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Abstract. This paper describes the extension of the concepts of connectedness and conservation of connectedness that underlie 5 

the generalised Archie`s law for n phases to the interpretation of the saturation exponent. It is shown that the saturation 6 

exponent as defined originally by Archie arises naturally from the generalised Archie’s law. In the generalised Archie`s law 7 

the saturation exponent of any given phase can be thought of as formally the same as the phase (i.e., cementation) exponent, 8 

but with respect to a reference subset of phases in a larger n-phase medium. Furthermore, the connectedness of each of the 9 

phases occupying a reference subset of an n-phase medium can be related to the connectedness of the subset itself by 10 

in

i ref iG G S . This leads naturally to the idea of the term in

iS  for each phase i being a fractional connectedness, where the 11 

fractional connectednesses of any given reference subset sum to unity in the same way that the connectednesses sum to unity 12 

for the whole medium. One of the implications of this theory is that the saturation exponent of any phase can be now be 13 

interpreted as the rate of change of the fractional connectedness with saturation and connectivity within the reference subset. 14 

1 Introduction 15 

Currently, there is no well-accepted physical interpretation of the saturation exponent other than qualitatively as some measure 16 

of the efficiency with which electrical flow takes place within the water occupying a partially saturated rock. Some might say 17 

that the meaning is not important as long as one can reliably obtain the water saturation of reservoir rocks with sufficient 18 

accuracy to calculate reserves. According to the 2016 BP Statistical Review of World Energy (BP, 2016), the world had proved 19 

oil reserves at the end of 2015 of 1.6976 trillion (million million; Tbbl.) barrels, slightly down on the value at the end of 2014 20 

(1.7 Tbbl.) and significantly above the respective values at the end of 1995 (1.1262 Tbbl.) and 2005 (1.3744 Tbbl.). The same 21 

source lists proven natural gas reserves of 186.9 trillion cubic metres (Tcm) at the end of 2015, slightly lower than at the end 22 

of 2014 (187.0 Tcm) and significantly and progressively higher than the values at the end of 1995 (119.9 Tcm) and 2005 23 

(157.3 Tcm). This represents combined oil and gas reserves of approximately 78.4 trillion US dollars combined at end 24 

December 2015 prices (using WTI crude and Henry Hub).  25 

Even a tiny uncertainty of, say, 0.01 in a saturation exponent of 2 (i.e., 0.5% or 2±0.01) would result in an error in the 26 

reserves of about ±254.36 billion US dollars; the equivalent of 82 Queen Elizabeth class aircraft carriers or one mission to 27 

Mars. This calculation has been carried out by calculating the percentage change in hydrocarbon saturation resulting from an 28 

error of 20.01 in the value of the saturation exponent. Since the calculated change in hydrocarbon saturation also depends on 29 

other parameters in Archie’s equations. Typical representative values for these parameters have had to be used, and these are 30 

RT = 500 .m, Rw = 1 .m,  = 0.1 and m = 2. When these values are used with n=20.01 a change of 0.3245% was calculated 31 

for the hydrocarbon saturation, allowing the change in global reserves to be calculated.  32 

Within the hydrocarbon industry it is extremely common to assume that the saturation exponent is about 2 for most rocks. 33 

However, it is worthwhile thinking about the 254 billion dollar global shortfall in revenue if it really is equal to 2.01 instead. 34 

These frightening large financial values make it extremely important that the physical interpretation of the saturation exponent 35 

in the classical Archie’s law is well understood. This paper attempts to provide a new theoretical and physical interpretation. 36 

The classical Archie`s laws (Archie, 1942) link the electrical resistivity of a rock to its porosity, to the resistivity of the water 37 

saturating its pores, and to the fractional saturation of the pore space with the water. They have been used for many years to 38 
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calculate the hydrocarbon saturation of the reservoir rock and hence hydrocarbon reserves. The classical Archie’s laws contain 39 

two exponents, m and n, which Archie called the cementation exponent and the saturation exponent, respectively. The 40 

conductivity of the hydrocarbon saturated rock is highly sensitive to changes in either exponent.  41 

Like the cementation exponent, and despite its importance to reserves calculations, the physical meaning of the saturation 42 

exponent is difficult to understand from a physical point of view, which leads to petrophysicists not giving it the respect it 43 

deserves. It is common, for example, to hear that, in the absence of laboratory measurements, the saturation exponent has been 44 

taken to be equal to 2, which it has just been noted is bound to lead to gross errors. While it is true that there seems to be a 45 

strong preference for values of saturation exponent near 2±0.5 for most water-wet rocks, oil-wet rocks show much higher 46 

values (4-5) (Montaron, 2009; Sweeney and Jennings, 1960), and there is evidence that the saturation exponent changes with 47 

saturation, with the type of rock microstructure and with saturation history, leading to hysteresis in the plot of resistivity index 48 

as a function of water saturation.  49 

When a saturation exponent is derived from laboratory measurements, it is commonly done by fitting a straight line to 50 

resistivity data where the y-axis is the logarithm of the measured rock resistivity divided by the resistivity of the saturating 51 

water and the x-axis is the logarithm of the water saturation. The problem is that the saturation exponent varies with water 52 

saturation, becoming significantly smaller at low saturations, leading to an uncertainty in which value to use. This observation 53 

also gives us the first hint that it is the connectedness of the water phase that is controlling the saturation exponent just as it 54 

did for the phase exponent in the generalised Archie’s law. 55 

It is clear that the physical understanding of the saturation exponent needs to be improved. The purpose of this paper is to 56 

investigate the elusive physical meaning of the saturation exponent, where it is shown that the saturation exponents are 57 

intimately linked to the phase exponents in the generalised Archie’s model. 58 

2 Traditional interpretations 59 

Considering the classical form of Archie`s laws; the first Archie law relates the formation factor F, which is the ratio of the 60 

resistivity of a fully saturated rock o (Ro) to the resistivity of the fluid occupying its poresf  (Rw), to the rock porosity  and 61 

a parameter he called the cementation exponent m, where the symbols in parentheses are those traditionally used in the 62 

hydrocarbon industry. Archie’s first law can be expressed as 
m

fo
F   using resistivities (Archie, 1942), or as 63 

m

fo
G   using conductivities. In the latter case G is called the conductivity formation factor or the connectedness 64 

(Glover, 2009).  It can easily be seen that the effective resistivity and effective conductivity of the fully saturated rock can be 65 

expressed as 
m

fo

   and 
m

fo

   using resistivities or conductivities, respectively. It should be noted that this work 66 

does not consider the form of Archie’s law which includes the so-called ‘tortuosity factor’ a, which was developed by Winsauer 67 

et al. (1952). The role of this parameter is discussed fully in Glover (2016). 68 

Archie’s second law considers that the rock is not fully saturated with a conductive fluid, but is partially saturated with a 69 

fractional water saturation Sw. It relates the resistivity index I, which is the ratio of the resistivity of a partially saturated rock 70 

eff to the resistivity of the fully saturated rocko, to the water saturation Sw and a parameter he called the saturation exponent 71 

n. Archie’s second law can be expressed as 
n

eff o wI S    using resistivities, or 1 n

eff o wI S     using 72 

conductivities. 73 

The two laws may be combined to give  
m n

eff f wS     using resistivities, and 
m n

eff f wS     if conductivities are 74 

used. In reserves calculations, the resistivity of the partially saturated rock, the resistivity of the pore water, the porosity of the 75 

rock and the two exponents are “known” from logging or laboratory measurements. This enables the water saturation Sw and 76 

hence the hydrocarbon saturation  1h wS S   and, consequently, the reserves to be calculated. 77 
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Archie’s laws require that both the rock matrix and all but one of the fluid phases that occupy the pores to have infinite 78 

resistivity. Hence, it is a model for the distribution of one conducting phase (the pore water) within a rock sample consisting 79 

of a non-conducting matrix and other fluids which also have zero or negligible conductivity. Problems arise when there are 80 

other conducting phases in the rock, such as clay minerals. These problems have generated a huge amount of research in the 81 

past (e.g., Waxman and Smits, 1968; Clavier et al., 1984), which are reviewed in Glover (2015). The classical Archie`s laws 82 

were based upon experimental determinations, however, progressive theoretical work (Sen et al., 1981; Mendelson and Cohen, 83 

1982; Glover et al., 2000a; Glover, 2009) arising from the need to have versions of Archie’s law which were valid for a 84 

conductive matrix (Glover et al., 2000b) has underpinned these initially empirical relationships, culminating in a generalised 85 

Archie`s law which was published in 2010 (Glover, 2010). 86 

3 The generalised Archie’s law 87 

The generalised Archie’s law (Glover, 2010) extends the classical Archie’s law to a porous medium containing n phases. It is 88 

based on the same concept of connectedness that was introduced in the author’s previous interpretation of the cementation 89 

exponent (Glover, 2009). In the 2009 paper the connectedness was defined as 90 

1 mo

w

G
F





    ,       (1)  91 

where F is the formation factor. The connectedness of a given phase is a physical measure of the availability of pathways for 92 

conduction through that phase. The connectedness is the ratio of the measured conductivity to the maximum conductivity 93 

possible with that phase (i.e., when that phase occupies the whole sample). This implies that the connectedness of a sample 94 

composed of a single phase is unity. Connectedness is not the same as connectivity. The connectivity is defined as the measure 95 

of how the pore space is arranged in its most general sense as that distribution in space which makes the contribution of the 96 

specific conductivity of the material express itself as a different conductance (see Glover, 2010). The connectivity is given by 97 

1 m and depends upon the porosity and the classical Archie’s cementation exponent m. It should be noted that the 98 

connectedness is also given by  99 

G ,       (2) 100 

and then it becomes clear that the connectedness depends both upon the amount of pore space (given by the porosity) and the 101 

arrangement of that pore space (given by the connectivity). 102 

The generalized Archie’s law was derived by Glover (2010) and is given by 103 

im

i i

i

    with 

1

1i

i




 ,     (3) 104 

where there are n phases, each with a conductivity i, a phase volume fraction i and an exponent mi. The porosity and 105 

cementation exponent in the classical Archie’s law are the same as the pore space phase volume fraction and pore space phase 106 

exponent in the generalized Archie’s law, respectively. However, the pore space and the matrix may be subdivided into any 107 

number of other phases as required. Indeed, the generalized Archie’s law will not contain a term that represents the pore space 108 

unless the pore space is only occupied by a single phase. 109 

In the generalized law the phase exponents can take any value from zero to infinity. Values less than unity represent a 110 

phase with an extremely high degree of connectedness, such as that for the solid matrix of a rock. Connectedness decreases as 111 

the phase exponent increases. Phase exponents that tend towards 1 are associated with a highly connected phase which is 112 

analogous to the low cementation exponents occurring in the traditional Archie’s law for networks of high aspect ratio cracks. 113 

Phase exponents about 2 represent the degree of connectedness that one might find when the phase is partially connected in a 114 

similar way to which the pore network in a sandstone is connected, and which is, again, analogous to that scenario in the 115 
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traditional Archie’s law. By extension, higher values of phase exponents represent lower phase connectedness, such as that in 116 

the traditional Archie’s law for the pores in a vuggy limestone.  117 

It is clear that the classical and generalized laws share the property that the exponents modify the volume fraction of the 118 

relevant phase with respect to the total volume of the rock. However the exponents in the generalized law differ from the 119 

classical exponent because some of them have values which are not measureable because their phases are composed of 120 

materials with negligible conductivity. Despite this, each phase has a well-defined exponent providing (i) it has a non-zero 121 

volume fraction and (ii) the other phases are well-defined.  122 

It should be noted that higher phase exponents tend to be related to lower phase fractions, although this relationship is not 123 

implicit in the generalized Archie’s law as it is currently formulated. 124 

It is important to consider Equation 1 and Equation 4 together to develop a fuller understanding of the model. There is an  125 

infinite number of solutions to Equation 4 even in the most restrictive 2 phase system. However, there is only a small subset 126 

of solutions if both Equation 1 and Equation 4 are to be fulfilled together, as the model requires. The problem of having enough 127 

degrees of freedom is not problematic for 3 phases or more, and is trivial for one phase. Consequently, if there is to be a 128 

problem with the Glover (2010) model, it should be clearest for a two phase system. 129 

Considering a two phase system. Equation 1 gives 𝜙1 = 1 −  𝜙2 while Equation 4 can be written as 𝜙1
𝑚1 + 𝜙2

𝑚2 = 1. 130 

Substituting we obtain either (1 − 𝜙2)𝑚1 +  𝜙2
𝑚2 = 1 or (1 − 𝜙1)𝑚2 +  𝜙2

𝑚1 = 1. These equations are formally the same. 131 

They each have trivial solutions when each of the volume fractions tends to unity, the other volume fraction consequently 132 

tending to zero. Another solution occurs when m1 = m2 = 1, which is the simple parallel conduction model. Only one other 133 

solution exists for the general case where the volume fractions are variable, and that requires m1 > 1 when m2 < 1 or vice versa. 134 

Consequently the non-trivial solution for a 2-phase medium falls into one of the following classes:  135 

(i) m1 = m2 = 1, the phases, whatever their volume fractions, are arranged in parallel and both have a unity exponent.  136 

(ii) m1 > 1 and m2 < 1. This implies that Phase 1 has a path across the 3D medium that is less connected than a parallel 137 

arrangement of that phase. Since we have a two phase medium Phase 2 must have a path across the medium which 138 

is more connected than a parallel arrangement, hence forcing m2 < 1. 139 

(iii) m1 < 1 and m2 > 1. Since the system is symmetric. This scenario is formally the same as (ii) above, but with the 140 

phase numbers switched around. 141 

Consequently, for a two-phase medium, defining the porosity and connectedness (or exponent) of one of the phases 142 

immediately fully defines the other phase. For higher numbers of phases, there are more solutions, but if the porosity and 143 

connectedness (or exponent) of n-1 of the phases is known, the nth phase is also fully defined in the same way. The logical 144 

extension of this idea is that both the sum of the volume fractions of the n-phases is unity and the sum of the connectednesses 145 

of the n-phases is also unity, or that both volume fraction and connectedness are conserved in a three-dimensional n-phase 146 

mixture. Another, more intuitive way of looking at this is as follows. It has already been shown that the connectedness of a 147 

system that contains only one phase is unity as a result of Equation 1, i.e., if there is one phase = 1 and hence G = 1. Let us 148 

imagine that a second phase is introduced. Intuitively, it seems reasonable that as the phase fraction of the new phase increases, 149 

its connectedness will increase, and that when this happens both the volume fraction and connectedness of the first phase will 150 

decrease. The same would be true if any number of new phases were introduced – all the phases would compete for a fixed 151 

amount of connectedness, its increase for one phase being balanced by a decrease in at least one of the other phases. In other 152 

words there is a fixed maximum amount of connectedness possible in a three-dimensional sample, expressed by Glover (2010) 153 

as 154 

1im

i i

i i

G    .       (4) 155 
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In summary, both the sum of the volume fractions and the sum of the connectednesses of the phases composing a 3D 156 

medium is equal to unity. The corollary is that connectedness is conserved; if the connectedness of one phase diminishes, there 157 

must be an increase in the connectedness of one or more of the other phases to balance it. 158 

4 Origin of the saturation exponent 159 

Within the framework of the classical Archie’s laws it is possible to envisage the cementation exponent as controlling how the 160 

porosity is connected within the rock sample volume, and to envisage the saturation exponent as controlling how the water is 161 

connected within that porosity. The cementation exponent is defined relative to the total volume of the rock, while the 162 

saturation exponent is defined relative to the pore space, which is a subset of the whole rock. This is an important concept for 163 

what follows.  164 

The water is one of two phases within the porosity, while that porosity is one of two phases within the rock. Hence, there 165 

exists a three phase system to which the generalised Archie’s law can be applied. In fact, the generalised Archie’s law can be 166 

used to show that the saturation exponents arise naturally and have a physical meaning: they are defined in the same way as 167 

the phase exponents but are expressed relative to the pore space instead of the whole rock. 168 

By writing the generalized law (Equation 4) for three defined phases; let’s say matrix, water and hydrocarbon gas, and 169 

assuming that neither the matrix nor the gas is conductive, i.e.,  m = 0 and h = 0, but allowing the pore space to be partially 170 

saturated with water such that h  0, it is possible to obtain 
fm

eff f f   . Since h  0, the pore space is partially saturated 171 

with hydrocarbon and partially saturated with water. It is also possible to write f wS  , and hence obtain  172 

f fm m

eff f wS   .       (5) 173 

Comparison with the classical Archie`s laws, which can be written as 
m n

eff f wS   (Tiab and Donaldson, 2004) shows 174 

structural similarity. However, the exponent mf in Equation 5 is expressed relative to the whole rock because it is the phase 175 

exponent for the fluid that appears in Equation 4. By contrast, the cementation exponent m in the classical second Archie`s 176 

law is expressed relative to the whole rock because it is defined in Archie’s first law, the saturation exponent n is expressed 177 

relative to a subset of the whole rock called the pore space. This idea can be tested easily by imagining whether the saturation 178 

exponent is independent of any changes one might make to the rock matrix: It is possible to see that the saturation exponent is 179 

independent of the rock matrix, and is only sensitive to changes occurring within the pore space. 180 

Both equations provide a valid measure of the effective rock conductivity, so they may be equated, hence obtaining181 

 f ff
m nmm

wS 


 , which can be rearranged to give 
fn

f pore wG G S . Here it can be recognized that the classical Archie 182 

saturation exponent refers to saturation with water and is hence renamed as nf. Since the system is symmetric this equation for 183 

the gas phase (and any other phase that may be present) can be written as  184 

in

i ref iG G S ,      (6) 185 

with the pore connectedness being relabeled as the reference connectedness because the equation is valid not only for multiple 186 

phases that fill the porosity, but multiple phases composing any other phase. 187 

Equation 6 gives the connectedness of the ith phase in an n-phase 3D medium as depending on both its fractional saturation 188 

Si within a larger volume which has a connectedness Gref and that reference connectedness. The distribution of that saturation 189 

is taken into account by the exponent ni, which will have a general functional form.  190 
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If one considers the whole 3D n-phase medium (i.e., one where 1i

i

  ), Equation 1 states that the connectedness of 191 

each phase is the volume fraction of that phase raised to the value of its phase exponent, and Equation 4 states that the sum of 192 

the connectednesses is unity. 193 

If a subset of a whole n-phase medium (i.e., one where 1i

i

  ) is considered, and labelled the reference subset, the 194 

reference subset will have a connectedness 
refm

ref refG  relative to the whole rock, and the connectedness of any phase which 195 

partially occupies the reference subset (e.g., water within the pore space, clay within the rock matrix etc.) is equal to the 196 

connectedness of the reference phase multiplied by the volume fraction of the phase within the reference subset (i.e., the 197 

saturation relative to the reference subset) raised to the value of its saturation exponent. 198 

The definition above is somewhat complex due to the requirement to be both completely general and precise, and that there 199 

are two reference frames here. The first is the whole 3D n-phase medium. The second is the 3D reference subset which may 200 

contain between 2 and n-1 phases. Conversion between the two reference frames can be carried out using the relationship 201 

ref ii i
m nm n

i ref 


 ,      (7) 202 

It can also be shown that (Glover, 2010) 203 

1in

i

i

S  ,       (8) 204 

where the sum is carried out over all the phases within the reference subset.  205 

It should be noted that Equation 8 is formally the same as Equation 4 except that Equation 7 is valid for the reference subset 206 

of phases, while Equation 4 is valid for the whole n-phase medium. Hence it is possible to use i i refS   to write both 207 

Equation 4 and Equation 8 as  208 

1

im

i

refi





 
 

 
 

 .      (9) 209 

 For a whole n-phase medium ref  = 1 and Equation 9 becomes equal to Equation 4.  210 

 For a subset of the n-phase medium ref  < 1 and Equation 9 becomes equal to Equation 8.  211 

The distinction between the phase exponent and saturation exponent becomes trivial; they each control how connected the 212 

phase is relative to the reference volume fraction. In other words, the transformation

 

1 ref  leads to i iS   and 213 

i im n . 214 

There is of course the possibility that the whole n-phase medium is itself a subset of a larger medium with more phases. In 215 

this case Equation 9 still holds, but with ref  > 1. 216 

Hence, both the phase (cementation) exponent and the saturation exponent control how the phase is connected. The phase 217 

exponent does this with reference to the whole rock, while the saturation exponent does it with reference to a subset of the 218 

whole rock. The underlying physical meaning of the saturation exponent is the same as that of the phase (cementation) 219 

exponent, it is only the reference frame that changes. The implication is that the general Archie’s law replaces both of the 220 

classical Archie’s laws. For an application to a sandstone gas reservoir, one would use a 3 phase generalized Archie law. 221 

Equation 6 is easily transformed to provide a calculable value for the saturation exponent 222 

   
 

   
   

log log log log

log log log

i ref i i ref ref

i

i i ref

G G m m
n

S

 

 

 
 


.   (10) 223 

Solid Earth Discuss., doi:10.5194/se-2017-5, 2017
Manuscript under review for journal Solid Earth
Discussion started: 15 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



7 

 

5 Fractional connectedness 224 

The connectedness G is the inverse of the Archie’s formation factor and is central to the generalized Archie’s law. The inverse 225 

of the Archie’s resistivity (saturation) index 1
n

wI S  is also rather important. It relates the connectednesses of each phase 226 

with respect to the whole rock to the connectedness of the reference subset in Equation 6, and when summed over all the 227 

phases that occupy the reference subset it produces unity as in Equation 8. In this paper the inverse of the Archie’s resistivity 228 

(saturation) index has been given the symbol Hi and defined as 229 

in

i iH S .      (11) 230 

Just as the saturation of any given phase Si is the ratio of the volume fraction of the phase to that of the all the phases making 231 

up any reference set of phases, Hi is the ratio of the connectedness of the phase to that of the all the phases making up any 232 

reference set of phases. The parameter Hi is in fact a fractional connectedness. 233 

Following the approach of Glover (2009) in the analysis of the cementation exponent, and accepting the deep symmetry 234 

between phase fractions and saturations and between phase exponents and saturation exponents, it is then possible to write 235 

i
i

dHd
n

d dS

 
  

 
      (12) 236 

where  is the connectivity of the phase with respect to the reference subset of phases, where 237 

1in

iS 
 ,      (13) 238 

In this case the rate of change of fractional connectedness with saturation is the product of the saturation exponent and the 239 

connectivity with respect to the reference subset 240 

i
i i

i

dH
n

dS
 ,      (14) 241 

and the fractional connectedness is the product of the saturation and the connectivity with respect to the reference subset 242 

i i iH S . 243 

Hence, the saturation exponents obey the same laws as the phase (cementation) exponents, but whereas the phase exponents 244 

are defined relative to the whole rock, the saturation exponents are defined relative to some subset of the rock. Table 1 shows 245 

the relationships of the generalised Archie’s law expressed relative to the whole rock and with respect to a reference subset of 246 

the whole rock.  247 

For petrophysicists the reference subset has been the porosity and there has only been one conducting phase that partially 248 

saturates that porosity – the pore water. Now we are not restricted to that model. The reference subset could be, for example, 249 

the solid matrix in which a number of separate mineral phases can be defined, one of which might be, say, a target ore. 250 

6 Conclusions 251 

The main conceptual steps in this paper are summarised as: 252 

 The classical Archie saturation exponent arises naturally from the generalised Archie’s law.  253 

 The saturation exponent of any given phase can be thought of as formally the same as the phase (i.e., cementation) 254 

exponent, but with respect to a reference subset of phases in a larger n-phase medium. 255 

 The connectedness of each of the phases occupying a reference subset of an n-phase medium can be related to the 256 

connectedness of the subset itself by in

i ref iG G S . 257 
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 The sum of the connectednesses of a 3D n-phase medium is given by 1im

i

i

   , mirroring the relationship for phase 258 

volumes 1
i

i
 . 259 

 Connectedness is conserved in a 3D n-phase medium. If one phase increases in connectedness the connectedness of one 260 

or more of the other phases must decrease to compensate for it, just as phase volumes are conserved with the decrease in 261 

one leading to the increase of another phase. 262 

 The sum of the fractional connectednesses (saturations) of an n-phase medium is given by 1in

i

i

S   . 263 

 Fractional connectedness is conserved in a 3D n-phase medium.  264 

 The saturation exponent may be calculated using the relationship
   
   

log log

log log

i i ref ref

i

i ref

m m
n

 

 





 . 265 

 The connectivity of any phase with respect to the reference subset is given by 
1in

i iS 
 . 266 

 The connectedness of a phase with respect to a reference subset (also called the fractional connectedness) is given by 267 

i i iH S  and depends upon the fractional volume of the phase divided by that of the reference subset (i.e., its saturation) 268 

and the arrangement of the phase within the reference subset (i.e., its connectivity with respect to the reference subset). 269 

 The rate of change of fractional connectedness with saturation i
i i

i

dH
n

dS
  depends upon the connectivity with respect 270 

to the reference subseti and the saturation exponent ni. 271 

 Hence, the saturation exponent is interpreted as being the rate of change of the fractional connectedness with saturation 272 

and connectivity within the reference subset, 

2

i
i

i i

d H
n

d dS
 . 273 
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Table 1. Comparison of all the parameters in the classical and generalised Archie’s laws. 

Parameter Generalised Archie’s law Classical Archie’s law 

 
With respect to the whole 

medium 

With respect to a reference 

subset of the whole medium 
First law Second Law 

Phase 

volume 

fraction 

i  

i ref iS   

iS  

i i refS    



f pore wV V S 

S  

w f poreS V V 

Exponent 

i
i

dGd
m

d d 

 
  

 
 

   
 

log log

log

i f

i

i

m
 






 

i
i

dHd
n

d dS

 
  

 
 

   
   

log log

log log

i i ref ref

i

i ref

m m
n

 

 





 

m 

 

   
 

log log

log

eff f
m

 






 

n 

 

   

 
100log log

log

eff

w

n
S

 


 

Connected-

ness 

im

i iG 

 
i i iG    

1i iG F  

i ref iG G H  

in

i iH S

 
i i iH S  

1i iH I  

i i refH G G  

undefined undefined 

Connect-

ivity 
1im

i  
  

1in

iS 
  

1m    undefined 

Rate of 

change of 

connected-

ness 

i
i i

i

dG
m

d



  i

i i

i

dH
n

dS
  undefined undefined 

Sum of 

phases 

1

1i

i





 

1i

i

S   

1

1i

i





 

1i

i

S   

1pore matrix    1w o gS S S    

Sum of 

connected-

nesses 

1im

i i

i i

G   
 

1in

i i

i i

S H  
 

undefined undefined 
1

im

i

refi





 
 

 
 

  

The transformation

 

1 ref  leads to i iS   and i im n

 Effective 

conduct-

ivity 

im

eff i i

i

    i im m

eff i ref i

i

S    
m

eff f    
m n

eff f wS    
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Data availability 

This work is entirely theoretical and contains no data. 
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