

This is a repository copy of A dominant dwarf shrub increases diversity of herbaceous plant communities in a Trans-Himalayan rangeland.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/117142/

Version: Supplemental Material

Article:

Iyengar, SB, Bagchi, S, Barua, D et al. (2 more authors) (2017) A dominant dwarf shrub increases diversity of herbaceous plant communities in a Trans-Himalayan rangeland. Plant Ecology, 218 (7). pp. 843-854. ISSN 1385-0237

https://doi.org/10.1007/s11258-017-0734-x

(c) 2017, Springer Science+Business Media Dordrecht. This is an author produced version of a paper published in Plant Ecology. Uploaded in accordance with the publisher's self-archiving policy. The final publication is available at Springer via https://doi.org/10.1007/s11258-017-0734-x

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supplementary Material

A dominant dwarf shrub increases diversity of herbaceous plant communities in a Trans-Himalayan rangeland

Siddharth Bharath Iyengar^{1,2,*}, Sumanta Bagchi³, Deepak Barua¹, Charudutt Mishra⁴, Mahesh Sankaran^{5,6}

1 Indian Institute of Science Education and Research, Pune 411008, India

- 2 Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
- 3 Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
- 4 Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore 570002, India
- 5 National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary
- Road, Bangalore 560065, India
- 6 School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- *E-mail: iyengar.siddharth@gmail.com

Contents

- 1. Pictures of the study site.
- 2. Comparisons of richness and abundance between the core and periphery of the Caragana canopy.
- 3. Richness effects of Caragana at the landscape scale
- 4. List of plant species recorded during vegetation sampling

1. Figure S1: Pictures of the study site

2. Comparisons of richness and abundance between the core and periphery of the Caragana canopy.

Table S1: Results of ANOVA comparing richness between the core and periphery of the Caragana canopy [log(Richness core / Richness edge)] across watersheds, area and local slope for 117 pairs of plots across 4 watersheds.

LRR Richness	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Area	1	0.529	0.5285	1.7098	0.1938
Slope	1	0.263	0.2629	0.8507	0.3584
Location	4	15.071	3.7677	12.1891	<0.0001
Residuals	109	33.692	0.3091		

Table S2: Results of ANOVA comparing abundance between the core and periphery of the Caragana canopy [log(Abundance core / Abundance edge)] across watersheds, area and local slope for 87 pairs of plots across 3 watersheds.

LRR Abundance	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Area	1	4.016	4.0158	8.1523	0.0055
Slope	1	0.899	0.8991	1.8249	0.1805
Location	3	19.242	6.4139	13.0207	<0.0001
Residuals	80	39.408	0.4926		

Figure S2 – Log ratio (log(core/edge)) of plot level a. richness and b. abundance of herbaceous plants in the core and edge of the *Caragana* canopy, split by location. Positive values of the LRR indicate that richness or abundance in the core of the canopy is greater than that in the edge of the canopy, while negative values indicate the opposite. * indicate populations significantly different from 0, number of plots in each location indicated in brackets. Boxes denote the inter-quartile range, whiskers denote most extreme data point which is no more than 1.5 times the interquartile range from the box. Points represent data outside that range.

Comparison	of	Core	and	Edge
------------	----	------	-----	------

Figure S3 – NMDS ordination of plant communities observed inside and outside Caragana, across watersheds 2,3 and 4. Points denote individual plots, ellipses cover 95% of the density of points. The ordination space contained 3 axes, fitted by the metaMDS function in the R package 'vegan' (Oksanen et al. 2016)

3. Figure S4 - Sample-based rarefaction curves at each sampling size (with standard errors) for Caragana and open ground habitats, at each watershed. Green points correspond to the synthetic landscape datasets, while black, open points correspond to rarefactions of only the plots on open ground.

3. Table S3 - List of plant species observed, total number of individuals observed, source for naming, growth form classification and RII value. Sources for identification listed at the end.

Name	Family	Source	Growth Form	Total	RII
Aconogonumtortuosum	Polygonaceae	FOH 1179	Erect forb	10	-0.40
Alliumcarolineanum	Liliaceae	FOH 1404	Erect forb	62	-0.65
Alliumwallichi	Liliaceae	FOH 1405	Erect forb	45	0.42
Astragalus grahamianus	Fabaceae	FOH 359	Prostrate	28	-0.21
Astragalus rhizanthus	Fabaceae	FOH 366	Prostrate	92	-0.02
Carexinfuscata	Cyperaceae	Mishra (2001)	Graminoid	119	0.31
Carex melanantha	Cyperaceae	Mishra (2001)	Prostrate	853	-0.49
Carex sp.	Cyperaceae	Mishra (2001)	Graminoid	558	-0.06
Cousinia thomsonii	Compositae	FOH 709	Erect forb	64	-0.50
Dracocephalumheterophyllum	Labiateae	FOH 1153	Prostrate	3	-0.33
Elymus longae-aristatus	Poaceae	Mishra (2001)	Graminoid	1612	0.53
Ephedra gerardiana	Ephedraceae	FOH 1305	Prostrate	43	-0.26
Eritrichiumnanum	Boraginaceae	FOH 981	Erect forb	27	0.93
Festuca olgae	Poaceae	Mishra (2001)	Graminoid	31	0.10
Gent anella moorcrof tana	Gent anaceae	FOH 959	Erect forb	1	1.00
Geraniumpratense	Geraniaceae	FOH 241	Erect forb	242	0.60
Heracleumthomsonii	Umbelliferae	Mishra (2001)	Erect forb	52	0.12
Kobresia royleana	Cyperaceae	Mishra (2001)	Graminoid	83	0.20
Krascheninnikovia ceratoides	Chenopodiaceae	FOH 1176	Erect forb	170	0.47
Leontopodium franchet i	Compositae		Prostrate	17	-0.53
Leymus secalinus	Poaceae	Mishra (2001)	Graminoid	1055	0.47
Lindel ofia anchusoides	Boraginaceae	FOH 977	Erect forb	26	0.38
Nepeta discolor	Labiateae	FOH 1139	Prostrate	188	0.02
Oxytropis williamsii	Fabaceae	FOH 373	Prostrate	180	-0.58
Poalahulensis	Poaceae	Mishra (2001)	Graminoid	271	0.67
Poa sp.	Poaceae		Graminoid	32	0.38
Polygonum paronychi oi des	Polygonaceae	FOH 1192	Prostrate	65	-1.00
Polygonumsp.	Polygonaceae	Mishra (2001)	Prostrate	1101	-0.50
Potent II a bifurca	Rosaceae	Mishra (2001)	Prostrate	804	-0.58
Potent II a nivea	Rosaceae	Mishra (2001)	Erect forb	37	0.89
Potent II a sp.	Rosaceae		Erect forb	7	0.14
Ranunculus sp.	Ranunculaceae		Erect forb	144	0.04
Salsola sp.	Amaranthaceae		Erect forb	5	0.20
Saussurea sp.	Compositae		Prostrate	208	-0.14
Scorzonera virgata	Compositae	FOH 746	Erect forb	5	-0.60
Silene gonosperma ssp. Himalayensis	Caryophyllaceae	FOH 194	Erect forb	9	0.56
Silenetenuis	Caryophyllaceae	FOH 199	Erect forb	3	0.33
Stipa jacquemont i	Poaceae	Mishra (2001)	Graminoid	71	0.18
Stipa orientalis	Poaceae	Mishra (2001)	Graminoid	45	0.38
Taraxacumt betanum	Compositae		Erect forb	10	1.00
Thermopsis inflata	Fabaceae	FOH 330	Erect forb	24	-0.75

Table S3 (continued)

Name	Family	Source	Growth Form	Total	RI
Unknown 2-1			Graminoid	1	1.00
Unknown 2-2			Graminoid	17	0.29
Unknown 2-3			Erect forb	7	1.00
Unknown 2-4			Erect forb	2	1.00
Unknown 2-5	Poaceae		Graminoid	2	1.00
Unknown 3-1			Erect forb	47	0.15
Unknown 3-2			Prostrate	6	-1.00
Unknown 3-3			Prostrate	24	-0.67
Unknown 3-4			Erect forb	22	0.73
Unknown 3-5			Prostrate	2	1.00
Unknown 3-6			Erect forb	1	1.00
Unknown 3-7	Poaceae		Graminoid	4	0.00
Unknown 3-8			Prostrate	9	-1.00
Unknown 3-9			Erect forb	2	-1.00
Unknown 3-10			Prostrate	6	0.33
Unknown 3-11			Erect forb	2	-1.00
Unknown 3-12			Prostrate	4	1.00
Unknown 3-13			Erect forb	4	1.00
Unknown 3-14	Poaceae		Graminoid	16	0.88
Unknown 4-1			Erect forb	17	0.41
Unknown 4-2			Prostrate	12	0.67
Unknown 4-3			Erect forb	2	0.00
Unknown 4-4			Erect forb	1	1.00
Unknown 4-5			Prostrate	1	1.00
Unknown 4-6			Prostrate	1	-1.00
Unknown 4-7			Prostrate	15	1.00

Species identification sources

FOH - Polunin, O., and Stainton, A. (1984). Flowers of the Himalaya (New Delhi: Oxford University

Press) – Numbers correspond to entries in the book

Mishra (2001) - Mishra, C. (2001). High altitude survival: conflicts between pastoralism and wildlife in

the Trans-Himalaya. Dissertation. Wageningen University.

Remaining identified species were identified by knowledge of local field assistants.