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Abstract 

Tradable bottleneck permits scheme proposed by Akamatsu et al. (2006) is one of the first-best pricing 

schemes and has been shown to be able to minimize social cost. Under the scheme, road administrators 

issue permits which allow permit holders to pass a bottleneck at specified times and create a market 

where drivers can freely trade the permits. However, the scheme is not always Pareto-improving such 

that it may harm some drivers. The objective of this study is to design Pareto-improving tradable 

bottleneck permits schemes for a V-shaped two-to-one merge bottleneck. Firstly, the paper formulates 

the morning commute model in the network and describes the arrival time choice equilibrium in the 

network with merging. Secondly, we show that the first-best pricing scheme under tradable bottleneck 

permits for this V-shaped network does not always achieve a Pareto improvement, with the cost of one 

group of drivers is increased by the permit pricing, a phenomena akin to the bottleneck paradox of 

Arnott et al. (1993). We propose therefore three implementations of tradable bottleneck permits for 

Pareto-improving: (i) merging priority rule is included in the tradable bottleneck permits scheme by 

creating different market for each origin; (ii) the permit revenues are refunded as monetary 

compensation to drivers whose cost is increased; and (iii) the permit revenues are used to expand 

bottleneck capacity. For each implementation, we derive their equilibrium solutions and demonstrate 

that a Pareto improvement is achieved and social cost is decreased by using the permit revenues for 

expanding the bottleneck capacity. 

 

Keywords: Social optimal pricing; Tradable Bottleneck Permits; Pareto improvement; Merging 
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1. Introduction 

Morning commute through traffic congestion to a central business district (CBD) is a common 

feature in cities around the world. The congestion is not caused so much by high travel demand but by 

a concentration of demand during a short (peak) period. Therefore, the congestion can be eliminated 

by an appropriate management to break up the demand among the longer time interval. 

The departure time choice equilibrium is considered to deal with such problems about the morning 

commute. (e.g. Vickley, 1969) Under the equilibrium, no drivers can improve their travel cost by 

unilaterally changing their behavior. There have been many studies about the departure time choice 

equilibrium with consideration of the drivers’ heterogeneity (e.g. Arnott et al., 1988, 1992, 1994) and 

network shape (e.g. Kuwahara, 1990, Arnott et al. 1993). 

Congestion pricing is one of the management methods to control the traffic congestion. The 

congestion can be completely eliminated with an appropriate congestion charge, which is the same 

price as drivers would suffer waiting delay cost without pricing (Arnott et al., 1990a). One of the 

implementation methods to realize the social optimum is Tradable bottleneck permits (TBP) scheme 

(Akamatsu et al. 2006). 

On the other hand, there is a problem about equity, which is that some drivers get a benefit but 

others suffer a loss. One of the criterions for the equity is a Pareto improvement. The Pareto 

improvement is a property that a policy harms no one and helps at least one person. Therefore, no one 

is supposed to say any complains about a policy if it is Pareto improving. 

This study focuses on a merging bottleneck. The merging ratio from the upper reaches changes 

depending on the state at the merging point. When the merging point is saturated and queue occurs, 

the bottleneck capacity is allocated to the upper reaches. Before the pricing is implemented, the 

capacity allocation depends on the merging rule at the merging point; number of lanes, merging priority, 

and so on. After the pricing is implemented, on the other hand, the capacity allocation is determined 

by the toll, which eliminates the property of origins about merging priority. In this manner, the capacity 

allocation rule is changed by implementing the congestion pricing, and it may not be Pareto improving. 

The objectives of this study are to reveal that the optimal dynamic congestion pricing with tradable 

bottleneck permits (TBP) scheme at a merging section is not always Pareto improving and to propose 

TBP implementation for Pareto improving. We consider V-shaped merging network, which is the 

minimum unit network with a merging bottleneck. 

In Section 2, previous studies are reviewed. In Section 3, we describe the problem and provide 

the basic assumptions of the study. In Section 4, we formulate the equilibrium condition and derive 

the solution without pricing. In Section 5, we formulate the equilibrium condition and derive the 

solution with the first best-pricing by using TBP. We prove that the first-best pricing is not always 

Pareto improving in the V-shaped network. In Section 6, we propose three schemes to achieve a Pareto 
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improvement. Finally, conclusions are drawn in Section 7. 

 

2. Literature reviews 

 

2.1 Departure time choice 

Vickrey (1969) firstly modelled the peak hour behavior as a departure time choice with a trade-

off between schedule cost and congestion delay cost. Small (1982) applied the model to real data and 

estimated the values of delay and schedule costs. As the developed studies considering the more 

complicated network, the departure time choice equilibrium on a two-tandem bottleneck network was 

formulated by Kuwahara (1990). The study found that a queue may form at the upstream bottleneck 

as well as at the downstream bottleneck even though the demand of upstream group is lower than the 

upstream bottleneck capacity. The phenomenon is caused because the upstream drivers were forced to 

depart earlier than necessary once a queue forms at the downstream bottleneck. Arnott et al. (1993) 

formulated the equilibrium on the Y-shaped network and concluded that the social trip cost may 

increase even if the upper bottleneck capacity is increased, leading to a capacity paradox. The paradox 

means that decreasing inflows, for example by ramp metering, can be efficient to decreasing social 

cost by departure time choice as well as increase of bottleneck capacity at the merge point. Daniel et 

al. (2009) conducted a laboratory experiment and replicated the bottleneck paradox, considering with 

schedule delay as well as schedule early. Xiao et al. (2014) studied the Y-shaped network under a 

stochastic setting. They formulate the equilibrium departure-time patterns in a Y-shaped network with 

stochastic bottleneck capacity, and show that the uncertainty in bottleneck capacity increases 

commuters’ mean trip cost and lengthens the peak period, and the cost is sensitive to upstream traffic 

control mechanism. 

 

2.2 Congestion pricing 

In order to control the morning traffic congestion, road pricing has been considered as one of the 

efficient methods. The pricing scheme is based on the economic theory of marginal cost and is a 

mechanism to improve social benefit (Pigou 1920). An appropriately designed pricing scheme can 

increase social welfare. However, if the toll is inappropriately determined, road capacity may not be 

fully utilized, a queue at bottleneck may form and social welfare may decrease. Arnott et al. (1990a) 

derived a time-varying pricing scheme which can eliminate a queue at a bottleneck and realize social 

optimal state. However, it is difficult to apply this so-called “first-best” scheme because it requires 

perfect knowledge on drivers’ preferences (to the desired arrival time, schedule cost, delay cost and so 

on) in order to determine the appropriate time-varying tolls. As alternatives, second-best pricing 

schemes such as step toll have been proposed (e.g. Laih 1994, 2004; Lindsey et al. 2012). In order to 

determine the social optimal toll in the step toll schemes, information about the precise peak time 
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period during which congestion occurs without pricing, is still required. Recently, new pricing 

schemes based on market mechanism have emerged (Verhoef et al., 1997) which, in a road 

transportation system, propose to use tradable permits to pay for road transport externality. Tradable 

credit (TC) and tradable bottleneck permits (TBP) are two such pricing schemes; they were first 

proposed by Yang and Wang (2011) and Akamatsu et al. (2006) respectively. 

The study about TC was originally focused on mobility management. Xiao et al. (2013) extended 

it to departure time choice problem. See a review on the studies about TC in Grant-Muller and Xu 

(2014). The study of TBP was originally based on managing congestion including both route choice 

and departure time choice problems (Akamatsu et al. 2006). Both TC and TBP use market mechanism 

to determine price of credit or permit. A distinctive difference between TPB and TC is that in TBP 

schemes, the social optimal state can be achieved if only road administrator knows each bottleneck 

capacity. In TC schemes, market mechanism decides only the price of the credit and road administrator 

has to decide time-varying charging rate. In TBP schemes, on the other hand, bottleneck permits are 

issued for each pre-specifies time period, which means that demands for bottlenecks are quantitatively 

controlled, and drivers trade the permits in respective markets. It is proved that the charging price rates 

determined by market mechanism are the same as the social optimal charge rates (Akamatsu et al., 

2006). 

Take a simple one-to-one network (i.e. one origin to one destination) with a bottleneck for example. 

With TC, a road administrator issues certain number of credits, determines charging rate of the credits 

to pass the bottleneck in a specified time period, and creates a market where drivers can freely trade 

the credits. At equilibrium, the price of the credit and the flow rate at the bottleneck can be determined. 

If the number of credits issued and credit charge rate are properly set, the first-best time-varying 

pricing can be realized (Xiao et al. 2013). However, it is not easy to set them properly because 

information about drivers’ preferences, which is not easily observed, is required to do so. 

With TBP, on the other hand, the road administrator issues bottleneck permits and creates markets 

whereby drivers can freely trade the permits. The permits are required for drivers to pass through the 

bottleneck at a specified time. The number of permits issued is equal to the bottleneck capacity. As a 

result, the price of the permit for each time is determined by market mechanism, which is equivalent 

to the toll of the first best pricing. Akamatsu (2007) proved that the equilibrium solution under the 

TBP scheme is the same as the solution of the social optimum traffic assignment. Therefore, the social 

cost can be minimized in a general network by using the TBP scheme. This study focuses on the 

equilibrium state realized by applying TBP, not on the process of trading the permits. One example of 

the process is discussed by Wada and Akamatsu (2013). 

 

2.3 Pareto improvement 

Even if the social optimal state can be realized by the first-best dynamic congestion pricing, it is 
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not always Pareto improving. It is Pareto improving if the scheme harms no one and helps at least one 

person. In economic theory, this property is called a Pareto improvement and is a necessary condition 

for a scheme to be adopted as a general policy. 

The Pareto improving schemes are categorized in two groups. The first one is using the revenues. 

Nie and Liu (2010) derived a condition that a Pareto improvement is achieved by self-financing under 

a situation in which drivers can choose to travel by either a car or public transport. As a result, the 

study proved that self-financing and a Pareto-improving toll scheme always exist when the value of 

time distribution function is concave. Yodoshi and Akamatsu (2008) studied the efficiency of the TBP 

in a network with two-tandem bottlenecks. They studied the usage of revenues for increasing 

bottleneck capacity and revealed the condition in which the TBP scheme is Pareto improving. The 

self-financing has been widely studied in the field of congestion pricing (e.g. Arnott et al., 1990b, Xiao 

et al., 2012). 

The second one is not using the revenues. Daganzo and Garcia (2000) showed Pareto improving 

pricing strategy by classifying drivers as either “free” or “paying” group. Song et al. (2014) applies 

road space rationing in addition to congestion pricing to achieve a Pareto improvement. Hall (2015) 

classified bottleneck capacity into “tolled” and “free” and showed the Pareto improvement can be 

practically achieved. The all of the studies take strategy of classification to achieve a Pareto 

improvement without using revenue. 

 

2.4 Positioning of this study 

In this study, we study congestion pricing in a two-to-one merge bottleneck from the aspect of 

Pareto improving. The two-to-one network has two aspects (shown in Fig. 1). One is a Y-shaped 

network (Fig. 1a) with two bottlenecks in tandem: one upstream of the merging point and one 

downstream of the merge. The other is a V-shaped network (Fig. 1b) with a single bottleneck at the 

point of merge. 

Lago and Daganzo (2007) studied the departure time equilibrium in a Y-shaped network, 

considering a physical queue with the effects of merge and spillover (Fig. 1a). This study focuses on 

the application of TPB in the V-shaped two-to-one network, and develops Pareto improving pricing 

schemes to manage bottleneck congestion at the merge point. In this study, we reveal the effect of the 

TBP at the merge bottleneck by showing firstly that the first-best pricing by TBP scheme is not always 

Pareto improving in the V-shaped merging network. We derive drivers’ trip cost before and after 

applying TBP market selling scheme. Secondly, we propose three TBP schemes to achieve a Pareto 

improvement.  

 

3. Problem statement 
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3.1 The merge network and model of merging behavior 

We consider morning commute in a V-shaped network shown in Fig. 1b. The network has two 

origins (A and B in Fig. 1b), one destination at CBD, and one bottleneck caused by merging at point 

M. The network is the simplest one which includes a merging bottleneck. The capacity of the 

bottleneck is µ. The number of drivers from origin A and B is NA and NB respectively. 

In the same way as Lago and Daganzo (2007), this study employs the capacity allocation rules 

proposed by Daganzo (1996), which are shown in Fig. 2. The rule derives a relationship between 

discharge flows from both upstream links AM and BM. The discharge flows from each approach, {xA, 

xB}, satisfy the following conditions: (i) the sum of the discharge flows should never exceed the 

available merge capacity, i.e.  BA xx ; and (ii) when a queue exists on approach r, the share of 

capacity used by this approach should be 

or B A     ,
BA




r
xx

x
r

r  ,                        (1) 

where Įr is a ‘‘merge-priority” constant. These constants satisfy: 

1BA  ,                                  (2) 

10 A  ,                                  (3) 

10 B  .                                  (4) 

It follows from (2) that when both approaches are queued, we have the following relationship: 

B

A

B

A





x

x
.                                   (5) 

 

3.2 Drivers’ arrival-time behavior 

Based on the most popular bottleneck model formulated by Vickrey (1969), we assume that each 

driver chooses arrival time t so as to minimize their trip cost. In this study, for convenience, the free 

flow travel times are assumed to be zero. The trip cost is then defined as the summation of the 

following three component costs: i) price of a permit (toll); ii) cost of schedule early/late, defined as 

the difference between desired arrival time and the actual arrival time; and iii) queueing delay cost. 

Therefore, drivers solve the following optimal problem: 

         tptsftwftTC
t

 sw   min ,                        (6) 

where t is the actual arrival time to CBD, TC(t) is the trip cost to a driver who arrives at time t, p(t) is 

the price of a permit to arrive at time t, fs{.} is the schedule cost function, s(t) is the schedule delay for 

a driver who arrives at time t; s(t)=t0-t, t0 is the desired arrival time, fw{.} is the queuing delay cost 

function, and w(t) is the queueing delay for a driver who arrives at time t. In this study, the time 

departing the bottleneck is regard as arrival time t. 

We assume that all drivers have the same desired arrival time, schedule cost function, and 
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queueing delay cost function. Schedule cost function and queueing delay cost function are defined as 

linear functions as follows: 

 








0

0

2

1
s ssc

ssc
sf ,                            (7) 

  bwwf w ,                                 (8) 

where c1 is the marginal cost of schedule early, c2 is the marginal cost of schedule delay, and b is the 

marginal cost of queueing delay time. 

We assume that the number of drivers to merging priority ratio from A is larger than that from B, 

i.e. 

B

B

A

A


NN

 .                                (9) 

This means that group B drivers have an advantage and can cut into the queues formed by group A 

drivers. This assumption is to simplify the problem. If  we considered the opposite condition of Eq. (9), 

the relation between A and B can be simply swapped due to the symmetrical nature of the network 

considered. 

 

4. Equilibrium condition and solution without pricing 

In this section, we formulate the equilibrium conditions and derive the solutions for the basic 

problem described in the previous section, without any pricing intervention. 

 

4.1 Equilibrium conditions 

We consider four conditions here. 

(1) Equilibrium conditions for arrival time choice: 

At equilibrium, no one can improve his or her own generalized trip cost by changing the bottleneck 

departing time unilaterally. Therefore, if someone chooses an arrival time t, the generalized trip cost 

to that driver is equal to the equilibrium cost. On the contrary, if no one chooses arrival time t, the cost 

at that time is larger than the cost at equilibrium. The equilibrium condition for the driver’s arrival 

time choice can be expressed as: 

t
txTCtTC

txTCtTC











0)(if)(

0)(if)(

A
*

AA

A
*

AA ,                      (10) 

t
txTCtTC

txTCtTC











0)(if)(

0)(if)(

B
*

BB

B
*

BB ,                      (11) 

where TCA(t) and TCB(t) is the generalized trip cost to a group A and group B driver respectively who  
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arrives at destination at time t, TCA
* and TCB

* is the generalized trip cost to group A and group B 

respectively at equilibrium, xA(t) and xB(t) is the flow rate of group A and group B respectively exiting 

from bottleneck at time t (i.e. the outflow rate of group A and B arriving at CBD). 

 

(2) Demand-performance equilibrium at bottleneck: 

At equilibrium, if a queue forms at the bottleneck (i.e. the waiting time at the bottleneck is 

positive), then the bottleneck is considered to be saturated and the exit flow rate from bottleneck is 

equal to the bottleneck capacity. On the contrary, if the waiting time is zero, the arrival flow rate is 

less than the capacity: 









t
twtwtxtx

twtwtxtx

0)(and0)(if)()(

0)(or0)(if)()(

BABA

BABA




.          (12) 

(3) Flow conservation for OD flow rates and OD travel demand: 

OD travel demand for each origin has to be assigned in any time intervals. 

  
f
A

s
A

AA d
t

t
Nttx ,                             (13) 

  
f
B

s
B

BB d
t

t
Nttx .                             (14) 

where tAs and tAf denote the start and the finish time of the departure-time period for group A 

commuters, and tB
s and tBf those of the group B commuters. 

 

(4) Merging constraint: 

If queues form in both links AM and BM, the merging proportion is defined by the priority rules 

at the merging point. Therefore, the merging constraint is derived as follows: 

        ttwtwtxtx  0 ,0ifand BABBAA  .        (15) 

 

4.2 Equilibrium solution 

Let I(t) and O(t) represent the accumulative number of drivers arriving at the bottleneck merge 

and those exited the merge respectively at time t. It is noted that the slope of arrival curves, IA and IB, 

is 1/ĮA, 1/ĮB times the actual entering flow rate when both groups are flowing. At equilibrium, queue 

occurring intervals are different between two groups. The details of the equilibrium solution are 

following (see Lago and Daganzo 2007): 

21

2BA
0

s
A cc

cNN
tt







,                      (16) 

21

2

B

B
0

s
B cc

cN
tt





,                        (17) 
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21

1

B

B
0

f
B cc

cN
tt





,                         (18) 

21

1BA
0

f
A cc

cNN
tt







,                       (19) 

 

































 







 






otherwise

for

for

0

1

1

d

d f
A

21

21BA
0

21

21BA
0

s
A

1

2

1

1

A tt
cc

cc

b

NN
t

cc

cc

b

NN
ttt

b

c

b

c

t

tI









,               (20) 

 

























 









 






otherwise                        0       

for      1

for      1

d

d f
B

21

21

B

B
0

1
2

21

21

B

B
0

s
B

1
1

B tt
cc

cc

b

N
t

b

c

cc

cc

b

N
ttt

b

c

t

tI







,                  (21) 

 


 



otherwise

for

0d

d f
A

s
ABA ttt

t

tO 
,                  (22) 

And trip cost to each group is derived as follows: 


BA

21

21*
A

NN

cc

cc
TC




 ,                          (23) 

B

B

21

21*
B

N

cc

cc
TC


 .                            (24) 

The trip cost to group B drivers is less than that to group A drivers because group B drivers have 

the merging priority and can cut into a queue formed by group A drivers at equilibrium. 

 

5. Equilibrium under TBP scheme 

In this section, we formulate the equilibrium conditions and derive the solution with TBP scheme. 

Under the TBP scheme, the number of issued bottleneck permits is equal to the bottleneck capacity, 

and the permits are freely traded by drivers. As a result, the price of the permits is determined equal 

to the first best time-varying toll. The following shows that the pricing is not always Pareto improving. 

 

5.1 Equilibrium conditions 

As described in Section 4.1, without TBP scheme, four conditions were valid. Under TBP scheme, 
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on the other hand, there are only three valid conditions. The first one is the equilibrium condition for 

permit choice, which is corresponding to the equilibrium condition for arrival time choice. The second 

one is the demand-supply equilibrium conditions in permit markets, which is corresponding to the 

demand-supply equilibrium condition at bottleneck. The third one is flow conservation between flow 

rate and demand, which is the same as that without any pricing. The merging constraint is not valid 

under TBP scheme because no queues form at the merge bottleneck and the merging interaction, which 

is valid when the merging point is saturated, is eliminated. 

 

(1) Equilibrium condition for permit choice: 

At equilibrium state, no one can improve his or her own generalized trip cost by unilaterally 

changing their permit, which is equivalent to changing their arrival time. Therefore, the equilibrium 

condition is the same as that without pricing; hence Eqs. (10) and (11) also apply here. 

 

(2) Demand-supply equilibrium (market clearing) conditions in a permit market: 

At equilibrium, if the price of a certain time of permit is positive, the quantities supplied and the 

quantities demanded for the permit are equal; for the permit whose supply quantity exceeds the 

quantity demanded, the price is zero: 

t
tptxtx

tptxtx









0)(if)()(

0)(if)()(

BA

BA




.                   (25) 

 

(3) Flow conservation for flow rate and travel demand: 

The flow conservation for each driver group is the same as that without pricing; hence conditions 

(13) and (14) also apply here. 

 

5.2 Equilibrium solution procedure 

The following shows the procedure to get the equilibrium solution. From Eqs. (10) and (11), the 

necessary condition where a drivers choose time t as an arrival time can be derived that the derivative 

of generalized trip cost is equal to zero: 

or B A   ,0 



r

t

TCr  (26) 

Substitute Equations (6), (7), and (8) for Eq. (26), 














0      when0

0      when0

2

1

s
dt

dp

dt

ds
c

dt

dw
b

s
dt

dp

dt

ds
c

dt

dw
b

 (27) 
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Under the TBP scheme where the number of bottleneck permits is equal to bottleneck capacity, queue 

does not occur. This means: 

0



t

w
. (28) 

Therefore, the condition where a driver chooses time t as arrival time can be derived as: 









0      when

0      when

2

1

sc

sc

dt

dp
 (29) 

This means that the gradient of bottleneck permits price is derived as marginal cost of schedule delay. 

On the other hand, the start and finish time of arriving is calculated by the following. From 

Expressions (13), (14), and (25), required time for all drivers’ demand to pass through bottleneck is: 


N

tt  fs  (30) 

At equilibrium, all drivers minimize their trip cost, and generalized trip cost is always constant if 

at least one driver chooses time t as arrival time. This means: 

   fs
rrrr tTCtTC   (31) 

Under the TBP scheme, queuing delay time is always zero. In addition that, the price of bottleneck 

permits is zero at the start and finish time. Therefore, it should be satisfied that: 

   f
s

s
s tftf   (32) 

From Equations (31) and (32), we can obtain ts and tf. 

 

5.3 Equilibrium solution 

This section describes equilibrium solution under the conditions in Section 5.1. The proof of 

uniqueness of the solution is provided in Appendix A. Under TBP scheme, inflow rate becomes the 

same as the bottleneck capacity and queue does not form. The solution is shown in Fig. 4. The inflow 

starting time of both group drivers becomes same, so we derive it simply as follows: 

21

2BA
0

ss
B

s
A cc

cNN
tttt







,                   (33) 

21

1BA
0

ff
B

f
A cc

cNN
tttt







.                   (34) 

   


 

 

otherwise

for

0d

d

d

d fs
BABA ttt

t

tI

t

tO 
                 (35) 

The RHSs of Eqs. (33) and (34) are the same as those of Eqs. (16) and (19), which means that 
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application of TBP does not change the time period when the bottleneck capacity is fully used. The 

result shows that the bottleneck capacity is shared by group A and B fairly and trip costs to both groups 

become same. 


BA

21

21*
A

NN

cc

cc
TC




                          (36) 


BA

21

21*
B

NN

cc

cc
TC




                          (37) 

This is the same as the solution for a one-to-one commuter problem with one-bottleneck, and 

NA+NB drivers. 

The revenues of TBP, assumed to be represented by R, can be calculated as: 

ttxtpttxtpR
t

t

t

t
d)()(d)()(

f
B

s
B

f
A

s
A

BA                       (38) 

At the equilibrium, the revenues are 

 


2
BA

21

21

2

1 NN

cc

cc
R




                          (39) 

 

5.4 Comparison between before and after the TBP pricing applied 

Comparing the results without pricing and those with TBP schemes, we can derive the changes in 

trip cost to the two groups of drivers and revenues as follows: 

0TC *
A ǻ ,                                (40) 





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21
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ccǻ ,                     (41) 

 


2
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21
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2

1 NN

cc

ccǻR 


 .                       (42) 

There is no change in trip cost to group A drivers because they pay in TBP the equivalent of the 

queueing delay cost without pricing. On the other hand, the trip cost to group B is increased with the 

introduction of TBP scheme. The reason is that the arrival time interval of group B drivers under TBP 

scheme becomes wider, and as such, they now have to pay in TBP more than the queueing delay cost 

without pricing. This phenomenon is based on the bottleneck paradox by Arnott et al. (1993). Without 

pricing, group B can decrease their trip cost by cutting into the queue formed by group A and not 

increasing trip cost to group A. However, after the congestion is eliminated by the pricing, this effect 

is also eliminated. Akamatsu et al. (2006) state that the price of the permits corresponds to queueing 

delay cost. However, the above results show that this relation is not always satisfied in a merging 



13 
 

network. 

 

6. TBP implementations for a Pareto improvement 

In the previous section, we show that the application of TBP to the merge bottleneck is not always 

Pareto improving because the cost to group B drivers is increased by the permit pricing. For any pricing 

scheme to be politically acceptable, it is reasonable to expect that the scheme achieves a Pareto 

improvement, i.e. it harms no one and helps at least one person. 

In this section, we propose three schemes to be Pareto improving with TBP at the merging section. 

The three schemes are that: (1) differentiated permits are issued for each driver group; (2) revenues 

are rebated in cash as compensation; and (3) revenues are used to finance expansion of the bottleneck. 

Scheme 1 does not use the TBP revenues. Schemes 2 and 3 use the revenues. 

 

6.1 Differentiated permit (Scheme 1) 

In this scheme, TBP revenues are not rebated to drivers and remain with the road administrator. 

In order to achieve a Pareto improvement in this way, the arrival time period of each group must not 

be changed between with and without pricing so as not to increase the trip cost to any drivers. The 

road administrator issues bottleneck permits for each group without changing the arrival time range 

of the groups. The scheme is equivalent to placing the pricing point to the upstream of the merge. 

Under the previous section’s assumptions, the solution of the permit allocation is shown in Table 1. 

The allocation rate can be determined by the discharge flow of each group at equilibrium without 

pricing. 

 

6.1.1 Equilibrium conditions and solution 

In the scheme, the equilibrium conditions about demand-performance in permit markets are 

derived as follows: 

tttt
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Under these conditions, the discharge flow rate of each group becomes the same as shown in Fig. 
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3(a), where the congestion is eliminated by TBP. That means each driver pays in TBP equivalent to 

the queueing delay cost without pricing. This is because permit markets are severally created for group 

A and group B, which eliminates the interaction of two groups in the markets. 

The revenues in this case are equal to the total delay cost without pricing because drivers pay in 

TBP as equivalent to their delay cost. 

 

6.1.2 Pareto improvement 

Comparing the drivers’ costs and the TBP revenues between with and without pricing, we show 

how the scheme is Pareto improving. Table 2 shows the cost to each group and revenues of the road 

administrator under the different schemes. Without pricing, the costs are given in equations (23) and 

(24), and no revenue is generated. With scheme 1, the costs to the drivers are not changed by the 

pricing (e.g. equations (23)) because the drivers pay in TBP equivalent to the queueing delay cost 

without pricing. On the other hand, revenues remain in road administrators, which would be spent as 

queueing delay cost if the pricing were not applied. Therefore, the scheme is Pareto improving. 

 

6.2 Monetary compensation (Scheme 2) 

In this scheme, revenues are spent as compensation to drivers whose trip cost is increased by the 

effect of the pricing. In Scheme 1, TBP price was controlled by creating TBP market for individual 

group and the price of TBP become equivalent to the queueing delay cost without pricing. In Scheme 

2, on the other hand, derivers will be paid back after first paying to get TBP whose price may be more 

expensive than the queueing delay cost without pricing. 

In order to achieve a Pareto improvement under the scheme, the road administrator should pay 

back as much as the increase of the cost to the cost-increased drivers. Under the conditions in Section 

3, the compensation amount for a driver in each group is determined equivalent to the increase of cost 

shown in Eqs. (40) and (41): 

Compensation for group A:  0 

Compensation for group B:  



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




 B

B

A

A
A

21

21 1
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


NN

cc

cc
 

 

6.2.1 Equilibrium conditions and solution 

The equilibrium conditions are the same as formulated in Section 5.1 because the compensations 

are paid ex post facto. Therefore, the equilibrium solutions are also same as derived in Section 5.2. 

However, group B drivers can get the compensation that is equivalent to the cost added by the 

application of TBP. 
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6.2.2 Pareto improvement 

The costs and revenues are the same as those under Scheme 1 because the increased cost to group 

B is rebated from the revenues. With Scheme 2, road administrators pay back to group B drivers less 

than they pay in TBP. Therefore, this implementation is also Pareto improving. 

 

6.3 Finance expansion of bottleneck (Scheme 3) 

In this scheme, the road administrators spend revenue generated by the bottleneck permits on 

expanding bottleneck capacity. Yodoshi and Akamatsu (2008) studied the scheme for a straight 

network with two-tandem bottlenecks. Capacity expansion subject to minimizing social cost to all 

drivers is an optimization problem. Below, we firstly formulate the optimal problem as a minimization 

problem of social cost. Secondly, we explain the equilibrium solution, and finally, we show the 

requirement for Pareto improving. 

We decide how much bottleneck capacity should be increased to minimize the social cost. The 

best capacity improvement µ* is given by minimizing social cost which consists of the cost for 

improving the bottleneck capacity and the sum of drivers’ schedule cost. Assuming that the bottleneck 

capacity is improved when starting the pricing with TPB, we derive the present social cost with the 

discount rate r. The minimization problem is derived as: 

      ǻK
r

ǻTSǻSC 


min ,                  (46) 

0s.t. ǻ , 

where SC is the social cost, µ is the capacity increase, TS is the total schedule cost, and K is the 

capacity increasing cost. 

K is assumed to be homogeneous of degree 1 with respect to µ: 

   ǻmǻK  ,                              (47) 

where m is the marginal cost of increasing bottleneck capacity. 

From the expressions (46) and (47), the optimality conditions can be derived as: 
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Total schedule cost (TS) is calculated by multiplying the triangles area formed by fs in Fig. 3 and 

the departure rates: 
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21
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2

1 .                         (49) 

From the expression (48) and (49), the optimal amount of capacity increase is derived as: 
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NN
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ccǻ .                    (50) 

This means that the optimal bottleneck capacity always exists and that it relates to the number of 

commuters, marginal costs of schedule delays, marginal cost for capacity-increase, and the discount 

rate. The optimal bottleneck capacity µ* is therefore: 

   BA
21

21*

2
NN

ccmr

cc



 .                        (51) 

In order to achieve the minimum social cost, the road expansion only needs to increase the 

difference between the optimal capacity and the present capacity. If the present bottleneck capacity is 

larger than the optimal capacity, the road expansion is not needed. The optimal road expansion can 

always be realized within the revenues of the bottleneck permits. (See appendix A for the proof)  

 

6.3.1 Equilibrium 

In scheme 3, the bottleneck capacity is expanded to the optimal capacity µ*. The cost at 

equilibrium is derived by replacing the bottleneck capacity in Eqs. (36) and (37) for the optimal 

capacity. 

 

6.3.2 Pareto improvement 

The changes in revenues without pricing and with Scheme 3 are shown in Table 2. The scheme 

decreases the cost to group A drivers and increases the revenues of the bottleneck permits, but the cost 

to group B drivers is not always decreased. 

A Pareto improvement can be achieved if the change in cost for group B drivers is not positive. 

The condition for the Pareto improvement is derived as: 
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.                       (52) 

The LHS of (52) is the trip cost to group B in the scheme. The RHS is the trip cost to group B without 

any pricing. Substituting eq. (51) for expression (52) and solving the expression for m, we get the 

following condition: 
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cc
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m .                           (53) 

Therefore, a Pareto improvement can be achieved if the marginal capacity-expansion cost m 

satisfies (53), i.e. is less than a value determined by the number of group B commuters, present 

bottleneck capacity, marginal costs of schedule delay, and the discount rate. 

 

6.4 Comparison and discussion 
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In this section, we compare the schemes studied in the paper and state the features of each. Table 

3 presents a summary of the proposed schemes. It can be seen that, from the perspective of social cost 

minimization, scheme 3 is the most effective because the scheme increases bottleneck capacity and 

total schedule cost of drivers is reduced. However, the scheme is not always Pareto improving. On the 

other hand, Schemes 1 and 2 can always achieve a Pareto improvement. Scheme 1 controls the 

bottleneck permits allocation for each group separately without changing the discharge flow rates of 

respective group between before and after applying TBP. The scheme has an advantage that it is 

available only by observing the discharge flow rates of respective groups. Scheme 2 is reasonable to 

conduct because the procedure is only compensation, which can be realized for example by 

discounting the charge rate of bottleneck permits. 

 

7. Conclusion 

This study focuses a merging section and reveals the effect of the social optimal pricing scheme 

that is implemented with TBP. The feature of a merge bottleneck is that the capacity allocation for 

each upstream link depends on the congestion state at the merging point. If the both upstream links 

are congested and queues form, the capacity at merging is determined by the merging priority rules. 

The paper shows that the TBP pricing is not always Pareto improving at the merge bottleneck 

because the pricing eliminates the priority rules at the merging. The mechanism is that the pricing by 

using TBP eliminates a physical queue at the bottleneck but the prices of the permits are determined 

by a length of imaginary point queue at the bottleneck, which is actually not formed at bottleneck. 

This fact relates to the bottleneck paradox identified by Kuwahara (1990) and Arnott et al. (1990a). 

The paper proposes three TBP schemes to be Pareto improving. The first one is that differentiated 

permits are issued for each driver group so as that TBP revenues are not returned in cash or services 

to drivers. In this scheme, each driver pays in TBP equivalent to his/her queueing delay cost which 

was generated without the TBP pricing. As a result, TBP revenues remain in the road administrator 

and that is Pareto improving. The second one is that revenues are rebated in cash as compensation. 

The scheme resulted in that the cost and revenues were the same as those under the first scheme. The 

last one is that revenues are used to finance expansion of the bottleneck. The good point of the third 

scheme is that the social cost decreases more than only applying TBP at the bottleneck. However, a 

Pareto improvement is sometimes not achieved, for example, in case that construction cost is high, 

social discount rate is high, and bottleneck capacity is already enough. 
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Appendix A: Proving uniqueness of equilibrium solution under TBP scheme 

Appendix A proves the following proposition. 

Proposition: On the assumption that all drivers have the same linear generalized trip cost function, if 

the equilibrium solution exists under the TBP scheme, it is unique. 
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Proof: According to Iryo et al. (2005) and Iryo and Yoshii (2007), there is an optimization problem 

whose solution is the equilibrium solution. The optimization problem is to minimize the all drivers’ 

total schedule cost of delay time unit. Under the equilibrium conditions derived in Section 5.1, the 

equivalent optimization problem is derived as: 
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With the assumptions that schedule cost function is linear, the form of optimization problem (A1) with 

constraints (A2) is completely linear. Therefore, if the problem has a solution, it is unique. 

 

Appendix B: Condition where the optimal road expansion can be self-financed (financed only 

by the revenues from the bottleneck permits) 

The condition that the optimal road expansion cost is covered by the revenue of TBP is derived as: 

   *
*

 ǻK
r

ǻR
 ,                            (B1) 

where R is the revenues of TBP in a day, and r is social discount rate. The revenue can be calculated 

by eq. (31) and derived as: 
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The RHS of equation (B2) is the same as that of equation (42) because of the linear assumption on the 

schedule cost and queueing delay cost. Substitute Eqs. (40) and (B2) for condition (B1), 
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Substitute Eq. (43) for condition (B3), 
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Divide both sides of condition (B4) by m (>0) and we can get 
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Therefore, the condition where the road expansion cost can be covered by TBP is derived as: 

0 ,                                   (B6) 
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which means that the optimal road expansion can always be realized within the TBP revenues. 

 


