, including the input/output values of reads and writes.

We let external(A) and internal(A) denote the external and internal actions of IOA A,
respectively. Writing cs a−→C cs′ for (cs, a, cs′) ∈ trans(C ), we define:

I Definition 1. A forward simulation from a concrete IOA C to an abstract IOA A is a
relation R ⊆ ΣC × ΣA such that each of the following holds.
Initialisation.
∀ cs ∈ start(C ) • ∃ as ∈ start(A) • R(cs, as)

External step correspondence.
∀ cs ∈ reach(C ), as ∈ reach(A), a ∈ external(C ), cs′ ∈ ΣC •
R(cs, as) ∧ cs a−→C cs′ ⇒ ∃ as′ ∈ ΣA • R(cs′, as′) ∧ as a−→A as′

Internal step correspondence.
∀ cs ∈ reach(C ), as ∈ reach(A), a ∈ internal(C ), cs′ ∈ ΣC •
R(cs, as) ∧ cs a−→C cs′ ⇒
R(cs′, as) ∨ ∃ as′ ∈ ΣA, a′ ∈ internal(A) • R(cs′, as′) ∧ as a′

−→A as′

The conditions for forward simulation we use here are adapted from Lynch and Vaandrager
[21]; our step correspondence conditions use a single abstract step instead of a full sequence
as in [21], since this is simpler and sufficient for our proof.

We have proved in Isabelle that the existence of a forward simulation (in the sense given
here) is sufficient to ensure trace inclusion (this follows fairly directly from a lemma in the
I/O-automaton theory of [25]). Furthermore, a proof that all traces of TMS2 are opaque has
been completed in the PVS interactive prover by Luchangco et al. [23]. Therefore, proving
the existence of a forward simulation from the MSPessTM automaton to TMS2 is sufficent
to prove opacity of MSPessTM.

4.2 Proving an Invariant with a Rely
The verification of an actual forward simulation for a specific STM algorithm turns out
to depend critically on a complicated invariant. In order to manage this complexity, we
have developed, in Isabelle, a scheme that allows us to decompose our invariant into simpler
components, and prove that our invariant holds with the help of a rely condition. We now
describe this scheme in the general case. In Section 5.2, we show how to apply this scheme
to the MSPessTM algorithm.

To describe the scheme generically, fix an automaton P whose actions are indexed by
transactions from a set T , as in TMS2 andMSPessTM . That is, we assume acts(P) ⊆ Act×T ,
for some set Act of action names.

Further, assume we are given a shared invariant, sharedI ⊆ ΣP , that describes an invariant
of P’s shared state, and transaction invariants, txnIt ⊆ Act × ΣP , t ∈ T , that describe the
relationship between each transaction’s local state upon enabledness of the action a ∈ Act and
the automaton’s shared state. The reason for incorporating actions in transaction invariants
is that invariants for transactions typically consists of lots of cases, differentiating between
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the different program locations of the transactions. Thus, a transaction invariant txnIt(a, s)
can be read as “the property that holds when transaction t executes a in state s”.

Our goal is to prove that the composition of the shared invariant and the transaction
invariant is an invariant of P. Formally, we must prove that for all s ∈ reach(P),

sharedI (s) ∧ ∀(a, t) ∈ acts(P) • txnIt(a, s) (1)

Observe that to prove invariance of property (1), it is sufficient to prove the following four
properties:
start. Invariant (1) is true initially, i.e., for all s ∈ start(P), sharedI (s) and ∀(a, t) ∈

acts(P) • txnIt(a, s).
shared. The shared invariant is preserved. Formally, for all states s, s′, actions a and

transaction t, if sharedI (s) ∧ txnIt(a, s) and s a,t−→ s′ then sharedI (s′).
self. Each step of each transaction preserves its own invariant. Formally, for all states s, s′,

actions a, a′ and transaction t, if sharedI (s) ∧ txnIt(a, s) and s a,t−→ s′ then txnIt(a′, s′).
cross. Each step of each transaction preserves the invariant of every other transaction.

Formally, for all states s, s′, actions a, a′ and transactions t, u where t 6= u, if sharedI (s) ∧
txnIt(a, s) ∧ txnIu(a′, s) and s a,t−→ s′ then txnIu(a′, s′).

Unfortunately, the last proof obligation, cross, introduces substantial complexity in any
verification based on invariants and simulation. To see this, observe that for each step of
each transaction t, we must consider the effect of the step on every action of the transaction
u. If we were to prove the noninterference property directly, we would need to discharge
quadratically many proof obligations, one obligation for each pair of actions. We address
this issue by introducing a rely condition, which describes the possible interference that a
transaction may experience during its execution. This method reduces the number of proof
obligations from quadratic to linear in the number of actions.

Roughly speaking, a rely condition is a relation over the states of an automaton that
must preserve the invariant of each transaction, and that must abstract the transitions of
each transaction. We say that a relation relyt ⊆ ΣP × ΣP , t ∈ T , is a rely condition of P, if
the following conditions hold.
guar. Each transaction preserves the rely of every other transaction. Formally, for all states

s, s′, actions a and transactions t, u where t 6= u, if sharedI (s) ∧ txnIt(a, s) and s a,t−→ s′
then relyu(s, s′).

rely. The rely must ensure each transaction’s invariant. Formally, for all states s, s′, actions
a and transactions t, if sharedI (s) ∧ txnIt(a, s) and relyt(s, s′) then txnIt(a, s′).

It is straightforward to see that properties guar and rely together imply property cross
above. Thus, we have the following theorem.

I Theorem 2. If sharedI and txnIt for each t ∈ T satisfy properties start, shared, and self,
and there is some relyt for each t ∈ T satisfying properties guar and rely,
then for all s ∈ reach(P), we have sharedI (s) ∧ ∀(a, t) ∈ acts(P) • txnIt(a, s).

This theorem has been formalized and proved in our Isabelle development.
Note that unlike some other rely/guarantee schemes, our rely condition is not required to

be reflexive or transitive. In some other schemes, the rely condition describes the interference
from any number of environment steps. In our setting, the purpose of the rely condition
is to ensure that every step of every other transaction preserves the relying transaction’s
invariant, so transitivity is unnecessary. As we shall see, for our proof of MSPessTM, the
rely condition we use is not transitive.
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Of course, standard rely/guarantee approaches also employ a guarantee condition. In a
conventional setting, the guarantee condition of a component enables it to be composed with
other components whose rely conditions are unknown when the first component is developed.
So long as the guarantee of one component implies the rely of the other, the composition is
sound. In our setting, no transaction is able to modify any state in the environment of the
transactional memory system. Therefore, no transaction is capable of interfering with any
other component, except the other transactions. Thus, no explicit guarantee is necessary. We
require only that each step of each transaction preserves the rely of every other transaction.

5 Application to MSPessTM

In this section we apply our theory to the verification of the MSPessTM algorithm. As
part of the proof, we introduce two auxiliary variables: CWriter and AWriter which keep
track of the committing and active writers, respectively. If there is no committing writer,
then CWriter = ⊥, otherwise it has the transaction identifier of the committing transaction
(similarly AWriter). Initially, we set AWriter = CWriter = ⊥. CWriter is updated to t
when transaction t executes line 36, and to ⊥ when t executes line 46. AWriter is updated
to t either when t acquires the lock at line 18, or when some other (active and committing)
transaction sets writerWaitingt to false at line 39. AWriter is set to ⊥ when some committing
transaction releases the lock at line 41.

5.1 The Simulation Relation
We first define a simulation relation R between the states of MSPessTM and TMS2. We use
cs to denote a concrete state (i.e., the state of MSPessTM) and as to denote an abstract state
(i.e., the state of TMS2). The value of variable v in cs is given by cs.v (and similarly as.v).
For reasons of space, it is not possible to describe the entire simulation relation, so we focus
our attention on the most challenging and important aspect of our proof: showing that each
read operation returns a legal value. It is through read operations that transactions actually
observe the state of the memory. The full simulation relation may be viewed online [8].

First, it must be possible to identify particular indices of the memory sequence mems
(which is part of as) using the variables of cs. For our refinement proof, we must identify
the last element in mems (i.e. maxIdx in Figure 1). Recall that in MSPessTM, each writer
increments globalVersion twice when it commits and that globalVersion = 1 initially. Thus,
the total number of committed write transactions is bcs.globalVersion/2c. Also, recall that
in the initial state of TMS2 mems has one element, and each committing writing transaction
appends a new memory snapshot to mems. Our simulation captures this by requiring:

bcs.globalV ersion/2c = as.maxIdx . (2)

We must ensure that some step of the MSPessTM read operation corresponds (c.f.,
Definition 1) to the DoReadt(n) step of TMS2, for some n. For any transaction t, this
abstract read index n is determined by the value of txnVersiont after t has executed either
line 4 or line 21. We let:

readIdxt = btxnV ersiont/2c . (3)

The index readIdxt is defined throughout the interval between the response of the transaction
t’s begin operation, and the point during the commit operation when t sets txnVersiont to
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Idle.4 Our simulation relation specifies that the read set of each transaction is consistent
with as.mems(readIdx(cs, t)) throughout the interval over which readIdx is defined. This
allows us to prove that the precondition of DoReadt(n) is satisfied over this interval.

We must also show that each concrete read operation returns the correct value (i.e., is
consistent with the value returned by the abstract read). That is, we need to show that
when a transaction executes line 14 of READ FROM MEM reading from location loc, that the
value returned is as.mems(cs.readIdxt)(loc). To achieve this, our simulation relation must
relate the values of the concrete memory to values in the abstract memory sequence. There
are three cases to consider. In the first, there is no committing writer and the concrete
memory is equal to the latest abstract memory as.mems(maxIdx). In the second, there is
a committing writer, t, but the quiescence check has not been passed. Then the abstract
DoCommitWritert has already added mem ⊕ cs.wrSett to the end of the abstract memory
sequence, so the current concrete memory is now as.mems(maxIdx − 1). If the quiescence
check has been passed, then current memory is no longer read by any transaction, so the
simulation just needs to state the second property, which holds, even if some elements of the
write set have been written to mem already. Formally we have:

cs.CWriter = ⊥ ∧ cs.mem = as.mems(maxIdx) (4)
cs.CWriter = t ∧ (∃ u 6= t • ¬ quiescent(u, cs))

∧ cs.mem = as.mems(maxIdx − 1) ∧ cs.mem ⊕ cs.wrSett = as.mems(maxIdx)
(5)

cs.CWriter = t ∧ (∀ u 6= t • quiescent(u, x)) ∧ cs.mem ⊕ cs.wrSett = as.mems(maxIdx) (6)

where quiescent(u, cs) holds, iff globalVersion is equal to the effective transaction version of
transaction u. This version, denoted effTxnVer(cs, u), is equal to tempu , when txnVersionu =

Reading, equal to globalVersion when txnVersionu = Idle (an Idle transaction is quiescent),
and equal to txnVersion(u) otherwise. Note that quiescent is equal to the procedure READING
returning false, except for Idle transactions, which need not be checked.

Using (4), (5) and (6) a transaction executing line 14 of READ FROM MEM (t, loc) returns
the correct value in state cs, provided that we can guarantee the following two properties.

index. Either cs.readIdxt = as.maxIdx holds or both cs.readIdxt = as.maxIdx − 1 and
cs.CWriter 6= ⊥ hold.

loc. if cs.txnVersiont = cs.globalVersion then cs.CWriter = ⊥ or loc 6∈ dom(ws), where
ws = cs.wrSetcs.CWriter .

The simulation relation, together with index implies cs.mem(loc) = as.mems(cs.readIdxt)(loc)

so long as loc is not in the write set of any committing transaction, which in turn follows
from property loc.

Properties index and loc are proved using the following invariants and transaction
invariants of MSPessTM.
inv1. In any state for which txnVersiont is defined and t is not the committing writer,

globalVersion − 2 ≤ txnVersiont ≤ globalVersion and txnVersiont = globalVersion − 2⇒
CWriter 6= ⊥.

inv2. CWriter = ⊥ iff globalVersion is odd.
txinv1. Whenever a transaction t is enabled to execute line 14 of the READ FROM MEM pro-

cedure, txnVersiont < globalVersion or version(loc) 6= txnVersiont .

4 Recall that txnVersiont is guaranteed to be in N throughout this interval.
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cs′.CWriter = t ⇔ cs.CWriter = t (7)
cs.CWriter = t ⇒ cs′.globalVersion = cs.globalVersion ∧ (8)

cs′.mem = cs.mem ∧ cs′.version = cs.version ∧
∀ u 6= t • (quiescent(cs, u)⇒ quiescent(cs′, u))

cs.AWriter = t ⇒ cs′.AWriter = t ∧ cs′.lock = cs.lock ∧ cs′.version = cs.version ∧ (9)
(cs.CWriter = ⊥ ⇒ cs′.CWriter = ⊥)

cs′.CWriter = cs.CWriter ⇒ cs′.globalVersion = cs.globalVersion (10)
cs′.CWriter 6= cs.CWriter ⇒ cs′.globalVersion = cs.globalVersion + 1 ∧ (11)

(cs′.CWriter = ⊥ ⇒ effTxnVer(cs, t) = cs.globalVersion) ∧
(cs′.CWriter 6= ⊥ ⇒ cs.CWriter = ⊥)

cs′.txnVersiont = cs.txnVersiont (12)
∀ l • cs′.version(l) = cs.version(l) ∨ cs′.globalVersion < cs′.version(l) (13)
cs′.writerWaitingt 6= cs.writerWaitingt ⇒ cs.writerWaitingt ∧ (14)

¬ cs′.writerWaitingt ∧ cs′.lock = taken ∧ cs.CWriter 6= ⊥ ∧
cs′.AWriter = t ∧ even(cs.globalVersion)

Figure 3 Our rely condition is the conjunction of these assertions, along with assertions stating
that the local variables of each transaction are not changed.

txinv2. Whenever a transaction t is enabled to execute any of the WRITE COMMIT procedure
after line 35 until line 46, we have for all loc ∈ dom(wrSett), version(loc) = globalVersion.

Property index follows from invariants inv1 and inv2. Property loc follows from invariants
txinv1 and txinv2, and we use the generic approach described above to verify these in turn.

5.2 Verifying the invariants for MSPessTM

We now outline how we proved invariants inv1 and inv2. The full invariant is too long to
present in this report, but Isabelle source describing the invariant can be obtained from [8].
We focus our attention on the rely condition, and explain how to prove that our key invariants
are preserved by this rely. Our rely condition is presented in Figure 3. Note that this rely
relyt states the properties which the transaction t can assume to hold between current and
next state while the other transactions u 6= t execute.

We first consider invariant txinv2. The antecedent of this invariant is false until t
completes the loop at lines 34-35, after which the consequent is true by the effect of that
loop. At this point t is the active writer. Properties (9) and (8) of the rely condition describe
which aspects of the shared state are stable when a writing transaction is either active or
committing. Together, these properties ensure that while t = AWriter or t = CWriter ,
version does not change. Further, properties (9) and (7) ensure that the value of AWriter
and CWriter are not changed by another transaction, implying stability of txinv2.

We turn now to invariant inv1. This invariant is established when the transaction t writes
its temp variable into txnVersiont. Properties (12) and (10) of the rely condition ensure
that the invariant is preserved over transitions where cs′.CWriter = cs.CWriter , because
none of the relevant variables are changed. When cs′.CWriter 6= cs.CWriter , there are two
possibilities, both of which are described by property (11) of the rely. If cs′.CWriter 6= ⊥, then
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cs.CWriter 6= ⊥, so cs.txnVersiont 6= cs.globalVersion − 2 by invariant inv1. The invariant
follows easily. If cs′.CWriter = ⊥, then cs.txnVersiont = cs.globalVersion by property (11)
itself, and hence cs′.txnVersiont = cs′.globalVersion − 1 holds, which preserves the invariant.
(Note that property (11) is not transitive because it stipulates that globalVersion can only
be incremented.)

For reasons of space, we have ignored the question of how we prove the guar property
of Section 4.2 for our rely. We note only that the transition relation of MSPessTM ensures
that when cs′.CWriter 6= cs.CWriter and cs.CWriter = ⊥, the transition is the step of
the transaction cs′.CWriter when it increments globalVersion the second time at line 46.
MSPessTM has the invariant that at this point, the state is quiescent. The fact that during
these steps, cs.txnVersiont = cs.globalVersion for all t follows from this quiescence.

This proof has been mechanized in Isabelle. This effort took around three weeks of full
time work, including building the MSPessTM model and stating and proving the invariant
and simulation relation. The proof uses Isabelle theories, including an Isabelle formalisation
of the TMS2 automaton, that had already been developed by the authors as part of a larger
transactional memory verification project.

6 Related work and conclusions

A number of approaches have so far studied verification of STMs, none of them – however –
a pessimistic STM. The proposed techniques range from model checking approaches [12, 13]
to interactive proofs [19]. A comprehensive survey of STM verification methods can be
found in [18, 6]. Model checking (e.g., [4]) is generally not suitable for our aims of rigorously
verifying algorithms against all possible executions. One promising approach is by Guerraoui
et al. [12, 13], who present a method for model checking opacity using a reduction theorem
that lifts opacity for two threads and two variables to opacity for an arbitrary number of
threads and variables. However, their specifications do not consider the values that are read
or written, and hence, the link to the definition of opacity in [15] is unclear. Moreover, as far
as we are aware, the proof of their reduction theorem itself has not been mechanised.

Li et al. [20] have verified STM algorithms, however they show correctness against their
own abstract specification. Lesani [18] developed a formal proof method for opacity by
splitting opacity into a number of other conditions (markability). In spirit, this technique is
similar to linearization proofs which rely on finding statements in the code which represent
linearization points. Very recent work includes [2], which proved the CaPR+ algorithm
correct with respect to a notion called conflict opacity, which is a subset of opacity. Emmi et
al. [11] describe a method for inferring invariants in order to prove strict serializability of
TM algorithms. This simplifies a crucial task in mechanised proofs; similar techniques could
be used for other correctness conditions, including opacity. The verification of TMs in the
presence of non-transactional code is studied in [5].

In this paper, we presented a proof of opacity of the pessimistic STM of [24]. Our proof
is based on refinement against the TMS2 specification, leveraging existing work that has
mechanically verified TMS2 to be opaque [23]. This significantly improves on our previous
work that inductively checks opacity [7]. Furthermore, we have developed and used a new
generalised reasoning scheme for proving transaction invariants via rely conditions. The new
proof scheme reduces the number of proof obligations from quadratic (with respect to the
number of lines of code) to linear complexity.
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