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1. Introduction 

A dynamical system, whose evolution is completely dictated by deterministic equations, can under certain conditions

exhibit chaotic behavior and generate a density of states [1] . Chaotic behavior has been observed in many real-world sys-

tems including biological, physical and economic systems [2–4] . The simplest dynamical systems that exhibit chaos are

one-dimensional maps. Such one-dimensional discrete dynamical systems are used to describe the evolution of many real-

world systems including olfactory systems [5] , electrical circuits [6] , communication networks [7] , rotary drills [8] , chemical

reactions [9] and the heart [10] . 

An important challenge is to develop such model from experimental observations [11–13] . Conventional approaches [14–

16] rely on time series data. However, often it is not possible to measure point trajectories. For example, particle image

velocimetry, a technique used to generate instantaneous velocity measurements in fluids, identifies individual tracer particles

in consecutive images captured at high speeds but cannot resolve their individual orbits [17] . In such cases, in the absence

of individual point trajectories, it is desirable to determine the underlying dynamical system that generated the observed

density functions. Given a non-singular transformation, the evolution of an initial density function under the action of the

transformation is described by the Frobenius–Perron operator associated with the transformation [18] . The fixed point of

such an operator represents the invariant density under the transformation. The problem of inferring a dynamical system,

whose invariant density function is given, is known as the Inverse Frobenius–Perron problem [19] . 
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In general, solving the inverse problem involves deriving a finite-dimensional representation of the operator, which is

then used to construct the dynamical system. Ulam conjectured [20] that a general infinite-dimensional Frobenius–Perron

operator can be approximated by a finite rank Markov operator. For one-dimensional transformations Li [21] has shown that

given a sequence of piecewise constant approximations P n of the Frobenius–Perron operator P , the corresponding sequence

of fixed points f n of P n converge to the invariant density (i.e. fixed point) of the operator, thus proving Ulam’s conjecture. In

this context, the problem of determining the dynamical system that corresponds to the finite dimensional approximation of

the Frobenius–Perron operator is also known as the inverse Ulam problem [22,23] . 

A numerical algorithm to determine a one-dimensional transformation given the invariant density function was pro-

posed in [19] . The algorithm however does not provide an explicit relationship between the invariant density of the one-

dimensional map and the map itself. In [24] a graph-theoretic approach is introduced to construct piecewise-linear trans-

formations that possess piecewise-constant invariant density functions that have value 0 in all relative minima points. 

A generalization of these methods is presented in [25] which introduces a relationship between any arbitrary piecewise

density function and a semi-Markov piecewise linear transformation defined over a partition of the interval of interest.

This forms the basis for a matrix-based method to reconstruct a 3-band transformation, a special class of semi-Markov

transformations, which has a given piecewise-constant density function as invariant density. The inverse problem was stud-

ied in [26] for a class of symmetric maps that have invariant symmetric Beta density functions and the unique solution

can be achieved under given symmetry constraints. This method was generalized in [27] which considers a broader class

of continuous unimodal maps for which each branch of the map covers the complete interval and the invariant densities

are a asymmetric beta functions. Given arbitrary invariant densities similar approaches were proposed for identifying the

maps with specified forms: two types of one-dimensional symmetric maps [28] , smooth chaotic map with closed form [29,

30] , multi-branches complete chaotic map [31] . Problems of synthesizing one-dimensional maps with prescribed invariant

density function or autocorrelation function were considered in [32,33] . Using positive matrix theory an approach to syn-

thesizing chaotic maps with arbitrary piecewise constant invariant densities and arbitrary mixing properties was developed

in [34] . This method was further extended to synthesizing dynamical systems with desired statistical properties [35] , devel-

oping communication networks [36] and designing randomly switched chaotic maps and two-dimension chaotic maps used

for image generation [37] . The global, open-loop strategy to control chaos proposed in [22,23] is formulated as an inverse

Frobenius–Perron problem. The aim is to perturb the original dynamical system to achieve the desired invariant measure.

This reduces to the problem of finding a perturbation of the original Frobenius–Perron matrix to achieve the target invariant

density function and then solving the inverse Ulam problem to determine the perturbed dynamical system. 

In general, the solution to the inverse Frobenius–Perron problem is not unique. Different transformations exhibiting strik-

ingly different dynamics may share the same invariant density functions. Additional limiting assumptions or constraints are

required to ensure uniqueness of the solution [26–34] . In [38] a new method is proposed to solve the inverse Frobenius–

Perron problem based not only on the invariant density function but also on sequences of probability density functions

generated by the transformation, which ensures uniqueness of the solution. The method has been shown to be quite robust

to noise. For small levels of noise this is indeed expected in light of the convergence results for noise perturbed systems

established by Bollt et al. [39] . However, the accuracy of the reconstruction starts to deteriorate significantly above a cer-

tain level of noise. For large levels of noise, the approximation errors can be drastically reduced by taking into account the

density function of the noise, which is often known a priori or can be estimated. 

This paper proposes a new method to estimate the piecewise linear and expanding semi-Markov transformation that

generated a temporal sequences of probability density functions whilst subjected to constantly applied stochastic pertur-

bations. The method is extended to more general nonlinear transformations that can be approximated arbitrarily close by

piecewise linear functions. 

To differentiate with the normal deterministic inverse problem, we call this the inverse stochastic Frobenius–Perron prob-

lem. The emphasis here is on recovering the unknown transformation that generated the sequence of densities rather than

one of the many possible transformation that share the same invariant density function. 

To this end, we formulate the matrix representation of the transfer operator associated with the stochastically perturbed

system in terms of the Frobenius–Perron matrix associated with the unperturbed system that we aim to estimate. This

representations forms the basis for a the proposed algorithm to estimate the ‘unperturbed’ Frobenius–Perron matrix from

sequences of probability density functions generated by the unknown, stochastically perturbed dynamical system, under the

assumption that the density function of the perturbation is known. For general nonlinear transformations, we present a

practical method to solve the inverse Ulam problem, which allows determining the sign of the derivative for each interval

of the partition. 

Whilst the sign of the derivative is not important when the goal is to determine a transformation that has a given

invariant density function [22] , this step is crucial if the aim is to reconstruct/approximate the true dynamical system that

generated the data. We demonstrate that the proposed approach can reconstruct the underlying dynamical system that is

subject to stochastic perturbations. 

This paper is organized as follows. Section 2 introduces the inverse stochastic Frobenius–Perron problem. A matrix ap-

proximation of the transfer operator associated with the stochastically perturbed transformation is derived in Section 3 .

Section 4 introduces a methodology for reconstructing piecewise-linear semi-Markov transformations subject to stochas-

tic perturbations, from sequences of density functions. The approach is extended in Section 5 to general nonlinear maps.

Section 6 presents two numerical simulation examples that demonstrate the significant improvement in reconstruction ac-
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curacy achieved by the proposed algorithm that incorporates a priori knowledge of the noise in the reconstruction of the

unknown transformation. Conclusions are given in Section 7 . 

2. Description of the inverse problem 

Let R = [0 , b] , B be a Borel σ -algebra of subsets in R , and μ denote the normalized Lebesgue measure on R . Let S : R →
R be a measurable, non-singular transformation, that is, μ( S −1 (A )) ∈ B for any A ∈ B and μ( S −1 (A )) = 0 for all A ∈ B with

μ(A ) = 0 . If x n is a random variable on R having the probability density function f n ∈ D (R, B , μ) , D = { f ∈ L 1 (R, B , μ) : f ≥
0 , ‖ f‖ 1 = 1 } , such that 

Prob { x n ∈ A } = 

∫ 
A 

f n dμ. (1) 

It follows that x n +1 given by 

x n +1 = S( x n ) , (2) 

is distributed according to the probability density function f n +1 = P S f n , where P S : L 
1 ( R ) → L 1 ( R ), defined by ∫ 

A 

P S f n dμ = 

∫ 
S −1 (A ) 

f n dμ, (3) 

is the Frobenius–Perron operator [1] associated with the unperturbed transformation S . 

If A = [ a, x ], P S can be written explicitly as 

f n +1 (x ) = P S f n (x ) = 

d 

dx 

∫ 
S −1 ([ a,x ]) 

f n dμ, (4) 

Let � = { R 1 , R 2 , . . . , R N } be a partition of R into intervals, and int ( R i ) ∩ int ( R j ) = ∅ if i 
 = j . Assuming that S is piecewise

monotonic and expanding [18] , 

P S f n (x ) = 

N ∑ 

i =1 

f n 
(
S −1 

i 
(x ) 
)∣∣S ′ (S −1 

i 
(x ) 
)∣∣χS( R i ) (x ) , (5) 

where S i is the monotonic restriction of S on the interval R i . 

A more complicated situation arises when the dynamical system is subjected to an additive random perturbation [1] such

that 

x n +1 = S̄ ( x n , ξn ) = S( x n ) + ξn , (6) 

where S : R → R is a given transformation and ξ1 , ξ2 , . . . , ξn are independent random variables. The ‘stochastic’ Frobenius–

Perron operator P̄ corresponding to the perturbed dynamical systems is defined by [1,39] 

P̄ f (x ) = 

∫ 
R 

τ (x, y ) f (y ) dy, (7) 

where τ (x, y ) = g(x − S(y )) is a stochastic kernel, satisfying τ ( x, y ) > 0, and 

∫ 
R τ (x, y ) = 1 . 

Here, we consider the deterministic system with constantly applied stochastic perturbations 

x n +1 = S( x n ) + ξn (mod b ) , (8) 

where S : [0, b ] → [0, b ] is a piecewise monotonic and expanding transformation, ξ n is an independent random variable

with a probability density function g that has compact support on [ −ε , ε ] , i.e. ξ n is bounded in [ −ε , ε ] , ɛ ≤ b . 

For an arbitrary Borel set B ⊂[0, b ], the probability of x n +1 falling into B is given by 

Prob { x n +1 ∈ B } = 

∫ 
R 

∫ 
[ −ε ,ε ] 

f n (x ) g(ξ ) d xd ξ, (9) 

for x n +1 = S̄ ( x n , ξn ) , where S̄ ( x n , ξn ) = S( x n ) + ξn ( mod b) . 

Let y = S(x ) + ξ ( mod b) . It follows that 

y = S(x ) + ξ − b χ(b,b+ ε] (S(x ) + ξ ) + b χ[ −ε, 0) (S(x ) + ξ ) , (10) 

and 

ξ = y − S(x ) + b χ(−b,ε−b] (y − S(x )) − b χ[ b−ε,b) (y − S(x )) , (11) 

then, ( 9 ) is rewritten as 
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Prob { x n +1 ∈ B } = 

B 

f n +1 (x ) dx 

= 

∫ 
B 

∫ 
R 

f n (x ) g(y − S(x ) + b χ(−b,ε−b] (y − S(x )) − b χ[ b−ε,b) (y − S(x ))) d yd x, (12)

where f n +1 is the probability density function of x n +1 . The stochastic Frobenius–Perron operator P̄ : L 1 (R ) → L 1 (R ) , associated

with the perturbed transformation ( 8 ), is then defined by 

P̄ f n (x ) = f n +1 (x ) 

= 

∫ 
R 

f n (z) g(x − S(z) + b χ(−b,ε−b] (x − S(z)) − b χ[ b−ε,b) (x − S(z))) dz . (13)

It is easy to see that for any ξ n there are N 1 ≤ N disjoint intervals { I i 
ξn 

} N 1 
i =1 

such that for x n ∈ I i 
ξn 

, i = 1 , . . . , N 1 , S ( x n )

is monotonic and S( x n ) + ξn ∈ [ b, b + ε] or S( x n ) + ξn ∈ [ −ε, 0] (i.e. maps outside the interval [0, b ]), and N 2 ≤ N disjoint

intervals { ̄I i 
ξn 

} N 2 
i =1 

such that for x n ∈ Ī 
j 

ξn 
, j = 1 , . . . , N 2 , S ( x n ) is monotonic and S( x n ) + ξn ∈ [0 , b] . 

We have Ī 
j 

ξn 
∩ ̄I i 

ξn 
= ∅ , ∀ i ≤ N 1 , j ≤ N 2 , and (∪ 

N 1 
i =1 

I i 
ξn 

) ∪ (∪ 

N 2 
j=1 

Ī 
j 

ξn 
) = [0 , b] . For each integers i ≤ N 1 and j ≤ N 2 , there exist

unique integers α( i ) 
 = β( j ) ≤ N such that I i 
ξn 

⊂ R α(i ) and Ī 
j 

ξn 
⊂ R β( j) . From ( 13 ) it follows that 

P̄ f n (x ) = 

N 1 ∑ 

i =1 

∫ 
I i 
ξn 

f n (z) g(x − S(z) + b χ(−b,ε−b] (x − S(z)) − b χ[ b−ε,b) (x − S(z))) dz 

+ 

N 2 ∑ 

j=1 

∫ 
Ī j 
ξn 

f n (z) g(x − S(z)) dz . (14)

Substituting y = S(z) gives 

P̄ f n (x ) = 

N 1 ∑ 

i =1 

∫ 
I i 
ξn 

f n ( S −1 (y )) 

S ′ ( S −1 (y )) 
χS(I i 

ξn 
) (y ) g(x − y + b χ(−b,ε−b] (x − y ) − b χ[ b−ε,b) (x − y )) dy 

+ 

N 2 ∑ 

j=1 

∫ 
Ī j 
ξn 

f n ( S 
−1 (y )) 

S ′ ( S −1 (y )) 
χ

S( ̄I j 
ξn 

) 
(y ) g(x − y ) dy . (15)

We have 

N 1 ∑ 

i =1 

∫ 
I i 
ξn 

f n ( S −1 (y )) 

S ′ ( S −1 (y )) 
χS(I i 

ξn 
) (y ) dy + 

N 2 ∑ 

j=1 

∫ 
Ī j 
ξn 

f n ( S −1 (y )) 

S ′ ( S −1 (y )) 
χ

S( ̄I j 
ξn 

) 
(y ) dy 

= 

N ′ ∑ 

k =1 

∫ 
˜ I k 
ξn 

f n ( S −1 (y )) 

S ′ ( S −1 (y )) 
χS( ̃ I k 

ξn 
) (y ) dy . (16)

where ˜ I k 
ξn 

∈{ I 1 
ξn 

, . . . , I 
N 1 
ξn 

, ̄I 1 
ξn 

, . . . , ̄I 
N 2 
ξn 

} . Since { S(I i 
ξn 

) } i =1 , ... , N 1 
∪ { S( ̄I j 

ξn 
) } i =1 , ... , N 2 

= R , the following equality holds 

N ′ ∑ 

k =1 

∫ 
˜ I k 
ξn 

[
f n ( S −1 (y )) 

S ′ ( S −1 (y )) 
χS( ̃ I k 

ξn 
) (y ) 

]
dy = 

∫ 
R 

N ∑ 

i =1 

[
f n ( S −1 (y )) 

S ′ ( S −1 (y )) 
χS( R i ) (y ) 

]
dy . (17)

It follows that 

P̄ f (x ) = 

∫ 
R 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) 

·
N ∑ 

i =1 

[
f n ( S 

−1 (y )) 

S ′ ( S −1 (y )) 
χS( R i ) (y ) 

]
dy. (18)

So that

P̄ f (x ) = 

∫ 
R 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) P S f n (y ) dy. (19)

Eq. (19) provides the link between the operator P̄ corresponding to the randomly perturbed dynamical system ( 8 ) and the

Frobenius–Perron operator P S associated to the noise-free system. The inverse problem is formulated as follows. 

Let { x j 
0 ,i 

} θ,K 
i, j=1 

and { x j 
1 ,i 

} θ,K 
i, j=1 

be K sets of initial and final state observations, respectively, such that 

x j 
1 ,i 

= S(x j 
0 ,i 

) + ξ j 
0 

(mod b) , j = 1 , . . . , K (20)
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It is assumed that the measurement system does not allow associating an initial state x 
j 
0 ,i 

with its image x 
j 
1 ,i 

under

the transformation. The inverse problem considered here is to determine the transformation S in ( 8 ) given the noise den-

sity function g and probability density functions { f j 
0 
} K 

j=1 
, { f j 

1 
} K 

j=1 
associated with the initial states { x j 

0 ,i 
} θ,K 

i, j=1 
and final states

{ x j 
1 ,i 

} θ,K 
i, j=1 

, that is f 
j 

1 
= P̄ f 

j 
0 

, j = 1 , . . . , K, where ̄P is the transfer operator associated with perturbed transformation ( 8 ). 

3. A matrix representation of the transfer operator P̄ 

Let S be a piecewise linear and expanding semi-Markov transformation over the N -interval partition, � =
{ R 1 , R 2 , . . . , R N } . 
Definition 1. A transformation S : R → R is said to be semi-Markov with respect to the partition � (or � -semi-Markov) if

there exist disjoint intervals Q 

(i ) 
j 

so that R i = ∪ 

p(i ) 
k =1 

Q 

(i ) 
k 

, i = 1 , . . . , N, the restriction of S to Q 

(i ) 
k 

, denoted S| 
Q 

(i ) 
k 

, is monotonic

and S(Q 

(i ) 
k 

) ∈ � . [25] 

The restriction S| R i is a homeomorphism from R i to a union of intervals of � 

p(i ) ⋃ 

k =1 

R r(i,k ) = 

p(i ) ⋃ 

k =1 

S(Q 

(i ) 
k 

) , (21) 

where R r(i,k ) = S(Q 

(i ) 
k 

) ∈ � , Q 

(i ) 
k 

= [ q (i ) 
k −1 

, q (i ) 
k 

] , i = 1 , . . . , N, k = 1 , . . . , p(i ) and p ( i ) denotes the number of disjoint subintervals

Q 

(i ) 
k 

corresponding to R i . 

Let f n be a piecewise constant function over the partition R such that f n (x ) = 

∑ N 
i =1 w i χR i 

(x ) . Its image under transfor-

mation P S f n is also a piecewise constant function over � [18] such that P S f n (x ) = 

∑ N 
i =1 u i χR i 

(x ) and the Frobenius–Perron

operator can be represented by a finite-dimensional matrix 

P S f n (x ) = 

N ∑ 

j=1 

( 

N ∑ 

i =1 

( w i m i, j ) 

) 

χR j (x ) , (22) 

where M = ( m i, j ) 1 ≤i, j≤N is the Frobenius–Perron matrix induced by S with entries given by 

m i, j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∣∣∣∣(S | 
Q (i ) 

j 

)′ ∣∣∣∣
−1 

, if S(Q 

(i ) 
k 

) = R j ;

0 , otherwise . 

(23) 

From ( 22 ) it follows that 

u j = 

N ∑ 

i =1 

w i m i, j , (24) 

for j = 1 , . . . , N. 

Let �̄ = { ̄R 1 , R̄ 2 , . . . , R̄ N } be a regular partition of R into N equal sized intervals. By integrating ( 19 ) over an interval

R̄ k ∈ �̄ gives ∫ 
R̄ k 

P̄ f n (x ) dx = 

∫ 
R̄ k 

∫ 
I 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) · P S f n (y ) d yd x (25) 

Consider the following approximation 

P̄ f n (x ) = p N (x ) + q N (x ) 

= 

N ∑ 

k =1 

v k χR̄ k 
(x ) + q N (x ) , (26) 

where p N (x ) = P̄ N f n (x ) is the orthogonal projection of P̄ f n in L 1 on the finite-dimensional space spanned by, q N ( x ) is the

orthogonal complement in L 1 and 

v k = 

1 

λ( ̄R k ) 

∫ 
R̄ k 

∫ 
I 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) · P S f n (y ) d yd x , (27) 

where λ( ̄R k ) is the Lebesgue measure on R̄ k . Clearly, q N ( x ) → 0 as N → + ∞ . 
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It follows that 

v k = 

1 

λ( ̄R k ) 

∫ 
R̄ k 

N ∑ 

j=1 

[∫ 
R j 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) dy · u j 

]
dx 

= 

N 

b 

N ∑ 

j=1 

[∫ 
R̄ k 

∫ 
R j 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) d yd x · u j 

]
. (28)

Let D = ( d k, j ) 1 ≤ k ≤ N; 1 ≤ j ≤ N be the N × N matrix with entries given by 

d k, j = 

N 

b 

∫ 
R̄ k 

∫ 
R j 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) d yd x . (29)

Substituting ( 24 ), ( 29 ) in ( 28 ) leads to 

v f n +1 = w 

f n · M · D 

′ = w 

f n · Q , (30)

where w 

f n = [ w 1 , . . . , w N ] , v f n +1 = [ v 1 , . . . , v N ] are the coefficient vectors associated with the piecewise constant density

functions f n and P̄ f n respectively and Q = M · D 

′ is the matrix approximation of the operator P̄ . Eq. (30) maps a piecewise-

constant density function over the N -dimensional partition, which in general is non-uniform, to a piecewise-constant density

function over a uniform N -dimensional partition. Eq. (30) is the basis for the new algorithm to reconstruct the transforma-

tion S given pairs of successive density functions generated by the stochastically perturbed transformation. 

In practice, we can chose a finer N 1 -interval partition �̄ , N 1 >> N . For example, we can construct �̄ as a refinement of the

partition � such that the cut points of partition � are a subset of cut-points associated with �̄ . This leads to an alternative

formulation of ( 30 ) where both the initial and final densities are defined over the same partition. Given an initial piecewise

density function f over the partition ̄� , the matrix approximation can then be used to compute a sequence of successive

iterations by the corresponding finite-dimensional approximation of the stochastic Frobenius–Perron operator. 

4. Solving the inverse stochastic Frobenius–Perron problem for piecewise linear semi-Markov transformations 

This section presents an approach to solving the inverse stochastic Frobenius–Perron problem, under the assumption that

S : [0, b ] → [0, b ] is a piecewise linear semi-Markov transformation over a partition � , 

� = { R 1 , R 2 , . . . , R N } 
= { [0 , a 1 ] , ( a 1 , a 2 ] , . . . , ( a N−1 , a N ] } , (31)

a N = b, which is assumed to be known. In what follows we assume that �̄ is defined as the uniform partition of dimen-

sion N of [0, b ]. 

The main steps of the approach are summarized below: 

Step 1: Given the observations X t = { x t, j } θj=1 
, t = 0,…, T , estimate the coordinate vectors w 

f t = [ w t, 1 , . . . , w t,N ] and v f t+1 =
[ v t+1 , 1 , . . . , v t+1 ,N ] , t = 0,…, T −1 corresponding to the piecewise constant density functions f t (x ) over � and f 

t+1 
(x ) =

P̄ S f t (x ) over �̄ , respectively. Compute the matrix D defined in ( 29 ). 

Step 2: Estimate M , the matrix representation of the Frobenius–Perron operator P S associated with the deterministic trans-

formation S . 

Step 3: Construct the piecewise linear semi-Markov transformation over � . 

These steps are described below in more detail. 

4.1. Step 1: estimate w and v and compute d 

Let f 0 ( x ) be an initial density function that is piecewise constant on the partition � = { R 1 , . . . , R N } . 

f 0 (x ) = 

N ∑ 

i =1 

w 0 ,i χR i (x ) , (32)

where the coefficients satisfy 
∑ N 

i =1 w 0 ,i λ( R i ) = 1 . Let X 0 = { x 0 , j } θj=1 
be the set of initial states obtained by sampling f 0 ( x ).

The states X t = { x t, j } θj=1 
at a given sampling time t > 0 are assumed to be generated by applying t times the process defined

in ( 8 ), where � = { ξi } θi =1 
are generated by sampling g ( ξ ). 

The density function f t ( x ) on �̄ associated with the states X t is given by 

f t (x ) = 

N ∑ 

i =1 

v t,i χR̄ i 
(x ) , (33)

where the coefficients v t,i = 

1 

λ( ̄R i ) ·θ
∑ θ

j=1 χR̄ i 
( x t, j ) = 

N 
bθ

∑ θ
j=1 χR̄ i 

( x t, j ) . In practice the densities f t ( x ) are estimated directly

from observations. 
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We define the following matrices 

W 0 = 

⎡ 

⎢ ⎢ ⎣ 

w 

f 0 

w 

f 1 

. . . 

w 

f T−1 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

w 0 , 1 w 0 , 2 · · · w 0 ,N 

w 1 , 1 w 1 , 2 · · · w 2 ,N 

. . . 
. . . 

. . . 
. . . 

w T −1 , 1 w T −1 , 2 · · · w T −1 ,N 

⎤ 

⎥ ⎥ ⎦ 

, (34) 

and 

V = 

⎡ 

⎢ ⎢ ⎣ 

v f 1 
v f 2 

. . . 

v f T 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

v 1 , 1 v 1 , 2 · · · v 1 ,H 
v 2 , 1 v 2 , 2 · · · v 2 ,H 

. . . 
. . . 

. . . 
. . . 

v T, 1 v T, 2 · · · v T,H 

⎤ 

⎥ ⎥ ⎦ 

. (35) 

The matrix D is obtained by numerical integration of ( 29 ). 

4.2. Step 2: estimate the Frobenius–Perron matrix m 

This is carried out in two stages. Firstly, the coordinate vector corresponding to the piecewise constant densities P S f t (x ) =∑ N 
i =1 u t,i χR i 

(x ) over the partition � are obtained by solving the following constrained optimization problem 

min 

0 ≤{ u t, j } t=0 , ... ,T−1 , j=1 , ... ,N 
≤N 

‖ 

V − Y · D 

′ ‖ F , (36) 

subject to 

N ∑ 

i =1 

u t,i λ( R i ) = 1 , for t = 0 , . . . , T − 1 . (37) 

where 

Y = 

⎡ 

⎢ ⎢ ⎣ 

u 

f 0 

u 

f 1 

. . . 

u 

f T−1 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

u 0 , 1 u 0 , 2 · · · u 0 ,N 

u 1 , 1 u 1 , 2 · · · u 2 ,N 

. . . 
. . . 

. . . 
. . . 

u T −1 , 1 u T −1 , 2 · · · u T −1 ,N 

⎤ 

⎥ ⎥ ⎦ 

, (38) 

and || · || F denotes the Frobenius norm. 

In the second stage, the matrix representation of the Frobenius–Perron operator associated with the unperturbed trans-

formation S is obtained as a solution to the following constrained optimization problem 

min 

{ m i, j } N i, j=1 
≥0 

|| Y − W 0 M| | F , (39) 

subject to 

N ∑ 

j=1 

m i, j λ( R j ) = λ( R i ) , for i = 1 , . . . , N. (40) 

In the following it is shown that the matrices �1 = D 

′ D and �2 = W 

′ 
0 W 0 are non-singular, which ensures uniqueness of

solutions. 

Proposition 1. For a piecewise linear � -semi-Markov transformation S subjected to additive perturbation, where � = �̄ is an

N-dimensional regular partition of [ 0, b ] , the matrix �1 = D 

′ D is non-singular . 

Proof. For �̄ = { ̄R k = R j ∈ � , k = 1 , . . . , N} , λ( R j ) = λ( ̄R k ) , R j ∈ � , R k ∈ �̄ , for j, k =1 , . . . , N, 

d k, j = 

N 

b 

∫ 
R k 

∫ 
R j 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) d yd x . (41) 

The matrix D satisfies that 

d k, j = d j,k , d j, j = d k,k , ∀ j, k ∈ { 1 , . . . , N} (42)

and d k, j = d k +1 , j+1 , for 1 ≤ k, j ≤ N − 1 . 

Let d i = d 1 ,i , for i = 1 , . . . , N. The matrix D is decomposed into two triangle matrices as follows 

D = D + D u , (43) 
l 
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where 

D l = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

d 1 / 2 

d 2 d 1 / 2 0 

d 3 d 2 d 1 / 2 

· · · · · · · · · . . . 

d N d N−1 d N−2 · · · d 1 / 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (44)

D u = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

d 1 / 2 d 2 d 3 · · · d N 
d 1 / 2 d 2 · · · d N−1 

d 1 / 2 · · · d N−2 

0 

. . . · · ·
d 1 / 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (45)

Then, det ( D l ) = det ( D u ) = 

d 1 
N 

2 N 
. According to the Minkowski determinant theorem, D l and D u are both non-negative,

then det (D ) ≥ det ( D l ) + det ( D u ) > 0 . Hence, D and �1 are non-singular, and this completes the proof. 

Theorem 1. Let S : [0, b ] → [0, b ] be a piecewise linear R-semi-Markov transformation subjected to additive noise, � = �̄ . Then

the matrix Q representing the transfer operator associated with the noisy dynamical system has 1 as the eigenvalue of maximum

modulus and also has the unique eigenvalue of modulus 1. 

Proof. For � = �̄ , the matrix Q = M · D 

′ is square. Let Q = ( q i, j ) 1 ≤i, j≤N where 

q i, j = 

N ∑ 

k =1 

( m i,k d j,k ) . (46)

The sum of i th row of Q is given by 

N ∑ 

j=1 

q i, j = 

N ∑ 

j=1 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

m i, 1 

. . . 
m i,k 

. . . 
m i,N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

′ ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

d j1 
. . . 

d j,k 
. . . 

d j,N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

m i, 1 

. . . 
m i,k 

. . . 
m i,N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

′ ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

d 11 + . . . + d j, 1 + . . . + d N, 1 

. . . 
d 1 ,k + . . . + d j,k + . . . + d N,k 

. . . 
d 1 ,N + . . . + d j,N + . . . + d N,N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (47)

The column sum of k th column of D is given by 

N ∑ 

i =1 

d i,k = 

N ∑ 

i =1 

N 

b 

∫ 
R i 

∫ 
R j 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) d yd x 

= 

N 

b 

∫ 
I 

∫ 
R j 

g(x − y + b χ(−b, ε−b] (x − y ) − b χ[ b−ε, b) (x − y )) d yd x = 

N 

b 
· b 

N 

= 1 . (48)

It follows that 

N ∑ 

j=1 

q i, j = 

N ∑ 

j=1 

m i, j . (49)

For a regular partition � , 
∑ N 

j=1 m i, j = 

∑ p(i ) 
k =1 

Q 
(i ) 
k 

λ( R i ) 
= 1 , then 

∑ N 
j=1 q i, j = 1 . Thus, Q is row stochastic. Because Q is also a

positive matrix, matrix Q has 1 as the eigenvalue of maximum modulus, and the algebraic and geometric multiplicities of

this eigenvalue are 1. This concludes the proof. 

Remark. . From Theorem 1 it follows that f ∗ = P̄ N f 
∗ has a unique, no-trivial solution, where P̄ N is the N -dimensional approx-

imation of the stochastic Frobenius–Perron operator associated with the noise perturbed piecewise linear � -semi-Markov

transformation ( 8 ). 

Proposition 2. A noise perturbed piecewise linear � -semi-Markov transformation S can be uniquely reconstructed given N lin-

early independent piecewise constant density functions f i 
0 

defined over a regular partition � , which correspond to initial states,

and the piecewise constant densities f i 
1 

= P̄ N f 
i 
0 
. 



256 X. Nie, D. Coca / Commun Nonlinear Sci Numer Simulat 54 (2018) 248–266 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. Let 

f i 0 (x ) = 

N ∑ 

j=1 

w 

0 
i, j χR j (x ) , i = 1 , . . . , N (50) 

be a set of initial piecewise constant densities over a partition � and 

f i 1 (x ) = 

N ∑ 

j=1 

w 

1 
i, j χR j (x ) , i = 1 , . . . , N (51) 

be the piecewise constant densities, corresponding to the final states 

From ( 30 ), we have 

W 1 = W 0 · M · D 

′ , (52) 

where W 0 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

w 

f 1 
0 

w 

f 2 
0 

. 

. 

. 

w 

f N 
0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

w 

0 
1 , 1 

w 

0 
1 , 2 

· · · w 

0 
1 ,N 

w 

0 
2 , 1 

w 

0 
2 , 2 

· · · w 

0 
2 ,N 

. . 

. 
. . 
. 

. . . 
. . 
. 

w 

0 
N, 1 

w 

0 
N, 2 

· · · w 

0 
N,N 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, W 1 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

w 

f 1 
1 

w 

f 2 
1 

. 

. 

. 

w 

f N 
1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

w 

1 
1 , 1 w 

1 
1 , 2 · · · w 

1 
1 ,N 

w 

1 
2 , 1 

w 

0 
2 , 2 

· · · w 

0 
2 ,N 

. . 

. 
. . 
. 

. . . 
. . 
. 

w 

1 
N, 1 

w 

1 
N, 2 

· · · w 

1 
N,N 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

Because the initial densities f i 
0 
, i = 1 , . . . , N are linearly independent, the matrix W 0 is non-singular. Moreover, from

Proposition 1 , D is non-singular and the Frobenius–Perron matrix is given by 

M = W 

−1 
0 W 1 D 

′−1 . (53) 

4.3. Step 3: construct the piecewise linear semi-Markov transformation over � 

It is assumed that each branch of the map, S| 
Q 

(i ) 
k 

, is monotonically increasing. The derivative of S| 
Q 

(i ) 
k 

is 1/ m i, j , the length

of Q 

(i ) 
k 

is given by 

λ(Q 

(i ) 
k 

) = q (i ) 
k 

− q (i ) 
k −1 

= m i, j λ( R j ) (54) 

which allows computing iteratively q (i ) 
k 

for each interval R i starting with q (i ) 
0 

= a i −1 .Then the map is given by 

S | 
Q (i ) 

k 

(x ) = 

1 

m i, j 

(x − q (i ) 
k −1 

) + a j−1 , (55) 

for k = 1 , . . . , p(i ) , j is the index of image R j of Q 

(i ) 
k 

, i.e. S(Q 

(i ) 
k 

) = R j , i = 1 , . . . , N, j = 1 , . . . , N, where m i, j 
 = 0. 

5. Solving the inverse stochastic Frobenius–Perron problem for general nonlinear transformations 

This section considers more general nonlinear maps that are not piecewise linear semi-Markov. Starting with Lasota and

Yorke [40] who established the existence of invariant measure for piecewise monotonic transformations and Li [21] who

proposed a numerical procedure to calculate the invariant density function corresponding to the invariant measure, the

problem of approximating the invariant density of a transformation, which is closely linked with the problem of approxi-

mating the Frobenius–Perron operator and the transformation itself, has been studied by a number of authors [41–45] . In

[43] Gora and Boyarsky approximated a nonsingular transformation S, that may have infinitely many pieces of monotonicity, 

by a sequence of piecewise linear functions S n and shown that the invariant density of the map S can be approximated

arbitrarily well by densities that are invariant under finite approximations S n of S . In general, for continuous nonsingular

transformation we have the following result [22,46] 

Theorem 2. Let S : R → R be a continuous transformation and let { S n } n ≥ 1 be a sequence of transformations converging to S in

the C 0 topology. Let μn be a probabilistic measure invariant under S n , n = 1,2,…. If μ is a weak - ∗ limit point of the sequence

{ μn } n ≥ 1 then μ is S - invariant . 

This shows that the invariant densities f ∗n of successive piecewise linear approximations S n of S converge in a weak sense

to the invariant density f ∗of the original transformation as n → ∞ . This means that in practice we can estimate transition

matrices to approximate arbitrarily well the Frobenius–Perron operator associated with S . A generalization of this result for

dynamical systems subjected to additive noise is presented in [39] . 

Here, the goal is to estimate from sequences of density functions a piecewise linear semi-Markov approximation 

ˆ S , de-

fined over a uniform Markov partition � = { R 1 , R 2 , . . . , R N } of [0, b ], λ( R i ) = b/N , of the unknown nonlinear map S : [0, b ] →
[0, b ] subjected to stochastic perturbation. It is assumed that the nonlinear map S has an invariant density and that it can be

approximated arbitrarily well by piecewise linear functions. Unlike the control problem studied in [33] , here the challenge
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is to estimate the unknown nonlinear transformation that generated a sequence of density functions rather than one of the

many possible perturbations of the original map, which yield a desired invariant density. 

The proposed identification scheme for general nonlinear maps is summarized as follows: 

Step 1: Given the observations X n = { x n, j } θj=1 
, n = 0 , . . . , T , estimate the coordinate vectors w 

f t and v f t+1 of the piecewise

constant density f t ( x ) and f t+1 (x ) defined over a regular partition � = �̄ of size N . Compute D using the given probability

density function of perturbation. 

Step 2: Estimate the matrix Y corresponding to P S f t ( x )by solving the optimization problem ( 36 ). P S f t ( x ) can be used to

identify the Frobenius–Perron matrix associated with the unknown map; 

Step 3: Identify a trial Frobenius–Perron matrix ˆ M = ( ̂  m i, j ) 1 ≤i, j≤N , 
N ∑ 

j=1 

ˆ m i, j = 1 by solving the constrained optimization

problem ( 39 ). Since the map is continuous, this is then used to further determine the indices of consecutive positive en-

tries of each row and in this way ˆ M is refined. Let B 

i = { r i s , r i s + 1 , . . . , r i e } be the set of column indices corresponding to

consecutive positive entries of i th row and r i m 

∈ B 

i satisfying 

ˆ m i,r i m 
= max { ̂  m i, j } N j=1 . (56)

Therefore, the piecewise linear � -semi-Markov map associated with the refined Frobenius–Perron matrix M should sat-

isfy that R r(i,k ) = S(Q 

(i ) 
k 

) ∈ � , where 
p(i ) 
∪ 

k =1 
R r(i,k ) is the image of the interval R i , i = 1 , . . . , N, p(i ) = r i e − r i s + 1 and r(i, k ) ∈ B 

i is

the column index of a positive entry on the i th row of M satisfying 

r(i, k + 1) = r(i, k ) + 1 . (57)

for i = 1 , ..., N, k = 1 , ..., p(i ) − 1 . 

Step 4: Solve the following optimization problem to determine the Frobenius–Perron matrix M 

min { m i, j }≥0 
|| Y − W 0 M| | F , (58)

subject to 

p(i ) ∑ 

k =1 

m i,r(i, 1)+ k −1 = 1 . (59)

and {
m i,r(i,k ) > 0 , i = 1 , . . . , N;
m i, j = 0 , j 
 = r(i, k ) , 

(60)

for k = 1 , ..., p(i ) . 

Step 5. Determine the monotonicity of each branch S| 
Q 

(i ) 
k 

. Let R ′ 
i 
= [ a r(i, 1) −1 , a r(i,p(i )) ] be the image of the interval R i under

the semi-Markov transformation 

ˆ S associated with the identified Frobenius–Perron matrix M . Denote a r(i, 1) −1 as the starting

point of R r ( i , 1) mapped from the subinterval Q 

(i ) 
1 

, and a r ( i, p ( i )) as the end point of R r ( i, p ( i )) , the image of the subinterval Q 

(i ) 
p(i ) 

.

Let c̄ i be the midpoint of the image R ′ 
i 
. The sign γ ( i )of { ̂  S ′ (x ) | 

Q 
(i ) 
k 

} p(i ) 
k =1 

is given by 

γ (i ) = 

⎧ ⎨ 

⎩ 

−1 , if c̄ i − c̄ i −1 < 0 ;
1 , if c̄ i − c̄ i −1 ≥ 0 ;

γ (i − 1) , if c̄ i = c̄ i −1 , 

(61)

for i = 2 , . . . , N and γ (1) = γ (2) . 

Step 5. Construct semi-Markov map based on the Frobenius–Perron matrix M and the monotonicity of each branch. Given

that the derivative of S| 
Q 

(i ) 
k 

is 1/ m i, j , the end point q (i ) 
k 

of subinterval Q 

(i ) 
k 

within R i is given by 

q (i ) 
k 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

a i −1 + 

k ∑ 

j=1 

m i,r(i, j) λ( R r(i, j) ) , if γ (i ) = +1 ;

a i −1 + 

k ∑ 

j=1 

m i,r(i,p(i ) −k +1) λ( R r(i,p(i ) −k +1) ) , if γ (i ) = −1 . 

(62)

where k = 1 , ..., p(i ) − 1 and q (i ) 
p(i ) 

= a i . The piecewise linear semi-Markov transformation 

ˆ S on each subinterval Q 

(i ) 
j 

is given

by 



258 X. Nie, D. Coca / Commun Nonlinear Sci Numer Simulat 54 (2018) 248–266 

Fig. 1. Schematic diagram of construction of piecewise linear semi-Markov transformations for monotonically increasing (a) and decreasing (b) cases. The 

indices of positive entries of the Frobenius–Perron matrix are determined from a trial matrix. The grayed ‘0’ in the map grid represents the corresponding 

entry of the refined Frobenius–Perron matrix is zero, and the other entries are positive. The dashed lines are the constructed nonlinear map S̄ smoothed 

from the identified piecewise linear semi-Markov map ˆ S . 

 

 

 

 

 

 

ˆ S 
∣∣

Q (i ) 
j 

(x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

m i, j 

(x − q (i ) 
k −1 

) + a j−1 , if γ (i ) = +1 ;

− 1 

m i, j 

(x − q (i ) 
k −1 

) + a j , if γ (i ) = −1 . 

(63) 

for m i, j 
 = 0, i = 1 , . . . , N, j = 1 , . . . , N, k = 1 , ..., p(i ) − 1 . A smooth nonlinear map is obtained by fitting a polynomial smooth-

ing spline. Fig. 1 shows the construction of monotonically increasing and decreasing piecewise linear semi-Markov transfor-

mation and the resulting smooth continuous map. 

6. Numerical simulation studies 

The proposed algorithms are demonstrated using simulated data generated by two chaotic maps. 

6.1. Example A 

Consider the noise perturbed dynamical system 

x n +1 = S( x n ) + ξn , ( mod 1) (64) 

where { ξ n } is white noise that follows a Gaussian distribution truncated to the range [ −ε , ε ] where ε = 0 . 02 . The piecewise

linear and expanding transformation S : [0, 1] → [0, 1] is defined by 

S | R i (x ) = αi, j x + βi, j , (65) 

for i = 1 , . . . , 4 , j = 1 , . . . , 4 , over the partition � = { R i } 4 i =1 
= { [0 , 0 . 3] , (0.3, 0.4], (0.4, 0.8], (0.8, 1]} where 

( αi, j ) 1 ≤i, j≤4 = 

⎡ 

⎢ ⎢ ⎣ 

3 . 33 0 . 83 13 . 33 3 . 33 

15 . 00 3 . 33 10 . 00 20 . 00 

3 . 75 2 . 50 3 . 33 1 . 25 

7 . 50 1 . 25 6 . 67 10 . 00 

⎤ 

⎥ ⎥ ⎦ 

, ( βi, j ) 1 ≤i, j≤4 = 

⎡ 

⎢ ⎢ ⎣ 

0 0 . 23 −2 . 40 0 

−4 . 50 −0 . 77 −3 . 10 −7 

−1 . 50 −0 . 90 −1 . 33 0 

−6 . 00 −0 . 75 −5 . 73 −9 . 00 

⎤ 

⎥ ⎥ ⎦ 

. 

The graph of S is shown in Fig. 2 . 

A set of initial densities f i 
0 
, i = 1 , . . . , 4 over the partition � is shown in Fig. 3 . These are used to generate the set of

initial states X i 
0 

= { x i 
0 , j 

} 5 ×10 3 

j=1 
i = 1 , . . . , 4 . The corresponding final states X i 

1 
= { x i 

1 , j 
} 5 ×10 3 

j=1 
, obtained by applying the map ( 64 ),

were used to estimate piecewise constant densities f i 
1 
, i = 1 , . . . , 4 over a uniform partition {[0, 0.25], (0.25, 0.5], (0.5, 0.75],

(0.75, 1]} of [0, 1]. 
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Fig. 2. Example A: Original piecewise linear transformation S . 

Fig. 3. Example A: The density functions f i 0 ( x ) , f i 1 ( x ) and P s f 
i 
0 ( x ) . 
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Fig. 4. Example A: The identified transformation ˆ S of the underlying noisy system. 

Fig. 5. Example A: Relative error between the original map S and the identified map ˆ S evaluated for 99 uniformly spaced points. 
For this partition, the matrix D calculated using ( 29 ) 

D = 

⎡ 

⎢ ⎣ 

0 . 9921 0 0 0 . 0080 

0 . 20 0 0 0 . 40 0 0 0 . 40 0 0 0 

0 0 1 0 

0 . 0079 0 0 . 20 0 0 0 . 7920 

⎤ 

⎥ ⎦ 

, (66) 

is non-singular. 
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Fig. 6. Example B: Examples of initial densities (gray lines) f j(i ) 
0 ,i 

and the corresponding final densities after one iteration (black lines) f j(i ) 
1 ,i 

. 

Table 1 

Example A: Performance comparison between the new algorithm (A1) and the algorithm (A2) 

in [38] for different levels of noise. 

η = σ 2 
ξ
/σ 2 

x 0.0335 0.1621 0.9058 2.3638 4.0535 16.2140 22.6460 

ɛ 0.02 0.04 0.10 0.15 0.20 0.40 0.50 

MAPE (A1) 1.2171 1.4106 1.1222 0.3581 2.1578 2.2541 3.2035 

MAPE (A2) 2.5362 3.1203 10.6281 34.2314 42.5629 56.2310 51.6851 

 

 

 

The two stage approach detailed in Section 4 , was used to estimate the matrix representation of the Frobenius–Perron

operator associated with the deterministic transformation 

M = 

⎡ 

⎢ ⎢ ⎣ 

0 . 30 6 6 1 . 2094 0 . 0737 0 . 2880 

0 . 0685 0 . 3006 0 . 0989 0 . 0491 

0 . 2726 0 . 4091 0 . 2970 0 . 7926 

0 . 1363 0 . 8247 0 . 1419 0 . 0994 

⎤ 

⎥ ⎥ ⎦ 

. (67)

Specifically, the constrained optimization problems (36) , (37) and (39) , (40) were solved using the lsqlin function in the

Matlab Optimization Toolbox. 
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Fig. 7. Example B: Reconstructed piecewise linear semi-Markov map ̂  S over the uniform partition � = { R i } 40 
i =1 

. 

Fig. 8. Example B: Identified smooth map S̄ resulted from piecewise linear semi-Markov map in Fig. 7 with smoothing parameter 0.999. 

Table 2 

Example B: RMSE between the predicted density functions f n using the identified map and those gen- 

erated by the original noisy system. 

n 1 2 3 5 10 20 50 100 200 

RMSE 0.2887 0.2515 0.1915 0.2477 0.2133 0.2311 0.1608 0.2106 0.2120 
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Table 3 

Example B: Performance comparison between the new algorithm (A1) and the algorithm (A2) 

in [38] for different levels of noise. 

η = σ 2 
ξ
/σ 2 

x 0.0260 0.0978 0.5431 1.3692 3.5617 12.6023 17.6201 

ɛ 0.02 0.04 0.10 0.15 0.20 0.40 0.50 

MAPE (A1) 0.9282 0.9809 4.5791 3.1054 2.7850 4.6319 9.7981 

MAPE (A2) 2.6120 2.9862 7.9236 78.3210 76.2536 58.1245 64.2101 

 

 

 

 

 

 

 

The reconstructed piecewise linear map 

ˆ S is shown in Fig. 4 . The estimated coefficients of the identified piecewise

linear semi-Markov transformation 

ˆ S | R i (x ) = ˆ αi, j x + 

ˆ βi, j are ( ̂  αi, j ) 1 ≤i, j≤4 = 

⎡ 

⎢ ⎣ 

3 . 26 0 . 83 13 . 57 3 . 47 

14 . 59 3 . 33 10 . 11 20 . 37 

3 . 67 2 . 44 3 . 37 1 . 26 

7 . 34 1 . 21 7 . 05 10 . 06 

⎤ 

⎥ ⎦ 

, ( ̂  βi, j ) 1 ≤i, j≤4 =

⎡ 

⎢ ⎣ 

0 0 . 22 −2 . 49 −0 . 04 

−4 . 38 −0 . 77 −3 . 15 −7 . 15 

−1 . 47 −0 . 88 −1 . 36 −0 . 01 

−5 . 87 −0 . 72 −6 . 11 −9 . 06 

⎤ 

⎥ ⎦ 

. 

The performance of the reconstruction algorithm is evaluated by computing the relative error 

δS(x ) = 100 

∣∣∣∣S(x ) − ˆ S (x ) 

S(x ) 

∣∣∣∣, (68)

for x ∈ X � = { 0 . 01 , 0 . 02 , . . . , 0 . 99 } , which is shown in Fig. 5 . The performance of the new reconstruction algorithm for

different levels of noise was compared with that of a previous algorithm [38] that does not incorporate knowledge of the

noise density. Table 1 shows for comparison the mean absolute percentage error (MAPE) 

MAPE = 

100 

θδS 

θδS ∑ 

i =1 

∣∣∣∣S( x i ) − ˆ S ( x i ) 

S( x i ) 

∣∣∣∣, (69)

for the two reconstruction approaches, where { x i } θδS 
i =1 

= X � . The results, clearly demonstrate the advantages of the new algo-

rithm and in particular its robustness even for in the presence of very significant noise levels. 
Fig. 9. Example B: Relative error between the original map S and the identified smooth map S̄ in Fig. 8 evaluated for 99 uniformly spaced points. 
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Fig. 10. Example B: Reconstructed maps for noise level ɛ = 0.15 using (a) the new algorithm and (b) the algorithm in [38] and the reconstructed maps for 

noise ɛ = 0.50 using (c) the new algorithm and (d) the algorithm in [38] . 

 

 

 

 

 

 

6.2. Example B 

This example demonstrates the proposed algorithm to reconstruct a nonlinear continuous map. Specifically, we consider

the logistic map defined by 

x n +1 = 4 x n (1 − x n ) + ξn ( mod 1 ) (70) 

where ξ is white noise following a Gaussian distribution function N (0 , (5 × 10 −3 ) 2 ) truncate d to the interval [ −ε , ε ] with

ε = 0 . 02 . The aim is to infer a piecewise linear semi-Markov defined over a uniform partition � with N = 40 intervals,

which approximates the logistic map S . The initial states X i 
0 

= { x i 
0 , j 

} θ
j=1 

, i = 1,…,100, θ = 5 × 10 3 were generated by sampling

a set of initial densities f 
j(i ) 

0 ,i 
shown in Fig. 6 (see Appendix for more details). The corresponding final densities f 

j(i ) 
1 ,i 

over the

uniform partition � were estimated from X i 
1 

= { x 
i, j 

} θ
j=1 

, i = 1,…,100, the images under the noise perturbed transformation of

the initial states X i 
0 

= { x i 
0 , j 

} θ
j=1 

. 
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The approximate piecewise linear semi-Markov map, identified for ε = 0.02 using the algorithm in Section 5 , is shown in

Fig. 7 . 

The smoothed map obtained with the smoothing parameter 0.999 is shown in Fig. 8 , and the relative error calculated on

the uniformly spaces points is shown in Fig. 9 . 

The root mean square error (RMSE) between the predicted density functions using original and identified maps calculated

by 

RMSE = 

√ 

1 

N 

N ∑ 

i =1 

( v i − ˆ v i ) 
2 
, (71)

where ˆ v i is the coefficient of predicted density function, is given in Table 2 . As can be seen in Fig. 9 and Table 2 , the

approximation error has been very low. With the increase of the interval number, the reconstructed map is more close to

the original one, and the stabilized distribution converges to the invariant density of the system, as proven in [22] . 

As in the previous example, the performance of the new reconstruction method was compared with that of a previous

method [38] for different levels of noise. The results are summarized in Table 3 . As it can be seen, the new algorithm

performs significantly and consistently better. This is also illustrated in Fig. 10 in which the maps reconstructed using the

two algorithms for ɛ = 0.15 and ɛ = 0.50 are shown side-by-side. It is worth noting however, that one of the advantages of

the original algorithm in [38] is that it includes an additional step to optimize the partition. 

7. Conclusions 

This paper introduced a new method for reconstructing/approximating an unknown one-dimensional chaotic map that

is perturbed by additive noise, from sequences of density functions. The emphasis here is on recovering the true transfor-

mation that generated the data rather than one of the many possible transformations that share the same invariant density

functions. 

By incorporating knowledge of the noise distribution, the new estimation method achieves dramatically better accuracy

(i.e. over tenfold error reduction in some cases) for high levels of noise compared with a previous method that does not

account for the noise density. 

As highlighted in [38] , it would be of interest to develop similar reconstruction approaches for higher-dimensional sys-

tems. The main challenge is to construct the transformation given the matrix-representation of the Frobenius–Perron oper-

ator [22] . 
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Appendix: Initial states for Example B in Section 6 

The 100 sets of initial states used in the example are obtained by sampling the following density functions. 

f 
β1 

0 , 1 
(x, β1 ) = 

7 

10 

· x 29 (1 − x ) 
β1 −1 

B(30 , β1 ) 
+ 

3 

10 

· x β1 −1 (1 − x ) 
29 

B( β1 , 30) 
, β1 = 1 , 2 , . . . , 30 ;

f 
β2 

0 , 2 
(x, β2 ) = 

x β2 −1 (1 − x ) 
29 

B( β2 , 30) 
, β2 = 1 , 2 , . . . , 25 ; f 

β3 

0 , 3 
(x, β3 ) = 

x 29 (1 − x ) 
β3 −1 

B(30 , β3 ) 
, β3 = 1 , 2 , . . . , 25 ;

f 
β4 

0 , 4 
(x, β4 ) = 

1 

2 

· x 39 (1 − x ) 
β4 +19 

B(40 , β4 ) 
+ 

1 

2 

· x 39 (1 − x ) 
β4 +19 

B(40 , β4 ) 
, β4 = 1 , 2 , . . . , 10 ;

f 
β5 

0 , 5 
(x, β5 ) = 

1 

2 

· x β5 +19 (1 − x ) 
39 

B( β5 , 40) 
+ 

1 

2 

· x β5 +19 (1 − x ) 
39 

B( β5 , 40) 
, β5 = 1 , 2 , . . . , 10 ;

where B( ·, ·) is beta function. 
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