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Abstract

Tradable bottleneck permits scheme proposed by Akamatsu et al. (2006) is one of the firgtibgst
schemes and has been shown to be able to minimize social cost. Under the scheme, road athninistrat
issue permits which allow permit holdéespass a bottleneck at specified times and create a market
where drivers can freely trade the permits. However, the scheme is not always Pamet@rgrsuch

that it may harm some drivers. The objective of this study is to design Raptosng tradable
bottleneck permits schemes fY-shapedwo-to-one merge bottleneck. Firstly, the paper formulates
the morning commute model in the network and describes the arrival time choice equilibtien
network with merging. Secondly, we show that the first-best pricing scheme under tradéntedott
permits for this V-shaped network does not always achieve a Pareto improvement, edtt tfeone

group of drivers is increased by the permit pricing, a phenomena akin to the bottleneck paradox o
Arnott et al. (1993). We propose therefore three implementations of tradable bottleneck permits f
Pareto-improving: (i) merging priority rule is included in the tradable bottleneck tsesaieme by
creating different market for each origin; (i) the permit revenues are refunded asamonet
compensation to drivers whose cost is increased; and (iii) the permit revenues are exgeathdo
bottleneck capacity. For each implementation, we derive their equilibrium solutions and demonstrate
that a Pareto improvement is achieved and social cost is decreased by using the permitfogvenues

expanding the bottleneck capacity.
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1. Introduction

Morning commute through traffic congestion to a central business district (CBD) is aboomm
feature in cities around the world. The congestion is not caused so much by high travel defmand but
a concentration of demand during a short (peak) period. Therefore, the congestion can be eliminated
by an appropriate managemémbreak up the demand among the longer time interval.

The departure time choice equilibrium is considered to deal with such problems abuatiting
commute. €.g. Vickley, 1969) Under the equilibrium, no drivers can improve their travel cost by
unilaterally changing their behavior. There have been many studies about the departure time choice
equilibrium with consideration of the drivétseterogeneity (e.g. Arnott et al., 1988, 1992, 129w
network shape (e.g. Kuwahara, 1990, Arnott et al. 1993).

Congestion pricings one of the management methddscontrol the traffic congestion. The
congestion can be completely eliminated with an appropriate congestion charge, which is the same
price as drivers would suffer waiting delay cost without pricing (Arnott et alQa)9®ne of the
implementation methods to realize the social optimum is Tradable bottleneck permits (i@Rg sc
(Akamatsu et al. 2006).

On the other hand, there is a problem about equity, which is that some drivers get a benefit but
others suffer a loss. One of the criterions for the equity is a Pareto improverhenPareto
improvement is a property that a policy harms no one and helps at least one persaorel iImerehe
is supposed to say any complains about a policy if it is Pareto improving.

This study focuses on a merging bottleneck. The merging ratio from the upper reaches changes
depending on the state at the merging point. When the merging point is saturated and queue occurs
the bottleneck capacity is allocated to the upper reaches. Before the pricing is implemented, the
capacity allocation depends on the merging rule at the merging point; number of lanes, mendfiyg pri
and so on. After the pricing is implemented, on the other hand, the capacity allocation isneetermi
by the toll, which eliminates the property of origins about merging prioritiisrmanner, the capacity
allocation rule is changed by implementing the congestion pricing, and it may not be Pam@tognpr

The objectives of this study are to reveal that the optimal dynamic congestiag piiiti tradable
bottleneck permits (TBP) scheme at a merging section is not always Pareto improving and to propose
TBP implementation for Pareto improving. We consider V-shaped merging network, wieh is
minimum unit network with a merging bottleneck.

In Section 2, previous studies are reviewed. In Section 3, we describe the problem and provide
the basic assumptions of the study. In Section 4, we formulate the equilibrium condition and derive
the solution without pricing. In Section 5, we formulate the equilibrium condition and derive the
solution with the first best-pricing by using TBP. We prove that the first-b&sbgiis not always

Pareto improving in the V-shaped network. In Section 6, we propose three schemes ta&ariete



improvement. Finally, conclusions are drawn in Section 7.

2. Literature reviews

2.1 Departure time choice

Vickrey (1969) firstly modelled the peak hour behavior as a departure time choicztreitie-
off between schedule cost and congestion delay cost. Small (1982) applied the model to real data and
estimated the values of delay and schedule costs. As the developed studies considering the more
complicated network, the departure time choice equilibriumtarogandem bottleneck network was
formulated by Kuwahara (1990). The study found that a queue may form at the upstream bottleneck
as well as at the downstream bottleneck even though the demand of upstream group is lower than the
upstream bottleneck capacity. The phenomenon is caused because the upstreanedziV@rced to
depart earlier than necessary once a queue forms at the downstream bottleneck. Arnott et al. (1993)
formulated the equilibrium on the Y-shaped network and concluded that the social tripagos
increase even if the upper bottleneck capacity is increased, leading to a capacity paradox. The paradox
means that decreasing inflows, for example by ramp metering, can be efficient to decreasing social
cost by departure time choice as well as increase of bottleneck capacity at the merge peingt Dani
al. (2009) conducted a laboratory experiment and replicated the bottleneck paradox, considering with
schedule delay as well as schedule early. Xiao et al. (2014) studied the Y-shaped network under a
stochastic setting. They formulate the equilibrium departure-time patterns in a Y-shape# ndttwor
stochastic bottleneck capacity, and show that the uncertainty in bottleneck capacity increases
commuters’ mean trip cost and lengthens the peak period, and the cost is sensitive to upstream traffic

control mechanism.

2.2 Congestion pricing

In order to control the morning traffic congestion, road pricing has been considered athene of
efficient methods. The pricing scheme is based on the economic theory of marginal cost and is a
mechanism to improve social benefit (Pigou 1920). An appropriately designed pricing scheme can
increase social welfare. However, if the toll is inappropriately determined, road capagityot be
fully utilized, a queue at bottleneck may foemdsocial welfare may decrease. Arnott et al. (1990a
derived a time-varying pricing scheme which can eliminate a queue at a bottleneck andoewlize
optimal state. However, it is difficult to apply this so-caligidst-best’ scheme because it requires
perfect knowledge on driverpreferences (to the desired arrival time, schedule cost, delay cost and so
on) in order to determine the appropriate time-varying tolls. As alternatives, deestngricing
schemes such as step toll have been proposed (e.g. Laih 1994, 2004; Lindsey et al. 2012). In order to

determine the social optimal toll in the step toll schemes, information about theeppeak time



period during which congestion occurs without pricing, is still required. Recently,pnieiag
schemes based on market mechanism have emerged (Verhoef et al., 1997) which, in a road
transportation system, propose to use tradable permits to pay for road transport exiEneddibfe

credit (TC)and tradable bottleneck permits (TBP) are two such pricing schemes; they were first
proposed by YangndWang (2011) and Akamatsu et al. (2006) respectively.

The study aboulC was originally focused on mobility management. Xiao et al. (2013) extended
it to departure time choice problem. See a review on the studies about TC irM@Hantand Xu
(2014). The study of TBP was originally based on managing congestion including both route choice
and departure time choice problems (Akamatsu et al. 2006). Both TC and TBP use market mechanism
to determine price of credit or permit.distinctive difference between TPB and TC is that in TBP
schemes, the social optimal state can be achieved if only road administrator knows each bottleneck
capacity. In TC schemes, market mechanism decides only the price of the credit and hoiattitm
has to decide time-varying charging rate. In TBP schemes, on the other hand, bottleneck germits ar
issued for each pre-specifies time period, which means that demands for bottlenecks aativgigntit
controlled, and drivers trade the permits in respective markets. It is proved ttlzdthiag price rates
determined by market mechanism are the same as the social optimal charge rates (Adtaahatsu
2006).

Take a simple onés-one network (i.e. one origin to one destination) with a bottleneck for example.
With TC, a road administrator issues certain number of credits, determines charging rateedfitbe
to pass the bottleneck in a specified time period, and creates a market where driversycaadecel
the credits. At equilibrium, the price of the creatilthe flow rate at the bottleneck can be determined.

If the number © credits issued and credit charge rate are properly set, the first-best tinmgrvaryi
pricing can be realized (Xiao et al. 2013). However, it is not easy to set them properlyebecaus
information about drivar preferences, which is not easily observed, is required to do so.

With TBP, on the other hand, thead administrator issues bottleneck permaitdcreates markets
whereby drivers can freely trade the permits. The permits are required for drivers torpagh the
bottleneckat a specified time. The number of permits issued is equal to the bottleneck capacity. As a
result, the price of the permit for each time is determined by market mechanismjsadciivalent
to the toll of the first best pricing. Akamatsu (2D@roved that the equilibrium solution under the
TBP scheme is the same as the solution of the social optimum traffic assignment. Thbeeforeal
cost can be minimized in a general network by using the TBP scheme. This study focuses on the
equilibrium state realized by applying TBP, not on the process of trading the permits. One example of

the process is discussed by Wada and Akamatsu (2013).

2.3 Pareto improvement

Even if the social optimal state can be realized by the first-best dynamic congesiiun firis



not always Pareto improving. It is Pareto improving if the scheme harms no onelpsdt least one
person. In economic theory, this property is cadl&areto improvement and is a necessary condition
for a scheme to be adopted as a general policy.

The Pareto improving schemes are categorized in two groups. The first one is using the revenues.
Nie and Liu (2010) derived a condition that a Pareto improvement is achieved by self-financing under
a situation in which drivers can choose to travel by either a car or public transpartegdlt, the
study proved that self-financing and a Pareto-improving toll scheme always exist wivafuehef
time distribution function is concave. Yodoshi and Akamatsu (2008) studied the efficiencyrBRhe
in a network with two-tandem bottlenecks. They studied the usage of revenues for increasing
bottleneck capacity and revealed the condition in which the TBP scheme is Pareto improving. The
self-financing has been widely studied in the field of congestion pricing (e.g. Arnottl&94lh, Xiao
etal., 2012).

The second one is not using the revenues. Daganzo and Garcia (2000) showed Pareto improving
pricing strategy by classifying drivers as eithigee’ or “paying’ group. Song et al. (2014) applies
road space rationing in addition to congestion pricing to achieve a Pareto improveaiie(2015)
classified bottleneck capacity inttolled” and“free” and showd the Pareto improvement can be
practically achieved. The all of the studies take strategy of classification to achieve a Pareto

improvement without using revenue.

2.4 Positioning of this study

In this study, we study congestion pricing itvmep-to-one merge bottleneck from the aspect of
Pareto improving. Théwo-to-one network has two aspects (shown in Fig. 1). One is a Y-shaped
network (Fig. B) with two bottlenecks in tandem: one upstream of the merging point and one
downstream of the merge. The other is a V-shaped network (Fig.ithbd wingle bottleneck at the
point of merge.

Lago and Daganzo (2007) studied the departure time equilibrium in a Y-shaped network
considering a physical quewgth the effects of merge and spillover (Fig. 1a). This study focuses on
the application of TPB in the V-shapemo-to-one network, and develops Pareto improving pricing
schemes to manage bottleneck congestion at the merge point. In this study, we reveal the effect of the
TBPatthe merge bottleneck by showing fiysthat the first-best pricing by TBP scheme is not always
Pareto improving in the V-shaped merging network. We derive driugp cost before and after
applying TBP market selling scheme. Secondly, we propose TRachems to achievea Pareto

improvement.

3. Problem statement



3.1 The merge network and model of merging behavior

We consider morning commute in a V-shaped network shown in Fig. 1b. The network has two
origins (A and B in Fig. 1b), one destination at CBD, and one bottleneck caused by merging at poi
M. The network is the simplest one which includes a merging bottleneck. The capacity of the
bottleneck is p. The number of drivers from origin A and BAsaNd N respectively.

In the same way as Lago and Daganzo (2007), this study employs the capacitipaliodeds
proposed by Daganzo (1996), which are shown in Fig. 2. The rule derives a relationship between
discharge flows from both upstream links AM and BM. The discharge flows from each appraach, {x
xg}, satisfy the following conditions: (i) the sum of the discharge flows should rexeged the
available merge capacity, i.eX, + Xg < £ ; and (ii) when a queue exists on approach r, the share of
capacity used by this approach should be

X

—>qa,, r=AorB, (1)
X, + Xg

whereqr is a‘“merge-priority” constant. These constants satisfy:

a, +ag =1, 2
0<e, <1, 3
0<q, <1. 4)
It follows from (2) that when both approaches are queued, we have the following relationship:
Xa _ % 5)
Xg Op

3.2 Drives’ arrival-time behavior

Based on the most popular bottleneck model formulated by Vickrey (1969), we assume that each
driver chooses arrival time t so as to minimize thgir ¢ost. In this study, for convenience, the free
flow travel times are assumed to be zero. The trip cost is then defined as the sanuhd#tie
following three component cosi$ price of a permit (toll); ii) cost of schedule early/late, defined as
the difference between desired arrival time and the actual arrival time; and iii) queueing delay cost.

Therefore, drivers solve the following optimal problem:
min TC(t)= f, w(t)}+ f{s(t)}+ p(t). (6)

where t is the actual arrival time to CBDC(t) is the trip cost tadriver who arriveattime t, p(t) is

the price ofapermit to arrive at time t{f} is the schedule cost function, s(t) is the schedule delay for
adriver who arrives at time t; 3ftto-t, to is the desired arrival timey{f} is the queuing delay cost
function, and w(t) is the queueing delay for a driver who arratdane t. In this study, the time
departing the bottleneck is regard as arrival time t.

We assume that all drivers have the same desired arrival time, schedule cost function, and



queueing delay cost function. Schedule cost function and queueing delay cost function are defined as
linear functions as follows:

¢s s=20
f.1s/= : 7
18} {—gs s<0 @
f,, fwf=bw, (8)

where ¢ is the marginal cost of schedule earhjiscthe marginal cost of schedule delay, and b is the
marginal cost of queueing delay time.

We assume that the number of drar merging priority ratio from A is larger than that from B,

Na o Ng

ay Qg

(9)

This means that group B drivers have an advantage and can cut into the queues formed by group A
drivers. This assumption is to simplify the probléihwe considezdthe opposite condition of Eq. (9)

the relation between A and B can be simply swapped due to the symmetrical nature of dhle netw
considered.

4. Equilibrium condition and solutiowithout pricing
In this section, we formulate the equilibrium conditions and derive the solutions for the basi

problem described in the previous section, without any pricing intervention.

4.1 Equilibrium conditions

We consider four conditions here.

(1) Equilibrium conditions for arrival time choice:

At equilibrium, no one can improve his or her own generalized trip cost by changing tbedmtt]
departing time unilaterally. Therefore, if someone choasesrival time t, the generalized trip cost
to thatdriver is equal to the equilibrium cost. On the contrary, if no one chooses arrivglitimeost
atthat time is larger than the cost at equilibrium. The equilibrium condition for the drieival
time choice can be expressed as:

TC,()=TC, if x,(t)>0 ot (10)
TC,()=TC, if x,(t)=0
TCy(t)=TCs; if Xg(t)>0 ot )
TCy(1)>TCy if xg(t)=0

whereTCa(t) andTCs(t) is the generalized trip cost to a group A and group B driver respectively who



arrives at destination at timeTCa" and TCs" is the generalized trip cost to group A and group B
respectively at equilibrium at) andxs(t) is the flow rate of group A and group B respectively exiting
from bottleneck at time t (i.e. the outflow rate of group A and B arriving at CBD).

(2) Demand-performance equilibrium at bottleneck:

At equilibrium, if a queue forms at the bottleneck (i.e. the waiting time at the bottleneck is
positive), then the bottleneck is considered to be saturated and the exit flow mateoftieneck is
equal to the bottleneck capacity. On the contrary, if the waiting time is zero, the Bomvaate is

less than the capacity:

{XA(I)+XB(t)=/J i w,(t)>0 or w()>0 (12)

Xa,()+x ()< if w,(t)=0 and wg(t)=0

(3) Flow conservation for OD flow rates and OD travel demand:

OD travel demand for each origin has to be assigned in any time intervals.

j:fo (t)dt=N, . (13)
j:fxa(t)dt =N, - (14)

where £° and taf denote the start and the finish time of the departure-time period for group A

commuters, andtandts’those of the group B commuters.

(4) Merging constraint:
If queues form in both links AM and BM, the merging proportion is defined by the prioréy rul
at the merging point. Therefore, the merging constraint is derived as follows:
X (t)=au and X (t)=agu if w,(t)>0w,(t)>0 Wt. (15)

4.2 Equilibrium solution
Let I(t) and O(t) represent the accumulative number of drivers arriving at the bottleneck merge

andthose exited the merge respectively at time t. It is noted that the slope of arrival guaneg |

is lioa, lios timesthe actual entering flow rate when both groups are flowing. At equilibrium, queue

occurring intervals are different between two groups. The details of the equilibrium sola&ion ar

following (see Lago and Daganzo 2007):

N,+N; G

tS =t — : (16)
A H G +GC,
£ =t, - Ne C (17)
agpt G +C,



N
=t 8 9 (18)
ogtt G +G,

t =t +atNs G (19)
H G +GC,

ﬂ(l—&] for t§£t<to—NA+NB G%
b by ¢ +c,

_ NA + NB C.I.CZ St<t; , (20)

bu ¢+c,
0 otherwise

for t,

-1
y(l—&j for tg £t<to—Lﬁ
bagu ¢ +¢,
-1
dlB(t): #[1+&j for to—iﬁstdg. (21)
dt b bagu ¢ +¢,
0 otherwise
f
dO,s(t) _Ju for t3 st<ty (22)
at 0 otherwise
And trip cost to each group is derived as follows:
1C, =G NatNs (23)
G +G H
TC, = _GC Np (24)
C +C, agu

The trip cost to group B drivers is less than that to group A drivers because grouer8hadve

the merging priority and can cut into a queue formed by group A drivers at equilibrium.

5. Equilibrium under TBP scheme

In this section, we formulate the equilibrium conditions and derive the sowittoTBP scheme.
Under the TBP scheme, the number of issued bottleneck permits is equal to the bottleneck capacity,
andthe permits are freely traded by drivers. As a result, the price of the permits is deteequal

to the first best time-varying toll. The following shows that the pricgmgpt always Pareto improving.

5.1 Equilibrium conditions
As described in Section 4.1, without TBP scheme, four conditions were valid. Under TBP scheme,



on the other hand, there are only three valid conditions. The first one is the equilibrium condition for
permit choice, which is corresponding to the equilibrium condition for arrival time choiceedd mds

one is the demand-supply equilibrium conditions in permit markets, which is corresponding to the
demand-supply equilibrium condition at bottleneck. The third one is flow conservation between flow
rate and demand, which is the same as that without any pricing. The merging constraia&lisl not
under TBP scheme because no queues form at the merge bottleneck and the merging interaltion, whi

is valid when the merging point is saturated, is eliminated.

(1) Equilibrium condition for permit choice:

At equilibrium state, no one can improve his or her own generalized trip cost byeraily/
changing their permit, which is equivalent to changing their arrival time. Therefore, the aquilibr
condition is the same as that without pricing; hence Eqgs. (10)Landi¢o apply here.

(2) Demand-supply equilibrium (market clearing) conditions in a permit market:

At equilibrium, if the price of a certain time of permit is positive, the gtiastsupplied and the
gquantities demanded for the permit are equal; for the permit whose supply quantity exceeds the
quantity demanded, the price is zero:

{xA(t)+xB<t)=u it p(t)>0

. (25)
X)) +x(t)<pe if p(t)=0

(3) Flow conservation for flow rate and travel demand:
The flow conservation for each driver group is the same as that without pricing; henciersndit
(13) and (4) also apply here.

5.2 Equilibrium solution procedure
The following shows the procedure to get the equilibrium solution. From Egs. (10) and (11), the
necessary condition where a drivers choose time t as an arrival time can be deriheddbiavative
of generalized trip cost is equal to zero:
oTC,

=0, r=AorB (26)

Substitute Equations (6), (7), and (8) for Eq.)(26

bd—W+c1d—S+@:O when s>0
dt dt dt 27)
dw ds

——cz—+%=0 when s<0
dt dt dt

10



Under the TBP scheme where the number of bottleneck permits is equal to bottleneck capacity, queue
does not occur. This means:

—=0. 28
p (28)

Therefore, the condition where a driver chooses time t as arrivatéimbe derived as:

h >0
d_p_{ c, whens 29

dt |-c, when s<0

This means that the gradient of bottleneck permits price is derived as marginal cost of sigHagule
On the other hand, the start and finish time of arriving is calculated by the followmm. Fr
Expressions (13), (14), and (25), required time for all drivilgmand to pass through bottleneck is:

-t =— (30)
y7i

At equilibrium, all drivers minimize their trip cost, and generalized trip cadinays constant if

at least one driver chooses time t as arrival time. This means:
TC, (t7)=TC (t]) (31)

Under the TBP scheme, queuing delay time is always zero. In addition that, the pridéenétot

permits is zero at the start and finish time. Therefore, it should be satisfied that:

()= .t (32)

From Equations (31) and (32), we can obtaantlt.

5.3 Equilibrium solution

This section describes equilibrium solution under the conditions in Section 5.1. The proof of
uniqueness of the solution is provided in Appendix A. Under TBP scheme, inflow rate beébhemes
same as the bottleneck capacity and queue does not form. The solution is shown in Fig. 4. The inflow

starting time of both group drivers becomes same, so we derive it simply as follows:

t§=t§EtS=to—NA+NB £ (33)
H G +C,
t =t =t =t +atNe G (34)
H G +G
dO,.5(t) di,g(t) [ for t°<t<t' 29
dt dt 0 otherwise

The RHSs of Eqs.3@) and (34) are the same as those of Egs. (16) E)dwhich means that

11



application of TBP does not change the time period when the bottleneck capacity is fillllyhese
result shows that the bottleneck capacity is shared by group A and B fairly and trip bogitsgroups
become same.

* GG, NA + NB

TC, = (36)
G +GC, H

TC, = 2% N, + N (37)
G +G, H

This is the same as the solution for a tmene commuter problem with one-bottleneck, and
Na+Ng drivers.

The revenues of TBP, assumed to be represented by R, can be calculated as:
th th
R= [ PO, M)t + [ p(t)x ()t (38)
At the equilibrium, the revenues are

:E GG, (NA + NB)2
2c +¢c, Y7,

R (39)

5.4 Comparison between before and after the TBP pricing applied
Comparing the results without pricing and those with TBP schemes, we can derive the ichanges

trip cost to the two groups of drivers and revenues as follows:

ATC, =0, (40)
4TC, = GG ia{&_k} )
G+C u ap  Ag
2
AR=E GG (NA+NB) ) (42)
2C+C, H

There is no change in trip cost to group A drideecause they pay in TBP the equivalent of the
queueing delay cost without pricing. On the other hand, the trip cost to group B is inevéhdbd
introduction of TBP scheme. The reason is that the arrival time interval of groineBdmder TBP
scheme becomes wid@ndas such, they now have to pay in TBP more than the queueing delay cost
without pricing. Ths phenomenon is based on the bottleneck paradox by Arnott et al. (1993). Without
pricing, group B can decrease their trip cost by cutting into the queue formed by groumét and
increasing trip cost to group A. However, after the congestion is eliminated by the pghisiredfect
is also eliminated. Akamatsu et al. (2006) state that the price of the permits corresppreigeiog
delay cost. However, the above results show tthiatrelation is not always satisfied amerging

12



network.

6. TBP implementations for a Pareto improvement
In the previous section, we show that the application of tbBlfe merge bottleneck is not always
Pareto improving because the cost to group B drivers is increased by the pemgjt pdcany pricing
scheme to be politically acceptable, it is reasonable to expect that the scheme achieves a Paret
improvement, i.e. it harms no one and helps at least one person.
In this section, we propose three schemes to be Pareto improving witit fiBPnerging section
The three schemes are that: (1) differentiated permits are issued for each drive(ajroayenues
are rebated in cash as compensation; and (3) revenues are used to finance expansion of the bottleneck.

Scheme 1 does not use the TBP revenues. Schemes 2 and 3 use the revenues.

6.1 Differentiated permit (Scheme 1)

In this scheme, TBP revenues are not rebated to drivers and mgitathe road administrator.
In order to achieva Pareto improvement in this way, the arrival time period of each group must not
be changed betweerith and without pricing so as not to increase the trip cost to any drivers. The
road administrator issues bottleneck permits for each group without changing the arevage
of the groups. The scheme is equivalent to placing the pricing point to the upstream of the merge.
Under the previous sectiBrassumptions, the solution of the permit allocat®oshown in &ble 1.
The allocation rate can be determined by the discharge flow of each group at equilibrium without

pricing.

6.1.1 Equilibrium conditions and solution
In the scheme, the equilibrium conditions about demand-performance in permit markets are

derived as follows:

t 1) = if t)>0
OO =p i pOZ0 3
X, () + X ()< u if p)=0
XA(t)=/U if pA(t)>O
X, ()<u if p,(t)=0 when 2 <t<t3,tf <t<t), a4)
Xg(t)=0
{an):aAu it pa(®)>0
XA(t)SaA:u If pA(t):O When t;<t<tlf31 (45)

{xs () =agu i py()>0
Xp(t)<atgu if py(t)=0
Under these conditions, the discharge flow rate of each group becomes the same as shown in Fig.
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3(a), where the congestion is eliminated by TBP. That means each driver pays in TBRegtav
the queueing delay cost without pricifidus is because permit markets are severally created for group
A and group B, which eliminates the interaction of two groups in the markets.

The revenues in this case are equal to the total delay cost without pricing becarsepdsivin

TBP as equivalent to their delay cost.

6.1.2 Pareto improvement

Comparing the drivetosts and the TBP revenues between with and without pricing, we show
how the scheme is Pareto improving. Table 2 shows the cost to each group and revenuesdof the roa
administrator under the different schemes. Without pricing, the costs are given in eq@aljarsl(
(24), and no revenue is generated. With scheme 1, the costs to the avapt changed by the
pricing (e.g. equations (PB8because the drivers pay in TBP equivalent to the queueing delay cost
without pricing. On the other hand, revenues remain in road administrators, which would be spent as

queueing delay cost if the pricing were not applied. Therefore, the scheme is Pareto improving.

6.2 Monetary compensation (Scheme 2)

In this scheme, revenues are spent as compensation to drivers whose trip cost is incthased by
effect of the pricing. In Scheme 1, TBP price was controlled by creating TBP market foduradlivi
group and the price of TBP become equivalent to the queueing delay cost without pricing. In Scheme
2, on the other handerivers will be paid back after first paying to get TBP whose price may be more
expensive than the queueing delay cost without pricing.

In order to achieve a Pareto improvement under the scheme, the road administratgpashould
back as much as the increase of the cost to the cost-increasesl diiar the conditions in Section
3, the compensation amount for a driver in each group is determined equivalent to the increase of cos
shown in Egs. (40) and (41):

Compensation for group A: 0
Compensation for group B: &la{&_&j
G+C u oy Op

6.2.1 Equilibrium conditions and solution

The equilibrium conditions are the same as formulated in Section 5.1 because the compensations
are paid ex post facto. Therefore, the equilibrium solutions are also same as deriveaim5S2cti
However, group B drivers can get the compensation that is equivalent to the cost added by the

application of TBP.
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6.2.2 Pareto improvement
The costs and revenues are the same as those under Scheme 1 because the increased cost to group
B is rebated from the revenues. With Scheme 2, road administrators pay back to groupsBedsiver

than they pay in TBP. Therefore, this implementation is also Pareto improving.

6.3 Finance expansion of bottleneck (Scheme 3)

In this scheme, the road administrators spend revenue generated by the bottleneck permits on
expandhg bottleneck capacity. Yodoshkind Akamatsu (2008) studiethe scheme for a straight
network withtwo-tandem bottlenecks. Capacity expansion subject to minimizing social cost to all
drivers is an optimization problem. Below, we firstly formulate the optimal problenmasimization
problem of social cost. Secondly, we explain the equilibrium solution, and finally, we show th
requirement for Pareto improving.

We decide how much bottleneck capacity should be increased to minimize the social cost. The
best capacity improvementy” is given by minimizing social cost which consists of the cost for
improving the bottleneck capacity and the sum of dsisehedule cost. Assuming that the bottleneck
capacity is improved when starting the pricing with TPB, we derive the presentustialth the

discount rate r. The minimization problem is derived as:
r

s.t. Au>0,
where SC is the social costyl is the capacity increasgS is the total schedule cost, and K is the

capacity increasing cost.
Kis assumed to be homogeneous of degree 1 with respdct to
K(Ay):m-zly, (47)
where m is the marginal cost of increasing bottleneck capacity.

From the expressions (46) and (47), the optimality conditions can be derived as:

}£+m:0 if Au>0

r d(4u) . (48)
1 dTs .

=82 im>0 if 4u=0

r d(4u)

Total schedule cost (TS) is calculated by multiplying the triangles area formeih Iiygf 3 and
the departure rase
2
TS:E cC (Na+Ng) _ (49)
2¢+C  u+du
From the expression (48) and (49), the optimal amount of capacity increase is derived as:
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Al = /%~(NA+NB)—M (50)

This means that the optimal bottleneck capacity always exists antirilates to the number of
commuters, marginal costs of schedule delays, marginal cost for capacity-increase, and the discount

rate. The optimal bottleneck capacityigitherefore:

- /—Clcz . :
u = Y NS (Na +Ng) (51)

In order to achieve the minimum social cost, the road expansion only needs to increase the
difference between the optimal capacity and the present capacity. If the present bottleneck capacity is
larger than the optimal capacity, the road expansion is not needed. The optimal road expansion can

always be realized within the revenues of the bottleneck pe(®gs.appendix A for the proof)

6.3.1 Equilibrium
In scheme 3, the bottleneck capacity is expanded to the optimal capacifineui cost at
equilibrium is derived by replacing the bottleneck capacity in Eqgs. (36) and (37) for theloptim

capacity.

6.3.2 Pareto improvement

The changes in revenues without pricing and with Scheme 3 are shown in Table 2. The scheme
decreases the cost to group A drivers and increases the revenues of the bottleneck pehmitadbut t
to group B drivers is not always decreased.

A Pareto improvement can be achieved if the change in cost for group B driverpisitive.

The condition for the Pareto improvement is derived as:

GG NA+NBS GC Ng (52)

Q+C 4 GG agu
The LHS of (52is the trip cost to group B in the scheme. The RHS is the trip cost to Breithout

any pricing. Substituting eq. (51) for expression (52) and solving the expression for m, we get the

following condition:

2
mgiﬁ[ﬁJ _ 50)
2r ¢+C, o

Therefore,a Pareto improvement can be achieved if the marginal capacity-expansion cost m
satisfies (53), i.e. is less than a value determined by the number of group B commesenst pr
bottleneck capacity, marginal costs of schedule delay, and the discount rate.

6.4 Comparison and discussion
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In this section, we compare the schemes studied in the paper and state the feaauteSaiile
3 presents a summary of the proposed schemes. It can be seen that, from the perspestleasts
minimization, scheme 3 is the most effective because the scheme increases bottleneck capacity and
total schedule cost of drivers is reduced. However, the scheme is not always Paretognprothe
other hand, Schemes 1 and 2 can alwaglseve a Pareto improvement. Scheme 1 controls the
bottleneck permits allocation for each group separately wittttarigng the discharge flow rates of
respective group between before and after applying TBP. The scheme has an advantage that it is
available only by observing the discharge flow rates of respective groups. Scheme 2 is reasonable t
conduct because the procedure is only compensation, which can be realized for example by

discounting the charge rate of bottleneck permits.

7. Conclusion
This study focuses a merging section and reveals the effect of the social optimal pricing schem
that is implemented with TBP. The featureaoherge bottleneck is that the capacity allocation for
eachupstream link depends on the congestion state at the merging point. If the both upstream links
are congested and queues form, the capacity at merging is determined by the merging priority rules.
The paper shows that the TBP pricing is not always Pareto improving at the mergeebhkittl
because the pricing eliminates the priority rules at the merging. The mechanism is thairtdoypr
using TBP eliminates a physical queue at the bottleneck but the prices of the permitsrariaelt
by a length of imaginary point queue at the bottleneck, which is actually not formed exdoitl
This fact relates to the bottleneck paradox identified by Kuwahara (1990) and Aralo(t1&90a).
The paper proposes three TBP schemes to be Pareto improving. The first one is that déterentiat
permits are issued for each driver group so as that TBP revenues are not returnedriserastes
to drivers In this scheme, each driver pays in TBP equivalent to his/her queueing delay cost which
was generated without the TBP pricing. As a result, TBP revenues remain in tlaglngadstrator
and that is Pareto improving. The second one is that revenues are rebated in cash as compensation.
The scheme resulted in that the cost and revenues were the same as those ursiectienie. The
last one is that revenues are used to finance expansion of the bottleneck. The good pointaf the thi
scheme is that the social cost decreases more than only applying TBP at the bottleweelker,B
Pareto improvement is sometimes not achieved, for example, in case that construti®mhigbs

social discount rate is high, and bottleneck capacity is alraolygh
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Appendix A: Proving uniqueness of equilibrium solution under TBP scheme
Appendix A proves the following proposition.
Proposition:On the assumption that all drivers have the same linear generalized trip cost function, if

the equilibrium solution exists under the TBP scheme, it is unique.
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Proof: According to Iryo et al. (2005) and Iryo and Yoshii (2007), there is an optimization problem
whose solution is the equilibrium solution. The optimization problem is to minimize the all trivers
total schedule cost of delay time unit. Under the equilibrium conditions derived in Section 5.1, the

equivalent optimization problem derived as:

fis(t)}
o) {;A"‘er (t)}dt (A1)

st Y x(t)<su vt

r=A,B
[ @dt=N, vr={a B} (A2)
x()>0 Vvr={A, B}vt

With the assumptions that schedule cost function is linear, the form of optimization p¢afiewith

min
& (0)} -£

constraints (A2) is completely linear. Therefore, if the problem has a solution, it is unique.

Appendix B: Condition where the optimal road expansion can be self-financed (financed only
by the revenues from the bottleneck per mits)
The condition that the optimal road expansion cost is covered by the revenue of TBP is derived as:

MZ K(dp), (B1)
r

where R is the revenues of TBP in a day, and r is social discount rate. The revenue canatedcal
by eq. 31) and derived as:

R(Ay*)—l cC (Na+Ng) _ (B2)

204G uvay
The RHS of equation (B2) is the same as that of equation (42) because of the linear assuitigtion on

schedule cost and queueing delay cost. Substitute Egs. (40) and (B2) for condition (B1
2
1 ¢c (NA+N%) >m- Ay’ - §3)
2rg+c u+Adu
Substitute Eq. (43) for condition (B3

1 6% (N +No ) zm.( — 1 -(NA+NB)—uj (B4)
2r ¢, +¢, S (N, +Ny) 2mr(c, +¢,)
amig+g) P

Divide both sides of condition (B4) by m (>0) and we can get

_ W% & _
2mI’(Cl+CZ)(NA+NB)Z 2mr(cl+c2)(NA+NB) H (BS)

Therefore, the condition where the road expansion cost can be covered by TBP is derived as:
u=0, (B6)
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which means that the optimal road expansion can always be realized within the TBP revenues.
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