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We demonstrate that the geometric volume of a soliton coincides with the thermodynamical volume
also for field theories with higher-dimensional vacuum manifolds (e.g., for gauged scalar field theories
supporting vortices or monopoles), generalizing the recent results of Ref. [C. Adam, M. Haberichter, and
A. Wereszczynski, Phys. Lett. B 754, 18 (2016).]. We apply this observation to understand Bradlow-
type bounds for general Abelian gauge theories supporting vortices, as well as some thermodynamical
aspects of said theories. In the case of SDiff Bogomolny-Prasad-Sommerfield (BPS) models (being
examples of perfect fluid models) we show that the base-space independent geometric volume (area) of
the vortex is exactly equal to the Bradlow volume (a minimal volume for which BPS soliton solutions
exist). This volume can be finite for compactons or infinite for infinitely extended solitons (in flat
Minkowski space-time).
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I. INTRODUCTION

Solitons are nonperturbative solutions of nonlinear field
theories that behave like particles in many respects. They
may be viewed as collective excitations of the underlying
basic fields and are, therefore, particularly suitable for the
description of collective phenomena. Topological solitons
[1], additionally, allow us to define a (typically integer-
valued) topological index, resulting either from the topology
of the base space or, for Euclidean base space Rd, from the
condition of finite energy. This topological index provides a
natural definition for a conserved particle number (soliton
number). Apart from their independent relevance as interest-
ing mathematical structures, field theories supporting topo-
logical solitons are frequently employed as low-energy
effective field theories (LE-EFTs) of some underlying
fundamental systems (e.g., UV field theories, or many-
particle systems). Here, the basic fields of the solitonic
LE-EFT describe the most important degrees of freedom
(DoF) at low energies, and the solitons correspond to certain
collective excitations of said basic DoF. Examples thereof
are, e.g., the Skyrme model [2] as a LE-EFT for the strong
interactions (with mesons as basic fields and baryons as
solitonic excitations), or the Ginzburg-Landau theory of
superconductivity [3] (with a complex scalar condensate
related to Cooper pairs as the basic field and vortices as
solitonic excitations). In linewith their role as LE-EFT, these
solitonic models should be capable of describing the macro-
scopic (fluid dynamical or thermodynamcial) behavior of the
underlying fundamental system, at least at sufficiently low
energies (particularly at zero temperature). In particular, the
solitonic EFT should provide natural definitions for certain
thermodynamical variables like the free energy F (which

coincides with the static energy E at zero temperature), the
pressure P, the volume V, the particle number N, and the
chemical potential μ. Like all field theories, a solitonic EFT is
equipped with a natural definition of pressure (the field-
theoretic pressure; see below). As demonstrated recently in
[4], this directly implies a unique definition of the thermo-
dynamical volume (for the case of Skyrmions, see also [5,6]).
It turns out that the thermodynamical volume is equal to the
geometric volume, i.e., the volume of the region in space
where the static energy density is different from 0 (see also
Sec. II). Further, as mentioned already, the topological index
of topological solitons implies a natural definition of particle
number. The corresponding chemical potential may then
be found rather straightforwardly (see [7] for the case of
skyrmions).
The fact that the thermodynamical volume V t equals the

geometric volumeVg implies some consequences thatmight
seem surprising at first sight.While solitons at finite pressure
always occupy a finite volume, the volume of a soliton at
zero pressure may be finite (a compacton) or infinite. In
particular, the well-known examples of solitons with expo-
nential tails lead to infinite thermodynamical volume. This
findingmay be less surprising once one interprets a solitonic
model as a LE-EFT. If a solitonic EFT is, e.g., supposed to
describe amany-particle system of identical fermions, then a
nonzero pressure (Fermi pressure) remains at zero temper-
ature, which must be balanced (by an external pressure) to
maintain the system in a finite volume. In the zero-pressure
limit, the system tends to infinite volume at equilibrium.
There exist, of course, further definitions for the volume of a
soliton (e.g., based on its mean-square radius) that typically
lead to finite values for the volume of a soliton with
exponential tail, and which have their own applications.
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These volume definitions, however, cannot be used as
thermodynamical volumes.
Both the characteristics of solitonic solutions and their

thermodynamical properties may undergo significant
changes when they are considered on a base-space manifold
M with finite volume (e.g., a compact manifold) instead of
flat space Rd. One might, e.g., naively suppose that an
infinitely extended soliton will always lead to nonzero-
pressure solutions on a compact base space, but this is not
necessarily true. Depending on the boundary conditions
implied by the base space topology, infinitely extended
solitons on Rd may, nevertheless, “fit” on a compact base
space. The investigation of these issues is simplified
significantly in the case of so-called Bogomolny-Prasad-
Sommerfield (BPS) field theories, i.e., field theories that
allow us to reduce the static field equations (Euler-Lagrange
equations) to first-order equations (the BPS equations) [8,9]
such that the resulting BPS solutions saturate a global
(topological) energy bound. A BPS solution has zero
pressure, by definition (see Sec. II), so for BPS models
the search for zero-pressure solutions on compact spaces is
equivalent to the existence of BPS solutions on the same
spaces. In the case of BPS vortices, their existence is related
to the so-called Bradlow bound [10], i.e., a minimum
volume (area) that a compact base-space manifold must
have in order to support BPS vortices. It is the main purpose
of the present paper to study this Bradlow bound and,
generally, the effect of finite volume base spaces on BPS
soliton solutions.We, therefore, restrict ourselves to the case
of vortices and their Bradlow bounds in the rest of the paper,
although bounds equivalent to the Bradlow bound may
probably be defined also for other types of topological
solitons (e.g., monopoles).
The presumably best-known field theory supporting

vortices of finite energy is the Abelian-Higgs model [11],
whose vortex solutions have been analyzed in [12]. The
static sector coincides with the Ginzburg-Landau theory of
superconductivity [3], where the corresponding vortex
solutions are known as Abrikosov vortices [13]. Vortices
also play a role as magnetic domains in magnetic materials
andmay show up inBose condensates and superfluidity, and
they make their appearance in cosmology in the form of
codimension two defects (cosmic strings), demonstrating
both their ubiquitous character and their relevance.
In this paper, two properties of vortices are of special

importance. The first one is the BPS property already
mentioned above. Physically, the BPS property means that
a multivortex BPS configuration (with “topological index”
equal toN, say) may be interpreted as a collection ofN basic
BPS vortices such that the forces between these basic
vortices are exactly 0. The second issue is related to the
macroscopic or “thermodynamical” behavior of multivortex
configurations, in general (i.e., not necessarily BPS ones).
Indeed, a multivortex configuration may, e.g., behave like a
gas of (interacting or noninteracting) vortices, or like a fluid.

To study these questions and to calculate average (thermo-
dynamical) quantities, a well-defined notion of the thermo-
dynamical volume (area for the particular case of vortices) of
a multisoliton (multivortex) is required. It is one of the main
objectives of the present paper to provide this notion,
generalizing the results of [4] to the case of vortices (to
solitons with a higher-dimensional vacuum manifold, in
general). Further, in the case of vortices a related feature is
the Bradlow bound mentioned above.
Concretely, in Sec. II, we provide the definition for the

thermodynamical volume of a soliton, generalizing
the results of [4]. In Sec. III, we briefly review the
Bradlow bound and zero-temperature thermodynamics
(fluid dynamics) of the standard Abelian-Higgs model,
and then study the same issues for certain generalized
Abelian-Higgs models. In Sec. IV, we repeat this analysis
for field theories of the perfect fluid type and, in Sec. V, for
their gauged versions (SDiff Abelian vortices). In Sec. VI,
we briefly discuss the case of conformal solitons. Finally,
Sec. VII contains our conclusions.
The field theories we consider are always defined on a

space-time R ×M with metric

ds2 ¼ dt2 − gijdxidxj ð1:1Þ

for a (positive definite) Riemannian metric gij. Further, the
kinetic energy expressions of all our field theories are
quadratic in momenta such that, in the static case (which is
the case of interest here), the (non-negative) energy density
is just minus the static Lagrangian density, E ¼ −L, and the
strain tensor is

TijðxÞ ¼ −
2ffiffiffi
g

p δ

δgijðxÞ
E ð1:2Þ

where E ¼ R
ddx

ffiffiffi
g

p
E is the energy and g ¼ det gij is the

determinant of the metric. Further, we always assume that
some units of length and energy have been fixed, such that
all constants appearing in the field equations or in the
soliton solutions are dimensionless.
In principle, we have to distinguish four different notions

of volume in the considerations that follow. The first one is
the volume VM of the space manifoldM. The second is the
Bradlow volume VB (the minimum volume that a space
manifold must have such that it supports BPS solutions of a
given field theory; obviously, VB depends on the field
theory under consideration). The third volume is the
geometric volume Vg of the soliton, i.e., the volume of
the region where its energy density is nonzero. The fourth
volume is the thermodynamic volume V t, defined by the
(zero-temperature) thermodynamic relation

Pt ¼ −
dE
dV t

; ð1:3Þ
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where E and Pt are the energy and the (thermodynamical)
pressure. It turns out, however, that Vg and V t may always
naturally be assumed to be equal; therefore, we use the
common symbol V ¼ Vg ¼ V t. In principle, we also have
to distinguish two notions of pressure, namely, the ther-
modynamical pressure Pt defined by the relation (1.3) and
the field-theoretic pressure

Pf ¼
1

Vg

Z
ddx

ffiffiffi
g

p
P; P ¼ 1

d
gijTij; ð1:4Þ

where P is the pressure density. We find, however, that
precisely when V ¼ Vg ¼ V t is assumed, we find as a
result that the two pressures are equal and we may use the
common symbol P ¼ Pt ¼ Pf . This is discussed in general
in Sec. II, whereas particular examples are considered in the
subsequent sections.

II. THERMODYNAMICAL VOLUME AND
PRESSURE OF A SOLITON

In [4] it was proven that Vg ¼ V t ⇒ Pt ¼ Pf for scalar
field theories with zero-dimensional vacuum manifolds in
flat space Rd. Here we generalize these results to more
general field theories (e.g., gauge theories, like the Abelian-
Higgs model, which supports vortices with a vacuum
manifold S1) and to more general space manifolds. For
this purpose, let us consider the following constrained
energy functional

Ec ¼ Eþ Cvol; Cvol ¼ P

�Z
ddx

ffiffiffi
g

p
ΘðEðxÞÞ − V

�
:

ð2:1Þ

Here, Cvol is the volume constraint imposing the condition
V ¼ Vg, and P is the corresponding Lagrange multiplier.
Further, the generalized step function ΘðEðxÞÞ is the locus
function of a field configuration, i.e.,

ΘðEðxÞÞ ¼
�
1 for EðxÞ > 0

0 for EðxÞ ¼ 0;
ð2:2Þ

which, obviously, implies
R
ddx

ffiffiffi
g

p ΘðEðxÞÞ ¼ Vg. The
explicit expression for the locus function chosen here is
different from the one in [4] (although they coincide for the
cases considered in [4]) and the expression used here allows
us to consider more general cases. The important point for
us is that the locus function is invariant with respect to
infinitesimal variations of the metric (the relevance of this
condition will become clear in a moment). This invariance
follows from the following observations. Some terms in E
(e.g., potentials) do not depend on the metric, at all, so
invariance is obvious. The metric dependent terms in E may
always be written as nondegenerate quadratic forms

vaMabvb where Mab is a positive definite matrix con-
structed from the metric, whereas the va are constructed
from the fields and their (partial or gauge-covariant)
derivatives. Examples are the standard (gauge) kinetic term
whereMab → gij and va→∂iϕ [or va→Diϕ¼ð∂i−ieAiÞϕ
for a complex ϕ coupled to a gauge field], or Skyrme-type
terms, where Mab → gijgkl and va → ∂iϕ

1∂kϕ
2 −

∂iϕ
2∂kϕ

1 for two fields ϕ1, ϕ2. The important point is
that all these expressions are 0 if and only if va ¼ 0
(a vacuum configuration), independently of the metric,
because of the positive definite nature of Mab. It follows
immediately that the locus function is invariant under
variations of the metric.
The Lagrange multiplier P obeys the thermodynamical

relation P ¼ −ðdEc=dVÞ, by construction. We now want to
prove that it is, at the same time, equal to the field-
theoretical pressure (1.4). In a first step, we prove it for flat
space gij ¼ δij, g ¼ 1, closely following [4]. We act with an
infinitesimal scale transformation xi → ð1þ λÞxi, for
infinitesimal λ, on all fields that appear in the constrained
energy functional (but not on the metric). Then we assume
that all terms in the energy density are “geometrically
natural” [14] such that a coordinate transformation acting
on the fields may be traded for the inverse coordinate
transformation of the metric, δij → ð1 − 2λÞδij. That is to
say, we act with the transformation

δ ¼
Z

ddxδgijðx⃗Þ
δ

δgijðx⃗Þ
����
gij¼−δij

ð2:3Þ

where δgij ¼ −2λgij on Ec. Variation of E just gives

δE ¼ λ

Z
ddx

ffiffiffi
g

p
gijTij ¼ λd

Z
ddx

ffiffiffi
g

p
P ¼ λdVPf ð2:4Þ

whereas variation of Cvol gives

δCvol ¼ −Pλd
Z

ddx
ffiffiffi
g

p
ΘðEÞ ¼ −PλdV ð2:5Þ

where we used the invariance of ΘðEÞ. Further, we wrote
the expressions for general gij, for later convenience. To
close the argument, we remember that the variation δ came
from a variation of the fields (a scale transformation). But
for solutions of the variational problem (2.1), the functional
is invariant under any field variation, that is, on shell (for
solutions) δEc ¼ 0, immediately leading to P ¼ Pf , which
is what we wanted to prove.
The question is whether this argument can be generalized

for general space manifolds M. After all, in Eqs. (2.4) and
(2.5) only the constant Weyl transformation gij → e−2λgij
appears, which can be defined for any metric. The apparent
problem is that, as this Weyl transformation no longer
follows from a variation of the fields (i.e., from a coordinate
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transformation), there is no obvious reason why δEc ¼ 0
should hold on shell. Nevertheless, if we accept (i.e.,
define) that the volume of a soliton is varied via a Weyl
transformation and not by squeezing the soliton for a fixed
metric (on a fixed background manifold), then the result
Pt ¼ Pf follows immediately and does not even require the
introduction of the constrained energy functional Ec. The
reason is that in this case the operations of a constant Weyl
transformation acting on E (which defines Pf ) and of a
variation of the volume (which defines Pt) are identical.
Squeezing a soliton (i.e., to introduce pressure) via a

Weyl rescaling (i.e., by squeezing the whole manifold) may
appear counterintuitive in a first instant, but here we argue
that it is a natural definition in the general case. First of all,
on Rd it is equivalent to the standard idea of squeezing the
soliton itself. Secondly, for general gij there are infinitely
many possibilities to squeeze a soliton on a fixed back-
ground manifold, and there is no preferred “symmetric” or
“shape-preserving” way of squeezing—unless the metric
itself has some symmetries (Killing vectors). Squeezing via
a constant Weyl rescaling, on the other hand, is shape
preserving by construction and, therefore, the most sym-
metric definition to squeeze a soliton, i.e., to change its
volume. In addition, if a soliton on a compact manifold
covers the whole manifold (i.e., V ¼ VM), it is not clear
how to squeeze the soliton to a smaller volume for a fixed
background without drastically changing its boundary
conditions. We remark that the Weyl rescaling definition
for the variation of the volume of a soliton implies that the
pressure of a BPS soliton is always 0. Indeed, the energy of
a BPS soliton is proportional to a topological invariant
(winding number etc.) that is metric independent by
definition. It follows that the Weyl variation of the on-
shell energy and, therefore, the pressure, is identically 0.

III. THE BRADLOW BOUND—ABELIAN-HIGGS
VORTICES

A. The Abelian-Higgs vortices at critical coupling

After having established that the geometric volume is, in
fact, the thermodynamic volume, we investigate its relation
with the Bradlow volume VB and the volume of the space
manifold VM. Furthermore, we show that the Bradlow
volume may be used as a rather universal characteristic of
general BPS-type theories.
Let us briefly demonstrate the original derivation of the

Bradlow bound for solitons in the Abelian-Higgs model at
critical coupling on an arbitrary compact manifold M
[10,15],

L ¼
Z
M

�
−
1

4
F2
μν þ

1

2
DμuDμu −

1

8
ð1 − uūÞ2

�
Ωd2x;

ð3:1Þ

where Dμu ¼ ð∂μ − iAμÞu, and the metric is

ds2 ¼ dt2 −Ωðx1; x2Þððdx1Þ2 þ ðdx2Þ2Þ: ð3:2Þ

The energy bound is

E ≥ πN; ð3:3Þ

where N is the topological charge, and the static energy is

E ¼ 1

2

Z
M
ðΩ−1B2 þD1uD1uþD2uD2u

þ Ω
4
ð1 − uūÞ2Þd2x: ð3:4Þ

The bound is saturated for configurations obeying the
Bogomolny equations

D1uþ iD2u ¼ 0; ð3:5Þ

B −
Ω
2
ð1 − uūÞ ¼ 0: ð3:6Þ

To get the Bradlow bound, we integrate the last equation
over the physical (base) space manifold M. Then,

2

Z
M

Bd2xþ
Z
M

uūΩd2x ¼
Z
M

Ωd2x: ð3:7Þ

If the base space is a compact surface without boundary, the
first Chern number must be an integer N, i.e., the magnetic
flux ΦB ≡ R

d2xB ¼ 2πN, so

4πN þ
Z
M

uūΩd2x ¼ VM; ð3:8Þ

where VM ¼ R
MΩd2x is the total area (two-dimensional

volume) of the physical space. Hence, finally, we arrive at
the bound

VM ≥ 4πN: ð3:9Þ
The meaning of the bound is the following. For a given
value of the topological charge N, solutions of the
Bogomolny equations (BPS vortices) do not exist unless
the area of the (compact) base space is bigger than 4πN. For
a fixed volume of the base-space manifold, one can put a
finite number of BPS vortices up to a maximal number
(provided by the bound), N ≤ ðVM=4πÞ, above which
vortices are no longer solutions of the Bogomolny equa-
tions but, instead, solve the full second-order equations of
motion. Here we introduce the notion of the Bradlow
volume VB as the minimal volume of the manifold M for
which BPS vortices (of a given topological charge) do
exist. Obviously, this quantity can be defined for any model
with BPS solitons.
Definition.—The Bradlow volume VB is the minimal

volume of the base-space (compact) manifoldM for which
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the BPS sector of a solitonic model has a nontrivial
solution.
The energy of the BPS vortices (VM ≥ VB) is indepen-

dent of the base-space volume and takes the constant value

E ¼ πN: ð3:10Þ

Below the bound, for VM < VB, there only exists the
“constant” non-BPS solution of the full second-order Euler-
Lagrange (EL) equations

u ¼ 0; B ¼ 2πNV−1Ω ð3:11Þ

with energy

E½V� ¼ ð2πNÞ2
2V

þ V
8
: ð3:12Þ

In all cases, the geometric (thermodynamical) volume V of
a vortex is equal to VM, as the vortices cover the full base
space. Then we define pressure as

P ¼ −
�∂E
∂V

�
: ð3:13Þ

For BPS solutions, the energy E ¼ πN is independent of
the volume; hence P ¼ 0 for V ≥ VB. Note that also the
pressure density is identically 0 in this case due to the
Bogomolny equations. Below the bound (V ≤ VB), a
nontrivial positive pressure appears,

P ¼ ð2πNÞ2
2V2

−
1

8
¼ 1

8

�
V2
B

V2
− 1

�
: ð3:14Þ

As a consequence, one could say that the Abelian-Higgs
model on a compact manifold at critical coupling and large
(topological charge or energy) density describes solitonic
matter with a maximally stiff mean-field equation of state.
In fact, the mean-field energy density reads

ϵ̄ ¼ E
V
¼ ð2πNÞ2

2V2
þ 1

8
¼ 1

8

�
V2
B

V2
þ 1

�
: ð3:15Þ

Hence,

ϵ̄ ¼ Pþ 1

4
: ð3:16Þ

This equation of state for vortices is valid for the case of a
compact manifoldM without boundary. This means that it
does not have to be identical to the equation of state of
vortex matter in the plane, which represents a system of
vortices enclosed in a finite volume subspace of the original
R2 space. In such a situation, that is a vortex in a finite flat
disc D ⊂ R2, one has to carefully face the issue of the
boundary conditions. On R2, the first Chern number does

not have to be an integer, and the quantization of the
magnetic flux is, instead, a consequence of the condition of
finite energy. In polar coordinates μ ¼ t; r;φ, finite static
energy requires limr→∞u ¼ eiαðφÞ and, in the gauge At ¼ 0,
Ar ¼ 0, limr→∞Aφ ¼ ∂φα, and the vortex number is given
by the winding of α at infinity, αð2πÞ − αð0Þ ¼ 2πN.
On a finite disc D ⊂ R2, there exist two possibilities to

put a vortex with vorticity N such that u at the boundary of
D still is uj∂D ¼ eiα and α changes by 2πN while traversing
the boundary once (i.e., imposing Dirichlet boundary
conditions on the field u). The first possibility consists
in requiring that the vortex still obeys the BPS equations. It
is then no longer possible to require that the gauge field
approaches a pure gauge at the boundary and, conse-
quently, the magnetic flux is no longer quantized [16].
The easiest way to see this is by assuming a round disc with
radius R and the spherically symmetric ansatz

uðr;φÞ ¼ eiNφfðrÞ; Aφ ¼ N − aðrÞ ⇒ B ¼ −
a0

r
ð3:17Þ

leading to the BPS equations

f0 ¼ af
r
; a0 ¼ −

1

2
rð1 − f2Þ: ð3:18Þ

On R2, the boundary conditions for a vortex are fð0Þ ¼ 0,
að0Þ ¼ N and limr→∞fðrÞ ¼ 1, limr→∞aðrÞ ¼ 0. On a
finite disc, the two conditions fðRÞ ¼ 1 and aðRÞ ¼ 0
together, however, are too strong (as may be checked
easily) and only permit the trivial solution f ¼ 1, a ¼ 0.
Requiring fðRÞ ¼ 1 (Dirichlet boundary condition) there-
fore forces us to allow for a nonzero aðRÞ≡ aR, and the
magnetic flux ΦB ¼ 2π

R
drrB ¼ 2πðN − aRÞ is no longer

quantized. The energy, on the other hand, still takes the
BPS value E ¼ πN, and the pressure is, therefore, 0. These
solutions exist on discs of arbitrary size [16]; therefore,
there is no Bradlow bound for the Abelian-Higgs model at
the critical coupling on a flat finite discD. Both the fact that
the pressure remains 0 and that the magnetic flux changes
its value with the disc size implies that these vortices should
not be interpreted as squeezed versions of the original
vortex on R2.
The second possibility consists in requiring both that

uj∂D ¼ eiα and that Aμ is pure gauge at the boundary of the
disc, such that the magnetic flux remains quantized. The
corresponding vortex can no longer obey the BPS equa-
tions, but it may still solve the full (static) second-order
Euler-Lagrange equations. In particular, for a spherically
symmetric disc and for the spherically symmetric ansatz
from above, we may now impose fðRÞ ¼ 1 and aðRÞ ¼ 0.
The resulting solution has a quantized magnetic flux and a
nonzero pressure (because it is not BPS) and may,

VOLUME OF A VORTEX AND THE BRADLOW BOUND PHYSICAL REVIEW D 95, 116007 (2017)

116007-5



therefore, now be interpreted as a squeezed version of the
spherically symmetric BPS vortex on R2.
We remark that in the recent paper [17] several versions

of vortex equations related to but different from the
standard BPS equation (3.6) have been considered, leading
to interesting variations of the Bradlow bound. In one case,
a BPS vortex equation with an “inverse” Bradlow bound
N ≥ ðVM=4πÞ has been found, where the vortex number
must be above a certain minimum value. The BPS vortices
in this model are, however, critical points but not minima of
the energy functional, which is not even bound from below.
The corresponding vortex equation itself was already
introduced in [18] in a different context. Another BPS
vortex equation studied in [17] (“Bradlow vortices”) may
have solutions only if the volume of the manifold is equal to
the Bradlow volume, so that the “Bradlow bound” is
converted into a “Bradlow equation” (for more on this
model see [19]).

B. Generalized Abelian-Higgs vortices

It has been observed recently [20] that one can generalize
the Abelian-Higgs model preserving its BPS property by
allowing for two field dependent non-negative coupling
functions that multiply the gauge and the Higgs kinetic
parts of the action,

Lgen ¼
Z �

−
Gðjuj2Þ

4
F2
μν þ

wðjuj2Þ
2

DμuDμu −U

�
Ωd2x:

ð3:19Þ

Here, the potential UðuūÞ is always assumed to take its
vacuum value at juj ¼ 1, i.e., Uð1Þ ¼ 0. Further, w is
related to a nontrivial target space metric, whereas G
defines a kind of generalized magnetic permeability (we
remark that the case G ¼ 1, w ≠ 1 was already considered
in [21]). The model has a BPS sector if the coupling
functions G, w and the potential U obey (f ≡ juj)

d
df

ffiffiffiffiffiffiffiffi
GU

p
¼ 1ffiffiffi

2
p wf ð3:20Þ

or, for the simplifying assumption w ¼ 1,

GU ¼ 1

8
ð1 − f2Þ2: ð3:21Þ

The Bogomolny equations in this case are [20,22]

D1uþ iD2u ¼ 0 ð3:22Þ

B −
Ω
2

ð1 − uūÞ
GðuūÞ ≡ B − 4Ω

UðuūÞ
1 − uū

¼ 0; ð3:23Þ

and the corresponding BPS energy is still EBPS ¼ πN. The
question is whether for these models, when defined on a

compact space manifold M without boundary, there exists
a Bradlow bound VB such that the above BPS equations
may be solved for VM ≥ VB. Here we give some indica-
tions that this may be the case, at least for some choices of
G. First of all, the above BPS equations have the constant,
trivial solution

u ¼ 0; B ¼ Ω
2Gð0Þ : ð3:24Þ

As a consequence of the magnetic flux quantization, the
manifold where this solution exists must have the Bradlow
volume

VB ¼ 4πNGð0Þ ¼ πN
2Uð0Þ : ð3:25Þ

Next we observe that, for arbitrary volume VM, the full
second-order EL equations have the constant solution

u ¼ 0; B ¼ 2πNV−1
MΩ: ð3:26Þ

The corresponding static energy is

E ¼ 1

2

Z
d2x

�
Gð0Þ
Ω

B2 þ 2ΩUð0Þ
�

¼ ð2πNÞ2 Gð0Þ
2V

þ Uð0ÞV ð3:27Þ

(where V ¼ VM). Further, this energy takes its minimal
value E ¼ EBPS ¼ πN exactly at VM ¼ VB ¼ 4πNGð0Þ
[where we used that Uð0Þ ¼ ð8Gð0ÞÞ−1] and leads to
positive pressure for VM < VB but to negative pressure
for VM > VB. This indicates an instability of the formal
solution (3.26) for VM > VB, i.e., the existence of field
configurations with lower energy. A different question is
whether local extrema (static solutions) or global minima
(BPS solutions) of the energy functional may be found
among these low-energy configurations. A general answer
to this question for general G is beyond the scope of the
present paper. We also find some indications that the
answer to this question may be quite sensitive to the choice
of the coupling function G. For let us assume that BPS
solutions exist for VM ≥ VB and provide the true, stable
solutions. A first, related question to ask is under which
circumstances the Bradlow volume (3.25) (which has a
trivial solution with BPS energy) provides, at the same
time, a Bradlow bound (such that BPS solutions can exist
only for VM ≥ VB, but not for VM < VB). Integrating the
second BPS equation over the manifold, the resulting
equation may be expressed as

VB ¼ VM −
1

Uð0Þ
Z

d2xΩ
�
Uð0Þ − UðuūÞ

1 − uū

�
: ð3:28Þ
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This implies VB ≤ VM provided that the second term on
the rhs is non-negative. A sufficient condition for this is

UðuūÞ ≤ Uð0Þð1 − uūÞ: ð3:29Þ

This condition is also necessary in a certain sense, because
otherwise the condition VB ≤ VM would not be universal
and would depend on the field configuration u (it would be
broken by fields that take such values in most of M that
violate the above inequality) and on the volume element Ω
(Ω could enhance the contribution of these “forbidden”
regions). A class of potentials that obey (3.29) is

U ¼ ð1 − uūÞα; α ≥ 1; ð3:30Þ

corresponding to G ¼ ð1=8Þð1 − uūÞ2−α.
Now, let us assume that we chose a potential obeying

(3.29) and, further, let us assume that BPS vortex solutions
exist for VM > VB. Then these BPS vortex solutions may
show two rather different types of behavior for VM close to
VB. The first possibility is that the BPS vortex solution
approaches the constant solution (3.24) in the limit
VM → VB. In other words, the stable constant solution
(3.26) for VM < VB bifurcates at VM ¼ VB into an
unstable constant solution and a stable BPS solution.
This is known to happen, e.g., for the standard Abelian-
Higgs model at critical coupling [U ¼ ð1=8Þð1 − uūÞ2]. It
is plausible to conjecture that this behavior occurs for
deformation functions G that do not deviate too much from
the standard Abelian-Higgs case G ¼ 1. In physical terms,
one might say that at VM ¼ VB a second-order phase
transition occurs. The second possibility is that the BPS
vortex solution is completely different from the constant
solution (3.24) even for VM very close to VB, despite the
fact that they have the same energy. In the limit VM → VB
the BPS vortex may either approach a solution different
from (3.24), or the limit is not attainable, i.e., a limiting
solution does not exist. In both cases, the phase transition is
of first order. This possibility of a first-order phase
transition may appear strange at first sight, but we find
that it exists and is realized by compact BPS vortex
solutions, i.e., BPS vortices that deviate from their vacuum
value only in a finite region with the topology of a disc.
Two particular cases of compact vortices allowing for
explicit solutions are considered in the next subsection.
We end this section by remarking that there exists the

particular case G ¼ juj, which allows us to reduce the BPS
equations on R2 to the (integrable) elliptic sinh-Gordon
equation for g ¼ ln juj. It can be demonstrated that in this
case a vortex solution exists for N ¼ 1 but not for higher
vortex number [23], although an explicit expression for this
solution of the elliptic sinh-Gordon equation (obeying the
boundary conditions of a vortex) cannot be found.

C. Compact generalized Abelian-Higgs vortices

Very recently, some examples of compact BPS vortices,
i.e., BPS vortices that deviate from their vacuum value only
in a finite subregion (the “locus set” of the vortex) of R2,
have been constructed for the generalized Abelian-Higgs
model in [24]. This implies that these compact vortices
continue to exist on space manifolds that are themselves
finite subsets of R2 (discs), provided that the locus set of
the compact vortex is completely contained within the disc.
A different question is whether the corresponding models
may support BPS vortices on compact manifolds without
boundary. We find that the characteristic behavior of such
solutions depends on the specific model under consider-
ation; therefore, we just consider two particular examples
found in [24]. We remark that the compacton solutions in
[24] were constructed as limiting cases of regular, non-
compact vortices, demonstrating that compactons (with low
regularity at the compacton boundary) may be understood
as limiting cases of noncompact vortices with high regu-
larity (infinitely differentiable).

1. Case G= j1− juj2j
For G ¼ j1 − f2j, f ≡ juj, (and w ¼ 1), the resulting

potential reads

U ¼ 1

8
j1 − f2j: ð3:31Þ

This potential approaches the vacuum at f ¼ 1 less than
quadratically (in fact, linearly) and, therefore, leads to
compacton solutions, which are of low regularity at the
compacton boundary. Using the spherically symmetric
ansatz (3.17) in R2, the resulting BPS equations in the
fundamental domain of the vortex (for 0 ≤ f ≤ 1) are

f0 ¼ af
r
; a0 ¼ −

r
2
: ð3:32Þ

The second equation has the solution

a ¼
�
N − r2

4
r ≤ 2

ffiffiffiffi
N

p

0 r > 2
ffiffiffiffi
N

p
;

ð3:33Þ

and the compacton radius is rc ¼ 2
ffiffiffiffi
N

p
, leading to the

compacton volume Vc ¼ πr2c ¼ 4πN, which exactly agrees
with the Bradlow volume VB ¼ 4πNGð0Þ ¼ 4πN. The
gauge potential a is continuous at the compacton boundary,
but the resulting magnetic field

B ¼
� 1

2
r ≤ 2

ffiffiffiffi
N

p

0 r > 2
ffiffiffiffi
N

p ð3:34Þ

is discontinuous. Finally, integration of the first BPS
equation leads to
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f ¼
8<
: ð r

2
ffiffiffi
N

p ÞNe2N−r2
8 r ≤ 2

ffiffiffiffi
N

p

1 r > 2
ffiffiffiffi
N

p
:

ð3:35Þ

Both f and f0 are continuous at r ¼ rc ¼ 2
ffiffiffiffi
N

p
.

The fact that the Bradlow volume and the compacton
volume agree makes one suspect that compact BPS vortices
continue to exist on compact manifolds M without
boundary provided that the volume of the manifold is
sufficiently big, VM > VB. Here we demonstrate that this is
indeed true for the specific caseM ¼ S2. For our purposes,
it is useful to generalize the two BPS equations (3.22) and
(3.23) [which, as they stand, only hold for metrics of the
form (3.2)] to space metrics onM in arbitrary coordinates,
i.e., ds2M ¼ gijdxidxj. For the second BPS equation this is
easy, because it may immediately be written as an equation
between two-forms,

B ¼ 1

2
vol; ð3:36Þ

where B ¼ dA is the magnetic two-form, and vol is the
volume form (area two-form) on M. In particular, for the
metric on S2 in longitude and latitude coordinates,

ds2S2 ¼ R2ðdθ2 þ sin2θdφ2Þ ð3:37Þ

(where R is the—dimensionless—radius of the sphere), and
for the rotationally symmetric ansatz

A ¼ ðN − aðθÞÞdφ; u ¼ fðθÞeiNφ; ð3:38Þ

this equation leads to

a;θ ¼ −
R2

2
sin θ; ð3:39Þ

and the formal solution obeying the boundary condition
aðθ ¼ 0Þ ¼ N is

a ¼ R2

2
ðcos θ − 1Þ þ N: ð3:40Þ

This solution may be extended to a compacton solution

a¼
�R2

2
ðcosθ− 1Þ þN θ ≤ θc

0 θ > θc;
cosθc ¼

R2 − 2N
R2

ð3:41Þ

provided that R2 > N, that is, VS2 ≡ 4πR2 > 4πN ≡ VB.
So, as expected, the compacton solutions on S2 exist if the
area of the two sphere exceeds the Bradlow volume
(area) VB.

The first BPS equation (3.22) may be expressed in a
coordinate-independent way as follows. Temporarily
renaming the coordinates like x1 → x, x2 → y, (3.22) reads
Dyu ¼ iDxu or, after introducing the complex-valued one-
form

Du ¼ DxudxþDyudy; ð3:42Þ

Duð∂yÞ ¼ iDuð∂xÞ. In other words, evaluating Du on the
vector rotated by 90 degrees in the counterclockwise sense
∂x → ∂y is equivalent to multiplying Duð∂xÞ by i. But this
has a simple coordinate-invariant generalization on any
oriented Riemannian two manifoldM. Then Du is a linear
map from the tangent space to the complex numbers,
Du∶ TpM → C. We may define the following complex
structures on the two vector spaces C and TpM. On C it is
just multiplication by i, and on TpM, rotation by 90 degrees
counterclockwise, as determined by the metric and ori-
entation on M. Then the first BPS equation in its
coordinate-invariant form just says that Du is complex
linear, that is,

DuðJXÞ ¼ iDuðXÞ ð3:43Þ

for arbitrary vectors X. In particular, for the metric (3.37)
and for the vector X ¼ ∂θ ⇒ JX ¼ ð1= sin θÞ∂φ, this
equation reads ð1= sin θÞDφu ¼ iDθu, which, for the ansatz
(3.38), leads to the first-order ordinary differential equation
(ODE)

f;θ ¼
af
sin θ

: ð3:44Þ

The solution may be found easily by introducing the new
variable t ¼ cos θ and, with the correct choice of normali-
zation, reads

f ¼
� ð cos θþ1

cos θcþ1
ÞR2−N2 ð 1−cos θ

1−cos θc
ÞN2 θ ≤ θc

1 θ > θc:
ð3:45Þ

It may be checked that fðθcÞ ¼ 1, and f0ðθcÞ ¼ 0.
Obviously, the BPS compacton solution that covers the

whole fundamental domain 0 ≤ f ≤ 1 is completely differ-
ent from the constant solution (3.26) even for a VS2 very
close to VB. The phase transition from the constant solution
to the BPS solution is, therefore, a first-order transition in
the case of compactons. Further, for compact BPS vortices
the limit VM → VB is not attainable. In this limit, the
boundary of the compacton (with the topology of S1) has to
shrink to a point, which is incompatible with the nontrivial
boundary condition for the Higgs field u (it must wind N
times about the boundary for vortex number N).
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2. Case G= ð2=3Þj1− juj2j=juj2
First of all, for G ¼ ð2=3Þj1 − f2j=f2 we observe that

the Bradlow volume VB ¼ 4πNGð0Þ ¼ ∞ is infinite. A
related fact is that the constant solution (3.26) does not exist
(i.e., has infinite energy). Also, the corresponding potential
does not obey the inequality (3.29). Unsurprisingly, thus,
the solutions on R2 found in [24] behave in a way that is
quite different from the case considered in the previous
subsection. BPS solutions are still compact vortices, but the
compacton radius now is rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 2Þ=3p

, leading to a
compacton volume Vc ¼ πr2c ¼ ðπ=3ÞNðN þ 2Þ that
grows faster than linear (approximately quadratically) with
the winding number. It is plausible to conjecture that there
exists a relation between this unusual growth of the
compacton volume, on the one hand, and the nonexistence
of a (finite) Bradlow volume, on the other hand, because
any (finite) Bradlow volume proportional to N would be
surpassed by this compacton volume for sufficiently large
N. On the other hand, compact BPS vortices continue to
exist at least on some compact manifolds without boundary
provided their volume is sufficiently large. Indeed, from
any compact vortex solution on R2 we immediately get a
solution on a sufficiently large disc D ⊂ R2 with the flat
metric. From there we get a solution on a compact manifold
with the topology of a two sphere by just gluing this disc to
a second disc along the boundaries of the two discs. The
first disc may even be curved in the region outside the
compacton. The gauge potential cannot be well defined on
the whole second disc (it is a large gauge transformation
there), but this problem may be remedied by acting with the
inverse of this large gauge transformation on Aμ and on u. It
is well known that on a compact manifold without
boundary, in any case, one gauge potential cannot be
defined globally and, instead, several potentials have to
be chosen on several patches, related by large gauge
transformations in the overlap regions (it is this fact that
gives rise to the quantization of the magnetic flux in the first
place). Solutions on more complicated manifolds may be
constructed by gluing the first disc to more complicated
surfaces with S1 boundaries instead of the second disc.
A different question is whether solutions exist on manifolds
where the metric deviates from the flat one in the region of
the compacton. This problem is, however, beyond the scope
of the present paper.
We conclude that, in this and related cases, a Bradlow

bound as a useful criterion for the existence of BPS vortex
solutions does not seem to exist (the formal Bradlow
volume is infinite, but BPS solutions on manifolds with
finite volumes still exist). We could, of course, define the
compacton volume for each N as the Bradlow volume, but
this is not a useful definition because (i) it is not given
a priori, i.e., we have to find the compact BPS solution and
its volume to get the Bradlow volume and, (ii) there is no
guarantee that the Bradlow volume will be independent of

the space manifold M (BPS solutions on different M
might have different volumes).

IV. PERFECT FLUID FIELD THEORIES

Another class of models for which we investigate the
relation between the (geometric/thermodynamic) volume
and the Bradlow volume is a family of models describing
perfect fluids. This means that the corresponding action
leads to an energy-momentum tensor of the perfect fluid
type

Tμν ¼ ðpþ ρÞuμuν − pgμν; ð4:1Þ

where p is the pressure, ρ the proper energy density and uμ

the four-velocity.

A. Scalar field in 1 + 1 dimensions

The simplest example of a perfect fluid type action is
provided by a real scalar field in (1þ 1) dimensions

L ¼ 1

2
∂μϕ∂μϕ −m2UðϕÞ: ð4:2Þ

Then the energy-momentum tensor reads

Tμν ¼ ∂μϕ∂νϕ − gμνL ¼ uμuνðE þ PÞ − gμνP ð4:3Þ

where the proper energy density and pressure density are

E ¼ −
1

2
∂μϕ∂μϕþm2UðϕÞ; ð4:4Þ

P ¼ −
1

2
∂μϕ∂μϕ −m2UðϕÞ; ð4:5Þ

while the “two-velocity” uμ ¼ ð−∂νϕ∂νϕÞ−1=2ϵμρ∂ρϕ.
For static configurations, the proper energy density and
pressure density are simply components of the energy-
momentum tensor

E ¼ T00 ¼
1

2
ϕ02 þm2UðϕÞ; ð4:6Þ

P ¼ T11 ¼
1

2
ϕ02 −m2UðϕÞ: ð4:7Þ

Furthermore, due to the conservation of the energy-
momentum tensor the pressure density has to take a
constant value P ¼ P, which is simply an integration
constant when we integrate the full second-order static
field equation once. Now we assume that the potential has
at least two vacua at ϕþ and ϕ−, which leads to the
emergence of kinks (topological solitons) as configurations
interpolating between them. Here the topological current is
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jμ ¼ −
1

ϕþ − ϕ−
ϵμν∂νϕ: ð4:8Þ

The energy of a kink is bounded from below by a
topological bound

E ¼ 1

2

Z
∞

−∞
dxðϕ02 þ 2m2UÞ ≥

����m
Z

dx
ffiffiffiffiffiffiffi
2U

p
ϕ0
����

¼ m

����
Z

ϕþ

ϕ−

dϕ
ffiffiffiffiffiffiffi
2U

p ����; ð4:9Þ

where the last integral is over the “fundamental domain” of
target space (the region ϕ− ≤ ϕ ≤ ϕþ where the soliton
takes its values). The bound is saturated by solutions of the
zero-pressure equation called the BPS equation

1

2
ϕ02 −m2UðϕÞ ¼ 0: ð4:10Þ

Such BPS kinks are global energy minima in the respective
topological sectors. However, kink solutions exist also for
any positive value of the pressure. Their energy is again
given by a target space (solution independent) formula

EðPÞ ¼ 1ffiffiffi
2

p
Z

ϕþ

ϕ−

dϕ
2m2U þ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2U þ P

p : ð4:11Þ

Now, the vacua are approached at a finite distance leading
to a finite geometric volume

VðPÞ ¼ 1ffiffiffi
2

p
Z

ϕþ

ϕ−

dϕ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2U þ P
p : ð4:12Þ

As we know this volume is the thermodynamic volume,
because

P ¼ −
dE
dV

: ð4:13Þ

At the equilibrium (P ¼ 0)

ϕ0 ¼ �m
ffiffiffiffiffiffiffi
2U

p
⇒

dϕ

m
ffiffiffiffiffiffiffi
2U

p ¼ dx; ð4:14Þ

where the last formula makes sense only where the field is
outside of the vacuum. Then the geometric volume

V ¼ 1ffiffiffi
2

p
Z

ϕþ

ϕ−

dϕffiffiffiffiffiffiffiffiffiffiffiffi
2m2U

p ð4:15Þ

can be infinite (usually infinitely extended solitons) or
finite (compactons), and is completely governed by the
potential or, more precisely, by its behavior close to
the vacua.

The volume of a scalar soliton in (1þ 1)-dimensional
models is base-space independent. In fact, as the expression
of the volume is a target space integral, which obviously is
not sensitive to a particular form of the solution, the result is
exactly the same, whether the base space is R or S1 with
radius R. Of course, the only limitation is that the solution
does exist, i.e., the Bogomolny equation has a pertinent
soliton on a finite volume space. This is equivalent to the
appearance of the Bradlow-type bound. A BPS soliton
exists if its geometrical volume is smaller than the volume
of the base-space manifold. Quite interestingly, the upper
geometric volume is identical to the Bradlow volume
(minimal volume in which BPS kinks exist)

VB ¼ 1ffiffiffi
2

p
Z

ϕþ

ϕ−

dϕffiffiffiffiffiffiffiffiffiffiffiffi
2m2U

p : ð4:16Þ

Indeed, for compactons one can always put them in a
bigger volume V 0 > VB as a superposition of nonoverlap-
ping smaller charge units. This is a rather simple thermo-
dynamical system of a gas of noninteracting compactons.
Hence, the bound is now

VB ≤ V 0 ≤ VM: ð4:17Þ

If we are below the bound no BPS solitons exist.
Topological solitons become now non-BPS objects solving
the nonzero-pressure equation.
Let us underline that the Bradlow volume is finite if and

only if the kink is a compacton (for example, in R). This is
uniquely determined by the potential or, more precisely, by
the approach to the vacuum. If close to vacuum ϕ ¼ ϕa þ
δϕ and U ∝ ðδϕÞc, then compactons exist if c < 2. On the
other hand, the Bradlow volume is infinite if and only if
kinks are usually infinitely extended solitons in R. Note
that in the Abelian-Higgs model at the critical coupling the
geometric volume of a BPS vortex on R2 is infinity
although the Bradlow volume is finite.
In the next sections we prove that the features outlined

above are genuine features of any perfect fluid scalar field
theory in any dimension.

B. Higher-dimensional generalization

There is a generalization of the (1þ 1)-dimensional
single scalar theory to any dimension which preserves
the perfect fluid property. It relies on the observation that
the Lagrangian (4.2) can be written as

L ¼ −
ðϕþ − ϕ−Þ2

2
jμjμ −m2UðϕÞ; ð4:18Þ

where jμ is the topological current. Then, in (dþ 1)
dimensions the models we consider are [25]
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L ¼ −
1

2
jμjμ −m2U; ð4:19Þ

where now we assume a target space spanned by d scalars
ϕ ¼ ðϕaÞ, a ¼ 1.::d and

jμ ¼
1

d!
ϵa1…adϵμμ1…μdKðϕaÞ∂μ1ϕa1…∂μdϕad ; ð4:20Þ

where K is related to a volume form on the target spaceN ,

dΩd ¼ KðϕaÞdϕ1 ∧ … ∧ dϕd: ð4:21Þ

For the static case, the total energy is again bounded from
below by a Bogomolny-type bound

E ¼ 1

2

Z
ddxðj20 þ 2m2UÞ ≥

����
Z

ddxj0
ffiffiffiffiffiffiffiffiffiffi
2mU

p ����
¼ k

Z
N 0

dΩd
ffiffiffiffiffiffiffiffiffiffi
2mU

p
; ð4:22Þ

where k is a winding number of the map and N 0 is the
fundamental domain of the soliton, which can but does
not have to coincide with the whole target space. In fact, in
the examples discussed below we assume N ¼ C while
N 0 ¼ D is a disc. The bound is saturated by solutions of a
Bogomolny equation

j20 − 2m2U ¼ 0: ð4:23Þ

Furthermore, the models lead to a perfect fluid energy-
momentum tensor that, in the static case, has the nonzero
components

T00 ¼ E ¼ 1

2
j20 þm2U; ð4:24Þ

Tii ¼ P ¼ 1

2
j20 −m2U; ð4:25Þ

where again due to the energy-momentum tensor conser-
vation law P ¼ P ¼ const. This gives rise to nonzero
pressure configurations that solve the equation

1

2
j20 ¼ Pþm2U; ð4:26Þ

where the vacuum value must be approached at a finite
distance (volume)

V ¼ k
Z
N 0

dΩd 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mU þ P

p : ð4:27Þ

Finally we can also define the Bradlow volume

VB ¼ k
Z
N 0

dΩd 1ffiffiffiffiffiffiffiffiffiffi
2mU

p : ð4:28Þ

In the subsequent parts of the paper we provide some
examples of such models and discuss them from the
Bradlow volume and Bradlow bound perspective.

C. Global vortices with the SDiff symmetry

1. Model and Bogomolny equation

Perhaps the best and simplest example of a solitonic
model with a perfect fluid energy-momentum tensor in
(2þ 1)-dimensional space-time is provided by the follow-
ing model [26],

LBPS vortex ¼ L4 þ L0; ð4:29Þ

which is closely related to the so-called BPS baby Skyrme
model [27–30]. It consists of two parts, a fourth derivative
term

L4 ¼ −ðuμūμÞ2 þ u2μū2ν; ð4:30Þ

and a nonderivative part, i.e., a potential

L0 ¼ −Uðu; ūÞ; ð4:31Þ

which has a vacuum at juj ¼ 1. Without loss of generality
we set all constants equal to 1. It can be proven that there
is a topological bound for the static energy for any
potential U,

EBPS vortex ¼
Z
M

ffiffiffi
g

p
d2xð½ð∇u∇ūÞ2 − ð∇ūÞ2ð∇uÞ2� þ UÞ

¼
Z
M

ffiffiffi
g

p
d2x

�
iffiffiffi
g

p ϵij∂iu∂jū�
ffiffiffiffi
U

p �
2

∓ 2i
Z
M

d2xϵij∂iu∂jū
ffiffiffiffi
U

p
ð4:32Þ

≥ j2i
Z
M

d2xϵij∂iu∂jū
ffiffiffiffi
U

p
j ð4:33Þ

¼ 4πjNjh
ffiffiffiffi
U

p
iD ð4:34Þ

as the topological charge is

N ¼ i
2π

Z
d2xϵij∂iu∂jū≡

Z
d2xq; ð4:35Þ

where q is the charge density. The disc D ¼
fu ∈ Cjjuj ≤ 1g, a subspace of the full C target space,
is the fundamental domain of the vortex solution.
Moreover,
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h ffiffiffiffi
U

p iD ¼
Z

idu ∧ dū
2π

ffiffiffiffi
U

p ¼ 1

π

Z
fdfdϕ

ffiffiffiffi
U

p ð4:36Þ

is the average value of
ffiffiffiffi
U

p
on D. Here, f;ϕ are polar

coordinates on D, i.e., u ¼ feiϕ. The bound is saturated if
and only if the following Bogomolny equation is satisfied:

iffiffiffi
g

p ϵij∂iu∂jū ¼ �
ffiffiffiffi
U

p
: ð4:37Þ

It can be shown that the saturating solutions do fulfil
the second-order Euler-Lagrange equations. So, the model
possesses a BPS sector, which is not empty if the
Bogomolny equation has at least one solution. Note that
identically as in the one-dimensional case the Bogomolny
equation is defined for any potential. This is a fundamental
difference compared to the Abelian-Higgs model. In the
subsequent analysis we consider a family of potentials

U ¼ 1

4
ð1 − uūÞ2α; ð4:38Þ

where the parameter α ≥ 1=2.

2. Example—flat space

Before we discuss the Bradlow bound and the Bradlow
volume in a general setup it is instructive to solve the
Bogomolny equation exactly in the case where U depends
only on juj. In flat space one may perform it assuming the
usual axially symmetric ansatz

uðr;φÞ ¼ fðrÞeiNφ; ð4:39Þ

where N ∈ Z is the topological charge (winding number)
and f is a profile function. Here we used polar coordinates.
Note that further (but not necessarily all) solutions can be
obtained if SDiff transformations are applied to the axially
symmetric solutions. Now, we have

2N
r

ffr ¼
1

2
ð1 − f2Þα: ð4:40Þ

A topologically nontrivial solution requires fðr ¼ 0Þ ¼ 0
and fðr ¼ RÞ ¼ 1where, as we see, the soliton boundary R
can be infinite (as for usual solitons) or finite (compactons).
Then, depending on the value of the parameter α we find
the following types of solutions. For α ∈ ð1

2
; 1Þ we have

compactons

1 − f2 ¼
� ð1 − r2

R2Þ 1
1−α r ≤ R

0 r ≥ R;
R2 ¼ 4N

1 − α
: ð4:41Þ

Here R is the compacton radius. For α ¼ 1 we find (more
than) exponentially localized solitons

1 − f2 ¼ e−
r2
4N: ð4:42Þ

Finally for α > 1 we obtain powerlike localized solitons

1 − f2 ¼
�

R2

r2 þ R2

� 1
α−1
; R2 ¼ 4N

α − 1
: ð4:43Þ

Here R is just an integration constant (not a compacton
radius as the solitons extend to infinity). The conclusion is
that in the flat space the BPS sector is not empty. The
Bogomolny equation possesses solutions for any value of
α, i.e., for any possible power-type approach to the vacuum.

3. Example—finite volume space M=S2nfð0;0;− 1Þg
As we found compact vortex solutions for some poten-

tials (some values of α) on R2, one might naively expect
similar compact solutions on manifolds with a finite but
sufficiently big volume (VM > VB). There is, however, a
topological obstruction to the existence of these solutions
that requires the manifold to be noncompact, or have a
boundary. The reason is that, for vortices, the vacuum is at
juj ¼ 1, which implies that, outside the domain of the
compacton, u ¼ eiϕðxjÞ. Further, for vortices with vortex
number N, the phase ϕðxjÞ must change by 2πN along
closed paths that enclose the domain of the compact vortex.
But on a compact manifold without boundary this is
impossible. For a manifold with the topology of a two
sphere, e.g., one may shrink such a curve to a point in the
hemisphere opposite to the compacton, which is obviously
incompatible with the nontrivial winding. The way out is a
Higgs field u that has a singularity at some point in the
“vacuum hemisphere” that impedes the shrinking. This
point must then be removed from the manifold, giving it the
topology of an open disc. Alternatively, one can remove an
open disc from S2, leaving a compact manifold with
boundary, diffeomorphic to a closed disc. For gauged
SDiff vortices, the problem with the nontrivial phase u ¼
eiϕðxjÞ in the vacuum region continues to exist, because it
turns out that the magnetic flux of the corresponding BPS
solutions is not quantized. We remark that this problem
does not exist for BPS baby skyrmions (SDiff baby sky-
rmions), because there the unique vacuum value is u ¼ 0,
which may be extended to the whole vacuum region (region
outside the compacton domain) on arbitrary manifolds. So
our considerations below, with some small modifications,
apply to that case even for compact manifolds without
boundary.
So, let us consider, for simplicity, the two-dimensional

spherewith the south pole removed,M ¼ S2nfð0; 0;−1Þg.
The metric still is

ds2S2 ¼ R2
S2ðdθ2 þ sin2θdϕ2Þ; ð4:44Þ

but now 0 ≤ θ < π. Using the ansatz uðθ;ϕÞ ¼ fðθÞeiNφ we
find the Bogomolny equation in the form
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2N
R2
S2 sin θ

ffθ ¼
1

2
ð1 − f2Þα: ð4:45Þ

The boundary conditions are fðθ ¼ 0Þ ¼ 0 and
fðθ ¼ θcÞ ¼ 1, where now θc must be smaller than π.
This is a nontrivial restriction that puts some bounds on the
existence of BPS vortices for our equation.
We start with α ∈ ð1

2
; 1Þ. Then,

1 − f2 ¼
� ðcos θ−cos θc

1−cos θc
Þ 1
1−α θ ≤ θc

0 θ ≥ θc;

cos θc ¼ 1 −
2N

R2
S2ð1 − αÞ : ð4:46Þ

This formal solution makes sense only if 1 ≥ cos θc > −1.
The first inequality is always satisfied. However, the second
one provides a restriction (for a given potential α < 1) for
the topological charge and radius of the two sphere, i.e., the
area (volume) of the compact manifold

1 −
2N

R2
S2ð1 − αÞ > −1 ⇒ VM >

4π

1 − α
jNj: ð4:47Þ

Only for a sphere with the volume larger than 4π
1−α jNj a BPS

solution with topological charge N exists. This is exactly
the Bradlow bound for the SDiff BPS global vortices.
For α ¼ 1 one can easily solve the BPS equation

1 − f2 ¼ Ce−
R2
S2
2N cos θ: ð4:48Þ

The problem is that there is no C for which the boundary
conditions, fðθ ¼ 0Þ ¼ 0 and fðθ ¼ θc < πÞ ¼ 1, would
be satisfied. Therefore the corresponding topologically
nontrivial BPS vortex cannot exist. The same happens
for any α > 1. We conclude that for α ≥ 1 (which for the
flat space corresponds to infinitely extended vortices) the
BPS sector on S2nfð0; 0;−1Þg is empty.

4. The Bradlow bound

It is not difficult to derive the pertinent Bradlow bound
(and corresponding Bradlow volume) for general potential
U and any manifold M with the right topology. Let us
assume for the moment that BPS solutions on a given
manifold exist. Then we divide the Bogomolny equa-
tion (4.37) by

ffiffiffiffi
U

p
, which makes sense only outside the

vacuum

2π
1ffiffiffiffi
U

p i
2π

1ffiffiffi
g

p ϵij∂iu∂jū ¼ 1: ð4:49Þ

Now we integrate it over the base-space manifold (remem-
bering that the equation is valid only inside the geometric
volume of the soliton)

2π

Z
M

1ffiffiffiffi
U

p i
2π

ϵij∂iu∂jūd2x ¼
Z
M

ffiffiffi
g

p
d2x: ð4:50Þ

Hence,

2N
Z

1ffiffiffiffi
U

p volD ¼ V ð4:51Þ

or

2πN

�
1ffiffiffiffi
U

p
�

D
¼ V; ð4:52Þ

where V denotes the geometric volume of the BPS soliton.
In fact, the left-hand side of this expression is the Bradlow
volume

VB ¼ 2πN

�
1ffiffiffiffi
U

p
�

D
: ð4:53Þ

Observe that the target space average of U−1=2 diverges if
the potential gives infinitely extended vortices in flat space,
while it is finite in the case of compactons. Furthermore, for
compactons it is trivial to construct a solution with the same
topological charge but in a bigger volume V 0. One has to
put for example N charge one compact vortices such that
there is the vacuum between them. Then, such a configu-
ration is still a BPS solution. Obviously, the volume cannot
be larger than the volume of the manifold,

VB ≤ V 0 ≤ VM; ð4:54Þ

which is precisely the Bradlow bound with the exactly
computed Bradlow volume. The energy of all such non-
overlapping BPS vortices is constant, which can be
interpreted as a gas of noninteracting solitons with
P ¼ 0. In contrast to the Abelian-Higgs vortices, such
BPS configurations with V > VB are trivial to construct.
The meaning of this law is as for the Abelian-Higgs

vortices and for kinks in 1þ 1 dimensions. An SDiff BPS
vortex may exist if its Bradlow volume is smaller that the
volume of the base-space manifold; i.e., the manifoldM is
large enough to host the BPS vortex. If the Bradlow volume
(minimal volume of charge N soliton) VB is bigger that
VM, then one can still have vortex solutions on M.
However, such vortices are no longer solutions of the
Bogomolny equation (not BPS vortices) but of the full EL
equations. For the perfect fluid model, the following
generalized first-order equation,

2π
i
2π

1ffiffiffi
g

p ϵij∂iu∂jū ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ P

p
; ð4:55Þ

is a first integral of the static EL equations, where the
pressure P is an integration constant. Therefore,
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2πN

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ P
p

�
D
¼ V: ð4:56Þ

For example, for potentials for which VB is infinite (usually
infinitely extended solitons) the SDiff BPS vortices can
only be constructed on an infinite volume manifold. If we
force them on a finite manifold then they will not be BPS
solitons following the Bogomolny equation but vortex
solutions of the full EL system, which here means the
same as solutions of the generalized Bogomolny equation
with nonzero pressure.
So far, the considerations of this section have assumed

that solutions to Eq. (4.55) exist (BPS solutions for P ¼ 0
and non-BPS ones for P > 0). We now show that such
solutions do exist, on sufficiently large domains M, under
mild topological restrictions. In order to include the case
P ¼ 0, we assume U is chosen so that VB < ∞, implying
that BPS solutions (if they exist) are compactons. We also
restrict to the case N ¼ 1. Note that (4.49) is just a special
case of (4.55), and that the latter has a natural geometric
interpretation [29]. Given a pressure P ≥ 0 solution of the
EL equations u∶ M → C, let Mvac ¼ fx ∈ M∶juðxÞj ¼
1g andM0 ¼ MnMvac. Then (4.55) implies that u defines
a volume preserving map M0 → D0, where D0 is the unit
disc equipped with the deformed volume form
Ω ¼ i

2
dz∧dz̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðz;z̄ÞþP

p . Conversely, given a volume preserving

map u0∶ M0 → D0 from M0 ⊆ M of volume V, this
defines a pressure P ≥ 0 vortex solution provided it can
be continuously extended to M so that juj ¼ 1 on
Mvac ≔ MnM0.
So, let M be an oriented Riemannian two-manifold

(possibly with boundary) of volume greater than V. Then
it certainly contains a submanifold M0, diffeomorphic
to an open disc, with volume V. Furthermore, there exists
a volume preserving diffeomorphism u0∶ M0 → D0
[31]. Since u0 has no critical points, it extends uniquely
to a map ū0 from the closure M̄0 to the closure D̄, which
maps the boundary S1 ¼ ∂M0 homeomorphically,
and with winding one, to the unit circle S1 ¼ ∂D̄. As
above, let Mvac ¼ MnM0. Assume that there exists a
continuous map f∶ Mvac → ∂M0 such that for all
x ∈ ∂M0, fðxÞ ¼ x. Then the volume preserving map
u0∶ M0 → D0 has a continuous extension to M given by

uðxÞ ¼ ðū0∘fÞðxÞ for all x∉M0, which, by definition, has
juðxÞj ¼ 1 for all x∉M0. This, then, is a charge 1 pressure
P ≥ 0 vortex solution on M.
Under what circumstances does a map f∶ Mvac →

Mvac with the required properties exist? Recall [32] that
a retraction of a topological space X to a subspace A is a
continuous map f∶ X → A ⊂ X with fðxÞ ¼ x for all
x ∈ A, which is homotopic to the identity map
id∶ X → X. Hence, a retraction from X ¼ Mvac to the
subspace A ¼ ∂M0 ⊂ Mvac certainly has the required
property to define an extension of u0, and so an extension
certainly exists if Mvac retracts to the circle ∂M0. This
happens if M ≅ R2, since then Mvac ≅ R2nD ≅ D̄nf0g,
which retracts (in fact, strongly deformation retracts) to its
boundary. The only other case in which a retraction exists is
M ≅ D̄, a closed disk, for whichMvac is homeomorphic to
a closed annulus, which, again, strongly deformation
retracts to its inner boundary circle. Note, however, that
requiring f∶ Mvac → Mvac to be a retraction is really
overkill: there is no reason to require f to be homotopic to
the identity map. Consider the case where M is compact
with boundary. ThenM is diffeomorphic to S2 with at least
one open disk removed, and some number of handles
attached. Remove from M the open disk M0 to obtain
Mvac, which is a topologically a sphere with at least two
open disks removed, and some number of handles. From
Mvac we can construct a topological space X homeomor-
phic to a cylinder (equivalently, a closed annulus) as
follows: draw a simple closed curve γ in the interior of
Mvac that encloses both ∂M0 and one of the boundary
circles of M. Now define the equivalence relation ∼ on
Mvac, which collapses all points outside γ to a single point.
Then X ¼ Mvac=∼ is homeomorphic to a closed annulus,
and the canonical map π∶ Mvac → X, πðxÞ ¼ ½x� is tau-
tologically continuous. As previously argued, a retraction
fX from X to its inner boundary circle exists. But then
f ¼ fX∘π is a continuous map Mvac → ∂M0, which
restricts to the identity on ∂M0, and hence, defines an
extension of u0. The construction is illustrated in Fig. 1.
Note that the extension is not unique. In fact, if M has
more than one boundary component, the extension is not
even unique up to homotopy, since the curve γ can encircle
any of the boundary circles. Note also that we can equally
well start with M diffeomorphic to a sphere with at least

FIG. 1. Extending a volume preserving diffeomorphismM0 → D0 to a global mapM → D̄ via a collapse and retraction construction.
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one point (rather than open disc) removed, and any number
of handles attached, and take γ to enclose exactly one
puncture point and M0. We then obtain X homeomorphic
to a punctured disc which, again, retracts to its boundary.
We could also remove some points and some open disks.
We see, then, that charge 1, pressure P ≥ 0 vortices exist on
manifolds M of sufficiently large volume for essentially
any imaginable topology, except compact manifolds with-
out boundary.
From the point of view of the Bradlow bound, there are

some similarities between SDiff BPS vortices and Abelian-
Higgs vortices. There is always a Bradlow volume, i.e.,
minimal volume for which a BPS solution may exist. If we
further decrease the volume of the vortex (by squeezing the
solution or by reducing the volume of the manifold) no BPS
configurations can exist. Instead, non-BPS vortices may
appear, which leads to nonzero pressure. A more careful
analysis, however, reveals some interesting differences.
First, global SDiff vortices cannot exist on compact mani-
folds without boundary, because the nontrivial vacuum
field u ¼ eiϕ cannot be extended to the whole vacuum
region on such manifolds. As said, this problem does not
exist for SDiff baby skyrmions and SDiff skyrmions.
Secondly, similar to the case of 1þ 1 scalar field theories,
the geometric volume V of a SDiff BPS vortex is always
equal to the Bradlow volume. Therefore, only compactons
(whose existence is again completely determined by the
potential) lead to a finite Bradlow volume. Thirdly, the
(local) existence of a compact vortex on a finite (non-
vacuum) domain on any sufficiently large manifold is
guaranteed by the fact that the corresponding first-order
equation is independent of the metric. All these findings,
obviously, continue to hold for further versions of SDiff
BPS models like, e.g., the BPS baby Skyrme model or the
BPS Skyrme model [33] in 3þ 1 dimensions. It follows
that solutions for these further models exist on arbitrary
space manifolds, e.g., on compact manifolds without
boundary.

V. ABELIAN VORTICES WITH THE SDIFF
SYMMETRY

A. Model and Bogomolny equations

Finally, we extend our analysis for a gauged version of
perfect fluid theory that we call the SDiff Abelian vortex
model [26]

LgaugedBPS vortex

¼ −
1

2
½ðDμuDμuÞ2 − ðDμuÞ2ðDνuÞ2� −UðuūÞ

−
1

4e2
F2
μν; ð5:1Þ

where the usual derivatives are replaced by covariant
derivatives given by

Dμu ¼ uμ þ iAμu: ð5:2Þ

We now keep the constant e (the dimensionless electric
charge). Here we repeat the computation of the topolo-
gical bound and the corresponding Bogomolny equations
saturating the bound [26] (which is a version of the
computations originally done for the gauged BPS baby
Skyrme model [34]).
The static energy of the SDiff Abelian model is given by

E ¼ 1

2

Z ffiffiffi
g

p
d2x

�
Q2

g
þ 2U þ 1

e2
B2

g

�
; ð5:3Þ

where the covariant “topological density” Q takes the form

Qffiffiffi
g

p ≡ iffiffiffi
g

p ϵijDiuDju ¼ iffiffiffi
g

p ϵijuiūj −
1ffiffiffi
g

p ϵijAi∂jjuj2

≡ 2π
qffiffiffi
g

p −
1ffiffiffi
g

p ϵijAi∂jjuj2 ð5:4Þ

¼ 1ffiffiffi
g

p ϵij∂ijuj2ðϕj þ AjÞ ¼ −
1ffiffiffi
g

p ϵij∂ihðAj þ ϕjÞ;

ð5:5Þ
where

u ¼ feiϕ; h≡ 1 − f2: ð5:6Þ
Let us now consider a suitable non-negative expression

0 ≤
�
Qffiffiffi
g

p − wðhÞ
�

2

þ 1

e2

�
Bffiffiffi
g

p þ bðhÞ
�

2

¼
�
Q2

g
þ w2

�
þ 1

e2

�
B2

g
þ b2

�
− 2 · 2π

qffiffiffi
g

p w

þ 2ffiffiffi
g

p ϵijwðhÞ∂ihAj þ
2

e2
bðhÞ 1ffiffiffi

g
p ϵij∂iAj; ð5:7Þ

where wðhÞ and bðhÞ are new functions of the target space
variable h that are still to be defined. The last two terms in
the upper expression can be combined into a total derivative
if we assume that these functions obey the following
relation:

bðhÞ ¼ e2WðhÞ; WðhÞ≡
Z

h

0

dh0wðh0Þ ð5:8Þ

⇒ ϵijwðhÞ∂ihAj þ
1

e2
bðhÞϵij∂iAj ¼ ϵij∂iðWAjÞ:

ð5:9Þ
Of course, by construction WðhÞ is 0 at the vacuum value
h ¼ 0 and therefore the total derivative does not contribute
to the energy and may be omitted. The remainder of the
non-negative expression may indeed be written as the
energy density minus the topological term 2qWh provided
that the function W obeys the first-order nonlinear ODE
(the “superpotential equation”)
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W2
h þ e2W2 ¼ 2UðhÞ: ð5:10Þ

Assuming that this is the case we find for the energy the
inequality

E ¼ 1

2

Z ffiffiffi
g

p
d2x

��
Qffiffiffi
g

p −Wh

�
2

þ 1

e2

�
Bffiffiffi
g

p − e2W

�
2
�

þ 2π

����
Z

d2xqWh

���� ≥ 2π

����
Z

d2xqWh

����: ð5:11Þ

Hence

E ≥ 2πjNjhWhiD: ð5:12Þ

The bound is saturated if the following Bogomolny
equations are satisfied:

Qffiffiffi
g

p ¼ Wh;
Bffiffiffi
g

p ¼ −e2W: ð5:13Þ

Again, one can prove that solutions of the Bogomolny
equations solve the full second-order field equations.

B. Bradlow bound for the gauged BPS vortices

For the derivation of the volume of a soliton in the SDiff
BPS-type models (nongauge case) we simply integrated the
BPS equation over the manifold M. So, one would like to
do this also in the gauged version. Unfortunately, as the
magnetic and matter (vortex) field are nontrivially mixed in
the Bogomolny equations, we were not able to perform this
computation in an ansatz-independent manner. However,
since the model in the static version has SDiff invariance, a
result obtained in a certain ansatz may be easily generalized
to any SDiff related configuration, which at the end renders
our result ansatz (and coordinate) independent. As in the
case of global vortices, we first consider the case of
compact solutions on R2, and then invoke the metric
independence of the BPS equations (5.13) to argue that
the same solutions continue to exist (at least locally, i.e., on
a compact nonvacuum domain) on arbitrary (sufficiently
large) manifolds for an appropriate choice of coordinates
(leading to the same volume element g).
We consider flat space and assume the ansatz

uðr;φÞ ¼ fðrÞeiNφ; A0 ¼ Ar ¼ 0; Aφ ¼ NaðrÞ:
ð5:14Þ

The Bogomolny equations take the following form,

Nhyð1þ aÞ ¼ −Wh; ð5:15Þ
Nay ¼ −e2W; ð5:16Þ

where, as before, h ¼ 1 − f2 and y ¼ r2=2. First we
compute the magnetic flux, which can be expressed in
terms of the asymptotic value of the gauge potential,

Φ ¼
Z

rdrdφB ¼ 2πN
Z

dyay ¼ 2πNaðy0Þ≡ 2πNa∞:

ð5:17Þ

Here y0 is the position of the soliton boundary, which
is finite for compactons and infinite for noncompact
solitons. Dividing one Bogomolny equation by the other
we get

ay
1þ a

¼ e2hy
W
Wh

: ð5:18Þ

Hence

∂y lnð1þ aÞ ¼ e2∂yF; ð5:19Þ

where

Fh ≡ W
Wh

: ð5:20Þ

The last expression can be formally integrated,

FðhÞ ¼
Z

h

0

dh0
Wðh0Þ
Whðh0Þ

; ð5:21Þ

which results in

lnCð1þ aÞ ¼ e2FðhðyÞÞ; ð5:22Þ

where C is an integration constant. Here we assume that
the first derivative of the superpotential does not possess
0’s in the interval 0 < h ≤ 1. This guarantees that Fh is
finite in the same interval. At the vacuum h ¼ 0, where
Wh ¼ 0, we assume that the potential behaves algebrai-
cally, i.e., V ∼ h2α for some α > 0, then Wh ∼ hα, W ∼
hαþ1 near h ¼ 0 and Fh is, in fact, 0 at h ¼ 0. As a
consequence, F exists and is finite in the whole interval
h ∈ ½0; 1�. For such (generic) potentials, it follows from the
above result that

aðyÞ > −1; for all y ð5:23Þ

and that the limit a → −1 may be reached only in the limit
e → ∞. The integration constant may be determined from
the boundary conditions hðy ¼ 0Þ ¼ 1, aðy ¼ 0Þ ¼ 0,

Fð1Þ ¼ 1

e2
lnC ⇒ C ¼ ee

2Fð1Þ; ð5:24Þ

which, together with hðy0Þ ¼ 0 and Fðh ¼ 0Þ ¼ 0 leads to
the asymptotic expression

a∞ ¼ −1þ e−e
2Fð1Þ; ð5:25Þ
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which may be inserted into the expression for the
magnetic flux

Φ ¼ 2πNð−1þ e−e
2Fð1ÞÞ: ð5:26Þ

The magnetic flux is not quantized; therefore, these
solutions, again, cannot exist on compact manifolds with-
out boundary. They may, however, exist on noncompact
manifolds (e.g., the punctured two-sphere) of on manifolds
with boundary (e.g., a closed disc).
Note that Fð1Þ (and the flux) can be expressed as the

target space averaged value of a function of the super-
potential. Indeed,

Fð1Þ ¼
Z

1

0

dh
WðhÞ
WhðhÞ

¼
�
W
Wh

�
D
; ð5:27Þ

which is also valid for anyM that supports solutions, at all.
Now let us continue the computation of the volume of the

soliton. The gauge field is

1þ aðyÞ ¼ ee
2ðFðhðyÞÞ−Fðh¼1ÞÞ: ð5:28Þ

This can be inserted into the first Bogomolny equation

dy ¼ −N
1þ a
Wh

dh ¼ −N
ee

2ðFðhÞ−Fð1ÞÞ

Wh
dh: ð5:29Þ

Therefore, after integrating both sides we get

V ¼ 2πy0 ¼ 2πNe−e
2Fð1Þ

Z
1

0

ee
2FðhÞ

Wh
dh: ð5:30Þ

As the computation of the volume does not require any
particular form of solution, it is completely solution and
coordinate independent (which means that also in the gauge
case the volume is a thermodynamical function). Owing to
the metric independence of the BPS equations it is, there-
fore, true for any manifold M with the right size and
topology to host solutions. This allows us to write a
Bradlow-type relation for the existence of gauged SDiff
vortices

VB ≤ V 0 ≤ VM; ð5:31Þ

where the Bradlow volume is, once again, equal to the
geometric volume of the soliton

VB ¼ 2πy0 ¼ 2πNe−e
2Fð1Þ

Z
1

0

ee
2FðhÞ

Wh
dh: ð5:32Þ

Let us also comment that the volume of the soliton can be
written as an averaged integral

V ¼ 2πN

*
e
−4e2ðh W

Wh
i
D
−h W

Wh
i
Dh

Þ

Wh

+
D

; ð5:33Þ

where Dh is a part of the unit disc parametrized by
ð ~h;ϕÞ∶ ~h ∈ ½0; h�;ϕ ∈ ½0; 2π�.
To conclude, both nongauged and gauged SDiff BPS

models are very similar. For example, exactly as in the
nongauge case, if a potential supports infinitely extended
Uð1Þ BPS vortices in flat space then, for any finite-size
manifold, the BPS sector is empty.

VI. CONFORMAL SOLITONS

To complete our investigations we present solitonic
models with conformal symmetry. As one could expect,
the Bradlow volume takes zero value, which means that the
corresponding BPS solitons can be constructed on an
arbitrarily small compact manifold.
Let us consider the CP1 model

L ¼ uμūμ

ð1þ juj2Þ2 : ð6:1Þ

The BPS sector is defined by the Cauchy-Riemann
condition

∂̄u ¼ 0 or ∂u ¼ 0 ð6:2Þ

solved by (anti-) holomorphic functions. Such holomorphic
functions can be defined also on a compact manifold, for
example, S2

R with an arbitrary radius R [35]. This can be
achieved by use of the stereographic projection, which
relates coordinates on the two sphere with the usual
complex variables z ∈ C. Since the action (and the
Bogomolny equation) is conformally invariant the radius
of the base-space sphere can take any value. Therefore, the
corresponding Bradlow volume is

VB ¼ 0: ð6:3Þ

Note that the analysis is more subtle if the base-space
manifold is T2 ¼ S1 × S1. Then the BPS sector is not
empty for N > 1 and is given by the degree N elliptic
functions [36]. In the degree one case, it is possible to
construct configurations with energy arbitrary close to 2π
although equality is never attained. A similar situation
occurs if we consider the Cauchy-Riemann equation on a
disc. There are no nonconstant holomorphic maps satisfy-
ing the obvious single point boundary condition. This
means that the BPS sector is again empty.
The same concerns the instantons in the self-dual

Yang-Mills SUð2Þ model, which can be constructed on
S4 with arbitrary radius. Another example of such con-
formal solitons (with VB ¼ 0) is provided by pure Skyrme
instantons [37].
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VII. SUMMARY

In Sec. II, we proved that the geometric volume of a
soliton coincides with the thermodynamical volume also
for models with local gauge symmetries. This identification
holds for base-space manifolds whether they are flat or
curved, compact or noncompact.
Then, using this geometric volume, we analyzed the

relationship between the soliton volume V, the volume of
the manifold VM, and the Bradlow volume VB, i.e., the
minimal volume of the base space for which a given BPS
theory may possess a nonempty BPS sector.
We found that the existence of a Bradlow bound seems to

be a rather generic feature of BPS solitonic theories. By this
we mean the following. Consider a solitonic field theory,
which supports BPS solitons in flat (infinite) Minkowski
space-time. Then consider the same action but on a
manifoldMwith finite volume. There is a minimal volume
of such a manifold (the Bradlow volume VB) such that a
solution to the (first-order) BPS equations can exist. If the
volume of the manifold is further reduced, VM < VB, then
solutions cannot be BPS configurations but, rather, soli-
tonic solutions of the full Euler-Lagrange equations. As a
consequence, a nonzero pressure emerges as a quantity that
characterizes these solutions. All this shows that the
Bradlow volume is a rather general concept that may be
defined for many BPS models. In Sec. III C 2 we found an
exception to this rule, where the formal constant solutions
(3.26) have infinite energy, leading to an infinite formal
Bradlow volume, whereas the model still supports compact
BPS vortices of finite size.
We studied the Bradlow bound both for generalized

Abelian-Higgs models and for a certain type of perfect
fluid-type models that we called SDiff BPS models (as the
static energy functional is invariant under SDiff trans-
formations of the base space), which in 1þ 1 dimensions
reduce to the usual scalar field theory. In particular, for the
SDiff BPS models our findings can be summarized as
follows.
(1) The Bradlow volume is equal to the geometric

volume of the corresponding BPS soliton
V ¼ VB. This says also that the geometric volume
is base-space independent. Here it is, of course,
assumed that the base-space manifold has the
required minimal size and the right topology to host
BPS solitons.

(2) A finite value of the Bradlow volume is observed
if and only if the corresponding BPS solutions in
flat Minkowski space-time are compactons. This,
on the other hand, is completely controlled by the
potential term or, more precisely, by its approach
to the vacuum. The usual infinitely extended
solitons (again in flat Minkowski space-time) give
rise to an infinite value of the Bradlow volume.
Note that such a simple relation between the type
of solution (compacton/infinitely extended soliton)

and the value of the Bradlow volume (finite/
infinite) is not a generic feature. Recall for
example the Abelian-Higgs model where solitons
in R2 are infinitely extended although the Bradlow
volume takes a finite value, leading to the rela-
tion V ≥ VB.

(3) BPS as well as non-BPS solitons are equivalent,
whether one considers the model on a compact
manifold with boundary or on a finite volume
(noncompact) manifold. Therefore, there is no dif-
ference between SDiff vortices on S2nfð0; 0;−1Þg
andD ⊂ R2. As a consequence, reducing the volume
of a manifold M is equivalent to squeezing the
soliton into a smaller volume on the fixed back-
ground manifold. This allows for easy access to the
mean-field equation of state. Note again that this is
different if compared to Abelian-Higgs vortices.

Further, one can use the Bradlow volume to characterize
general solitonic models. In fact, we found three types of
theories with qualitatively different relations between the
geometric volume of a soliton in the BPS sector and the
Bradlow volume.
(1) Abelian-Higgs-type models—the BPS soliton

always covers the full manifold M, i.e., V ¼ VM.
Furthermore, the Bradlow bound requires V ≥ VB.
The inequality is in fact saturated—BPS vortices
exist for a compact manifold with VM ¼ VB

(2) Perfect fluid (SDiff) models—V ¼ VB, i.e., the
geometric (identical to thermodynamical) volume
of the BPS soliton is base-space (manifold M)
independent and obviously V ≤ VM. Some gener-
alized Abelian-Higgs models supporting compac-
tons behave in this way, as well.

(3) Conformal models—again the BPS solitons cover
the full manifold M, i.e., V ¼ VM. But now
VB ¼ 0.

It is interesting to note that the physical behavior of the
different phases is quite different between the Abelian-
Higgs model and the SDiff models. In the SDiff models,
the phase transition only exists for models supporting
compactons, and the transition is from a fluid phase with
constant nonzero pressure density but nonconstant energy
density for V ≤ VB to a gas of noninteracting compact
vortices for V > VB. For the Abelian-Higgs model (and
for those generalizations that lead to noncompact BPS
vortices), on the other hand, the phase transition is from
the constant solution (3.26) with constant energy density
for V ≤ VB to a BPS solution that always covers the
whole base space for V ≡ VM > VB. The case of
generalized Abelian-Higgs models supporting compact
BPS vortices is somewhere in between, supporting the
constant solutions for V ≤ VB, but supporting compact
vortices (with a total volume equal to VB), surrounded
by empty space (vacuum), which fills the remaining
volume VM − VB.

C. ADAM, J. M. SPEIGHT, and A. WERESZCZYNSKI PHYSICAL REVIEW D 95, 116007 (2017)

116007-18



One very important step forward in this thermodynamical/
fluid dynamical analysis of soliton models, obviously, is its
generalization to nonzero temperature. This generalization is
complicated by the fact that in a classical field theory there are
infinitely many degrees of freedom that must be heated up
(defrozen). In [38] an approximate but exact equation of state
at nonzero-temperature T was derived for the Abelian-Higgs
model on a large sphere (corresponding to small T), by
restricting the defreezing to the lightest degrees of freedom
(the moduli). A full thermodynamical description at nonzero
temperature might well require the quantized version of the
soliton model as a starting point. This endeavor, however, is
very difficult owing to the perturbative nonrenormalizability

of said field theories. Only nonperturbative methods, there-
fore, have a chance to lead to interesting results.
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