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Abstract. Directional modulation (DM) can be achieved based on uniform linear arrays (ULAs)

where the maximum spacing between adjacent antennas is half wavelength of the frequency of inter-

est in order to avoid spatial aliasing. To exploit the additional degrees of freedom (DOFs) provided in

the spatial domain, sparse antenna arrays can be employed for more effective DM. In this work, the

spare array design problem in the context of DM is formulated from the viewpoint of compressive

sensing (CS), so that it can be solved using standard convex optimisation toolboxes in the CS area. In

detail, we need to find a common set of active antennas for all modulation symbols generating a re-

sponse close to the desired one. The key to the solution is to realise that we have to employ the group

sparsity concept, as a common antenna set cannot be guaranteed if we optimise antenna locations

for each modulation symbol individually. Moreover, we have also considered two practical scenarios

for our proposed design: robust design with model errors, and design with practical non-zero-sized

antennas, and corresponding solutions are found by modifying the proposed standard solution.

Keywords: Directional modulation, sparse array, compressive sensing, group sparsity, robust design,

size constraint.
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1 Introduction

In conventional wireless communication systems, since the same constellation mappings are used in

all directions of the transmit antennas, it is possible for the signals to be captured and demodulated

by highly sensitive eavesdroppers even if they are located at sidelobe regions of the antennas. To

avoid this, the directional modulation (DM) technique has been developed to improve security by

keeping known constellation mappings in a desired direction or directions, while scrambling them

for the remaining ones [1, 2].

In [3], a four-element reconfigurable array was designed by switching elements for each symbol

to change its amplitude and phase of the element radiation pattern to make their constellation points

not scrambled in desired directions, but distorted in other directions. A method named dual beam DM

was introduced in [4]. Unlike the methods where I and Q data are transmitted by the same antennas,

in this technique they are transmitted by different antennas. In [5], phased arrays are employed to

show that DM can be implemented by phase shifting the transmitted antenna signals properly. The

bit error rate (BER) performance of a system based on a two-antenna array was studied using the

DM technique for eight phase shift keying (PSK) modulation in [6]. The particle swarm optimization

technique was employed for DM transmitter synthesis by linking the BER performance to the settings

of phase shifters in [7], and a more systematic pattern synthesis approach was presented in [8],

followed by an energy-constrained design in [9]. Recently in [10], the time modulation technique was

introduced to DM to form a four-dimensional (4-D) antenna array, where radiation pattern changes

with time.

However, most existing research in DM is based on uniform linear arrays (ULAs) with a maxi-

mum half wavelength spacing to avoid grating lobes. To have a larger aperture and a higher spatial

resolution given a fixed number of antennas, sparse arrays are normally employed in traditional array

signal processing [11, 12]. The increased degrees of freedom (DOFs) in the spatial domain allow

the system to incorporate more constraints into the design of various beamformers. Many methods

have been proposed to design such a sparse array, including the genetic algorithm (GA) [13–17],

simulated annealing (SA) [18], and compressive sensing (CS) [19–24].

In this work, we extend the CS-based sparse array design to the area of DM and try to optimise

the antenna locations for a given set of modulation symbols and desired transmission directions by

matching designed beam responses to desired ones. To our best knowledge, it is the first time to

address this important problem for directional modulation. The key to the solution is to realise that
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we can not perform this optimisation individually for each symbol; otherwise we would end up with

different antenna locations for different transmission symbols. Rather we need to find a common set

of optimised antenna locations for all required transmission symbols with the desired directions. As

a result, the traditional CS-based narrowband sparse array design methods will not work and a group

sparsity based approach is proposed to tackle the problem. The new CS-based formulation for sparse

array design in the context of DM can then be solved using standard convex optimisation toolboxes

in the CS area.

One common issue in practical design of antenna arrays is the robustness of the resultant sys-

tem against various model perturbations, such as errors in antenna locations, mutual coupling and

discrepancies in individual antenna responses. Many methods have been proposed to design robust

adaptive arrays, such as diagonal loading, worst case optimisation and robust Capon beamformers

[25–28], where it is usually assumed that there is a norm-bounded steering vector error. In this paper

this idea is used to place an extra constraint on the CS-based design process. As a result, the dif-

ference between the designed and achieved modulation responses can be kept below an acceptable

level.

Another problem is the size of the antenna. In the design of antenna arrays, the antennas are often

considered to be an ideal point without a physical size. As a result, it is possible that the resulting

antenna locations will be too close for the antennas to physically fit in, especially for multiband or

wideband arrays, where the antenna size may be much larger than λ/2 [29] . Following the approach

in [24], we also consider the design of sparse arrays with physical size constraint in the context of

directional modulation.

The remaining part of this paper is structured as follows. A review of the DM technique based

on phased arrays is given in Sec. 2. A class of CS-based design methods is presented in Sec. 3,

including l1 norm minimisation and reweighted l1 norm minimisation. Two practical scenarios are

considered in Sec. 4, including a robust design in the presence of steering vector errors, and a design

considering the nonzero size of antennas. In Sec. 5, design examples are provided, with conclusions

drawn in Sec. 6.

3



Figure 1: A narrowband transmit beamforming structure.

2 Review of Directional Modulation

2.1 Narrowband beamforming based on ULAs

A narrowband linear array for transmit beamforming is shown in Fig. 1, consisting of N equally

spaced omnidirectional antennas with the spacing from the first antenna to its subsequent antennas

represented by dn for n = 1, . . . , N−1, where the transmission angle θ ∈ [0◦, 180◦]. The output sig-

nal and weight coefficient for each antenna are respectively denoted by xn and wn for n = 1, . . . , N .

The steering vector of the array is a function of angular frequency ω and transmission angle θ, given

by

s(ω, θ) = [1, ejωd1 cos θ/c, . . . , ejωdN−1 cos θ/c]T , (1)

where {·}T is the transpose operation, and c is the speed of propagation. For a ULA with a half-

wavelength spacing (dn − dn−1 = λ/2), the steering vector is simplified to

s(ω, θ) = [1, ejπ cos θ, . . . , ejπ(N−1) cos θ]T . (2)

Then, the beam response of the array is given by

p(θ) = wHs(ω, θ), (3)

where {·}H represents the Hermitian transpose, and w is the weight vector including all correspond-

ing coefficients

w = [w1, w2, . . . , wN ]T . (4)

2.2 DM design for a given array geometry

The objective of DM design for a given array geometry is to find the set of weight coefficients

giving the desired constellation values in the directions of interest while scrambling the values and
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simultaneously maintaining a magnitude response as low as possible in other directions. For M -ary

signaling, such as multiple phase shift keying (MPSK), there are M sets of desired array responses

pm(θ), with a corresponding weight vector wm = [wm,1, . . . , wm,N ]T , m = 1, , . . . ,M . Each

desired response pm(θ) as a function of θ is split into two regions: the mainlobe and the sidelobe.

We sample each region and put the sampled desired responses into two vectors pm,ML and pm,SL,

respectively. Without loss of generality, we consider only one point θML in the mainlobe and R− 1

points θ1, θ2, . . . , θR−1 in the sidelobe region. Therefore, we have

pm,SL = [pm(θ1), pm(θ2), . . . , pm(θR−1)]

pm,ML = pm(θML) .

(5)

All constellation points for a fixed θ share the same steering vector and we put all the R − 1

steering vectors at the sidelobe region into an N × (R− 1) matrix SSL, and the steering vector at the

mainlobe direction θML is denoted by s(θML). For the m-th constellation point, its corresponding

weight coefficients can be found by

min ||pm,SL − wH
mSSL||2

subject to wH
ms(θML) = pm,ML,

(6)

where || · ||2 denotes the l2 norm. The objective function and constraint in (6) ensure a minimum

difference between desired and designed responses in the sidelobe, and a desired constellation value

to the mainlobe or the direction of interest. To guarantee scrambled constellations in the sidelobe,

the phase of the desired response wH
mSSL at different sidelobe directions can be randomly generated.

3 Proposed design method

3.1 Group sparsity based design

For a standard sparse array design method, a given aperture is densely sampled with a large number

of potential antennas. First, consider Fig. 1 as a grid of potential active antenna locations. Then

dN−1 is the aperture of the array and the values of dn, for n = 1, 2, . . . , N − 1, are selected to

give a uniform grid, with N being a very large number. Through selecting the minimum number

of non-zero valued weight coefficients to generate a response close to the desired one, sparseness is

introduced. In other words, if a weight coefficient is zero-valued, the corresponding antenna will be

inactive and therefore can be removed, leading to a sparse result. Assume p is the vector holding the
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desired responses at the R sampled angles, and S is the N × R matrix composed of the R steering

vectors. Then the design can be formulated as follows

min ||w||1 subject to ||p − wHS||2 ≤ α, (7)

where the l1 norm || · ||1 is used as an approximation to the l0 norm || · ||0, and α is the allowed

difference between the desired and designed responses.

Now, in the context of sparse array design for DM, we could modify (6) and find the sparse set of

weight coefficients wm through the following formulation

min ||wm||1 subject to ||pm,SL − wH
mSSL||2 ≤ α

wH
ms(θML) = pm,ML.

(8)

However, the solution to (8) cannot guarantee the same set of active antenna positions for all con-

stellation points. If a weight coefficient is zero in an antenna position for one constellation point,

but non-zero for others, the corresponding antenna still cannot be removed. To solve the problem,

similar to [30], group sparsity is introduced here, which imposes zero-valued coefficients at the same

antenna locations for all constellation points simultaneously. To achieve this, we first construct the

following matrices

W = [w1,w2, . . . ,wM ] (9)

PSL = [p1,SL,p2,SL, . . . , pM,SL]
T , (10)

and the vector

pML = [p1,ML, p2,ML, . . . , pM,ML]
T . (11)

Each row of the N ×M weight matrix W holds the weight coefficients at the same antenna location

for different constellation points and it is denoted by w̃n = [wn,1, . . . , wn,M ] for n = 1, . . . , N . Now

define ŵ as a vector of l2 norm of w̃n, given by

ŵ = [||w̃1||2, ||w̃2||2, . . . , ||w̃N ||2]
T . (12)

Then the group sparsity based sparse array design for DM can be formulated as

min ||ŵ||1 subject to ||PSL − WHSSL||2 ≤ α

WHsML = pML .

(13)

The problem in (13) can be solved using cvx, a package for specifying and solving convex programs

[31, 32].
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3.2 Reweighted l1 norm minimisation

Different from l0 norm which uniformly penalises all non-zero valued coefficients, the l1 norm pe-

nalises larger weight coefficients more heavily than smaller ones. To make the l1 norm a closer

approximation to the l0 norm, a reweighted l1 norm minimisation method can be adopted here [33–

35], where a larger weighting term is introduced to those coefficients with smaller non-zero values

and a smaller weighting term to those coefficients with larger non-zero values. This weighting term

will change according to the resultant coefficients at each iteration. Applying this idea to the group

sparsity problem in (13), for the i-th iteration, it is formulated as follows

min
N
∑

n=1

δin||w̃
i
n||2

subject to ||PSL − (Wi)HSSL||2 ≤ α

(Wi)HsML = pML ,

(14)

where the superscript i indicates the value of the corresponding parameters at the i-th iteration, and

δn is the reweighting term for the n-th row of coefficients, given by δin = (||w̃i−1
n ||2 + γ)−1. The

iteration processes are described as follows:

1. For the first iteration (i = 1), calculate the initial value ||w̃n||2 by solving (13).

2. Set i = i + 1. Use the value of the last ||w̃i−1
n ||2 to calculate δin, and then find Wi and ||w̃i

n||2 by

solving the problem in (14).

3. Repeat step 2 until the positions of non-zero values of the weight coefficients do not change any

more for some number of iterations (three in our design examples).

Here γ > 0 is required to provide numerical stability to prevent δin becoming infinity at the current

iteration if the value of a weight coefficient is zero at the previous iteration, and it is chosen to be

slightly less than the minimum weight coefficient that will be implemented in the final design (i.e.

the value below which the associated antenna will be considered inactive and therefore removed from

the obtained design result), where δin||w̃
i
n||2 =

||w̃i
n||2

||w̃i
n||2+γ

.

3.3 Discussion with multiple-point constraints in the mainlobe

The proposed design can work irrespective of the number of points chosen at the mainlobe area.

However, one potential problem is, if we choose multiple points at the mainlobe and still want to
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make sure the transmission is in the desired modulation pattern over those chosen direction points,

we would have to sacrifice the performance of the whole system on other aspects such as sidelobe

level and main beamwidth. The reason is, each additional modulation constraint on the mainlobe area

will take up one degree of freedom (DOF) away from the system and therefore leave less number of

DOFs to meet other requirements of the design.

For r sample points in the mainlobe and R − r points in the sidelobe, the reweighted l1 norm

minimisation formulation for sparse array design in context of DM becomes

min
N
∑

n=1

δin||w̃
i
n||2

subject to ||PSL − (Wi)HSSL||2 ≤ α

(Wi)HSML = PML ,

(15)

where W and PSL are unchanged, SML is the N × r matrix composed of the r steering vectors at the

mainlobe directions and the M × r matrix PML holds the M desired modulation responses at the r

mainlobe directions, given by

PML = [p1,ML, p2,ML, . . . , pM,ML]
T , (16)

pm,ML = [pm,1, pm,2, . . . , pm,r] . (17)

Note that for a fixed m (one of the M constellation points), pm,1, pm,2, . . ., and pm,r should have the

same value to make sure the same information is transmitted for all the r chosen direction points in

the mainlobe.

4 Two Practical Scenarios

4.1 Steering vector error

The above design methods are based on an ideal situation where the designed steering vectors are

the same as the actual ones. To have the resultant sparse array robust against various steering vector

errors, we first introduce an error vector e, and the actual steering vector is described by ŝ = s + e,

where s indicates the assumed steering vector. The difference between actual and designed array

responses satisfies

|wH ŝ − wHs| = |wHe| ≤ ε||w||2, (18)

where ε is the upper norm-bound of e. Then we can add a constraint to the previous formulations

to make sure the difference between the actual and designed array responses does not exceed a
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predetermined threshold value β, and the new optimisation problem is formulated as

min
N
∑

n=1

δin||w̃
i
n||2

subject to ||PSL − (Wi)HSSL||2 ≤ α

(Wi)HSML = pML

ε||wi
m||2 ≤ β ∀m = 1, 2, . . . ,M.

(19)

4.2 Size constraint

In practice, the antennas may not fit into the optimised locations obtained by the above design meth-

ods since so far we have assumed that the antennas have no physical size, which is obviously not

true. The most straightforward method is to merge closely located optimised antenna positions into

a new one to meet the minimum spacing requirement, although clearly this may lead to a solution

far away from the optimum one. To deal with this problem, two methods for enforcing a minimum

spacing dmin between adjacent antennas in the design result are proposed.

4.2.1 Iterative sampling method

This method iteratively samples a remaining range to obtain its following optimised antenna location

until the remaining range is less than dmin, where in each iteration the starting point of the sampling

aperture is at least dmin away from the previous optimised locations. The details are as follows.

Step 1 At the first iteration, the first antenna is fixed at the starting point of the original aperture,

i.e. d̂op(1). We set a range from d̂op(1) + dmin to the end of the original aperture as the sampling

aperture, and by solving (14) we have all initial optimised locations dop(i) for i = 1, 2, . . ., (i.e.

d̂op(1) = dop(1)). To make sure the first active location d̂op(1) is included in the final result, the

reweighting term for this location is set to be a very small value. Now the second active location

d̂op(2) is the average of the first cluster of optimised locations whose range is dmin away from

dop(2).

Step 2 With the previously fixed active locations meeting the minimum spacing requirements, at the

n-th iteration, n = 2, 3, ..., we set a range from d̂op(n) + dmin to the end of the original aperture

as the sampling aperture, and by solving (14) and taking an average of the new cluster which is

within the range from dop(n+1) to dop(n+1) + dmin to find d̂op(n+1). The process is repeated until

the remaining range is less than dmin.
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4.2.2 Modified reweighted l1 norm minimisation method

It is based on (14) and the idea is to modify the reweighting term δin to make sure when the resultant

active antenna locations are too close to each other, we will increase the value of the reweighting

term significantly so that it will be penalised more heavily in the optimisation process. To achieve

this, δin in (14) is modified as

δin =























(||w̃i−1
n ||2 + γ)−1, n = 1

(||w̃i−1
n ||2 + γ)−1, n > 1 & constraint met

γ−1, otherwise

(20)

The process is repeated until all spacings between adjacent active antennas are larger than dmin.

5 Design examples

In this section, we provide several design examples to show the performance of the proposed sparse

designs in comparison with a standard ULA. The mainlobe direction is θML = 90◦ and the sidelobe

region is θSL ∈ [0◦, 85◦] ∪ [95◦, 180◦], sampled every 1◦. The desired response is a value of one

(magnitude) with 90◦ phase shift at the mainlobe (QPSK) and a value of 0.1 (magnitude) with random

phase shifts over the sidelobe regions.

To have a fair comparison, we first obtain the DM result using the method in (6) based on a 24-

element ULA with half-wavelength spacing. Based on the design result, we then calculate the error

norm between the designed and the desired responses of this ULA and this value is used as α in the

sparse array design formulations in (13) and (14).

To assess the performance of each design, we also calculate the bit error rate (BER) by setting

the signal to noise ratio (SNR) at 12 dB in the main lobe direction. As we assume the additive white

Gaussian noise (AWGN) level is the same for all directions, the SNR value will be much smaller at

the sidelobe directions.

5.1 ULA design example

For the 24-element ULA with half-wavelength spacing, the resultant beam pattern for each constel-

lation point is shown in Fig. 2(a), where all main beams are exactly pointed to 90◦ with a reasonable

sidelobe level. Moreover, the phase at the main beam direction is 90◦ spaced and random in the

sidelobe directions, as shown in Fig. 2(b).
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5.2 Usual l1 norm based design example

With the above ULA design, we obtain α = 2.5521. Since the resultant sparse array may have a

larger aperture than the ULA, we have set the maximum aperture to be 16.5λ, consisting of 500

equally spaced potential antennas.

By the standard group-sparsity based formulation in (13), 26 active antennas are obtained, with

an average spacing of 0.655λ. To obtain the result, antennas with a coefficient value smaller than

0.001 are considered inactive and removed from the final result. In theory, we should only discard

those antennas with a zero coefficient value, but in reality, it is almost impossible to have such an

antenna. So a very small value is normally chosen. If this threshold value is too high, more antennas

will be discarded in the final design, leading to a result with less number of antennas. This may seem

desirable, but discarding antennas with a large coefficient value will also lead to a design result with

a quite different beam pattern from the desired one. The change of beam pattern due to different

threshold values for inactive antenna removal has been analysed in [36].

The resultant beam pattern for each constellation point is shown in Fig. 3(a), where all main

beams are exactly pointed to 90◦ with a reasonable sidelobe level. The phase at the main beam

direction is 90◦ spaced and random in the sidelobe directions, as shown in Fig. 3(b). As shown in

Table 1, although its resultant value for ||p − wHS||2 is a little better than the ULA, the number of

antennas is larger than the ULA, which is not desirable.

5.3 Reweighted l1 norm based sparse design example

In this design, there is an additional parameter γ, which should be small enough, and in our simu-

lations γ = 0.001 is chosen, which means that antennas associated with a weight coefficient value

smaller than 0.001 will be considered inactive. With the other parameters same as in previous ex-

amples, it results in 19 active antennas with an average spacing of 0.660λ. So as expected, a sparser

solution has been obtained compared to the design in (13). The array response for each constellation

point is shown in Fig. 4(a) and the phase pattern in Fig. 4(b), all indicating a satisfactory design

result. The array response is closer to the desired ones than the ULA according to the value of

||p − wHS||2, as shown in Table 1.
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Table 1: Summary of performances of sparse arrays and ULAs.

ULA Usual l1 Reweighted Robust

Antenna number 24 26 19 20

Aperture/λ 11.5 16.37 11.87 11.87

Average spacing/λ 0.5 0.655 0.660 0.625

||p − wHS||2 2.5521 2.3742 2.5478 2.6754

5.4 Robust design example

For the robust design, ε = 1 is set as the upper bound on the norm of the steering vector error

and given the design result, this accounts for 22% of the real steering vector norm. β = 0.23

is chosen to allow maximum 23% change in the magnitude response at the main direction given the

maximum allowable steering vector error. The result is a 20-antenna array with an average spacing of

0.625λ. The mean beam patterns obtained by averaging L = 1000 different responses resultant from

randomly generated steering error vector e satisfying the norm-constraint are shown in Figs. 5(a),

and the phase patterns are similar to the results in the earlier two designs. To show the robustness of

the design, we also calculated the normalised variance of the beam pattern as follows,

var(θr) =
1

L

L
∑

l=1

|pl(θr)− p̄(θr)|
2

|p̄(θr)|2
, (21)

where p̄(θr) =
1
L

∑L
l=1 pl(θr) is the average achieved array response at θr for r = 1, 2, . . . , R, and

the results are shown in Fig. 5(b), with a value of almost zero in the designed main direction, less

than 1 in other directions, indicating a robust geometrical layout of the antennas. The ||p − wHS||2

value is also shown in Table 1 as a comparison and we can see a comparable result has been obtained.

5.5 BER comparisions between ULA and sparse arrays

As shown in Fig. 6(a), the BERs of the ULA and sparse arrays obtained by the usual l1 norm

algorithm and the reweighted l1 norm minimisation are all down to 10−5 in the mainlobe direction,

while in other directions are around 0.5, further demonstrating the effectiveness of the designs. A

very similar BER result is obtained for the robust design and the normalised variance of BER for the

robust design is shown in Fig. 6(b), with a value of around 0.005 over sidelobe regions and 0.03 in

mainlobe direction, indicating that BERs in the set are very close to the mean and each other.
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Table 2: Optimised antenna locations based on the reweighted l1 norm design (14)

n dn/λ n dn/λ n dn/λ

1 2.71 8 6.75 15 11.84

2 3.60 9 7.27 16 12.66

3 4.30 10 7.84 17 13.06

4 4.66 11 8.43 18 13.69

5 5.26 12 9.23 19 14.58

6 5.89 13 10.09

7 6.38 14 10.94

Table 3: Optimised antenna locations for the iterative sampling method

n dn/λ n dn/λ n dn/λ

1 0 7 6.61 13 11.95

2 2.70 8 7.60 14 12.88

3 3.49 9 8.41 15 13.71

4 4.29 10 9.30 16 14.75

5 5.04 11 10.19 17 15.41

6 5.83 12 11.07

5.6 Reweighted l1 norm based sparse array design with size constraints

The minimum spacing dmin between adjacent antennas is set to 0.55λ. For the design by (14), the

spacing between the third and forth antennas, the spacing between the sixth and seventh, the spacing

between the seventh and eighth, the spacing between the eighth and ninth, and the spacing between

sixteenth and seventeenth are less than dmin, indicating an impractical design for an antenna with a

physical size of 0.55λ, as shown in Table 2.

5.6.1 Iterative sampling method

By this method, all main beams in Fig. 7(a) are pointed to the mainlobe direction, and their phases

are 90◦ spaced, as shown in Fig. 7(b). The locations listed in Table 3 show that the size constraint

dmin has been met.
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Table 4: Optimised antenna locations for the modified reweighted l1 norm minimisation method

n dn/λ n dn/λ n dn/λ

1 0 8 5.13 15 10.94

2 0.73 9 5.89 16 11.84

3 1.49 10 6.55 17 12.66

4 2.08 11 7.37 18 13.69

5 2.68 12 8.20 19 14.58

6 3.47 13 9.06 20 15.38

7 4.30 14 10.09 21 15.97

Table 5: Summary of performances of different designs with and without size constraint

No size constraint With size constraint

Reweighted Iterative
Modified

Reweighted

The number

of antennas

19 17 21

Aperture/λ 11.87 15.41 15.97

Average

spacing/λ
0.660 0.963 0.799

||p − wHS||2 2.5478 2.6157 2.5336

Size constraint

satisfied

No Yes Yes

5.6.2 Modified reweighted l1 norm minimisation method

The array responses in Fig. 8(a), the phase patterns in Fig. 8(b), and the positions in Table 4

all indicate a satisfactory design result by this method. Moreover, according to the value of ||p −

wHS||2, the array response is the closer to the desired one than the response resulted from the iterative

sampling method, as shown in Table 5.

Note that, with the optimised non-symmetrical antenna locations and weights, the implementation

of such a sparse antenna array system would be more complicated. However, it is still feasible as

what we need for the proposed design is an individual tailor-made feed circuit (including phase shift

and amplitude change) for each antenna.
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Figure 2: Design result for the uniform linear array using (6): (a) resultant beam responses, (b)

resultant phase patterns.

6 Conclusions

The sparse antenna array design problem in the context of directional modulation has been studied

for the first time. The main contribution is to formulate the problem from the viewpoint of CS so

that it can be solved using standard convex optimisation toolboxes in the CS area. In detail, we

need to find a common set of active antennas for all modulation symbols generating a response

close to the desired one. The key to the solution is to realise the we have to employ the group

sparsity concept, as a common antenna set cannot be guaranteed if we optimise antenna locations

for each modulation symbol individually. Then, a class of compressive sensing based methods has

been proposed, including the usual l1 norm minimisation and the reweighted l1 norm minimisation.

Two practical scenarios are analysed where steering vector error happens and optimised locations

are too close to each other. As shown in the provided design examples, in the context of DM, all

sparse designs satisfy the mainlobe pointing to the desired direction with scrambled phases in other

directions. In particular, the reweighted l1 norm minimisation method can provide a sparer solution

as expected, achieving a similar performance as the ULA but with less number of antennas.
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Figure 5: Robust design using (19): (a) resultant beam responses, (b) normalised variance of beam
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Figure 6: BER performance for different design results: (a) BER spatial distributions, (b) normalised

variance of BER.
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Figure 7: Design result for the iterative sampling method: (a) resultant beam responses, (b) resultant

phase patterns.
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Figure 8: Design result for the modified reweighted l1 norm minimisation method: (a) resultant beam

responses, (b) resultant phase patterns.
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