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The identification of the sign and strength of disclinations 

in the schlieren (nucleated domain) texture of the nematic 

phase, by optical microscopy.   
                                      Helen Gleeson1, Ethan I, L. Jull1 and John E. Lydon2     

 
       Il y a de certains dèfaults qui, bien mis en œuvre, brillent plus que la vertu même * 

                                                                                                                     La Rochefoucauld   

Abstract: The optical texture of the nematic phase, variously known as the schlieren, structure à 

noyuax or nucleated domain texture, was identified over a century ago as being an array of point 

singularities. When viewed between crossed polars, patterns of dark brushes radiate from each point 

nucleus. The sign and strength of each nucleus can be uniquely determined from the changes in the 

orientation of these brushes when either the sample or the crossed polars are rotated, from two 

formulae given by Chadrasekhar in 1977.  However, these were given with little exemplification, and 

have been largely overlooked. Consequently the majority of the discussions given in current literature 

are either, incomplete and confusing, or in some cases, incorrect.  Here we provide a detailed 

explanation of the textures and their behaviour as viewed with the most commonly used experimental 

geometry (i.e. with a rotating sample and stationary polars).  

 

Key words Nematic Liquid Crystalline Phase, Schlieren, Structures à Noyeaux, Nucleated Domain 

textures, Disclinations, Polarising microscopy. 

 

1 Introduction   
1.1 The nucleated domain texture  
This paper concerns the optical texture of nematic phases, identified over a hundred years ago, which is 

formed by rapid cooling of the isotropic liquid between a glass slide and cover slip with untreated 

surfaces [2]. It would appear that, on cooling, as the mesophase emerges from the isotropic melt, 

regions of the sample take up different alignments. Rather than spreading the initial disorder evenly 

throughout the volume of the sample, the lowest accessible energy minimum is for this disorder to be 

largely reduced to point and line singularities. Although this has been recognised since the earliest days 

of liquid crystal research, understanding the geometry and related optical properties of topological 

defects in mesophases and other condensed systems, is still of current interest - as witnessed by the 

2016 Nobel Prize in Physics [3] ). 

  

The optical texture shown in Figure 1 is a consequence of this concentration of disorder around point 

and line disclinations. It is usually called the schlieren texture [2] but it is also known as the structure à 

noyeau or nucleated domain texture. When viewed between crossed polars, patterns of black brushes 

can be seen radiating from small points.   Some of these ‘nuclei’ have two radiating dark brushes and 

others have four (nuclei with higher numbers are known, but are rarely encountered).  Although the 

pattern of brushes changes continuously as the sample is rotated, the positions of the actual nuclei 

remain stationary. The nuclei are singularities in the director field. Various structures were postulated 

for them, based on studies using polarised light microscopy.  These have been subsequently confirmed 

by independent approaches where the director field can be can be viewed directly, rather than inferred 

from the optics. These include the bubble technique (see Figure 2) [4]. 

------------------------------------------------------------------------------------------------------------- 
* Footnote: This very appropriate quotation was used by de Gennes and Prost in the heading of Chapter 4 of 

[1].  
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1.2 Point or line disclinations? 
Since the samples are examined in projection, their appearance could arise from two kinds of 

molecular arrangement -  either point disclinations (usually located at the top or bottom boundary 

surfaces of the sample), or line disclinations running through the sample, normal to the plane of the 

surfaces, as sketched in Figure 3. In practice, it appears that both types occur [1, p183]. They can 

usually be distinguished by the test described by Friedel and Kleman, where the cover slip is displaced 

sideways [5,6]. The appearance of a point disclination will not change significantly. However, a line 

disclination will be tilted out of the vertical, and, when seen in projection, the original point will be 

stretched into a short line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2  

Optical micrograph produced by the bubble-decoration technique, showing the director 

field pattern at a free surface of a nematic sample, viewed between crossed polars 

Two point singularities are shown - the upper of strength +1 and the lower of strength -1. 

Reproduced from Figure 4.4 [1p167], which had itself been reproduced from [4]. 

  

 Figure 3 Line and point disclinations   

 

(a)The director field pattern for an s = +1/2 disclination line running vertically through 

the sample. The molecules lie parallel to the horizontal plane (as indicated by the flat 

arrow). The family of curved surfaces indicate the pattern of molecular alignment - they 

are not intended to imply that the structure is layered. 

(b) The director field pattern for an s = +1 point nucleus at the upper surface of the 

sample. 

Figure 1 about here  

Figure 2 about here  

Figure 3 about here  

Figure 1 
The nucleated domain texture of a nematic phase - produced by rapid cooling of an isotropic 

sample, held between two glass slides, both with untreated surfaces – and viewed between 

crossed polars. Note the characteristic appearance of a mixture of two-brush and four-brush 

nuclei.  



 

 

 

In texts describing the optical microscopy of mesophase textures, the nuclei are usually treated as 

if they were line disclinations seen end-on. This may not be a valid assumption. According to 

de Gennes, two-brush nuclei are always associated with a line disclination, whereas four-brush 

nuclei usually (but not invariably)  arise from point disclinations, [1p28]. However, since both 

types have more or less identical appearances when viewed in projection, the uncertainty of 

whether a nucleus is a point or a line viewed end-on does not affect the discussion given in this 

paper. 

 

1.3 Signs and strengths of disclinations 
The four commonly-observed director-field patterns around the nuclei are sketched in Figure 4. 

They can be classified in terms of their strength, s and the sign, +/-. The way in which these 

parameters are defined is illustrated for s = +/- 1 in Figure 5.  The strength of a nucleus is defined 

as the number of times the local director (shown as blue arrows) rotates whilst making a circuit 

around the nucleus. If s =  1, the local director rotates by an angle of 2 during a circuit.  If s = 

½, the local director only rotates by .  The  sign indicates whether the sense of the rotation 

(i.e. clockwise or anti-clockwise) for the circuit is the same as, or opposite to, that of the rotation 

of the local director. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 
 The director field patterns of the four most commonly observed nuclei in the nematic 

nucleated domain texture.  

Figure 5  

Definition of the sign and strength of a nucleus – illustrated for the +1 and -1 cases.  The 

strength, s of a nucleus is defined as the number of times the local director (shown as blue 

arrows) rotates whilst making a circuit around the nucleus. For the s = +1 case, the alignment 

of the local director, indicated by angle  makes one 360o revolution, during a circuit. The 

positive sign indicates that the sense of rotation of the local director is the same as that of the 

circuit (i.e. clockwise). For the -1 nucleus, the local director also makes one rotation per 

circuit, but in the opposite sense, (anti-clockwise).   

100



Figure 4 about here  

Figure 5 about here  



The signs and strengths of nuclei are not merely descriptive terminology. The values of s are 

useful when discussing the factors which determine changes in the nucleated domain texture. For 

example, because of the local bend, twist and splay distortions of the director field, there are 

attractive forces between nuclei of opposite signs and repulsive forces between those of like 

signs.  
 

Often, particularly at temperatures close to the clearing point (where the viscosity of the phase is 

low), disclinations of opposite sign can be observed moving together and eventually coalescing, 

cancelling each other and disappearing. Alternatively, in other cases, two nuclei with the same 

sign can combine to form a new nucleus of a strength which is the sum of the original two values 

[7].  

 
The nucleated domain structure can be regarded, as being a locked-in metastable state with the 

various forces and torques in a state of balance. Although it must have a higher free energy than a 

perfectly aligned sample, the available energy of thermal motion is not sufficient to allow the 

molecules to escape from their local free energy wells. 

 

There is a kind of geometrical arithmetic operating where the numbers of positive and negative 

nuclei present in a sample tend to be equal, so that the sum of the strengths of all disclinations 

tends to be zero. Where new disclinations are created by mechanically disturbing the sample, 

they are usually created in pairs with opposite signs.   In a recent paper, Dierking, Alexander  and 

Yoemans have examined the dynamics of the mutual annihilation of linear s = ±1 pairs (both 

experimentally and in simulation [8]).  

  

New disclinations can be introduced around foreign solid particles, by local melting and 

quenching of the mesophase. The recent work by Musevic and co-workers epitomises some of 

the elegant work that has been carried out in this area [9-11].  

 

 

In an optical texture, where two adjacent nuclei are connected by brushes, these nuclei are of 

opposite sign. If we attempt to create a director field pattern which contains a group of +1 nuclei, 

as sketched in Figure 6, it is apparent that one cannot avoid creating a -1 nucleus between them. 

 

 

 

 

 

 

 

 

 

1.4 Radial lines  
 

Prominent features of the director field patterns drawn in Figure 4 are what we shall term ‘radial 
lines’ – the parts of the patterns where the director field points towards the centre of the nucleus, 

dividing the pattern into a number of identical segments. The geometrical relationship which 

gives rise to these lines is described in Figure 7, using the s = +1 and s = -½ nuclei as examples.  

 

 

 

 

Figure 6 
One cannot construct a stable director field composed solely of nuclei with 

positive signs.  This sketch illustrates how four neighbouring +1 nuclei will 

create a -1 nucleus between them. In general the numerical sum of the strengths 

of the nuclei in a sample tends to be zero. 

Figure 6 about here  

Figure 7 about here  



 

 

 

1.5 The special case of s = +1  
In general, the value of s uniquely determines the director field pattern around a nucleus. 

However the special case of s = +1 is the exception and here, the director field along the radius 

where = 0o is retained for all radii. This allows a sequence of structures ranging from radial to 

tangential patterns to be created, as shown in Figure 8. In this discussion we shall treat all +1 

structures as radial. Apart from some curvature of the brushes for spiral cases like (e) where the 

director is inclined at an angle other than 0o or 90o to the radius, this will not affect the validity of 

any of the discussion in this paper. It is perhaps not surprising that spiral patterns are commonly 

observed for chiral nematic systems. 

 

 

 
 

 

 

 

 

 
 
 

 

 

 

 

 

 

1.6 Half–integral nuclei  
 

 

 

 

 

 

 

 

 

Figure 8  The unique nature of the s = +1 nucleus 

In general, changing the initial value of  where  = 0o merely causes a rotation of 

the whole director field pattern – and does not otherwise alter its appearance (as 

illustrated for s = +1/2, in Figures a, b and c). In this sketch, the values of  when 

= 0o are drawn at 0o, +20 and +40o respectively.   

However, for the unique case of s = +1, all radii are identical and when the specimen 

is rotated between stationary crossed polars, the brush pattern remains stationary.  

A further consequence is that the choice of initial value of  produces different 

patterns, ranging from radial (d) to spiral (e) to tangential (f).     

 

Figure  7 

The creation of radial lines  

The two large circles show the circuit around the nucleus, measured by the angle . The 

small circles show the rotation of the director measured by the angle . In the case of s = 

+1, the angle  is equal to the angle  at all positions on the circuit and every radius 

corresponds to a radial line in the director field, where the director points towards the centre 

of the nucleus. For the case of s = -½, the angle  only matches the angle  (or 180o + ) at 

three positions -  where = 0o, 120o and 240o  -  producing three radial lines. Figure (b) 

shows the situation where a 240o journey around the circuit produces a 120o rotation of the 

director in the opposite sense. In general, the number of radial lines of a nucleus is 2-2s.   

Figure 8 about here  

Figure 9 about here  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sketches in Figure 9 show the problem encountered by a ‘polar’ nematic phase when 

forming an s =+1/2 disclination. The interface (indicated in red), where molecules pointing to the 

left encounter molecules pointing to the right would presumably be an unacceptable high-energy 

interface. The widespread occurrence of half-integral nuclei is taken to be proof that nematic 

phases are non-polar, and have equal numbers of molecules pointing in each direction along the 

director, as represented in (b). 

 

 

2 Extinction brushes  
Extinction brushes are regions of the sample observed between crossed polars, where the director 

is either parallel or perpendicular to the plane of polarization of the incident light. Nuclei with 

half-integral values form two bushes, whereas nuclei with strength  ± 1 give four. In general the 

number of brushes is 4s.  

 

The various patterns of brushes for nuclei with values of s from +2 to -2 are shown in Figure 10 

Note that, although the director fields are very different, the brush patterns are the same for 

positive and negative values of s. An example of a rarely encountered 6 –fold brush pattern 

(given by disclinations with strength ± 3/2) is shown in Figure 11. The sign can be determined by 

observing the rotation of the brushes as the stage is rotated, as discussed below in section 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9  Half-integral nuclei and the polarity of the nematic phase 

 

The sketch (a) shows a hypothetical ‘polar’ nematic phase attempting to wrap itself around 

an s = +1/2 disclination.  Note the unacceptable high-energy interface (indicated in red) 

created where molecules pointing to the left encounter molecules pointing to the right As 

shown in (b) this problem does not arise for a non-polar phase where equal numbers of 

molecules point in each direction along the director. 

Figure 10 about here  

Figure 10 The director field patterns and brush patterns for nuclei with 

s values from  -2 to +2.  
The various director field patterns around the nuclei are shown, with the brush 

patterns, observed between crossed polars, indicated by the darker shading. Of these, 

the four patterns shown at the top, ½ and 1, are the most common, and the lower 

four are rarely encountered.  



 

 

 

 

 

 

 

 

 

 

 

 

As indicated in Figure 12, when the sample is rotated on the stage, the pattern of brushes does 

not fade and then reappear - the brushes retain their appearance but in general (as discussed 

below) they rotate around the central point of the nucleus. In one special case, where s = +1, 

shown in Figure 8 (and for one particular mode of operating the microscope), the brush pattern 

remains stationary. In all other cases the brushes rotate - in either the same sense as the rotation 

of the stage, or in the opposite sense. And, in general, the rate of rotation of the brush pattern is 

not the same as that of the stage.  

 

 

 

 

 

 

 

 

 

 

 

3 Graphs of  against   

 
3.1 Idealized director field patterns 
In this discussion, we shall deal with the idealized structure of the nuclei as depicted in Figure 13, i.e. 

the structure near to the nuclear centre, where the director field pattern is not disturbed by the influence 

of neighbouring nuclei.  Here all radii are lines of parallel alignment - and a circular orbit around a 

nucleus encounters a constant rate of elastic distortion of the mesophase.  

 

 

 

 

 

 

 

 

 

 

3.2   Relationship between the a plot and the director field of the nuclei 

Figure 13   The idealised structure of a nucleus of the nucleated field texture 

(illustrated for an s = -½ nucleus). There are two geometric features: - 

(a) The bend and splay distortions are constant around the circumference of a 

circle centred on the disclination. 

(b)  The local director field alignments are parallel at all points along a 

radius.  

Figure 12 Sketch of the director field around an s = -1/2 nucleus, rotating 

between crossed polars, with the extinction brushes indicated. Note that the 

two-brush pattern occurs for all alignments of the sample.  

Figure 11 about here  

Figure 12 about here  

Figure 13 about here  

Figure 11 Optical micrograph of a nucleated domain texture of a nematic phase 

showing a rarely-observed six-brush pattern (produced by a nucleus of strength 

3/2).  

Recorded by Ethan Jull.  

 



 
Perhaps the reason why there has been so much confusion over the optical behaviour of the various 

types of nuclei is that the whole topic is littered with counter-intuitive features. Unexpected 

symmetries arise with no obvious reason - the three-fold symmetry of the s = -1/2 nucleus (and the 5-

fold symmetry of the S = -3/2) being particularly puzzling at first sight. The symmetry of the brush 

patterns is not usually the same as that of the director field and furthermore, the way in which the 

orientation of the brush patterns changes as the samples are rotated, does not appear to fit into any 

immediately recognisable sequence.  

 

Some insight into these three features is given by the graphs of  against . The case of s = + ½ is 

shown as an example, in Figure 14.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3   Relationship between the  plot and the brush patterns 
 

Sketches of the director fields and the corresponding  plots, for s values between -2 and +2 

are shown in Figure 16.  Nuclei with s values other than ½ and 1 are rarely encountered – but 

we have included them to help to illustrate the general relationship between s and the structures 

and optical properties of the nuclei.  

 

 

Figure 14 

The relationship between the  plot and the director field pattern around a nucleus, 

(illustrated for the s = +1/2 case). Circulation around the nucleus by an angle , 

corresponds to a horizontal sweep across the graph. The small blue squares represent the 

two alignments indicated by the double-headed blue arrow. The two lines on the graph 

indicate values of and  + 180o (see Figure 9)for the alignment of the local director. 

In this and all subsequent  plots, the grid lines are drawn at 90o intervals for both 

angles.  

Figure 15 The single unique radial line of the s = +1/2  nucleus. The two solid 

lines on the  graph indicate values of and  + 180o (see Figure 7)for the 

alignment of the local director. The broken lines indicate the alignment of vectors 

pointing towards the centre, at all points around the circuit. Radial lines in the 

director field pattern occur at those  values where these two sets of lines 

intersect. For s = +1/2 this only occurs at the single radial line where  = 0o 

(indicated by the blue squares on the left, and the blue line on the right). 

 

Figure 14 about here  

Figure 15 about here  

Figure 16 about here  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The  plot can be used to indicate the conditions for the formation of extinction brushes. These 

occur where the director lies parallel or perpendicular to the polariser, i.e. at 90o intervals of  as 

shown in Figure 17.   

In these plots, the black lines indicate  values. The coordinates of and  where extinction 

occurs are indicated by red circles. The sketches on the right show the appearance of the brushes 

when the sample is viewed with vertical and horizontal crossed polars.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  The rotation of brush patterns for rotating polars-      

      and rotating-stage geometries  
 

 

Section 3, above, dealt with the appearance of  static situations (where neither the sample nor the 

crossed polars are rotated) and, as shown in figure (17) observations of the brush patterns in these 

cases will indicate the strength, but not the signs of the disclinations. However, the signs can be 

determined from the changes in the orientation of these brushes when either the sample or the 

crossed polars are rotated, using the two relationships given by Chadrasekhar in 1977 [7 ]. 

However, these were given with little exemplification and have been largely overlooked. 

Consequently the majority of the discussions given in current literature are either incomplete and 

confusing, or in some cases, incorrect. [12.13,14,15,16] .  

Figure 17 Plots of  against  used to explain the brush patterns for nuclei with strengths 

ranging from +2 to -2.  

In the plots in the left hand column, the black lines indicate the  values. Brushes occur at 

90o intervals of  where the director lies parallel or perpendicular to the polariser. The red 

circles indicate the values of where extinction occurs. In the director field diagrams shown 

on the right, the brushes are indicated in the darker tone.  

Figure 16 

Plots of  against  are used to explain the symmetry of director fields of nuclei with 

strengths ranging from +2 to -2. 

 

In the plots in the left hand columns, the solid black lines indicate the  values. The 

broken black lines indicate values where the director points towards the centre of 

the nucleus. The places where these lines coincide, indicate the  values of the radial 

lines in the director field patterns. In the director-field diagrams shown on the right, 

radial lines are drawn in red. In theplots on the left, the corresponding 

coordinates are indicated by red circles.  

Figure 17 about here  



 

With a conventional optical microscope, it is awkward to rotate the two polars synchronously, 

but the observations are simpler to interpret.  Figure 18 shows this in the case of s = +½ . Here 

the rate of rotation of the brush pattern is twice that of the rate of rotation of the polars – and both 

rotate in the same sense. In general, the rate of rotation of the brushes is + 1/s times that of the 

sample, where the sign indicates whether the sense of rotation is the same or opposite.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most common geometry used in the examination of optical textures is to keep the polars 

stationary and to rotate the stage. In this case the situation is one increment more complex to 

explain. As shown in Figure 19,  the geometry of  rotating the sample is, in a sense, the opposite 

to that of rotating the polars - and the resulting change in appearance of the brush pattern  would 

be equal and opposite if the observer were to walk round the microscope at the same rate.  

However, for a stationary observer, the two situations are not directly comparable, and the 

rotation of the specimen with respect to the observer must be taken into account.    

As an example,  this figure shows how, for a +½  nucleus, a +45o rotation of the stage results in  

a -45o rotation of the brushes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18  The relative rates of rotation of the brushes when the crossed polars are 

rotated, illustrated by the s = +1/2 case.  In (a) both andare 0o. In (b) the crossed 

polars have been rotated by Rp = +45o. This causes a rotation of the brush pattern (Rb) 

by 90o  - i.e. Rb/Rp = +2 . 

 

Figure 18 about here  

Figure  19 about here  

Figure 19 There are two ways in which a polarising microscopy study can be 

carried out - by rotation of the polars or by rotation of the stage. 

In these sketches the broken lines indicate the initial alignment of the director in a 

particular region of the director field of the sample. To bring this region into 

extinction, either the polars can be rotated clockwise as shown on the left, or the 

sample can be rotated anticlockwise, by the same angle, as shown on the right.  

 

However, the observed rotations of the brushes are not equal and opposite, 

because in one case the sample is rotating with respect to the observer and in the 

other case, it is stationary.   

 



Chandrasekhar gives the general relationship  = (s-1)/s for the way in which the brushes 

rotate as the sample is turned through an angle of . If this expression is recast as =  (1 – 

1/s), the second term corresponds to the rotation of the pattern with respect to the sample and the 

first term corresponds to the rotation of the sample with respect to the observer.  

 
For a rotating specimen, in the case of s =+1, the brushes rotate with respect to the specimen at 

the same rate as the specimen, but in the opposite sense. The two effects cancel out, and the 

brush pattern remains stationary. Hartshorne states that the s = +1/2 nucleus was also of this 

“non-turning type” [15,16].  However, (as shown below), the brush pattern does indeed rotate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The results of rotating the six-brush nucleus shown in Figure 11 are plotted out in 

Figure 21. The measured average ratio of the angular velocity of the brushes to the 

angular velocity of the sample (Rb) is 0.32. For a +3/2 disclination, the expected value 

as given by Chandrasekhar’s equation [7], is 1/3 (and for comparison, the calculated 
value for a -3/2 dislocation is 4/3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 The rate of rotation of the brushes, as compared to the rotation of the stage, 

with stationary polars - as illustrated by the s = +1/2 case.  

The upper figure shows the starting position with  and  both at zero.   

The lower figure shown the situation after a rotation of the stage by + 45o. The blue line 

(with gradient +1) shows the rotation of the stage. The black line (with gradient -2) shows 

the rotation of the brushes with respect to the stage. The green line (with gradient -1) 

corresponds to the resultant rotation of the brushes with respect to the observer. 

Note that here, a +45o turn of the sample causes a -45o turn of the brushes – and, in general 

for the moving stage geometry, the rate of rotation of the bushes is a factor of (1 - 1/s) times 

that of the stage  [7]. 

 

Figure 20 about here  

Figure 21 about here  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accurate measurement of the orientation of a brush pattern is difficult. Brushes have no 

defined edges, and it is the alignment at the core of the nucleus which is to be measured 

- the pattern is progressively distorted in the outer regions by the influence of 

neighbouring disclinations.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22  The relationship between the strength (s) of a nucleus and the 

relative rate of rotation of the brushes and the stage for the rotating polars 

geometry and the rotating specimen geometry. The trace for the rotating 

polars geometry (Rp =1/s) is shown in grey. Its inverse (-1/s) is shown in 

pink and the trace for the fixed polars geometry (Rs = (1 – 1/s) is shown in 

red. Note the loss of symmetry in the final spread of values. 

Figure 22 about here  

Figure 21 Analysis of the six-brush pattern.  

This graph shows the change in orientation of a six-brush pattern as the stage is rotated 

(in 5o increments) between stationary crossed polars. The orientation of each of the six 

brushes was measured separately.    Six-brush patterns are given by disclinations of 

strength 3/2. The sign can be determined from the way in which the brush pattern 

rotates as the stage is turned. These data show that the ratio of angular velocities in this 

case is about 1: 3 - indicating a +3/2 disclination. For comparison, the ratio Rb for 

a -3/2 disclination would be 4/3 (see Figure 21 and Table 1). 

 

In practice it is not always easy to estimate the value of Rb by eye, since the brushes do 

not have sharply defined edges and the shapes are distorted by the influence of 

neighbouring disclinations.  Plotting a spread of data of this kind is recommended.  

 



 Summary 
 

Table  1         Strength   Rot. sym   No. br     Rp        Rs                                          

                          s                               (4│s│)   (1/s)         (1-1/s)                                 

 

+2             2-fold         8            +1/2       +1/2                                

+3/2          1-fold         6            +2/3       +1/3                                  

+1             (infinity)     4           +1            0  

+1/2          1-fold         2            +2           -1                            

 

-1/2           3-fold         2            - 2          +3   

 -1             4-fold         4            -1           +2              

-3/2           5-fold         6           - 2/3       +5/3                                   

 -2             6-fold         8           -1/2        + 3/2                                   

 

  where:     Rot. Sym. is the order of the rotational symmetry of the director field pattern  

                  No. br is the number of brushes. 

                  Rp  is the ratio of the rate of rotation of the brushes and the rate of     

                         rotation of the crossed polars (with a fixed sample).  

                  Rs is the ratio of the rate of rotation of the brushes and the rate of rotation of        

                         the stage (with fixed polars). 

                       

.  

 

 

Table 1 shows the parameters discussed for all nuclei from s = +2 to s = -2. It 

indicates the symmetry of each nuclear pattern, the number of brushes and the way 

in which brush patterns rotate with s for both geometries. Note that no two nuclei 

with different values of s produce brush patterns which rotate at the same rates. In 

principle therefore, nuclei can be identified unequivocally by polarising 

microscopy. 

                            

Descriptions of the optics of nematic disclinations in current literature are often 

confusing and sometimes inaccurate. In particular, the distinction between the 

result of rotating the crossed polars (for a fixed specimen) and the result of 

rotating the specimen (with fixed polars) is not always made clear  – and the two 

experimental geometries give different results.  

 

We suggest that plotting data as an  graph is a convenient way of recording the 

behaviour of brush patterns when viewed with a polarising microscope (especially 

when dealing with nuclei of higher s-values. 

 

One of us (J. E. L.) would like to dedicate this paper to Norman Hartshorne, who 

in 1961, supervised the final year undergraduate project of an inept student 

fortunate enough to be assigned to him - and inculcated a lifelong love of optical 

microscopy. 
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