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Abstract: In many animals intersegmental reflexes are important for postural control and movement making them 

ideal candidates for the bio-inspired design in developing treatment for neurological injuries such as drop 

foot and in robot design. Here we analyse an intersegmental reflex of the foot (tarsus) of the locust hind leg, 

which raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method 

is described to measure and quantify the intersegmental responses of the tarsus to a stimulus to the femoro-

tibial chordotonal organ. An Artificial Neural Network, the Time Delay Neural Network, was applied to 

understand the properties and dynamics of the reflex responses. The aim of the study was twofold: first to 

develop an accurate method to record and analyse the movement of an appendage and second, to apply 

methods to model the responses using Artificial Neural Networks. The results show that Artificial Neural 

Networks provide accurate predictions of tarsal movement when trained with an average reflex response to 

Gaussian White Noise stimulation compared to autoregressive models. Furthermore, the Artificial Neural 

Network model can predict the individual responses from each of the animals and responses to another input 

such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of 

orthoses or functional electrical stimulation treatments to improve walking in patients with neuromuscular 

disorders. 

1 INTRODUCTION 

The impairment of motor function in disease and 
ageing is an issue that costs health services enormous 
sums each year (Hanson et al., 2006). Individuals 
with neuromuscular disorders, such as proprioceptive 
deficits, show degradation in movement (Goble et al., 
2009) where they are unable to sense the static or 
dynamic position of a joint, or limb segment 
(Gandevia et al., 2002). Individuals who survive a 
stroke may be left with foot drop making it difficult 
for them to raise the front of the foot (Stewart, 2008), 
while patients who have suffered an amputation, 
need an improved understanding of neuromuscular 
control in healthy individuals to design better and 
optimised treatment, such as rehabilitation, or the use 
of prostheses and orthoses (He et al., 2001).  

Studies of neuromuscular control are therefore 
important to understand how the nervous system 
generates and controls movements in any situation 
(Webb et al., 2004). Furthermore, features of 

neuromuscular control can be exploited to improve 
the design of engineering control systems. The 
implementation of bio-inspired designs based on 
neuromuscular control has made important 
contributions in robotic engineering and autonomous 
systems (Delcomyn, 2004), such as an improved gait 
and stability during walking in robotics (Dürr et al., 
2004; Ijspeert, 2008; Lewinger et al., 2011; Webb, 
2002). 

Insects represent ideal models for studies of 
neuromuscular control since their nervous systems 
are relatively simple, the neurons involved in 
movement control are few, often identifiable and 
activity in many can be directly related to behaviour 
(Burrows, 1996). Moreover, their limb design and 
neural control of movement are similar to humans 
and robots (Pearson, 1995; Ritzmann et al., 2004) 
having highly efficient control systems (Webb et al., 
2004). Arthropods are highly adaptable and capable 
of moving over any type of terrain (Ritzmann and 
Büschges, 2007). Such adaptability is currently 



 

needed in the autonomous control of walking robots, 
where irregular terrains and obstacle negotiation are 
still limited (Chen et al., 2011). 

Here we develop methods to analyse and model 
control of an intersegmental reflex that consists of a 
movement of the tarsus around the tibio-tarsal joint 
in response to changes in the femoro-tibial joint 
angle (Burrows and Horridge, 1974) that is thought 
to increase stability and affect postural control 
(Burrows, 1996; Clarac et al., 1978). The movement 
is neurally mediated (Burrows and Horridge, 1974) 
by the Femoral-Chordotonal Organ (FeCO) at the 
femoro-tbial joint of the hind leg (Field and Burrows, 
1982). Similar reflexes have evolved in other insects, 
such as the New Zealand Weta (Field and Rind, 
1981), in stick insects (Büschges and Gruhn, 2007; 
Cruse et al., 1992) and in crustaceans (Clarac et al., 
1978) suggesting an underlying control principle in 
arthropods related to stability and posture control that 
is also found in some mammals (Halbertsma, 1983; 
Pearson, 1993).  

This paper describes novel methods to record and 
quantify reflex responses in the locust hind leg tarsus, 
the application of a previously validated 
mathematical approach to model and predict 
biologically source responses using ANNs 
(Costalago Meruelo et al., 2016) and analyses 
variability between individuals and ask whether 
individual responses or an average response should 
be used to model and study the system. 

2 METHODS 

2.1 Experimental Methods 

2.1.1 Video recordings 

Adult male and female locusts (Schistocerca 

gregaria Forskål) were mounted in modelling clay 

ventral side up, with the left hind leg femur fixed at 

an angle of 30° to the abdomen and with the tibia free 

to move. All other legs, thorax, abdomen and head 

were fixed with modelling clay to prevent movement. 

The tibia was moved passively from 0° (fully flexed) 

to 180° (fully extended) and back to a fully flexed 

position. The movement was a passive step 

movement performed using a micromanipulator, 

stopping every 10°	for 5 s. The tibio-tarsal angle was 

recorded every 10° of femoro-tibial joint angle. This 

procedure was repeated five times for each 

individual, and the individual responses averaged to 

reduce the intra-subject variability. To determine 

whether the tarsal intersegmental reflex contained a 

mechanical component or if it was purely neurally 

mediated, the same experiment was performed in 

each animal after nerve N5, containing the axons of 

motor neurons innervating leg muscles and sensory 

neurons (Burrows, 1996) was cut.  
 

2.1.1 Shaker and laser recordings 

Adult locusts were fixed in modelling clay ventral 
side up, with the femur fixed at 60° to the abdomen 
and with the tibia fixed at an angle of 60° to the 
femur, an angle which represents the middle of the 
linear range movement of the FeCO apodeme 
(Dewhirst et al., 2013)).  

The FeCO was exposed by removing a small 
piece of cuticle at the distal end of the femur, and the 
cavity perfused with locust saline. The FeCO 
apodeme (Kondoh et al., 1995) was grasped with a 
pair of fine forceps attached to a shaker (permanent 
magnet shaker LDS V101). The shaker was driven by 
a signal generated in Matlab

®
, which was amplified 

and converted to analogue via a digital-to-analogue 
converter (DAC)  (USB 2527 data acquisition card 
(Measure Computing Norton, MA, USA). The 
movement of the tarsus was recorded with a Keyence 
laser displacement sensor (LK G3001V controller, 
LK G32 Head, Keyence) aimed at the last segment of 
the tarsus, the unguis. 

The stimulus signals were designed and applied 
through Matlab

®
. Locusts walk at a step frequency of 

approximately 3 Hz (Burrows and Horridge, 1974) 
and for this reason, Gaussian White Noise (GWN) 
was produced in the band-limited range between 0 - 5 
Hz, and a sinusoidal input simulating walking was 
applied at 1 Hz. The maximum peak-to-peak 
amplitude of the input signals was approximately 1 
mm, which represents a femoro-tibial displacement 
of 90° (Dewhirst et al., 2013; Field and Burrows, 
1982). The signals were scaled so that approximately 
99.7 % of their values fell within the femoro-tibial 
joint angle between 20° and 100° (0.9 mm of 
displacement of the FeCO apodeme). The frequency 
and phase response  of the equiment was linear 
between 0 and 200 Hz. 

Three versions of each 5 Hz band-limited GWN 
were created in MATLAB® using its pseudo random 
number generator, randn. This generated an array 
of random numbers drawn from a Gaussian 
distribution with a standard deviation (σ) of one. 
Since a single GWN input would not cover all 
frequencies and amplitudes within the specified 
range, due to the relatively long time needed to cover 
the lowest frequencies (i.e. 0.1 Hz requires 10s for 
just one amplitude), three different band-limited 
GWN signals were created that covered the band of 
interest. This was created by low pass filtering using 
a 5th order Butterworth low pass filter with a cut-off 
frequency of 5 Hz, applied in the forward and reverse 
directions for zero phase shift.  
 

2.1 Mathematical Methods 

2.2.1 Data Post-Processing 

Recordings of tarsal movement from eight locusts 

were recorded at a sampling frequency of 10,000 Hz. 

The mean value was subtracted from the recordings 

to eliminate any effect of laser position. To eliminate 

low frequency noise and spontaneous movements not 

related to the applied stimulus a third order high-pass 

Butterworth filter was applied with a cut-off 

frequency of 0.2 Hz. The data was then resampled to 



 

500 Hz after applying an anti-alias filter, a third order 

Butterworth with a cut-off frequency of 200 Hz, 

thereby reducing file size and processing time. Both 

Butterworth filters were applied in the forward and 

reverse directions to avoid introducing any phase 

delay. An average reflex response was calculated 

using the responses from the eight individuals to test 

whether the average was representative of the system 

or if individual responses provided better models. 

 
2.2.2 Artificial Neural Networks 

To model the intersegmental reflex responses of the 

tarsus a dynamical artificial neural network, a Time 

Delay Neural Network (TDNN) (Waibel et al., 

1989), was used. This network uses delayed versions 

of the input to estimate the output, turning the static 

Feed-Forward Network into a dynamic network 

(Haykin, 2004). Using this, we assumed the reflex 

responses to be a combination of current and past 

input samples. The network was formed by an input 

node, an output node, and a number of hidden layers 

and with hidden nodes and the activation function for 

each hidden node was the sigmoid. The output node 

had a linear function, so all the non-linear 

calculations were performed inside the network. The 

training algorithm for the network was the 

Levenberg-Marquadt back-propagation algorithm, 

which had higher accuracy and faster convergence 

time than classical back-propagation algorithms 

(Bishop et al., 1995). The number of delayed samples 

used in the input was set to 100 samples, which was 

based on preliminary work (optimisation of decrease 

in NMSE as the delay increases for a set 

architecture). The architecture of the network was 

optimised using a metaheuristic algorithm presented 

in the next section. The full description of the 

methodology for the network design and training is 

shown in previous work (Costalago Meruelo et al., 

2016). 

 

2.2.4 Autoregressive Model 

To compare the results of the TDNN, an 

autoregressive (AR) model of the tarsal movements 

was developed. As with the TDNN, the model 

assumed that the tarsal response was a combination 

of current and past input samples. Considering the 

discrete form, the response of the system can be 

characterised as: 

 

𝑧 𝑡 = ℎ 𝜏 ∙ 𝑢 𝑡 − 𝜏 + 𝑣(𝑡)
!!!

!!!

 (6) 

 

Where 𝑧 𝑡  is the response, ℎ 𝜏  is the transfer 

function of the system, 𝑢 𝑡 − 𝜏  is the stimulus and 

𝑣(𝑡) is the noise. To calculate the parameters of  ℎ 𝜏  

the least square method was used. The equation of 

the Minimum Mean Square Error cost function 

(Haykin, 2004) is rearranged and it is assumed that 

the prediction is a linear function of the impulse 

response function. Combining the cost function with 

the system response, the least square estimate of the 

AR parameters is: 

 

𝒉 = (𝑼!𝑼)!!𝑼!𝒛 (7) 

 

Where 𝒛 is the output, 𝑼 is the pre-windowed 

matrix (Ljung, 1998) and 𝒉 the estimated model 

parameters. For a full derivation see Dewhirst (2012).  

To compare the results from both mathematical 

models, the NMSE (Equation 2) was used, when the 

model was tested with the same data not used in 

training.  

3 RESULTS 

3.1 Intersegmental Reflex Responses 

3.1.1 Static Intersegmental Reflex Responses 

Movement of the tibia to different fixed femoro-tibial 
angles led to tarsal positions dependent on femoro-
tibial angle (Fig. 1). The average response of eight 
animals showed that the tibio-tarsal angle strongly 
depended on the femoro-tibial joint angle. As the 
tibia was extended, the tarsus was depressed and as 
the tibia was flexed the tarsus was levated, thereby 
maintaining a constant position relative to the 
abdomen, as shown by Burrows and Horridge (1974). 
A Spearman's rank correlation coefficient of the 
average response between the tibio-tarsal angle and 
the femoro-tibial angle was calculated and the results 
(r = 1.00, p < 0:001) for both extension and flexion 
of the tibia, confirmed that changes in the femoro-
tibial joint angle and changes in the tibio-tarsal joint 
angle were correlated. The high significant 
correlation coefficients were constant for each 
individual tested (Table 1). 
 

 

Figure 1. The average tarsal response to movement of the 

tibia about the femoro-tibial joint. Responses are shown for 

the intact leg and when nerve N5 was cut. There was a 

significant difference between the two responses (N5 intact 

and cut). 

Analysis showed that the relationship between 
the femoro-tibial joint angle and the tibio-tarsal joint 
angle was non-linear. Although the responses 
differed slightly between flexion and extension of the 



 

tibia, both could be represented, in part, through 
nonlinear regression. During extension of the tibia, 
the tarsus was depressed following a linear regression 
with a slope of β = 0.32 (R

2
 = 0.98, p < 0.001), 

suggesting an almost linear response below femoro-
tibial angles of 150°. During flexion of the tibia, the 
tarsus was elevated following a linear regression with 
slope of β = 0.29 (R

2
 = 0.85, p < 0.001). In this case, 

the tarsal response did not follow a straight line as in 
tibial flexion, indicating higher levels of non-linearity 
during flexion than during extension of the tibia. 

The movements of the tarsus were not simply 
dependent on femoro-tibial joint angle, but also the 
direction from which an angle was approached. 
During extension, the tibio-tarsal angle increased 
gradually until the leg was fully extended, increasing 
faster near the fully extended tibial positions (above 
150°). During flexion the tibio-tarsal angle initially 
decreased slowly (small changes in tibio-tarsal angle 
to changes in femoro-tibial angle), but then faster 
after the tibia reached 60°, and even faster for angles 
lower than 30°. 

 
Table 1. Spearman's rank correlation coefficients 

between femoro-tibial angles and tibio-tarsal angles for 

each of the individual animals and for the average response 

of all individuals (Avg resp). The probabilities for all 

correlation coefficients calculated were p< 0:001. 

 

Animal     1 2 3 4 5 6 7 8 Avg 

resp 

Extensi

on 

1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 

Flexion 0.92 1.00 0.99 1.00 0.99 1.00 0.98 0.99 1.00 

 
To establish whether the reflex was purely neuronal 
or whether it contained a mechanical component, the 
experiment was repeated in each animal with nerve 
N5 severed. The results show that when nerve N5 
was cut little movement of the tarsus was evident, 
however a Pearson's correlation test showed that 
there was a significant small movement of the tarsus 
to changes in femoro-tibial angle (r = 0.37, p = 0. 
02). These changes, however, were significantly 
different from the large changes observed when 
nerve N5 was intact (p = 0.001). These results 
indicate that the tarsal intersegmental reflex control 
system was mainly neuronally mediated, with 
possibly a little mechanical coupling.  

 

3.1.2 Laser Recordings of the Intersegmental 

Reflex Responses 

In response to a 1Hz sinusoidal stimulus applied to 
the FeCO the movements of the tarsus followed 
approximately the input (Fig. 2A), such that stretches 
of the FeCO apodeme, equivalent to a flexion of the 
tibia, evoked a levation of the tarsus, whereas 
relaxation of the apodeme, equivalent to tibial 
extension, evoked tarsal depression.  These responses 
showed that tarsal depression (upward deflection of 
the trace) was smoother than tarsal levation 
(downward deflection of the trace), reflecting the 
activity of the underlying motor neuron activity, 

which also resulted in spontaneous movements 
before the stimulus to the FeCO was applied.  

In response to a 5 Hz band-limited GWN (Fig. 
2B), tarsal movement did not follow the higher 
frequency inputs, smoothing the response. 
Movements of the tarsi from 8 different individuals 
to a 1 Hz stimulus applied to the FeCO showed that 
they have similar responses but with varying 
amplitudes. There was also an observable delay 
between the input to the FeCO and the movement of 
the tarsus of 0.1s, resulting from known neural 
conduction times and synaptic delays (Burrows, 
1996, Endo et al., 2015).  

 

3.2 Autoregressive Model of the 

Intersegmental Responses 
The linear model of the average tarsal intersegmental 

response was calculated using the Autoregressive 

(AR) model described in Section 2.2.4. The 

parameters of the model were calculated using the 

first of the three 5 Hz band-limited GWN responses, 

averaged across the eight individuals (which in turn 

are the average of three recordings). One model for 

each individual response was calculated, as well as a 

model for the average response. 

 

Figure 2. Intersegmental tarsal movements evoked by 

displacement of the FeCO. a) Movements of the tarsus of 

animal 5 to a 1 Hz sinusoidal stimulus. b) Movements of 

the tarsus of Animal 5 to a 5 Hz band-limited GWN 

stimulus. c) Movements of the tarsi of all eight individuals 

to a 1 Hz sinusoidal stimulus. An upward deflection of the 

tarsal movement traces represents tarsal depression. 

The performance of the model when the parameters 

were calculated for Animal 5 and the average 

response across all individuals is shown in Figure 3 

for the case of 5 Hz band-limited GWN input and 1 

Hz sinusoid.  



 

The best performing model was the LSM model 
calculated for Animal 8, with a NMSE of 29.3 % for 
the GWN input. When the models were tested with 1 
Hz inputs, the best performing model, however, was 
the one designed for Animal 1, which was the second 
worst at predicting GWN inputs (Table 3).  

The LSM model calculated with the average 
response across all individuals was able to predict the 
average response better than any other individual 
model, with a NMSE = 27.2%, when tested with 
unseen data. The performance of this model with the 
average tarsal response to 1 Hz sinusoid was also 
better than with any of the individual responses, with 
a NMSE = 4.6%. 

 

Figure 3. Least Square Model predictions of unseen 5 Hz 

band-limited GWN and 1 Hz sinusoidal inputs (dotted lines 

show the response while the black line the model). a) 

Prediction of the model for Animal 5 to 5 Hz GWN. b) 

Prediction of the model for the average tarsal response with 

5 Hz band-limited GWN. c) 5 Hz band-limited GWN input. 

d) Prediction of the LSM for Animal 5 to a 1 Hz input. e) 

Prediction of the LSM for the average response to a 1 Hz 

input. f) 1 Hz sinusoidal input to the FeCO. The parameters 

of the model were calculated using a 5 Hz band-limited 

GWN tarsal response and tested with unseen data. 

3.3  Artificial Neural Networks   

3.3.1 Metaheuristic Algorithm TDNN 

Architecture 

Using the responses from the eight animals and the 

average response across all individuals to band-

limited GWN, a metaheuristic algorithm (Costalago 

Meruelo et al., 2016) was run until the optimal 

architectures for each response were obtained (Table 

2), with a total of 9 models. While the algorithm was 

set to a maximum of five layers and 32 nodes per 

layer, the optimal architectures were limited to two 

layers and a maximum of five nodes per layer. The 

algorithm was set to run over 50 iterations or 

generations, however, the ANN architectures 

converged and the best or optimal network obtained 

after the 35
th

 generation for all the individual 

responses, including the average response. We 

therefore assumed it had reached the maximum 

fitness within 35 generations. 

Table 2. Number of nodes per layer for the TDNN 

designed using the metaheuristic algorithm.  

 Layer 1 Layer 2 

Average response 4 - 

Animal 1 3 - 

Animal 2 5 - 

Animal 3 5 1 

Animal 4 2 1 

Animal 5 3 1 

Animal 6 3 - 

Animal 7 4 - 

Animal 8 3 - 

 

3.3.2 TDNN models of the Intersegmental 

Responses 

The TDNN models optimised for the individual and 

the average responses were tested using unseen 

GWN data and a sinusoidal input, none of which 

were used in the training or the algorithm. The 

models were able to approximate the response of the 

5 Hz GWN and follow its trajectory, both in the case 

of the TDNN trained with recordings from Animal 5 

and with the average response calculated across all 

animals (Fig. 4).  

 

 

Figure 4. TDNN predictions of unseen 5 Hz band-limited 

GWN and 1 Hz sinusoidal inputs (dotted line represents the 

response and black line the model). a) Prediction of the 

model for Animal 5 to 5 Hz GWN. b) Prediction of the 

model for the average tarsal response with 5 Hz band-



 

limited GWN. c) 5 Hz band-limited GWN input. d) 

Prediction of the TDNN for Animal 5 to a 1 Hz input. e) 

Prediction of the TDNN for the average response to a 1 Hz 

input. f) 1Hz sinusoidal input. The parameters of the model 

were calculated using a 5 Hz band-limited GWN tarsal 

response and tested with unseen data. 

For a 1 Hz stimulus applied to the FeCO, it was 
clear that the model trained with Animal 5 was not 
able to predict the high amplitude movements of the 
tarsal responses in Animal 5, although the model 
trained with the average response could predict the 
average response to 1 Hz. 

The TDNN models had lower NMSE than the 
LSM models for every individual, including the 
average response (Table 3). These NMSE values 
were calculated for TDNN models trained with a 
specific individual (or the average response across all 
individuals) and tested with unseen data from the 
same individual (or the average response). With a 
mean value of 25.3 %, the TDNN produced a better 
model than the LSM, with 50.6 %. 

To corroborate whether the TDNN were better at 
predicting the tarsal responses, a paired samples t-test 
was applied, chosen for the normality of the data 
(Shapiro-Wilk Test, p = 0.881 for the TDNN models 
and p = 0.098 for the LSM models), despite the small 
sample size (9 samples in total, considering models 
for the 8 individuals and the average response across 
them). The results showed that the TDNN had a 
statistically significantly lower NMSE (25.3 ± 7.1 %, 
mean ± standard deviation) than the LSM models 
(50.6 ± 22.1 %), with t(16) = -3.924 and p < 0.01. 
This indicated that the TDNN were statistically 
significantly better at predicting the tarsal 
intersegmental responses. Since the sample size was 
small, and to compare with following statistical 
analysis, a Mann-Whitney U-test was applied. The 
results also confirmed that the performances of both 
models were statistically significantly different (U = 
74.0, p < 0.01). 

Table 3. NMSE of the individual models when tested with 

unseen GWN and 1 Hz sinusoidal inputs from the same 

individual as training, but not the same response as used in 

the training.  

 TDNN LSM 

 GWN 1 Hz GWN 1 Hz 

Average 13.5 2.2 27.2 4.6 

Animal 1 37.3 12.7 81.3 16.1 

Animal 2 31.5 15.2 41.5 8.3 

Animal 3 23.6 >100 49.9 >100 

Animal 4 18.4 31.5 71.1 70.2 

Animal 5 30.6 61.2 82.6 42.2 

Animal 6 23.7 98.9 38.2 44.5 

Animal 7 25.4 16.5 33.9 7.7 

Animal 8 23.8 29.8 29.3 10.8 

Mean 25.3 59.4 50.6 47.8 

     
To show the generalisation of such models when 

another input was applied, Figure 5 also shows the 
prediction of these networks when a sinusoidal 

stimulus was applied. Table  shows that the 
performance of the TDNN models was worse than 
the performance of the LSM (59.4 ± 74.4 % for the 
TDNN and 47.8 ± 62.9 % for the LSM). To 
determine whether this difference was statistically 
significant, a Mann-Whitney U test was applied to 
the data, since both models produce non-normal data 
(Shapiro-Wilk Test has a p = 0.00 < 0.05 for both the 
TDNN models and the LSM models, indicating that 
the data from both models was non-normal). The 
results from the test indicated that the performances 
of both models were not significantly different (U = 
34.0, p = 0.61). 

Therefore, the TDNN models are statistically 
better at predicting the responses to 5 Hz band-
limited GWN than the LSM models, however they 
were not statistically different to them when 
predicting responses to a 1 Hz sinusoid. 

 
3.3.3 Generalisation of TDNNs to different 

individual responses 

To analyse generalisation in more detail, the models 

trained with 5 Hz band-limited GWN were then 

tested with the responses from all individuals and the 

average of these (Fig. 5). Here, the term 

generalisation refers to the ability of the model to 

predict the tarsal reflex responses in different 

individuals that were not used in the training process. 

In Figure 5, each box-plot represents the NMSE of a 

specific model, trained with either the average 

response or the responses from individual animals (1-

8). The NMSE was calculated when these models 

were applied to all the responses, represented by the 

different markers. 
Results show that the models could predict well 

the responses from some individuals. The model 
from the average response was the best performing 
model while that of Animal 3 was the worst 
performing model. However, there were some 
responses that were poorly predicted by the models, 
such as the model of the average response that could 
not predict the GWN responses of Animal 5. The 
average response across all animals, however, was 
predicted by all the individual models (see black dots 
in Figure 5).  

All individual models had a prediction error 
higher than 100 % when tested with Animal 5, with 
the exception of the model trained with Animal 5, 
and the model trained with Animal 1. The model 
trained with Animal 1 was able to predict all the 
responses from any individual, better than the model 
trained with the average response calculated across 
individuals, with the exception of the tests on 
recordings from Animal 3 and 8. 

The mean and standard deviation of the 
performances from each of the models is shown in 
Table 4. The table shows the mean value of all the 
NMSE when the TDNN was tested with GWN and 
with a 1 Hz sinusoidal stimulus. Overall, the TDNN 
had a mean NMSE performance of 86.8 % when 
tested with 5 Hz GWN and 64.7 % when tested with 
1 Hz. It should be noted that there are many outliers 



 

in the distribution (NMSE values higher than 100%), 
which bias estimates of mean and standard deviation. 

 

Table 4: Mean and standard deviation of the NMSE values 

for each of the nine TDNN models. The NMSE value 

presented for each model was the mean of the NMSE 

values calculated with that model and averaged across all 

the individuals, including the average response.  

 GWN 1 Hz 

 Mean sd  Mean sd 

Average 55.9 52.7 47.7 64.4 

Animal 1 43.6 14.6 31.9 16.7 

Animal 2 82.2 77.8 69.8 97.2 

Animal 3 219.6 271.5 109.4 175.3 

Animal 4 48.6 24.5 40.0 28.9 

Animal 5 52.1 10.5 38.0 14.4 

Animal 6 57.5 49.7 37.0 32.7 

Animal 7 119.8 141.8 146.3 226.6 

Animal 8 102.2 124.0 62.1 101.2 

 
Table 4 shows that the model trained with the 

responses from Animal 1 had lower performance 
error than any other model, while the model trained 
with the responses from Animal 3 has the highest 
errors, although this may only be true due to the 
NMSE values of the TDNN tested with Animal 5, 
which caused outliers. Surprisingly, the model 
trained with recordings from Animal 5 could predict 
all the individual responses with a low performance 
not much higher than the best performing model, 
considering that its responses could not be predicted 
by any other model. 

To estimate whether the performances of the 
models were significantly different (i.e. the animal 
used for training data, or average response, had a 

significant impact on the performance of the model), 
a Friedman test was chosen. This test was chosen 
because it analysed the differences in three or more 
groups of dependant variables (i.e. repeated tests 
from different animals within the same network) 
providing the results were continuous and the data 
non-parametric. The test was applied to the NMSE 
values obtained with GWN and 1 Hz separately. The 
test also gives some insight into the importance of the 
animal chosen to design the model, or whether the 
average across individuals could be used as a 
representation of the system. 

The Friedman test was also chosen because of the 
non-normality of most of the data (the Shaphiro-Wilk 
tests have p < 0.05 for Animal 2, 3, 6, 7 and 8, and p 
< 0.001 for the overall data). Results indicated that 
the NMSE values were significantly different (2(8) = 
21.9, p = 0.01) when the networks were tested with a 
5 Hz band-limited GWN and when they were tested 
with 1 Hz sinusoid (2(8) = 15.3, p = 0.05). These 
statistical tests indicate that the training data used to 
design the networks affects significantly the 
performance of the model when predicting data from 
different individuals. 

4 DISCUSSION 

4.1 Tarsal intersegmental responses 

Using new approaches we have developed an 
extensive and quantitative analysis of an 
intersegmental reflex in which movement of the 
tarsus about the tibio-tarsal joint was mediated by 
changes in the position of the tibia about the femoro-
tibial joint. As the leg was flexed, the apodeme of the 
FeCO was stretched and the tarsus levated, and when 

Figure 5. Performances represented by the NMSE for all the TDNN models tested with either 5 Hz band-limited GWN or a 

1 Hz sinusoid. Each of the box-plots represents the performance of a TDNN trained with one of the responses, either the

average TIRCS response or one of the eight individual responses (as indicated on the axis). The networks were trained with 

5 Hz band-limited GWN responses. The markers of the box-plots represent the NMSE. For ease of visualization, values

above 100 % are not shown, since they indicate failure of the model to predict the response (a constant zero-valued 

response would provide a NMSE of 100%) and precise values above 100% thus add little additional insight. 

 



 

the leg was extended, the apodeme was relaxed and 
the tarsus depressed. We then modelled the reflex 
movements of the tarsus using both Autoregressive 
and Artificial Neural Networks and showed that the 
models produced by the ANNs provided better 
predictions of the intersegmental responses. Finally, 
we then analysed the variability in responses of 
reflex movements between animals and asked how 
good the models from individual animals were in 
predicting the tarsal reflex movements in different 
animals.  

Intersegmental tarsal reflexes are relatively 
common in the limbs of arthropods. Similar 
intersegmental reflexes have also been described in 
the New Zealand Weta, rock lobsters and crayfish 
(Bush et al., 1978; Clarac et al., 1978; El Manira et 
al., 1991; Field and Rind, 1981), where a response in 
one segment of the leg is initiated by a chordotonal 
organ in another leg segment. Surprisingly a similar 
reflex is not present in the limbs of stick insects 
(Radnikow and Bässler, 1991) despite the 
innumerable similarities in their nervous systems 
(Bassler, 1977), where reflex responses can be 
elicited by a chordotonal organ in the same way as in 
locusts (Bucher et al., 2003; Hess and Büschges, 
1999, 1997). The function of such reflexes is still not 
fully understood, although it is believed to be a 
locomotory reflex rather than a stance reflex, aimed 
to facilitate centrally driven movements. Its function 
seems to be related to avoid catching the claws on the 
substrate while walking and pressing the tarsus onto 
the ground during the power phase of locomotion 
(Field and Rind, 1981). Similarly, the rock lobster 
also produces a reflex response that originates from 
the joint that produces the main power during the 
propulsive phase of a step (Clarac et al., 1978). 

 
4.2 Artificial Neural Networks for system 
identification in biological systems 
Costalago Meruelo et al. (2016) described a novel 
method to model and predict neural responses using 
ANNs and to explore and understand such responses 
with a high degree of accuracy. The method used to 
design the ANN architecture, a combination of 
Evolutionary Algorithms and Particle Swarm 
Optimization (Eiben and Smith, 2003; John, 1992; 
Kennedy and Eberhart, 1995), optimised the 
architecture of the network to individual and 
averaged responses. The design of the optimal 
architecture was necessary to reduce computational 
time, improve prediction accuracy, reduce over-
fitting and improve generalization capabilities 
(Angeline et al., 1994; Suraweera and Ranasinghe, 
2008; Yao, 1999). A similar method used here, 
produced small networks with up to two hidden 
layers and a small number of nodes in each layer to 
model tarsal movements, although the networks were 
smaller for tarsal responses than for neural responses 
(Costalago Meruelo et al., 2016). The small size is 
thought to be better at generalising and in reducing 
over-fitting (Sietsma and Dow, 1991; Suraweera and 
Ranasinghe, 2008). Larger networks may produce a 
lower error in the training data, but are less able to 

predict the responses to a novel stimulus. We showed 
here that the ANNs were able to outperform 
significantly previously used mathematical methods. 
For example, using ANNs the prediction error was 
reduced by approximately 10 % compared to the 
LNL methods (Dewhirst et al., 2013) and by 25 % 
compared to Wiener methods (Newland and Kondoh, 
1997a,b). It should be pointed out. However, that 
such comparisons must be considered with caution, 
since it is not just the model structure or its type that 
affects the results, but also the size or number of 
model parameters that can impact the fit and ability 
to generalise. For tarsal intersegmental responses 
ANNs had approximately half the mean square error 
of the linear models suggesting than ANNs were 
better than linear models commonly used in 
biological systems (Marmarelis, 2004). 

 
4.3 Individual variability in the tarsal 
intersegmental reflex responses 
Angarita-Jaimes et al. (2012) showed that the NMSE 
errors of models of motor neurons could not be 
ascribed only to modelling errors or background 
noise, but may also be due to individual differences 
of the same neuron between animals. Similarly, 
Schneidman and Brenner (2000), showed that in 
information rates in the visual system of flies that the 
common underlying response across individuals 
contributes about 70 % of the information recorded 
in the response, whereas the remaining 30 % comes 
from individual differences in the insect such as 
initial state, or inadvertent excitation of sensory 
neurons. Our results, similarly, show that there is a 
common response across all individuals, since all 
models were able to predict some (but not all) of the 
responses from other animals, independently of the 
animal used for training. Even so, the ability of each 
model to predict the responses from each of the 
animals was significantly different. These differences 
in the prediction errors can partly be explained by 
differences across animal responses, as a result of 
spontaneous activity found in central interneurons 
and motor neurons (Buschges et al., 1994; Field and 
Burrows, 1982), differences in parameters (Marder 
and Taylor, 2011) and electrical and cellular noise 
(Faisal et al., 2008).  

 
4.4 Wider implications 

The design of prostheses and orthoses for gait 
deficiencies could be benefited greatly by adding a 
reflex response. Powered or active prosthesis that aid 
movement have already improved gait (Shultz et al., 
2015), however their development has been slow 
over the last few years because of limitations in 
technology (Au and Herr, 2008). Bioinspired systems 
could provide the next step in their development 
providing more natural movement. Functional 
Electrical Stimulation (Rushton, 1997) could benefit 
from reflex modelling, improving the natural 
voluntary movements for which reflexes are 
necessary. Including feedback responses from the 
environment in the form of flexibility and easiness 
into foot movement would be advantageous as 



 

current systems lack this adaptability due to being 
based on preprogrammed patterns (Jiménez-Fabián 
and Verlinden, 2012). Furthermore, robotics, 
autonomous systems and control already use direct 
applications of biological systems (Beer et al., 1997). 
In robotics, some of the most successful legged 
robots are based upon arthropods (Ritzmann et al., 
2004), however, there design have raised issues 
related to the level of autonomy, stability and 
coordination (Bares, 1999). Local reflexes such as 
those seen in insects have, when implemented, been 
shown to successfully improve robot locomotion 
(Espenschied et al., 1996, 1993), since insects have 
the ability to deal with uneven terrain, a characteristic 
that robots aim to emulate (Chen et al., 2011; Cruse 
et al., 1998; Delcomyn and Nelson, 2000; Kovač et 
al., 2008; Lewinger et al., 2011). 
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