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  

Abstract— This paper presents a real time hybrid 2D position 
and orientation tracking system developed for an upper limb 
rehabilitation robot. Designed to work on a table-top, the robot 
is to enable home-based upper-limb rehabilitative exercise for 
stroke patients. Estimates of the robot’s position are computed 
by fusing data from two tracking systems, each utilizing a 
different sensor type: laser optical sensors and a webcam. Two 
laser optical sensors are mounted on the underside of the robot 
and track the relative motion of the robot with respect to the 
surface on which it is placed. The webcam is positioned directly 
above the workspace, mounted on a fixed stand, and tracks the 
robot’s position with respect to a fixed coordinate system. The 
optical sensors sample the position data at a higher frequency 
than the webcam, and a position and orientation fusion scheme 
is proposed to fuse the data from the two tracking systems. The 
proposed fusion scheme is validated through an experimental 
set-up whereby the rehabilitation robot is moved by a humanoid 
robotic arm replicating previously recorded movements of a 
stroke patient. The results prove that the presented hybrid 
position tracking system can track the position and orientation 
with greater accuracy than the webcam or optical sensors alone. 
The results also confirm that the developed system is capable of 
tracking recovery trends during rehabilitation therapy. 

I.  INTRODUCTION  

In England, 110,000 cases of stroke are reported each year 
and 300,000 people are suffering post-stroke disabilities. 
These numbers are projected to rise due to the ageing of the 
English population [1, 2]. Although, initial hospital post-stroke 
rehabilitation is comprehensive, patients frequently do not 
completely achieve long-term recovery goals. This is 
exacerbated by a lack of adequate therapeutic intervention 
after discharge from hospital, primarily caused by limited 
economic resources and a lack of qualified physiotherapists 
[3]. An emerging approach to promote upper limb 
rehabilitation beyond hospital stay is the use of table-top 
passive rehabilitation robots which do not require professional 
supervision, such as the Arm Skate [4], ARMassist [5] and 
Reha-Maus [6]. These devices are designed to monitor arm 
movements, hence provide recovery feedback, and support 
rehabilitation protocols embedded in video games, which have 
been confirmed to boost patient attention and rehabilitation 
results [7]. To record the patient’s efforts while performing a 
rehabilitation exercise (game), each of the three mentioned 
passive rehabilitation robots incorporates a positioning system 
tracking their 2D position and for the ARMassist and Reha-
Maus also their orientation. The Arm Skate utilizes a webcam 
to estimate the absolute position of the robot. The ARMassist 
uses three mouse optical sensors, one tracks the absolute 
position relative to a coded mat, and two optical sensors track 
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relative position changes relative to the mat, and absolute and 
relative position data is fused to provide more accurate 
position and orientation estimates. Likewise, the Reha-Maus 
utilizes two subsystems: relative based on wheels odometry, 
and absolute, based on an infrared camera mounted above it.  

The accuracy of the developed position tracking systems 
for these table-top rehabilitation robots has not, for the most 
part, been comprehensively evaluated for the use in 
rehabilitation and tracking recovery changes in patients. To 
address this problem, an innovative 2D hybrid position and 
orientation tracking system is presented and experimentally 
evaluated in this work. It is validated through an experimental 
set-up whereby the rehabilitation robot is moved by a 
humanoid robotic arm replicating previously recorded 
movements of a stroke patient. The system is designed to 
monitor movements of a passive rehabilitation robot, which is 
presented in Figure 1 (a and c). The system fuses position data 
from a webcam and two optical mouse sensors. The webcam 
is positioned directly above the workspace, mounted on a fixed 
stand, and tracks the robot’s absolute position by detecting two 
markers fixed on top of the robot (Figure 1b). Two laser optical 
sensors are mounted on the underside of the robot (Figure 1d) 
and track the relative motion of the robot with respect to the 
surface on which it is placed. Utilizing the webcam enables the 
tracking system to record videos of rehabilitation exercises 
performed by a patient’ which can be beneficial for medical 
evaluation, especially during home based rehabilitation 
therapy. 

 
Figure 1.  a) Conceptual setup of a passive table-top rehabilitation system, 
b) Top view of the robot presenting blue and red webcam markers, c) The 
rehabilitation robot, d) Bottom view of the robot presenting A and B mouse 
optical sensors. The actuated module of the robot is not presented here. 
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The presented work is a continuation of the work 
previously shown in [8], which proved that the 2D position 
tracking system fusing position estimates from two sensors, an 
optical mouse sensor and a webcam, can estimate the position 
with greater accuracy than would be possible using each 
sensor alone. In this paper, the functionality of the hybrid 
tracking system [8] is extended by including orientation 
tracking. The tracking system introduced in [8] could not track 
rotation and could not function properly if rotation of the 
tracked object occurred. 

Sensor fusion models greatly depend on the application, 
thus there is no general solution of sensor fusion [9]. A sensor 
fusion can by performed at multiple levels of fusion, 
depending on the number and types of sensors [10]. In this 
work, the fusion algorithm performs a two-level fusion. First, 
data from two optical sensors is integrated together and 
secondly the data from the optical sensors and the webcam is 
fused. 

The main requirements of the developed 2D position and 
orientation tracking system are supporting rehabilitation 
games and tracking recovery trends during rehabilitation 
therapy while using the rehabilitation robot (Figure 1c). These 
are discussed in this paper. 

II.  HYBRID POSITION AND ORIENTATION TRACKING SYSTEM 

The developed hybrid tracking system fuses position and 
orientation measurements from two subsystems: absolute and 
relative position and orientation tracking systems.  

A. Webcam-based absolute position and orientation 
tracking 

The absolute position tracking subsystem is based on a 
Logitech Pro 9000 webcam. The webcam is attached to a 
fixed stand (Figure 1a) and detects the motion of the robot 
(Figure 1c) by detecting two markers, blue and red (Figure 
1b), which are 40 mm in diameter. The webcam absolute 
tracking algorithm works in 5 main steps: 

1. Acquire a frame. 
2. Apply a calibration filter. 
3. Detect the blue marker centre coordinates. 
4. Detect the red marker centre coordinates. 
5. Calculate the robot’s position and orientation. 

The robot’s 2D position and orientation are calculated based 
on the centre coordinates of the blue and red markers.  

B. Optical sensors-based relative position and orientation 
tracking 

The relative position tracking is based on two ADNS-9800 
laser optical mouse sensors. The optical sensors, labelled A 
and B, are mounted on the underside of the robot, as shown in 
Figure 1d. The optical sensors hover around 2.4 mm above 
the surface and track the position changes relative to the 
starting position. The operation of the relative tracking system 
can be summarised in 3 steps:  

1. Read A sensor coordinates increments . 
2. Read B sensor coordinates increments . 
3. Calculate robot’s position and orientation increments . 

C. Fusion scheme 

The data sample rate is different for both the webcam and 
the optical sensors. The webcam sampling frequency is 
assumed to always be slower than the sampling frequency of 
the optical sensors. The fused trajectory is based on optical 
sensors measurements with the webcam measurements being 
used to correct the accumulative error (drift) inherent in the 
optical sensor. 

When the fusion algorithm is running, two different cases 
are utilized based on the availability of the webcam data, a 
case when webcam data is available and a case when it is not. 
This approach is related to the fusion strategy presented in [6], 
but in the presented fusion scheme a Kalman filter is not 
implemented to fuse data and correct accumulative odometry 
errors. 

The operation of the proposed tracking system can be 
described in 3 steps: 

1. Reading measurements from the sensors.  

The generalized position vectors can be written as: 

௪ݍ ൌ ൥ݔ௪ݕ௪ߙ௪ ൩    ȟݍ௢ ൌ ൥ȟݔ௢ȟݕ௢ȟߙ௢൩ 
Where qw contains the webcam absolute coordinates readings, ݔ௪ and ݕ௪ , and the absolute orientation ߙ௪. ȟݍ௢ includes the 
optical sensors relative coordinates readings  from the most 
recent position measurement, ȟݔ௢ and ȟݕ௢, and the relative 
orientation ȟߙ௢. 

2. Checking if the new webcam data (ݍ௪) is available. 

3. Calculate fused data.  

a. A case when the next ݍ௪ is not available. 

If the new ݍ௪ is not available the following equation is used 
to calculate the fused position and orientation: 

ሻݐ௙ሺݍ  ൌ ௙ݍ ሺݐ െ ͳሻ ൅  ȟݍ௢ ሺݐሻ  (1) 

Where ݍ௙ is the fused position and orientation vector and t is 
the time step when the measurement was taken. 

b. A case when the next ݍ௪ is available. 

When the new ݍ௪ is present the fused position and orientation 
is calculated as follows: 

ሻݐ௙ሺݍ  ൌ ௙ݍ ሺݐ െ ͳሻ ൅  ȟݍ௢ ሺݐሻ ൅  (2)  ܥݓ

where ݓ is a gain and ܥ  is a position correction term. The 
correction term ܥ  is calculated as follows: 

௪ݐሺܥ  ሻ ൌ ௪ݍ ሺݐ௪ ሻ െ ௙ݍ  ሺݐ௪ െ ௗݐ ሻ  (3) 

where ݐ௪ is the time when webcam measurements are 
available, ݐௗ  is a webcam data processing delay updated 
during each ݐ௪ time step, and ݍ௙was interpolated at ݐ௪ െ ௗݐ . 



  

To interpolate ݍ௙ ሺݐ௪ െ ௗݐ ሻ 20 past measurements of ݍ௙ were 
stored in memory.  For each iteration ݐ௪ െ  :ௗ satisfiesݐ

ሺ݊ݐ  െ ͳሻ ൏ ሺݐ௪ሺ݊ሻ െ ௗݐ ሺ݊ሻሻ ൑  ሺ݊ሻ  (4)ݐ

To minimize sudden sharp changes on a trajectory graph, 
rather than adding the correction term ܥ  in one ݐ time step to 
correct the fused position and orientation (ݍ௙ሻ, ܥ  was divided 
by 10 and added during 10 time steps ݐ. The correction ܥ  
divided by 10 was implemented over 10 steps because the 
minimum number of optical sensors measurements between 
two webcam position measurements was always greater than 
10 during experimental testing. 
 
The gain ݓ is computed based on average strength (AS) 
parameters acquired by the webcam in each frame. The AS is 
a gradient magnitude of the tracked marker’s detected edge 
measured from 0 to 1. The gain ݓ was computed by 
multiplying together gains ݓ௕  and ݓ௥ , where ݓ௕  and ݓ௥  were 
separately determined for the blue (ݓ௕ ሻ and red ሺݓ௥ ሻ markers  
(Figure 1b) using the following formulas: 

 
௞ݓ ൌ Ͳǡ݂ܵܣݎ݋ ൏ ͲǤͻݓ௞  ൌ  ͸Ǥʹͷ ൈ ܵܣ Ȃ  ͷǤͳʹͷǡ for ͲǤͻͲ ൑ ൏ ܵܣ   ͲǤͻͺݓ௞ ൌ ͳǡ ͲǤͻͺ ݎ݋݂ ൑ AS   (5) 

Equation (5) was determined experimentally to filter out the 
noise-corrupted webcam measurements.  

The simplified diagram of the proposed fusion scheme is 
presented in Figure 2, i is the number of correction steps. 

 
Figure 2.  Simplified schematic diagram of the fusion scheme. 

III.  EXPERIMENTAL METHODOLOGY 

The accuracy of the tracking system was experimentally  
evaluated against a reference trajectory captured at 100 Hz 
with Optotrak Certus motion capture system which has a 
measurement accuracy of approximately ±0.1mm. Figure 3 

presents a diagram of the experimental apparatus utilized to 
collect the results. During the testing, a humanoid robotic 
arm, ALAN [11], developed at the University of Leeds, was 
used to replicate the recorded arm movements of a 
representative stroke patient playing a rehabilitation game. 
The patient trajectory data utilized was collected during a trial 
of the MyPAM system, an active home-based rehabilitation 
robot also developed at the University of Leeds [12]. A 
sample data set was chosen belonging to an 81 year old female 
who was 132 days post-stroke at the time of recruitment to the 
aforementioned trial. She was right arm impaired, which was 
also her dominant side, and she had a baseline Fugl-Meyer 
upper-limb assessment score of 32.  The data represents the 
patient performing a repeated pentagram task (trying to 
follow a pentagram shaped trajectory for 60 seconds). In this 
study, 18 of the recorded 2D trajectories were tracked with 
the developed hybrid tracking system. As the tracked 
trajectories had been recorded while the patient was 
performing the pentagram task, the speed and range of motion 
was typical for rehabilitation therapy. An additional reason 
for selecting this patient is that she had shown clear 
improvement during her rehabilitation, and the question of 
whether the presented hybrid tracking system is accurate 
enough to show her therapy progress was investigated in this 
work.  

 
Figure 3.  Schematic diagram of the experimental apparatus. 

Figure 4 presents a photo taken during one of the experiments. 
The photo shows the ALAN robot arm moving the 
rehabilitation robot, which is tracked by the developed hybrid 
tracking system. 

 
Figure 4.  A photo taken during one of the experiments. 



  

During the experiments the webcam was attached to a stand 
and positioned over the tracked robot covering an area of 336 
by 448 mm. The resolution was set to 640 by 480 pixels , 
which resulted in 0.7 mm to pixel ratio. To minimize tracking 
errors caused by the webcam’s lens distort ion, a calibration 
algorithm utilizing a grid of dots was employed. To check the 
quality of acquired webcam data, three parameters were 
measured at each time step: blue and red marker radius (real 
radius is 20 mm), distance between the centers of the markers  
(real value is 50 mm), and AS. 

IV.  EXPERIMENTAL RESULTS 

A. Results for the webcam tracking subsystem 

The average recorded frequency of the webcam was 5 Hz.  
Table 1 summarizes the quality measurements recorded while 
tracking the first pentagram assessment recreated by the 
ALAN robot arm. It can be noted that the detected radii for 
the markers by the webcam were less than the actual radii (20 
mm) and are more accurate for the red maker than for the blue 
marker. The measurements of the distance between the 
markers are accurate, 50.4mm on average, which is close to 
the 50mm reference value. Average strength measurements 
indicate (similar to the marker’s radii measurements) that the 
quality of the red marker detection was better, however all the 
average strength measurements are close to the 1 reference 
value with the minimum detected AS value equal to 0.95 and 
0.97 for the blue and red markers respectively. 

TABLE I.  SUMMARY OF THE WEBCAM MEASUREMENTS. RADIUS OF 
THE RED MARKER (RR), RADIUS OF THE BLUE MARKER(RB), DISTANCE 

BETWEEN THE RED AND BLUE MARKERS CENTRES(DRB), AVERAGE 
STRENGTH OF THE RED MARKER(ASR) AND THE AVERAGE STRENGTH OF 

THE BLUE MARKER(ASB). 

Rr (mm) Rb (mm) drb (mm) ASr ASb 

19.4 (±0.2) 18.8 (±0.2) 50.4 (±0.2) 0.996(±0.01) 0.98(±0.01) 

B. Results for the optical sensors tracking subsystem. 
The average measured sampling frequency of the two 

optical sensors used was 97.2 ±17.6 Hz. To evaluate the 
quality of the measurements acquired by the optical sensors, 
surface quality measurements (Squal, measured from 0 to 
169) were recorded during each t time step by the optical 
sensor itself. While tracking the first pentagram assesment 
recreated by the ALAN robot arm, the Squal measurements 
were 38.5 ±5.3 for the optical sensor A and 35.4 ±5.3 for the 
optical sensor B. These values indicate correct operation of 
the sensors and are similar to Squal values recorded for the 
smooth MDF surface presented in [8]. A smooth Plywood 
surface was utilized in this instance.  

C. Sample results for the fusion tracking system 

Figure 5 presents the XY recorded trajectories for the 
assessment 1 (out of 18) played by the patient. 

 
Figure 5.  XY fusion graph for Fusion, Optotrak, Webcam and Optical 
sensor-recorded trajectories for the pentagram assesment 1 performed by the 
patient. 

Figure 6 presents sample X, Y coordinate, and angle of 
rotation plotted versus time for the XY trajectory plot shown 
in Figure 5. 

 
Figure 6.  X, Y coordinates, and angle of rotation plots vs time (10s of 60s) 
for the pentagram assesment 1 performed by the patient. 



  

D. Summary of fusion tracking results 

Figure 7 summarizes the average 2D tracking and 
orientation accuracy of the hybrid tracking system. In both the 
position and orientation tracking, the calculated average 
RMSEs confirm that the fusion algorithm improves the 
accuracy by fusing data from the optical sensors and the 
webcam. 

 
Figure 7.  Average root mean square error calculated for 18 data sets for 
2D XY coordinates and orientation. 

E. Suitability for use in post-stroke rehabilitation therapy 

To investigate the suitability of the developed tracking 
system for an application in upper-limb robotic rehabilitation, 
recovery trends for path length, path length time and 
normalized jerk were compared between the fusion and 
Optotrak recorded trajectories as presented in Figure 8. The 
path length is the sum of all of the component movement 
lengths between each point to point movement on the 
pentagram assessment. For each of the 18 assessments, an 
average length of the trajectory the patient needed to connect 
the vertices of the pentagram was calculated [13]. Path length 
time is the time the patient took to move between pentagram 
vertices, averaged for each of the 18 assessments. The 
normalized jerk is the derivative of acceleration and measures 
jerkiness. Jerk is used to describe smoothness of movement 
(it is minimized in a smooth movement) and is normalized 
with respect to distance and time, therefore it is unit less, so 
the trajectories of different lengths and durations can be 
compared [13]. 

 

 
Figure 8.  Path length(PL),  path length t ime (PLT), and normalized jerk 
(NJ)  comparision between data recorded with the Optotrak and the fusion 
tracking system for 18 ‘pentagram rehabilitation assesments’ played by a 
post-stroke patient during 8 weeks. 

The recovery trends for PL, PLT and NJ for fusion and 
Optotrak data plotted in Figure 8 were compared by 
calculating an average percentage difference for all 
assessment as it is presented in Figure 9. The ideal average 
percentage values for the fusion would be equal to 100% 
Optotrak reference values if they perfectly matched the 
recovery trends recorded by the Optotrak. Average PL, PLT 
and NJ data for the optical sensors and the webcam is plotted 
for comparison. 

 
Figure 9.  Path length(PL),  path length t ime (PLT), and normalized jerk 
(NJ)  average percentage values calculated for the fusion tracking system, the 
optical sensors and the webcam for all 18 assesments compared to 100% 
Optotrak average reference values. 

V.DISCUSSION 

Similarly to [8], the results comparing the RMSE (Figure 7) 
have confirmed that utilizing the proposed fusion scheme 
gives more accurate results than if  the webcam and optical 
sensors were used alone. In this work, the functionality of the 
hybrid position tracking system was extended to orientation 
tracking and likewise in the case of the position, the 
orientation tracking also benefits from the fusion scheme 
providing more accurate orientation results.  

Also, compared to the results in [8], the fusion trajectory 
RMS error average has improved from 6.8 ±3.4mm to 2.8 
±2.6mm, even though the webcam frame rate was lowered 
from 10 Hz to 5 Hz. This is due to a new calibration method 
being employed. It can also be noted that the average RMS 
error for the optical sensors-tracked trajectory has decreased 
compared to the optical tracked trajectory average RMS error 



  

in [8], which is difficult to explain. However, it might be 
caused the fact that in this study two optical sensors separated 
by a distance of 180mm were used together, compared to only 
one sensor used in [8]. 

As presented in [8], it has been shown that utilizing the 
average strength as the quality indicator of the webcam 
position measurements can be an effective approach to 
minimize the effect of noise in webcam measurements on the 
final fused trajectory. In future work, to minimize the changes 
of AS with the changes of light intensity of the scene, the 
markers (red and blue) can be illuminated from the inside to 
improve their visibility in low-light conditions. 

Apart from AS, three more quality measurements from the 
webcam were recorded: the distance between the markers and 
the radii length of the markers (Table 1). It can be noted that 
the measurement of the distance between the markers, 50.4 
±0.2mm (where 50mm is the real world measure), and the 
radii measurements 18.8 ±0.2mm (blue) and 19.4 ±0.2mm 
(red) (where 20mm is the real world measure) are feasible 
considering the pixel to millimeter ratio (1pix = 0.7mm). In 
the future, improvements could be achieved by adjusting the 
settings of the color filters. However, if higher precision is 
needed then the best option might be increasing the resolution 
of the webcam. 
 The main requirement of the presented hybrid position and 
orientation tracking system is tracking the motion of the 
passive rehabilitation robot shown in Figure 1c. [5] has 
specified the global position and orientation accuracy 
requirements for the desktop rehab robot ArmAssist to be 
within ± 10 mm and ±5 deg. Their tested ArmAssist can track 
absolute position up to 6 ± 3 mm and orientation up to 1.2 ± 
1.4 degrees. In comparison with the ArmAssist’s , the 
proposed absolute position and orientation tracking system is 
more accurate, tracking 2D position up to 2.8 ±2.6mm and 
orientation up to 0.5 ±0.4 degrees. In the next stage of this 
project, a passive guiding system for the rehab robot (Figure 
1b) will be developed and tested with the presented tracking 
system.  
 The feasibility of the proposed tracking system for 
detecting improvements during rehabilitation therapy was 
evaluated. The results shown in Figures 8 and 9 indicate that 
the hybrid system can be useful in tracking the recovery trends 
for the path length, path length time and normalized jerk. The 
percentage difference results (Figure 9) indicate that there are 
some inaccuracies in measuring the PL, PLT and NJ, (for 
fusion 90 ±5%, 102 ±10% and 102 ±7% respectively) but 
these should not affect the general recovery trends (Figure 8). 
The results in Figure 9 indicate that the webcam is not capable 
of tracking NJ, the average calculated value for NJ is 20 times 
greater than the reference value. The results in Figure 9 also 
indicate that the optical sensors can detect recovery trends 
with similar accuracy to the hybrid system. However, as the 
optical sensors are measuring relative position changes, they 
cannot be used alone. 

 During the experimental evaluation of the proposed hybrid 
position and orientation tracking system, the ALAN robot arm 
was used to replicate the recorded arm movements of a 
representative stroke patient completing assessment tasks 

during a rehabilitation program. Therefore, the tracked 
trajectories were representative of upper limb rehabilitation 
training in terms of their speed and range of motion. 

VI.  CONCLUSIONS 

A hybrid position and orientation tracking system utilizing 
a proposed fusion algorithm was presented and 
experimentally evaluated. The performance was deemed to be 
feasible for consideration for tracking recovery trends in 
upper-limb rehabilitation. The system is designed to be 
implemented on a low-cost passive rehabilitation table-top 
robot suitable for therapist-independent home-based 
rehabilitation therapy. 
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