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Figure S1 Large-angle tilt diffraction pattern series were simulated for monolayer ReSez to explore its structure

factors since monolayer ReSezis a sandwiched structure with three layers closely packed, instead of an ideal

monolayer. (a) one of the simulated diffraction patterns, and the tilt axis is x-axis, with selected spots coded with

different colors, (b) intensities of selected diffraction spots in (a) vary with tilt-angle, up to £20°, zoom-in area

indicated by the dashed black box is displayed in (c). As compared to shape factors, structure factor variation is

much slower for monolayer ReSez and there is no intensity mismatch at zero tilt-angle.
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Figure S2 (a)&(b) Intensity variations, of the selected Friedel pair (221)&(221) in 4L ReSez, with tilt-angle,
which are from simulated diffraction patterns at accelerating voltages of 200 kV and 60 kV respectively. Intensity
mismatch could be broadened by increasing the curvature of Ewald sphere, which is to decrease the accelerating
voltage.
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Figure S3 Illustration of how the intensity of electron diffraction pattern in multilayer ReSe:2 change when crystal
was flipped upside down. When the Friedel pair in (a) was flipped around x-axis in (b), not only their positions
flipped over to the opposite side of x-axis, but their intensities exchanged with each other, which was shown in
(c), the diffraction pattern seemed to have flipped around y-axis (perpendicular to x-axis) if we have only
considered the intensity of each spot.
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Figure S4 Discussion of the effects of rotating the tilt-axis around z-axis: (a) vector R denoted the position of the

diffraction spot in consideration, as the tilt-axis x,, rotated by the angle of ¢, the corresponding tilt-arm length
became r =R - n, where 7 is the unit vector normal to tilt-axis, therefore, the effect of tilt-angle 6 changed
periodically with in-plane rotation-angle ¢, (b) the relationship of simulated intensity of (221) and tilt angle
depicted variation of the corresponding reciprocal rel-rod in z direction, blue and green arrows indicated how
the intersection, of Ewald sphere and the selected reciprocal rel-rod, moved with different ReSe2 sample
orientations in (c) and (d), which were acquired from simulations at fixed tilt-angle 1° and 3° with varying

rotation-angle ¢, ranging from 15° to 360°, at a step of 15°.



Figure S5 (a)-(d) experimental diffraction patterns for 1-4 L ReSe, (e)-(h) simulated diffraction patterns for 1-4 L
downside-oriented ReSe: without tilting. As we can see, as layer number increased, the experimental diffraction
patterns and the simulated ones became less consistent, which could be attributed to that shape factors are more
sensitive to tilt-angle with increasing layer number.
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Figure S6 Generalization of our method to high symmetry 2D materials, e.g., graphene. (a)&(b) show how the
simulated intensities of a Friedel pair (indicated by a pair of white dashed-circle in the inset of (a) ) of mono- and
bi- layer graphene vary with tilt-angle for AA stacking and AB stacking respectively. For both stacking
configurations, there was a phase shift within the Friedel pair for bilayer graphene, furthermore, AB-stacking
bilayer graphene was similar to triclinic crystal system, and there was a mismatch in intensity even without tilting,
but in AA-stacking configuration, tilt-angle was required to distinguish monolayer from bilayer graphene by
utilizing the corresponding intensity mismatch. Simulations were carried out under acceleration voltage of 60kV.



