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Abstract
Recent work on multimodal machine translation has attempted to address the problem of

producing target language image descriptions based on both the source language description
and the corresponding image. However, existing work has not been conclusive on the contribu-
tion of visual information. This paper presents an in-depth study of the problem by examining
the differences and complementarities of two related but distinct approaches to this task: text-
only neural machine translation and image captioning. We analyse the scope for improvement
and the effect of different data and settings to build models for these tasks. We also propose
ways of combining these two approaches for improved translation quality.

1. Introduction

There has been recent interest among the Machine Translation (MT) community in
incorporating different modalities, such as images, to inform and improve machine
translation, in contrast to learning from textual data only. For instance, the Multimodal
Machine Translation (MMT) shared task (Specia et al., 2016) was introduced to inves-
tigate if images can potentially help the task of translating an image description (e.g.
“A brown dog is running after the black dog”) to a target language, given the description
in a source language and its corresponding image as input (see Figure 1).

In the shared task, the organisers observed that image information is only useful
in improving translations when used indirectly (e.g. for re-scoring n-best lists of text-
only MT approaches). While this indicates that a text-only MT system is the primary
contributor in MMT, it remains inconclusive whether image information can play a
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Figure 1: Multimodal Translation Task: source segment (English) and its human
translation (German), against which system outputs are evaluated (Specia et al., 2016)

Figure 2: Example of an ambiguous word that could be solved with
visual information. The word ”hat” in English needs to be disam-
biguated in order to be translated as ”Hut” in German (summer hat),
rather than ”Mütze” (winter hat)

more significant role. It would be counter-intuitive to simply rule out the contribution
of images to the task, particularly when the text is descriptive of the image, which is
the case in this dataset. An example (taken from our data) of where visual information
can be helpful is shown in Figure 2. We, therefore, posit that visual information is
indeed complementary to a text-only MT system for MMT, but the questions are: to
what extent and in what way? To our knowledge, no extensive study has been done
to understand the role that images play for the MMT task in a systematic manner.

To gain some insight into this matter, in this paper we isolate the text-only MT and
the image description generation components of MMT. For the former, we use state-
of-the-art Neural MT (NMT) models, which are based on a sequence-to-sequence neu-
ral architecture. For image captioning (IC)1, we use state-of-the-art models based on
multimodal recurrent neural networks as described in Vinyals et al. (2015) with de-
fault parameter settings. We build models for these two approaches using different
datasets (parallel and target language only) and study their complementarities. Ad-
ditionally, since the decoders of both the approaches perform approximately similar
functions, we propose ways of combining the information coming from each model.

Our main contributions, therefore, are (i) an analysis of the individual contribu-
tions of a text-only NMT model and a monolingual but multimodal IC model to the
MMT task by examining the effect of different data and model settings; and (ii) two

1We use the terms “image description” and “image caption” interchangeably.

198

Brought to you by | University of Sheffield
Authenticated

Download Date | 6/8/17 4:01 PM



Lala, Madhyastha, Wang, Specia Contribution of IC and NMT for MMT (197–208)

new approaches for combining the outputs of NMT and IC models. In our experi-
ments, the best-proposed combination approach outperforms the baseline.

2. Background

The standard approach in Neural MT uses an attention based encoder-decoder
model that takes in a source sentence and encodes it using a Recurrent Neural Net-
work (RNN) to produce a sequence of encoded vectors. The approach then decodes
it using another RNN in the target language which is conditioned on the sequence of
encoded vectors. The model searches through the encoded sequence vectors at each
time step and aligns to the corresponding source hidden states adaptively (Bahdanau
et al., 2015) (Figure 3a).

Early Image Captioning approaches were mainly based on generating a descrip-
tion using explicit visual detector outputs (Yao et al., 2010). We refer readers to
Bernardi et al. (2016) for an in-depth discussion on various image captioning ap-
proaches. In recent years, multimodal RNN approaches have become dominant,
achieving state-of-the-art results on the IC task (Vinyals et al., 2015). Such methods
encode an input image as an embedding (e.g. Convolutional Neural Networks (CNN))
and learn an RNN for generating image descriptions conditioned on the image em-
bedding. In this paper, we focus on such state of the art approaches, more specifically
the system proposed by Vinyals et al. (2015) which uses a Long Short-Term Memory
(LSTM) RNN to model the image descriptions (Figure 3b).

As a first attempt at Multimodal Machine Translation, Elliott et al. (2015) added
image information at the encoder or the decoder in an NMT setup (Figure 3c) and
found marginal improvements from doing so. The systems submitted to the sub-
sequent shared task on Multimodal Machine Translation (Specia et al., 2016) mostly
involved a type of NMT, i.e., an encoder-decoder approach, or used a standard phrase-
based statistical MT (SMT) system. SMT systems made use of image information
mostly during re-ranking, such as Shah et al. (2016). Hitschler et al. (2016) use image
information by pivoting it on an external image captioning corpora. Most systems
that make use of NMT add the image feature information into either the NMT en-
coder or decoder (Huang et al., 2016; Hokamp and Calixto, 2016), similar to Elliott
et al. (2015) with various enhancements. Marginal improvements according to auto-
matic evaluation metrics were found only for approaches using re-ranking. However,
the results of the task do not provide an indication on whether this is inherently be-
cause of the task itself (i.e. images cannot help MT) or because of limitations of the
methods proposed.

3. Experimental Settings

As Figure 3 shows, IC and NMT models are intrinsically similar from the perspec-
tive of decoding, producing the same type of output sequences. The primary differ-
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(a) Neural MT (b) IC (c) Multimodal NMT

Figure 3: Typical architecture of NMT, IC, and MMT systems. In (a), the source sentence is
encoded as a sequence of vectors and then decoded using a target language RNN. In (b),
the input image is encoded as a vector, and a description is decoded using an RNN. In (c),
the source sentence encoding is used as input to the decoder, and the image embedding

is used as input to either the source encoder or target decoder

ence is the attention mechanism in NMT. In this section, we analyse the contributions
of NMT and IC to a description translation task by studying various aspects of these
systems independently and their impact on translation quality.

Dataset: We use the Multi30K dataset (Elliott et al., 2016), an extension of
Flickr30K (Young et al., 2014) built for the WMT16 MMT task (Specia et al., 2016).
Multi30K contains two variants: (i) one English description and a professionally trans-
lated German description per image (used in Task 1: multimodal translation); (ii) five
English descriptions and five independently crowdsourced German descriptions per
image (used in Task 2: image description generation). See Table 1 for detailed statis-
tics. We use the data in the German–English (DE–EN) direction.

Train Val Test Tokens Avg. Length
Images 29,000 1,014 1,000 – –

Task1 English 29,000 1,014 1,000 357,172 11.9
German 333,833 11.1

Task2 English 145,000 5,070 5,000 1,841,159 12.3
German 1,434,998 9.6

Table 1: Corpus statistics

Data Settings: To analyse the performance of the NMT and IC models with respect
to different types of training data, we perform experiments in the following settings:

1. Parallel: The corpus for ‘Task1’ is used. Each image has a corresponding (DE,
EN) description pair, where the DE description is a direct (professional) trans-
lation of the corresponding EN description.

2. Comparable: The corpus for ‘Task2’ is used. Each image has five independent
(DE, EN) description pairs. The DE descriptions are obtained from the image
only by crowdsourcing. They are much shorter than the English ones as com-
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pared to the Task1 dataset (see Table 1). This is considered a comparable corpus,
as the descriptions are not direct translations of each other.

3. Out of Domain: Here we train the models on larger datasets of different domains.
For NMT, we take (News, etc.) data described in Sennrich et al. (2016), and for
IC we take the MSCOCO corpus (Lin et al., 2014). These are large datasets and
were not part of the MMT shared task at WMT16.

4. Cross-comparable (Only NMT): The corpus of ‘Task2‘ is used to create a new
dataset for NMT. Each of the five DE descriptions is randomly paired with each
of the five EN descriptions resulting in 25 (DE, EN) description pairs per image.
This is similar to the Comparable setting except that it is much larger.

All experiments were conducted using the Task1 test set of 1000 samples consisting
one reference translation/description for each source sentence/image.

Toolkits: We use state-of-the-art toolkits: Nematus (Sennrich et al., 2016) for NMT
and Show and Tell (Vinyals et al., 2015) for IC with default hyperparameters. We
experiment with different beam sizes during decoding: 3, 10, 100 and 300. Besides the
1-best output, n-best outputs (where n is the beam size) are also generated from every
model to provide a more comprehensive view of what the models can do. For NMT,
in order to handle rare words, these are segmented into subwords using the Byte-Pair
Encoding Compression Algorithm (Sennrich et al., 2015). We have also tried such a
segmentation for IC, but no improvements were observed.

4. Analysis

In the following subsections, the effects of ‘Data Setting’ and ‘Beam Size’ on the
performance of NMT and IC models are studied using ‘Vocabulary Overlap’, ‘Per-
plexity’, and the MT Metrics ‘BLEU’ and ‘Meteor’. To study the effect of data settings,
we fix the beam size to 10 and then train systems on the different training data sets.
The data settings that gave the best performing NMT and IC systems are then fixed
for the study on the effect of beam size, where we only vary the beam sizes. For a
more holistic analysis, both 1-best and n-best outputs are used in our experiments.

4.1. Vocabulary Overlap and Perplexity

The vocabulary overlap between the system-generated outputs and gold standard
references helps us to understand the performance of the systems at a very basic level.
Given an NMT (or IC) system of beam size n, we denote i to be a test input (a DE sen-
tence for NMT, an image for IC). Let o1

i , o
2
i , ..., o

n
i be the n-best hypotheses for input

i, sorted in descending order by the log probability of ok
i (i.e., the model score). Let ri

be the reference sequence for input i in the target language (EN). Let ϕ be the set func-
tion, ⊕ the concatenation operator, ∩ the intersection operator, and |.| the cardinality.
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We define four types of overlaps as follows:

VA(i) =
|ϕ(ri) ∩ ϕ(o1

i )|

|ϕ(ri)|
VB(i) =

|ϕ(ri) ∩ ϕ(o1
i )|

|ϕ(o1
i )|

VC(i) =
|ϕ(ri) ∩ ϕ(o1

i ⊕ o2
i ⊕ ...⊕ on

i )|

|ϕ(ri)|
VD(i) =

|ϕ(ri) ∩ ϕ(o1
i ⊕ o2

i ⊕ ...⊕ on
i )|

|ϕ(o1
i ⊕ o2

i ⊕ ...⊕ on
i )|

VA measures the proportion of words in the reference for Task1 captured by the 1-best
output, while VB measures the proportion of the words in the 1-best output found in
the reference. VC and VD are similar to VA and VB respectively, except that the 1-best
output is replaced by the concatenation of all n-best outputs. VA and VC correspond
to word-overlap recalls, and VB and VD correspond to word-overlap precisions.

Perplexity scores measure how well the models (NMT and IC) can predict a
sample. Given a system that generates a sequence x1, · · · , xm with probabilities
p1, · · · , pm, perplexity is defined as P(x) = 2{−

∑m
i=1 pi log(pi)}. We use two types of

perplexity measures PA,PB based on whether the 1-best or n-best outputs of our sys-
tems are used: a) PA(i) = P(o1

i ) and b) PB(i) =
1
n

∑n
k=1 P(ok

i )

Data VA ↑ VB ↑ VC ↑ VD ↑ PA ↓ PB ↓
News 61.24 63.41 69.83 37.47 11.25 12.57

NMT Task1 66.11 68.27 73.02 36.88 4.78 5.76
Cross 26.22 44.23 34.91 19.76 11.16 13.11
Task2 21.30 15.44 33.45 6.79 49.28 113.57
MSCOCO 12.08 16.45 20.68 11.16 10.22 12.38

IC Task1 11.38 14.19 24.76 6.35 19.50 39.59
Task2 17.70 26.29 30.04 8.46 19.89 35.81

Table 2: Effect of training data studied using Vocabulary Overlaps VA,VB,VC,VD (in
%), and Perplexity PA,PB. All models are trained with a fixed beam size of 10

The sentences are pre-processed (removal of symbols and stop words, case-
normalisation) to retain only content words. The vocabulary overlap and perplexity
scores (averaged over all test inputs) are shown in Table 2 and Figure 4.

4.2. MT Metrics

We evaluate the independent NMT and IC systems using BLEU (Papineni et al.,
2002) and Meteor (Denkowski and Lavie, 2011). BLEU is computed using the script
from Moses suite 2, and Meteor is computed using version 1.5 3. In addition, we also
measure the ratio between the length of system-generated sequence over the length
of reference (‘len.’). The scores are tabulated in Tables 3 and 4.

2https://github.com/moses-smt

3http://www.cs.cmu.edu/~alavie/METEOR
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(b) IC and beam size

NMT IC
Beam PA ↓ PB ↓ PA ↓ PB ↓
3 5.22 5.83 39.19 51.04
10 4.78 5.76 19.89 35.81
100 4.65 5.31 9.49 21.71
300 4.65 5.23 8.52 20.07

(c) Perplexity and beam size

Figure 4: Effect of beam size studied using vocabulary overlap VA,VB,VC,VD (in %)
and Perplexity PA,PB. Plot (a) shows vocabulary overlap of outputs of NMT system

trained on Task1 data. Plot (b) shows vocabulary overlaps of outputs of IC system trained
on Task2 data. Table (c) shows perplexity scores.

Data BLEU ↑ Meteor ↑ len. (%)
News 33.89 36.85 96.98

NMT Task1 39.13 36.87 100.54
Cross 6.92 14.62 63.06
Task2 3.08 12.83 158.07
MSCOCO 3.11 9.56 78.45

IC Task1 3.91 9.75 86.37
Task2 5.79 12.31 75.55

Table 3: Effect of training data studied
using MT evaluation metrics

Beam BLEU ↑ Meteor ↑ len. (%)
3 39.08 36.81 100.61

NMT 10 39.13 36.87 100.54
100 39.11 36.89 100.72
300 39.11 36.89 100.72
3 6.75 12.94 89.63

IC 10 5.79 12.31 75.55
100 4.12 10.82 61.13
300 3.83 10.47 58.73

Table 4: Effect of beam size studied
using MT evaluation metrics

4.3. Discussion

Effect of Training Data: We observe that NMT models perform best when trained
on the in-domain parallel Task1 data, with overlap VA = 66.11% and BLEU = 39.13%
as summarised in Tables 2 and 3. We also observe that NMT performs sufficiently well
when trained on the Out-of-Domain parallel News corpus with overlap VA = 61.24%
and BLEU = 33.89%. In the remaining comparable data settings (Cross and Task2) it
performs very poorly, indicating that NMT system performance generally improves
when constrained to parallel corpora and degrades when partially parallel corpora
is added. The IC models perform best when trained on the in-domain Task2 data,
which has 5 descriptions per image (see Table 1), with overlap VA = 17.70% and
BLEU = 5.79% (or 20.52% when we use the five references of Task2). It performs
poorly in other data settings. When compared to the NMT system, this can be seen as
an indication that the ICs are better trained on larger in-domain data having multiple
descriptions per image. We also observed that the IC system trained only on MSCOCO
produced shorter sentences, resulting in lower perplexity scores.
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Effect of Beam Size: By fixing Task1 data for NMT and Task2 data for IC and
studying the effect of beam size, we observe that the NMT performance remains
largely unchanged as the beam size changes (see Table 4) with BLEU = 39.1%. On
the other hand, the IC performance drops as beam size increases. We also observe
that IC outputs shorter sentences with larger beam sizes. This is because an end-of-
sentence token is more likely to be sampled (and sampled earlier) as beam size in-
creases. Shorter captions are thus ranked higher as they end up having larger model
scores (a product of target word probabilities). This may partly explain the perfor-
mance decrease, although more work is needed to ascertain this. Another interesting
observation from this experiment is that the n-best output from both NMT and IC is
able to cover more content of the reference as the beam sizen increases (SeeVC,PA,PB

in Figure 4). Especially for IC, the overlapVC and perplexity measures show large im-
provements. For instance, VC improves from 22.34% (beam 3) to 55.23% (beam 300).
This shows that then-best outputs are able to capture more information content in the
reference as the beam size increases. In NMT we see a drastic fall in VD from 50.83%
(beam 3) to 6.41% (beam 300), which means that as the beam size increases the n-best
output of NMT becomes very noisy, with many spurious words. We try to exploit
these observations in our system combination strategies in later sections.

5. Combining NMT and IC for MMT

In the previous section, we analysed NMT and IC models independently and ob-
served some important properties. Most notably, for IC the vocabulary overlap VC

increases drastically for larger beam sizes (see Figure 4) and becomes comparable to
NMT models of smaller beam sizes. Recall that VC is the overlap of content words in
the n-best output (taken collectively) and the reference. This motivates us to explore
the possibilities of improving MT by combining the n-best outputs of NMT and IC
models of different beam sizes at the word-level.

We approach this task as that of re-ranking the n-best outputs of NMT models
using the m-best outputs from IC models. To motivate this, we first explore the scope
for improvement with re-ranking through an oracle experiment.

5.1. Scope for Re-ranking: Oracle Experiment

The oracle experiment assumes that we have an ‘oracle’ that always chooses the
best translation out of the n-best outputs generated by the system. We compute an
upper bound on the performance of re-ranking approaches using this oracle. For a
given MT-metric (we used BLEU) we use the reference translation to obtain the best
translation given an n-best list of translation hypotheses.

This experiment was performed on the outputs of NMT systems trained on Task1
for beam sizes 10, 30, 100, and 300. The results are shown in Figure 5. We observe that
an ideal re-ranking approach could significantly improve NMT performance. As the
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Figure 5: Scope for improvement,
as indicated by the yellow bar over
the baseline

beam size increases, the scope for obtaining a better translation generally improves.
We also performed this experiment for IC systems, but no significant improvements
were found. The best translation selected by the oracle is also observed to be usually
close to the middle of the system-ranked n-best list. In the following sections, we
focus on re-ranking the NMT hypotheses using IC outputs.

5.2. Re-ranking NMT using IC Word Probabilities

We propose to re-rank the n-best NMT translations using image information ex-
tracted as word probabilities in the m-best IC outputs. The decoders in both systems
produce a word w with a probability pnmt(w) and pic(w) respectively. We estimate
new word scores for each wordw by interpolating the information from both systems:

pnew(w) = (1− α) ∗ pnmt(w) + α ∗ pic(w)

where, pnew(w) is the new word score, pnmt(w) is the word probability from the
NMT system, pic(w) is the aggregated word probability from the IC system, and α is a
hyper-parameter in the range [0, 1] tuned on the validation set using grid search. For
a translation hypothesis (w1, w2, ..., wk), its score is computed as a product of these
new word-level scores

∏k
i=1 pnew(wi). We re-rank the n-best NMT hypotheses using

the new scores. We propose three ways of aggregating the word probability p̃ic(w
t)

for the tth instance of w in the m-best IC outputs:
1. AVERAGE: pavg

ic (w) = 1
L

∑L
t=1 p̃ic(w

t)

2. SUM: psum
ic (w) =

∑L
t=1 p̃ic(w

t)

3. MAX: pmax
ic (w) = max

t∈[1,2,...,L]
p̃ic(w

t)

where the word w occurs L times in the m-best IC outputs. We set pic(w) = 0 if w
does not occur in any of the outputs.

5.3. Re-ranking NMT by similarity with IC Outputs

Here we explore re-ranking NMT hypotheses by their similarity to IC outputs. The
motivation is that if we assume the IC outputs accurately describe image content, a
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more adequate translation can be selected from the NMT hypotheses if we include
the IC outputs in the re-ranking process. We do this by using the BLEU metric as a
measure of overlap between an NMT hypothesis and them-best IC outputs. The NMT
hypothesis that has the highestn-gram overlap with the IC outputs should be the most
adequate translation. This implies that we are re-ranking the NMT hypotheses based
on the information overlap score. For this paper, we use BLEU-4 with smoothing and
brevity penalty as the overlap score. We call this approach ‘BLEU-rerank’.

5.4. Results and Human Evaluation

For both system combination strategies, the best results are obtained using the
NMT system trained on Task1 data and decoded with beam size 10 and the IC sys-
tem trained on Task2 data with beam size 100 (except for BLEU-rerank where both
NMT and IC systems have beam size 3). The highest ranked output after re-ranking
is used for evaluation. We report the 1-best output of the same NMT system (before
re-ranking) as the baseline. We summarise the results in Table 5. We observe that
the method that uses IC word probabilities is able to select better sentences. The AV-
ERAGE aggregation works best and gives a small improvement when evaluated with
BLEU. Given that the improvement is only observed for BLEU, we resorted to manual
evaluation to obtain a better understanding of our re-ranking approaches.

Re-Ranking α BLEU↑ Meteor↑
AVERAGE 0.41 39.43 36.72
SUM 0.0049 39.34 36.65
MAX 0.26 39.30 36.67
NMT BASELINE – 39.13 36.87
BLEU-rerank – 36.20 35.30

Table 5: Performance of re-ranking
strategies

Judge Either Baseline AVERAGE
A 17 15 18
B 5 19 26
C 22 9 19
D 19 11 20
E 27 9 14

Total 90 (36%) 63 (25%) 97(39%)

Table 6: Human evaluation:
NMT vs MMT

Human evaluation: 31% of the 1-best outputs of AVERAGE differ from the base-
line after re-ranking. To better understand the differences in these sentences, we asked
humans to judge their quality. Five judges (proficient in English) were given 50 sam-
ples, each showing the source input image, reference translation, and the translation
options from the two systems (without revealing the systems). The judges were asked
to decide which option was better in terms of (i) proximity in meaning to the reference
and (ii) fluency, giving precedence to the former. They could choose ‘Either’ when
the two translations were equally good or bad. Table 6 summarises the results. All
five judges preferred AVERAGE over the text-only baseline.

Figure 6 shows an example output comparing 1-best translation of the text-only
baseline and our proposed ‘AVERAGE’ system combination strategy. The IC system-
generated captions give high word probability scores to the words rocky and mountain
compared to the words body and water [pavg

ic (rocky) = 0.42; pavg
ic (mountain) = 0.28;
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Reference a dog treads through a shallow area of water located on a rocky mountainside.

Baseline a dog walks through a body of water, with a body of water in it.

AVERAGE a dog walks through a body of water, looking at a rocky mountain.

Figure 6: Example output translation for the baseline (text-only NMT) and the best MMT
system combination (AVERAGE)

p
avg
ic (body) = 0.00; pavg

ic (water) = 0.00]. This is probably because rocky mountain is
more prominent in the image. This indicates that there is scope for developing system
combination methods and joint models that combine both IC and NMT systems.

6. Conclusions

In this paper, we studied text-only NMT and IC systems independently from each
other. The NMT system was found to be better when constrained to an in-domain
parallel corpus; its performance degrades when trained on a partly parallel corpus.
On the other hand, the IC system was found to be better when trained on a corpus
that has multiple descriptions of the same image, enabling the model to capture more
information content more reliably from the image. n-best outputs of the IC system
are able to capture more information content for higher beam sizes. For NMT, the
oracle experiment suggests that there is enormous potential to improve performance
for higher beam sizes n if we can re-rank the n-best output wisely. However, we
also see the VD precision decreases dramatically for NMT with higher beam sizes,
suggesting higher chances of spurious re-ranking and, hence, the need to find the
right trade-off between more information and spurious information. In our attempt
to combine outputs from NMT and IC, we found that system combinations can be
helpful if we make use of word probabilities from NMT and IC systems. Our method
interpolating these probabilities is able to use image information and outperforms the
baseline. This shows evidence that image information has potential to improve MT.
Creative and robust system combinations and joint models that exploit NMT and IC
word probabilities are promising directions for future work.
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valuable comments.
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