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ABSTRACT

The ability of phase mixing to provide efficient damping of Alfvén waves even in weakly dissipative plasmas made it a popular
mechanism for explaining the solar coronal heating. Initially it was studied in the equilibrium configurations with the straight magnetic
field lines and the Alfvén speed only varying in the direction perpendicular to the magnetic field. Later the analysis of the Alfvén wave
phase mixing was extended in various directions. In particular it was studied in two-dimensional planar magnetic plasma equilibria.
Analytical investigation was carried out under the assumption that the wavelength is much smaller than the characteristic scale of
the background quantity variation. This assumption enabled using the Wentzel, Kramers, and Brillouin (WKB) method. When it is
not satisfied the study was only carried out numerically. In general, even the wave propagation in a one-dimensional inhomogeneous
equilibrium can be only studied numerically. However there is one important exception, so-called non-reflective equilibria. In these
equilibria the wave equation with the variable phase speed reduces to the Klein-Gordon equation with constant coefficients. In this
paper we apply the theory of non-reflective wave propagation to studying the Alfvén wave phase mixing in two-dimensional planar
magnetic plasma equilibria. Using curvilinear coordinates we reduce the equation describing the Alfvén wave phase mixing to the
equation that becomes a one-dimensional wave equation in the absence of dissipation. This equation is further reduced to the equation
which is the one-dimensional Klein-Gordon equation in the absence of dissipation. Then we show that this equation has constant
coefficients when a particular relation between the plasma density and magnetic field magnitude is satisfied. Using the derived Klein-
Gordon-type equation we study the phase mixing in various non-reflective equilibria. We emphasise that our analysis is valid even
when the wavelength is comparable with the characteristic scale of the background quantity variation. In particular, we study the
Alfvén wave damping due to phase mixing in an equilibrium with constant plasma density and exponentially divergent magnetic
field lines. We confirm the result previously obtained in the WKB approximation that there is enhanced Alfvén wave damping in this
equilibrium with the damping length proportional to ln(Re), where Re is the Reynolds number. Our theoretical results are applied to
heating of coronal plumes. We show that, in spite of enhanced damping, Alfvén waves with periods of the order of one minute can
be efficiently damped in the lower corona, at the height about 200 Mm, only if the shear viscosity is increased by about 6 orders of
magnitude in comparison with its value given by the classical plasma theory. We believe that such increase of the shear viscosity can
be provided by the turbulence.
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1. Introduction

Over the last few decades the problem of solar coronal heat-
ing has been one of the hot topics in solar physics. One popular
mechanism for heating the coronal plasma is by Alfvén waves.
A remarkable property of Alfvén waves is that they can easily
transform the energy from the lower part of the solar atmosphere
to the corona. However, for typical coronal conditions, Alfvén
waves can propagate in a homogeneous or even vertically strati-
fied coronal plasma practically without damping because they do
not perturb the plasma density, while the damping due to shear
viscosity and resistivity is extremely weak.

Heyvaerts & Priest (1983) suggested a mechanism that can
enormously enhance the Alfvén wave damping in weakly dis-
sipative plasmas. This mechanism is called phase mixing. It
works when the Alfvén speed varies in the direction perpendic-
ular to the direction of wave propagation. This variation of the
Alfvén speed makes the waves propagating along neighbouring

magnetic field lines more and more our of phase. This causes
large gradients in the direction perpendicular to the wave prop-
agation direction to build up, which leads to strong wave damp-
ing. As a result, the damping length is proportional to Re1/3

rather than Re as it is in a homogeneous plasma, where Re is
either the viscous or resistive Reynolds number. The possibility
of efficiently damping Alfvén waves in weakly dissipative plas-
mas made phase mixing a popular mechanism for explaining the
heating of open magnetic structures in the solar corona. One re-
cent example is the article by Tsiklauri (2016) where the effect
of flow on the dissipation of Alfvén waves due to phase mixing
is studied.

The initial model suggested by Heyvaerts & Priest (1983)
was developed in various directions. In particular, Hood et al.
(1997a,b) found analytical, self-similar solutions describing
phase mixing of Alfvén waves in both open (coronal holes)
and closed (coronal loops) magnetic configurations. Hood et al.
(2002) studied the damping due to phase mixing of Alfvén wave
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pulses propagating in the equilibrium with the straight magnetic
field lines and density only varying in the direction orthogo-
nal to the magnetic field. The main result that they obtained is
that in this case the Alfvén wave amplitude does not decay ex-
ponentially. Instead, its damping is described by a power law.
Hood et al. (2002) considered the propagation of either a single
pulse or a pair of pulses with the opposite polarity. Hood et al.
(2005) extended this analysis and studied the propagation of a
train of pulses. When there are many pulses in the train, they
found that the amplitude decay of the leading and trailing pulses
is still described by a power law, while the amplitudes of internal
pulses decay exponentially.

Although phase mixing strongly enhances the Alfvén wave
damping, it is still not strong enough to provide damping in the
lower corona. This prompted researchers to look for new effects
that can further enhance the wave damping. Malara et al. (1996)
showed that compressible perturbation can be generated dur-
ing the phase mixing of Alfvén waves. The perturbation is sub-
jected to non-linear steepening which results in the appearance
of shocks. This idea was further developed by Nakariakov et al.
(1997, 1998), Botha et al. (2000), Tsiklauri et al. (2001, 2002,
2003), and Tsiklauri & Nakariakov (2002).

Initially the Alfvén wave phase mixing was only studied
in magnetic plasma configurations with the straight magnetic
field and the Alfvén speed only varying in the direction per-
pendicular to the magnetic field. However, in real magnetic
plasma configurations in the solar atmosphere the magnetic field
lines are very often curved, and the Alfvén speed depends on
at least two spatial coordinates. Ruderman et al. (1998) studied
the Alfvén wave mixing in two-dimensional magnetic plasma
configurations under the assumption that the curvature of the
magnetic field lines and the characteristic scale of the Alfvén
speed variation along the magnetic field lines are both much
larger than the wavelength. The solution was obtained using the
Wentzel, Kramers, and Brillouin (WKB) method. In particular,
Ruderman et al. (1998) showed that the exponential growth of
the Alfvén speed with the height in a magnetic plasma con-
figuration with the vertical magnetic field suppresses the wave
damping due to phase mixing and thus leads to the increase in
the damping length. Later Ruderman et al. (1999) extended the
analysis by Ruderman et al. (1998) to axisymmetric magnetic
plasma configurations with purely poloidal equilibrium mag-
netic fields in the presence of plasma flow.

The results obtained by Ruderman et al. (1998) in the WKB
approximation were confirmed by De Moortel et al. (1999),
who studied numerically the damping of Alfvén waves due
to phase mixing in a stratified atmosphere with straight mag-
netic field lines. Their numerical analysis is valid for waves
with the wavelength comparable to the atmospheric scale height.
De Moortel et al. (2000) extended this analysis to a stratified at-
mosphere with the radially divergent magnetic field lines.

The most interesting result obtained by Ruderman et al.
(1998) was that strong divergence of the magnetic field lines can
substantially enhance the efficiency of the Alfvén wave damp-
ing due to phase mixing. In particular it was shown that while
the damping length in an equilibrium with the straight magnetic
field lines and the Alfvén speed only varying in the direction or-
thogonal to the magnetic field direction is proportional to Re1/3,
in an equilibrium with the exponentially divergent magnetic field
lines it is proportional to ln(Re). This result was confirmed by
Smith et al. (2007) who studied the problem of the Alfvén wave
damping due to phase mixing in an equilibrium with the ex-
ponentially divergent magnetic field lines both analytically and
numerically.

The analytical studies by both Ruderman et al. (1998) and
Smith et al. (2007) were carried out under the assumption that
the wavelength is much smaller than the characteristic scale of
the equilibrium quantity variation. This assumption enabled us-
ing the WKB method. When the wavelength is comparable with
the equilibrium characteristic scale then, in general, the study of
the Alfvén phase mixing is only possible numerically. However,
there is one exception: it is possible in equilibria where Alfvén
waves propagate without reflection.

Non-reflective wave propagation was studied in various
branches of sciences. It was studied in plasma physics (Ginzburg
1970), oceanography (Brekhovskih 1980; Didenkulova et al.
2008; Grimshaw et al. 2010), acoustics (Ibragimov & Rudenko
2004), and atmospheric science (Petrukhin et al. 2011). Recently
the theory of non-reflective wave propagation has been applied
to solar physics. Petrukhin et al. (2012) studied non-reflective
vertical propagation of acoustic waves in the solar atmosphere.
Cally (2012) investigated non-reflective propagation of Alfvén
waves. Ruderman et al. (2013) and Petrukhin et al. (2015) stud-
ied non-reflective propagation of kink waves along thin magnetic
flux tubes.

This article aims to study the phase mixing of propagating
Alfvén waves in non-reflective equilibria. It is organised as fol-
lows. In the next section we formulate the problem and derive
the equation governing the velocity perturbation in shear Alfvén
waves. In Sect. 3 we introduce curvilinear coordinates with one
set of coordinate lines coinciding with the magnetic field lines
and the other coinciding with the level lines of potential of
the equilibrium magnetic field. We then transform the govern-
ing equation for the velocity to these coordinates. In Sect. 4 we
study the non-reflective propagation of Alfvén waves. In Sect. 5
we develop the general theory of Alfvén wave damping due to
phase mixing in equilibria where these waves propagate without
reflection. In Sect. 6 we study the wave damping in equilibria
with straight magnetic field lines. In Sect. 7 the wave damping is
studied in an equilibrium with the divergent magnetic field lines.
The results are applied to the Alfvén wave damping in coronal
plumes. Section 8 presents a summary of the results and our con-
clusions.

2. Equilibrium state and governing equations

We consider a two-dimensional equilibrium state where all equi-
librium quantities depend on x and z in Cartesian coordinates
x, y, z with the z-axis vertical. The y-component of the equi-
librium magnetic field is zero. The plasma beta in the solar
corona is very low, which implies that the equilibrium magnetic
field must be force-free. A force-free two-dimensional magnetic
field is always potential, hence the equilibrium magnetic field
B = (Bx, 0, Bz) can be expressed in terms of magnetic potential
φ. It can be also expressed in terms of the magnetic flux function
ψ. As a result, we have

Bx

B0
=
∂φ

∂x
= −

∂ψ

∂z
,

Bz

B0
=
∂φ

∂z
=
∂ψ

∂x
, (1)

where B0 is a constant equal to the characteristic value of the
magnetic field. Below we use φ and ψ as new curvilinear coor-
dinates in the xz-plane. It follows from Eq. (1) that ∇φ · ∇ψ = 0.
This means that the curvilinear coordinate system (φ, ψ) is or-
thogonal. The φ coordinate lines coincide with the magnetic field
lines, while the ψ coordinate lines are orthogonal to the magnetic
field lines. We consider the plasma density ρ as a free function. If
this function is given, then the plasma pressure and temperature
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are determined by the projection of the equilibrium equation on
the magnetic field direction and the ideal gas law.

Below we study Alfvén waves where only the y-components
of the velocity and magnetic field, u and b, are non-zero, while
all other quantities remain unperturbed. To describe these waves
we use the y-components of the momentum and induction equa-
tion. The only dissipative process that we take into account
is shear viscosity, while we neglect resistivity. Some authors
(e.g. Heyvaerts & Priest 1983) took both shear viscosity and
resistivity into account. As a result, they obtained that the term
describing dissipation in the equation governing the Alfvén wave
propagation is multiplied by the sum of the kinematic viscosity
and magnetic diffusion. In the corona these quantities are of the
same order. This implies that neglecting one of them can only
reduce the efficiency of wave damping by factor of the order
of unity. On the other hand, neglecting resistivity simplifies the
analysis because it enables the magnetic field perturbation to be
easily eliminated from the governing equations. The linearised
governing equations are

ρ
∂u
∂t

=
1
µ0

B · ∇b +
∂

∂x

(
ρν
∂u
∂x

)
+
∂

∂z

(
ρν
∂u
∂z

)
, (2)

∂b
∂t

= B · ∇u, (3)

where µ0 is the magnetic permeability of free space and ν the
kinematic viscosity. Eliminating b from these equations we ob-
tain the equation for u:

ρ
∂2u
∂t2 =

1
µ0

B · ∇(B · ∇u)

+
∂

∂t

[
∂

∂x

(
ρν
∂u
∂x

)
+
∂

∂z

(
ρν
∂u
∂z

)]
· (4)

3. Introducing curvilinear coordinates

We now make the variable substitution and use φ and ψ as the
independent variables. Then we have the following expressions
for the partial derivatives with respect to x and z:

∂

∂x
=

Bx

B0

∂

∂φ
+

Bz

B0

∂

∂ψ
,

∂

∂z
=

Bz

B0

∂

∂φ
−

Bx

B0

∂

∂ψ
· (5)

It follows from these results that

B · ∇ =
B2

B0

∂

∂φ
· (6)

Using Eqs. (5) and (6) we transform Eq. (4) to

∂2u
∂t2 − V2

A
∂

∂φ

B2

B2
0

∂u
∂φ

=

1
ρ

∂

∂t

[(
Bx

B0

∂

∂φ
+

Bz

B0

∂

∂ψ

)
ρν

(
Bx

B0

∂u
∂φ

+
Bz

B0

∂u
∂ψ

)
+

(
Bz

B0

∂

∂φ
−

Bx

B0

∂

∂ψ

)
ρν

(
Bz

B0

∂u
∂φ
−

Bx

B0

∂u
∂ψ

)]
, (7)

where

V2
A =

B2

µ0ρ
· (8)

Below we assume that the viscosity is small and it is only impor-
tant when small spatial scales in the direction orthogonal to the

magnetic field lines are formed due to phase mixing. In this case
the second derivative of u with respect to ψ strongly dominates
all other terms on the right-hand side of Eq. (7). As a result we
can rewrite Eq. (4) in the approximate form

∂2u
∂t2 − V2

A
∂

∂φ

B2

B2
0

∂u
∂φ

= ν
B2

B2
0

∂3u
∂t∂ψ2 · (9)

This is the main equation that is used below to study the damping
of Alfvén waves due to phase mixing.

4. Non-reflective propagation of Alfvén waves

In this section we describe how Eq. (9) can be reduced to an
equation with constant coefficients. The reduction of the wave
equation with the variable phase speed to the Klein-Gordon
equation with constant coefficients is described in many articles
(see, e.g. Ruderman et al. 2013). However, Eq. (9) is slightly dif-
ferent from the standard wave equation and, as a result, its re-
duction to an equation with constant coefficients is also slightly
different from the standard reduction of wave equation to the
Klein-Gordon equation.

We search for the solution to Eq. (9) in the form

u(t, φ, ψ) = A(φ, ψ)Φ(t, h(φ, ψ), ψ), (10)

where A(φ, ψ) and Φ(t, h(φ, ψ), ψ) are the functions to be deter-
mined. Substituting this expression in Eq. (9) we obtain

∂2Φ

∂t2 − V2
A

B2

B2
0

(
∂h
∂φ

)2
∂2Φ

∂h2 −
V2

A

A

B2

B2
0

∂A
∂φ

∂h
∂φ

+
∂

∂φ

AB2

B2
0

∂h
∂φ

 ∂Φ

∂h
− V2

A
Φ

A
∂

∂φ

B2

B2
0

∂A
∂φ

 =

νB2

B2
0

∂

∂t

[
1
A
∂2(AΦ)
∂ψ2 +

2
A
∂h
∂ψ

∂

∂ψ

(
A
∂Φ

∂h

)
+
∂2h
∂ψ2

∂Φ

∂h
+

(
∂h
∂ψ

)2
∂2Φ

∂h2

]
· (11)

Now we impose the condition that the coefficient at the second
derivative of Φ with respect to h on the left-hand side of this
equation is equal to V2

0 , and the coefficient at the first derivative
is zero, where V0 is the characteristic value of the Alfvén speed:

B2V2
A

B2
0V2

0

(
∂h
∂φ

)2

= 1,
B2

B2
0

∂A
∂φ

∂h
∂φ

+
∂

∂φ

AB2

B2
0

∂h
∂φ

 = 0. (12)

It follows from these equations that

h = B0V0

∫ φ

φ1

dφ′

BVA
, A = ρ−1/4, (13)

where φ1 is a function of ψ that, at present, we do not specify.
When deriving the expression for A we have taken into account
that A is defined with an accuracy up to a multiplicative constant.
If we now take ν = 0, then Eq. (11) reduces to the Klein-Gordon
equation

∂2Φ

∂t2 − V2
0
∂2Φ

∂h2 = V2
A

Φ

A
∂

∂φ

B2

B2
0

∂A
∂φ

 · (14)

In general, this is an equation with one variable coefficient. This
causes reflection of a wave driven at a level φ = const. and prop-
agating in the positive φ-direction. It can only propagate without
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reflection if the coefficient at Φ in Eq. (14) is constant. However,
we must keep in mind that ψ is present in Eq. (14) as a parameter,
so this constant can depend on ψ. Hence, we impose the condi-
tion that the coefficient at Φ in Eqs. (11) and (14) only depends
on ψ,

V2
A

A
∂

∂φ

B2

B2
0

∂A
∂φ

 =
σ(ψ)
µ0B2

0

, (15)

where σ(ψ) is an arbitrary function.
Finally, we recall that the viscosity is only important when

there is small spatial scale in the ψ direction. Below we study the
initial value problem where a wave is driven at the surface φ =
φ1(ψ) and propagates along the magnetic field lines. Although
the derivative of A with respect to ψ and the derivatives of Φ
with respect to ψ and h change when the wave front propagates,
the order of magnitude of these derivatives remain the same. On
the other hand, we can see from Eq. (13) that the derivative of h
with respect to ψ increases. In particular, when the magnetic field
is homogeneous, it follows from Eq. (13) that the first derivative
is proportional to φ and the second to φ2. These estimates remain
valid by the order of magnitude even when the magnetic field is
inhomogeneous. As a result, at some distance from the surface
where the wave is driven, the derivatives of h with respect to ψ
become so large that the right-hand side of Eq. (11) cannot be
neglected even in the case of small viscosity. At this stage of
the wave evolution the last two terms in the square brackets on
the right-hand side of Eq. (11) strongly dominate the other two
terms, which can be neglected. Hence, Eq. (11) reduces to the
approximate form

∂2Φ

∂t2 − V2
0
∂2Φ

∂h2 −
σΦ

µ0B2
0

=

νB2

B2
0

∂

∂t

 ∂2h
∂ψ2

∂Φ

∂h
+

(
∂h
∂ψ

)2
∂2Φ

∂h2

 · (16)

When ν = 0 this equation is the Klein-Gordon equation with
constant coefficients. It admits a solution Φ = Φ0 exp(ikh− iωt),
where Φ0 is a constant, and k and ω are related by

ω2 = V2
0 k2 −

σ

µ0B2
0

· (17)

We see that waves with arbitrary frequency can propagate when
σ > 0, while only waves with ω > ωcut can propagate when
σ < 0, where the cutoff frequency ωcut is defined by

ω2
cut = −

σ

µ0B2
0

· (18)

Finally, when σ = 0 we obtain ω2 = V2
0 k2 and, again, waves

with arbitrary frequency can propagate.
Now we proceed to studying Eq. (15). We start from the sim-

plest case where σ = 0. In that case we immediately obtain from
Eq. (15) that

A = A0(ψ) + A1(ψ)
∫ φ

0

B2
0

B2 dφ′, (19)

where A0(ψ) and A1(ψ) are arbitrary functions. In particular, tak-
ing A1(ψ) = 0 we obtain that A and consequently ρ is indepen-
dent of φ.

Then we assume that σ , 0. We search for the solution to
this equation in the form

B2 ∂A
∂φ

= S (A, ψ). (20)

Substituting this expression in Eq. (15) and using Eq. (13) we
obtain

A3S
∂S
∂A

= σ(ψ). (21)

It follows from this equation that

B2 ∂A
∂φ

= ±

√
C(ψ) −

σ(ψ)
A2 , (22)

where C(ψ) is an arbitrary function. The general solution to this
equation is√

A2C(ψ) − σ(ψ) = ±C(ψ)
∫ φ

φ0(ψ)

dφ′

B2(φ′, ψ)
(23)

when C(ψ) , 0, where φ0(ψ) is an arbitrary function. When
C(ψ) = 0, the general solution to Eq. (22) is

A2 = ±2
√
−σ(ψ)

∫ φ

φ̄0(ψ)

dφ′

B2(φ′, ψ)
, (24)

where φ̄0(ψ) is an arbitrary function. Obviously, this expression
is only valid when σ(ψ) < 0.

5. Alfvén wave damping due to phase mixing

In this section we study the damping of Alfvén waves due
to phase mixing. To derive the expression describing the
wave decay we slightly modified the method developed by
Heyvaerts & Priest (1983) and Ruderman (1999) to study the
phase mixing of standing Alfvén waves. We impose the bound-
ary condition

u = u0(t, ψ) at φ = φ1(ψ). (25)

This boundary condition is valid for any t and ψ. Now we assume
that u and consequently Φ is proportional to exp(−iωt). Then
Eq. (16) transforms to

V2
0
∂2Φ

∂h2 + λ2Φ =
iωνB2

B2
0

 ∂2h
∂ψ2

∂Φ

∂h
+

(
∂h
∂ψ

)2
∂2Φ

∂h2

 , (26)

where

λ2 = ω2 +
σ

µ0B2
0

· (27)

Below we assume that λ2 > 0. Using Eqs. (10) and (13) we
transform Eq. (25) to

Φ = A−1(0, ψ)u0(ψ) ≡ Φ0(ψ) at h = 0. (28)

The variable h is a spatial variable related to the distance from
the surface φ = φ1(ψ) to a point in a particular magnetic field
line. Below we assume that the characteristic distance of damp-
ing due to phase mixing is much greater than the characteris-
tic distance of variation of Φ with respect to h. This assump-
tion is not very restrictive. Actually, the dependence of Φ on h
is approximately harmonic with the wave number k. Then the
characteristic distance of variation of Φ with respect to h is 1/k,
which is approximately 1/6 of the wavelength. Hence, our as-
sumption is valid even when the damping length is of the order
of the wavelength. Now, in accordance with our assumption, we
introduce a “slow” variable h1 = εh, where ε � 1.
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To characterise the viscosity magnitude we introduce the
Reynolds number Re = lV0/ν, where l is the characteristic spa-
tial scale of variation of equilibrium quantities. We assume that
the characteristic wavelength is also l. Below we also assume
that the viscosity is weak, Re � 1. Now we introduce the scaled
kinematic viscosity ν̄ = Re ν. The relation between ε and Re will
be defined later. Then Eq. (26) is rewritten as

ε2 ∂
2Φ

∂h2
1

+
λ2

V2
0

Φ =
iων̄B2

V2
0 B2

0Re

∂2h1

∂ψ2

∂Φ

∂h1
+

(
∂h1

∂ψ

)2
∂2Φ

∂h2
1

 · (29)

Equation (13) defines φ as an implicit function of h and, conse-
quently, h1. Hence, ∂Φ/∂h1 and ∂2Φ/∂h2

1 must be considered as
functions of h1 and ψ. Now we use the standard WKB method
and search for the solution to this equation in the form

Φ = Q(h1, ψ) exp
[
iε−1Θ(h1, ψ)

]
(30)

(see e.g. Bender & Orszag 1999). Substituting this expression in
Eq. (29) we obtain

ε2 ∂
2Q
∂h2

1

+ 2iε
∂Q
∂h1

∂Θ

∂h1
+ iεQ

∂2Θ

∂h2
1

− Q
(
∂Θ

∂h1

)2

+
λ2

V2
0

Q =
iων̄B2

V2
0 B2

0Re

∂2h1

∂ψ2

(
∂Q
∂h1

+ iε−1Q
∂Θ

∂h1

)

+

(
∂h1

∂ψ

)2 ∂2Q
∂h2

1

+ 2iε−1 ∂Q
∂h1

∂Θ

∂h1

+ iε−1Q
∂2Θ

∂h2
1

− ε−2Q
(
∂Θ

∂h1

)2
 · (31)

First we assume that the right-hand side is much smaller than the
two largest terms on the left-hand side of this equation, which are
the last and next-to-last terms. Then we collect the terms of the
order of unity in Eq. (31) to obtain(
∂Θ

∂h1

)2

=
λ2

V2
0

· (32)

This approximation is usually called the approximation of geo-
metrical optics (e.g. Bender & Orszag 1999). It determines the
shape of rays along which the waves propagate. Only consider-
ing waves propagating in the positive φ-direction, from Eq. (32)
we obtain

Θ =
h1λ(ψ)

V0
, (33)

where we arbitrarily take Θ = 0 at h1 = 0. In the next order ap-
proximation we collect terms of the order ε. This approximation
is usually called the approximation of physical optics. It deter-
mines the spatial evolution of the wave amplitude. The right-
hand side of Eq. (31) describes the viscous wave damping due
to phase mixing. Hence, we define the relation between Re and
ε in such a way that the right-hand side of Eq. (31) contributes
in the approximation of physical optics. In accordance with this
we take Re = ε−3. Then we obtain

2
∂Q
∂h1

∂Θ

∂h1
+ Q

∂2Θ

∂h2
1

= −
ων̄B2Q
V2

0 B2
0Re

(
∂h1

∂ψ

)2 (
∂Θ

∂h1

)2

· (34)

Using Eq. (33) and returning to the original variables we trans-
form Eq. (34) to

∂Q
∂h

= −Υ(h, ψ)Q, Υ(h, ψ) =
ωνλB2

2B2
0V3

0

(
∂h
∂ψ

)2

· (35)

Obviously we can assume that Q is real. Equation (35) deter-
mines the spatial evolution of the Alfvén wave amplitude. It will
be studied below in various equilibria. We will also use the ex-
pressions for the velocity and magnetic field perturbation. Using
Eqs. (10) and (30) we obtain in the leading order approximation
with respect to ε

u = ρ−1/4Q exp [i(hλ/V0 − ωt)] . (36)

Then, using Eqs. (3), (6), and (13) yields

b = −µ1/2
0 ρ1/4ω−1λQ exp [i(hλ/V0 − ωt)] . (37)

6. Alfvén wave phase mixing in equilibria
with straight magnetic field lines

In this section we assume that the magnetic field is in the z-
direction. It follows from Eq. (1) that Bz = const. We take
Bz = B0. Then φ = z and ψ = x. Hence, in this section we
use x and z instead of ψ and φ. We also assume that ν is inde-
pendent of z, and take the lower limit in the expression Eq. (13)
equal to zero (φ1(ψ) = 0).

6.1. Alfvén speed not varying along the magnetic field
direction

We assume that ρ = A−4 is independent of z. It then follows from
Eq. (15) that σ(x) = 0. To satisfy Eq. (23) we also take C(x) = 0.
Now it follows that VA is independent of z, i.e. it does not vary
along the magnetic field direction. Then it follows from Eq. (13)
that h = zV0/VA(x). Using this result we obtain

Υ(h, x) =
ω2νh2

2V2
AV3

0

(
dVA

dx

)2

, (38)

where we have taken into account that λ = ω when σ = 0.
Substituting this result in Eq. (35) and integrating the obtained
equation yields

Q = Q0(x) exp

− ω2νh3

6V2
AV3

0

(
dVA

dx

)2 , (39)

where Q0(x) is the value of Q at h = 0. Using Eqs. (10), (25),
(30), and (33), we eventually arrive at

u = u0(x) exp

−ω2νz3

6V5
A

(
dVA

dx

)2 cos(ωt). (40)

We see that the logarithm of the wave amplitude is proportional
to −z3, and the damping length is proportional to Re1/3. These
are familiar results (e.g. Heyvaerts & Priest 1983).

6.2. Linear variation of Alfvén speed in the magnetic field
direction

In this section we consider the case where C(ψ) = 0. Since
in this case σ(x) < 0, to have λ2 > 0 we assume that ω2 >
max |σ(x)|/µ0B2

0. It follows from the relation A = ρ−1/4 and
Eq. (24) that

ρ =
ρ0(x)

[1 + zκ(x)]2 , V2
A0(x) =

B2
0

µ0ρ0(x)
,

VA(x, z) = VA0(x)[1 + zκ(x)], (41)
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where ρ0(x) is an arbitrary positive function and κ(x) =
−1/φ̄0(x). Below we assume that κ = const and κ > 0. Sub-
stituting this expression for VA in Eq. (13) yields

h =
V0 ln(1 + zκ)
κVA0(x)

· (42)

Using this result we obtain

Υ(h, x) =
ωνλh2

2V3
0 V2

A0

(
dVA0

dx

)2

· (43)

Substituting this result in the first equation in Eq. (35) and inte-
grating the obtained equation yields

Q = Q0(x) exp
{
−α[ln(1 + κz)]3

}
, (44)

where

α =
ωνλ

6κ3V5
A0

(
dVA0

dx

)2

· (45)

Using Eqs. (10), (25), (30), and (33), we arrive at

u = u0(x) exp
{
−α[ln(1 + κz)]3

}
cos(ωt). (46)

Since ln(1 + κz) ≈ κz when κz � 1, for small z this equation re-
duces to the form similar to Eq. (40). However when κz & 1 the
density decrease in the magnetic field direction makes the wave
damping due to phase mixing less efficient. This result is some-
what similar to that obtained by Ruderman et al. (1998). While
the analysis by Ruderman et al. (1998) was carried out under the
assumption that the wavelength is much smaller than the char-
acteristic spatial scale of the equilibrium quantity variation, we
emphasise that the results of this paper are valid even when these
two quantities are of the same order.

6.3. Alfvén speed is a quadratic function of distance along
the magnetic field

Now we consider the case where C(x) , 0. Below we assume
that φ0(x) = 0 and σ(x) > 0. We also assume that C2(x)/σ(x) =
const. It follows from Eq. (23) that

ρ−1/2 = A2 =
z2C(x)

B4
0

+
σ(x)
C(x)

· (47)

Using this result we obtain

VA = VA0(x)
(
1 + k2z2

)
, (48)

where

k2 =
C2(x)

B4
0σ(x)

= const., VA0(x) =
B0σ(x)

C(x)
√
µ0
· (49)

It follows from Eq. (13) that

h =
V0 arctan(kz)

kVA0(x)
· (50)

This equation can be rewritten as

Q = Q0(x) exp
{
−β[arctan(kz)]3

}
, (51)

where

β =
ωνλ

6k3V5
A0

(
dVA0

dx

)2

· (52)

Using Eqs. (10), (25), (30), and (33), we arrive at

u = u0(x) exp
{
−β[arctan(kz)]3

}
cos(ωt). (53)

Since arctan(kz) ≈ kz when kz � 1, for small z this equation
reduces to the form similar to Eq. (40). When κz & 1 the den-
sity decrease in the magnetic field direction reduces the wave
damping rate due to phase mixing. It is also worth noting that
now the wave amplitude does not tend to zero as z → ∞. In-
stead it tends to u0(x) exp

(
−βπ3/8

)
. Again a similar result was

obtained by Ruderman et al. (1998) in their study of damping
due to phase mixing of Alfvén waves with short wavelength. Fi-
nally, we notice that the results obtained in this subsection are
only valid on a restricted time interval. At fixed x, a perturbation
launched at z = 0 and t = 0 arrives at infinity at finite time equal
to π[2kVA0(x)]−1. This is an unphysical behaviour implying that
we only can consider the wave evolution on a finite interval of z.

7. Alfvén wave phase mixing in equilibria
with divergent magnetic field lines

In this section we study the Alfvén wave phase mixing in equilib-
ria with the exponentially divergent magnetic field lines similar
to those considered by Ruderman et al. (1998) and Smith et al.
(2007).

7.1. Equilibrium configuration

We take

ψ = He−z/H sin(x/H), φ = −He−z/H cos(x/H), (54)

where H is a constant. Then we obtain

Bx = B0e−z/H sin(x/H), Bz = B0e−z/H cos(x/H). (55)

It follows from Eqs. (54) and (55) that

B2 =
B2

0

H2

(
φ2 + ψ2

)
. (56)

It is straightforward to see that the distance between two neigh-
bouring magnetic field lines exponentially increases with height.
The sketch of the equilibrium is shown in Fig. 1.

We consider the wave propagation in a region that is narrow
at its base. It is bounded by the magnetic field lines determined
by ψ = ±ψb, ψb � H. The equations for these magnetic field
lines are

x = ±H arcsin
ψbez/H

H
, z ∈ [0,H ln(H/ψb)]. (57)

The boundary magnetic field lines reach their maximum height
z = H ln(H/ψb) corresponding to φ = 0 at x = ±πH/2, and then

go down. Below we take φ1 = −

√
H2 − ψ2

b and restrict the region
where we consider the wave propagation by φ1 ≤ φ ≤ φ2 < 0.
Then the maximum width of this region is

Lm = −2H arctan
ψb

φ2
· (58)
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Fig. 1. Equilibrium with divergent magnetic field lines. The vertical
curves are the magnetic field lines defined by the equation ψ = const.
The horizontal curves are defined by the equation φ = const. The thick
vertical curves are the boundaries of the region where the wave prop-
agation is considered. They are defined by the equation ψ = ±ψb. The
thick horizontal curve is defined by the equation φ = φ1. It is assumed
that the wave is driven at this line. The dotted line shows the level z = 0.

We note that the lower boundary of the region determined by
the equation φ = φ1 crosses the boundary magnetic field lines at
z = 0. It is assumed that the perturbations are driven at this lower
boundary.

Now we assume that σ = 0 and ρ is independent of φ, mean-
ing that the plasma density does not vary along the magnetic field
lines. Hence, the Alfvén velocity variation along the magnetic
field lines is only due to the magnetic field magnitude variation.

7.2. Alfvén wave phase mixing

7.2.1. Qualitative analysis

We first point out one remarkable property of Eq. (7) with the
zero right-hand side, which corresponds to ν = 0. When the
plasma density ρ is independent of φ the variable substitution
Eq. (13) reduces this equation to the wave equation with con-
stant coefficient, which is Eq. (16) with ν = 0 and σ = 0. This
is correct for any two-dimensional equilibrium magnetic field,
even for a non-potential field. In the latter case φ is simply the
curvilinear coordinate constituting together with the magnetic
flux function an orthogonal curvilinear coordinate system.

Recalling that ρ is independent of φ and φ1 = −

√
H2 − ψ2

b
in the expression for h, Eq. (13), we obtain for the particular
equilibrium described in the previous subsection

h =
H2V0

ψVA0

(
arctan

φ

ψ
− arctan

φ1

ψ

)
, (59)

where V2
A0 = B2

0/µ0ρ. Differentiating this expression yields

∂h
∂ψ

=
ψV0H2

2ρVA0

d
dψ

(
ρ

ψ2

) (
arctan

φ

ψ
− arctan

φ1

ψ

)
−

H2V0

ψVA0

 φ

φ2 + ψ2 −
φ1

φ2
1 + ψ2

 · (60)

Below we assume that ρ is an even function of ψ. Then it is not
difficult to show that ∂h/∂ψ → 0 as ψ → 0. It is convenient to
transform Eq. (35) to

∂Q
∂φ

= −Υ̃(φ, ψ)Q, Υ̃(φ, ψ) =
νω2B

2B0V2
0 VA

(
∂h
∂ψ

)2

· (61)

The solution to this equation is

Q(φ, ψ) = Q1(ψ) exp[−Λ(φ, ψ)],

Λ(φ, ψ) =

∫ φ

φ1

Υ̃(φ′, ψ) dφ′, (62)

where Q1(ψ) is the value of Q at φ = φ1. We note that we con-
sider |ψ| ≤ ψb � H. Below we assume that ν is independent
of φ.

We now consider z � H. In that case |x| � H and |φ/ψ| � 1.
With these estimates we obtain the approximate expression

arctan
φ

ψ
− arctan

φ1

ψ
≈ ψ

(
1
φ1
−

1
φ

)
· (63)

Using this result yields

∂h
∂ψ
≈

V0H2

2ρVA0

dρ
dψ

(
1
φ1
−

1
φ

)
· (64)

Then it follows from Eq. (61) that

Υ̃(φ, ψ) ≈
νω2H4

8ρ2V3
A0

(
dρ
dψ

)2 (
1
φ1
−

1
φ

)2

· (65)

Substituting this expression in Eq. (62) we obtain

Λ(φ, ψ) =
νω2H4

8ρ2V3
A0

(
dρ
dψ

)2  φ
φ2

1

−
1
φ
−

2
φ1

ln
φ

φ1

 · (66)

Recalling that |ψ| � H and z � H, we can use the approximate
expressions

φ ≈ φ1 ≈ −H, ψ ≈ x,

1
φ1
−

1
φ
≈

1
H2

z − ψ2
b − ψ

2

2H

 ≡ z̃
H2 · (67)

Substituting these expressions in Eq. (66) yields

Λ(φ, ψ) =
νω2z̃3

24ρ2V3
A0

(
dρ
dx

)2

· (68)

Hence, eventually we obtain

Q(φ, ψ) = Q1(ψ) exp

− νω2z̃3

24ρ2V3
A0

(
dρ
dx

)2 · (69)

This result qualitatively coincides with that obtained in Sect. 6.1.
The only difference is that z is substituted by z̃, which is approx-
imately the distance measured along a magnetic field line from
the surface φ = φ1 where the wave is driven.

Now we consider the wave damping at sufficiently large dis-
tances from the source of perturbations. It follows from Eqs. (61)
and (62), and that ∂h/∂ψ→ 0 as ψ→ 0, that there is practically
no wave damping when ψ is close to zero. Hence, we assume
that |ψ| is not very small, e.g. |ψ| ≥ 1

2ψb. Then we assume that
(ψb/H)ez/H is of the order of unity (we recall that ψb � H). We
emphasise that this condition is satisfied for very moderate val-
ues of z/H. For example, if ψb = H/10, it suffices to assume that
z/H & 2. The condition imposed on ez/H guaranties that |x|/H is
of the order of unity.
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Since φ1 ≈ −H, while |ψ| � H, it follows that
arctan(φ1/ψ) ≈ −(π/2)sgn(ψ). Then, using Eq. (54), we obtain

arctan
φ

ψ
− arctan

φ1

ψ
≈

x
H
, (70)

φ

φ2 + ψ2 −
φ1

φ2
1 + ψ2

≈ −
ez/H

H cos(z/H)
· (71)

Using Eqs. (70) and (71) we rewrite Eq. (60) in the approximate
form

∂h
∂ψ

= −
V0H2

ψ2VA0

[
x
H

(
1 −

ψ

2ρ
dρ
dψ

)
− tan

x
H

]
· (72)

We recall that ρ(ψ) is assumed to be an even function. In addition
we assume that the second derivative of ρ(ψ) is negative, mean-
ing that ρ(ψ) increases for ψ < 0 and decreases for ψ > 0. Hence,
ψ(dρ/dψ) < 0. The signs of x and ψ are the same, meaning that
the expression in the square brackets is an odd function of x.
Consider x > 0. Then the expression in the square brackets is
negative when |dρ/dψ| is small; however, it is positive if |dρ/dψ|
is sufficiently large. We assume that the latter is true and, more-
over, we assume that the expression in the square brackets is of
the order of unity when |x|/H is of the order of unity. Then we
obtain∣∣∣∣∣ ∂h
∂ψ

∣∣∣∣∣ ' V0H2

ψ2VA0
=

V0e2z/H

VA0 sin2(x/H)
=

V0H2

VA0φ2 cot2
x
H
· (73)

Since | cot(x/H)| is of the order of unity, it follows that

Λ(φ, ψ) '
νω2H4

2VAV2
A0

∫ φ

φ1

dφ′

φ′4

' −
νω2H4

6VAV2
A0φ

3
=

νω2He3z/H

6VAV2
A0 cos3(x/H)

· (74)

This result is similar to the corresponding result obtained by
Smith et al. (2007) that the decrement is proportional to e3z/H .

It is expedient to study the wave damping when the wave-
length is much smaller than H. It is shown in Appendix A that
the expression for the decrement derived in this paper coincides
with that obtained by Smith et al. (2007) if we taken the density
independent of the height in the latter.

7.2.2. Numerical results

To characterise the efficiency of the wave damping we calculate
the variation of the wave energy flux with the height. The density
of the wave energy flux is 1

2 VA(ρv2 + b2/µ0), and it is in the
equilibrium magnetic field direction. Using Eq. (54) we obtain
that the square of the elementary length along the surface φ =
const. is

dx2 + dz2 =
H2dψ2

φ2 + ψ2 ·

Equations (36) and (37) give the complex-valued expressions for
u and b. To obtain the real expressions we need to take the real
parts of these expressions. In addition, we take the average value
of the wave energy density flux over the wave period. Then, us-
ing Eq. (54), we obtain that the average wave energy flux through
the surface φ = const. per unit length in the y-direction between
ψ = −ψb and ψ = ψb is

Π =
B0

2
√
µ0

∫ ψb

−ψb

Q2dψ. (75)

For the numerical study we adopted the following model. We
took

ρ = ρ0

{
1 + ς exp

[
−3(ψ/ψb)2

]}
, (76)

meaning that the density enhancement is almost completely con-
fined in the magnetic tube bounded by the magnetic field lines
φ = ±ψb. We also took

Q1(ψ) = Q̂
 1 − (ψ/ψb)2, |ψ| ≤ ψb,

0, |ψ| > ψb,
(77)

where ρ0 and Q̂ are constants. We put V0 = B0/
√
µ0ρ0 and in-

troduce the dimensionless frequency $ = ωH/(2πV0), meaning
that the wave period is H/($V0). The surface φ = φ̂ = const.
intersects the vertical axis at z = zφ ≡ −H ln(−φ̂/H). The surface
φ = φ1 at which the wave is driven intersects the vertical axis
at z = z1 ≡ −H ln(−φ1/H). We calculated the dependence of
the relative energy flux, ∆ = Π/Π0, where Π0 is the energy flux
through the surface φ = φ1, on s = (zφ − z1)/H. Using Eqs. (60)–
(62), (76), (77), and assuming that ν is constant, we obtain

∆ =
Π

Π0
=

15
8

∫ 1

0

(
1 − ξ2)2e−2Λdξ, (78)

Λ = 2π2χ−1ξ−4
b

(
1 + ςe−3ξ2)3/2

∫ η

η1

[(
1
ξ2

+
3ς

e3ξ2
+ ς

) (
arctan

η′

ξξb
− arctan

η1

ξξb

)
+
ξb

ξ

 η′

η′2 + ξ2ξ2
b

−
η1

η2
1 + ξ2ξ2

b

2

dη′, (79)

where ξ = ψ/ψb, ξb = ψb/H, η = φ/H, η1 = φ1/H = −

√
1 − ξ2

b ,

χ = Re /$2, and Re = HV0/ν is the Reynolds number. It follows
from Eqs. (78) and (79) that ∆(s) depends on three dimension-
less parameters: χ, ξb, and ς. In our calculations we took ς = 4,
meaning that the ratio of the maximum density at x = 0 to the
density far from the region where the wave propagates is 5. We
calculated the dependence of ∆ on s for fixed χ and various val-
ues of ξb. The results of these calculations are shown in Fig. 2
for χ = 2 × 107. We can see in Fig. 2 that the wave damping
becomes more efficient when ξb decreases. We obtained similar
results for other values of χ.

We now apply the numerical results to the damping of Alfvén
waves in coronal plumes. Using the WKB method Smith et al.
(2007) studied the Alfvén wave damping owing phase mixing
in a two-dimensional equilibrium with exponentially divergent
magnetic field lines and density exponentially decreasing with
the height. It follows from their analysis that the effect of the
density variation with the height can be neglected if the den-
sity scale height Hρ is at least twice as high as the magnetic
field scale height H, Hρ ≥ 2H. If we take as a typical value
Hρ = 60 Mm, then it follows that our model is applicable if
H ≤ 30 Mm. We take the maximum possible value of the mag-
netic field scale height H = 30 Mm. The typical plume size at the
base is 5 Mm (e.g. DeForest et al. 1997). Since ψ ≈ x at z = 0,
this corresponds to ξb = ψb/H = 3/30 = 1/10. We take the elec-
tron number density at the centre of the plume equal to 1015 m−3.
Then, for ς = 4, the electron number density far from the plume
is 2 × 1014 m−3. Finally, we take B0 = 10 G. Then we obtain for
the Alfvén speed at the centre of the plume V0 ≈ 700 km s−1.

If we take the plasma temperature equal to 106 K, then the
classical theory gives τi ≈ 1 s and ν0 ≈ 1010 m2 s−1 for the ion
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Fig. 2. Dependence of ∆ on s for χ = 2 × 107 and various values of
ξb. The solid, dashed and dash-dotted lines correspond to ξb = 1/10,
ξb = 1/30, and ξb = 1/100, respectively.

collision time and for the first coefficient of viscosity in the full
Braginskii’s viscosity tensor (Spitzer 1962; Braginskii 1965).
However, the viscosity tensor in the solar corona is strongly
anisotropic due to the presence of magnetic field. The first term
in the expression for the Braginskii’s viscosity tensor describes
the volume viscosity that does not affect Alfvén waves. The
Alfvén wave damping is related to the shear viscosity. The shear
viscosity is smaller than ν0 by factor (τiωi)−2, where ωi is the
ion gyrofrequency. For B0 = 10 G we obtain ωi ≈ 105 s−1. As
a result we obtain ν ≈ (τiωi)−2ν0 ≈ 1 m2 s−1. But this estimate
must be taken with caution. It is believed that the turbulence can
strongly enhance shear viscosity. Therefore it seems reasonable
to consider ν as a free parameter.

As we can see from the expression for χ, the efficiency of the
Alfvén wave damping strongly depends on the wave period. The
shorter the wave period the stronger the damping is. The initial
wavelength is given by 2πV0/ω = H/$. If we take ν = 1 m2 s−1

given by the classical theory, then we obtain Re = HV0/ν =
2 × 1013. A simple estimate shows that for this value of Re, the
plume size equal to 6 Mm, and the wave period equal to 30 s, the
Afvén wave damping within a few scale heights if practically
negligible.

In Fig. 3 the dependence of the relative wave energy flux ∆
on the dimensionless height s is shown for ξb = 1/10 and four
values of the parameter χ. We can see that in order for at least
half of the wave energy to dissipate before the wave reaches the
height 6H, a value χ ≤ 2 × 107 is needed. For waves with the
period equal to 60 s, which corresponds to $ = 1, this implies
Re ≤ 2 × 107; i.e., the shear viscosity ν must be reduced by
6 orders of magnitude in comparison with the value given by the
classical plasma theory. We can relax this estimate if we decrease
the wave period. To get χ = 2×107 when Re = 2×1013 we need
to take the period equal to 0.06 s. Obviously, the waves with such
a small period are not described by our theory. They are not even
described by the MHD because their period is less than the ion
collision time.

Another way to increase the efficiancy of wave damping at a
fixed Reynolds number is to reduce ξb. We calculated the depen-
dence of χ on ξb defined by the condition that the wave energy
flux reduces twice at z = 6H. This dependence is shown in Fig. 4.
We see that in order to have the half wave energy damped before
the wave reaches the height z = 6H when χ = 2 × 1013, which

Fig. 3. Dependence of ∆ on s for ξb = 1/10 and various values of χ.
The dashed, solid, dash-dotted, and dotted lines correspond to χ = 107,
χ = 2 × 107, χ = 108, and χ = 2 × 109, respectively.

Fig. 4. Dependence of χ on ξb defined by the condition that the wave
energy flux reduces twice at the height z = 6H, i.e. ∆(6) = 1

2 . We note
the logarithmic scale of the axes.

corresponds to Re = 2×1013 for the wave period 60 s, we need to
take ξb ' 10−4. This value of ξb corresponds to the plume width
at its base of the order of 5 km. Obviously such a value for the
plume width is much too small to agree with observations.

8. Summary and conclusions

In this paper we studied the damping of shear Alfvén waves
due to phase mixing in two-dimensional planar magnetic plasma
equilibria. The equilibrium magnetic field was assumed to be po-
tential. The only dissipative process taken into account was shear
viscosity. We introduced curvilinear coordinates, which are the
magnetic flux function and magnetic potential. When there is no
viscosity, the equation describing the Alfvén wave propagation
reduces to a one-dimensional wave equation with the variable
phase speed (see Eq. (9)). This equation describes the Alfvén
wave propagation along the magnetic field lines. The phase
speed varies both along and across the field lines. Because of
the phase speed variation across the field lines the Alfvén waves

A122, page 9 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629892&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629892&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629892&pdf_id=4


A&A 600, A122 (2017)

propagate with different speeds along neighbouring magnetic
field lines meaning that these field lines oscillate more and more
out of phase. This process is called phase mixing. As a result of
phase mixing large gradients build up in the direction orthogo-
nal to the magnetic field lines, which enormously enhances the
Alfvén wave damping.

We then made the variable substitution that reduces the one-
dimensional wave equation describing the Alfvén wave propa-
gation in the absence of viscosity to the Klein-Gordon equation
(see Eq. (16)). We then imposed the condition that this equation
has coefficients not varying along the magnetic field lines, which
implies that the Alfvén waves propagate along the magnetic field
lines without reflection. This condition results in the relation be-
tween the plasma density ρ and the magnetic field magnitude B.
It is given by either Eq. (23) or (24). It is interesting that in the
case where ρ does not change along the magnetic field lines, the
Klein-Gordon equation becomes the wave equation with the co-
efficients not varying along the magnetic field lines. Of course,
it is difficult to expect that the relation between ρ and B is ex-
actly satisfied in the solar corona. However, we can expect that it
is satisfied approximately. In this case there will be wave reflec-
tion, but only fairly weak. In particular, the assumption that the
density does not vary along the magnetic field lines is approxi-
mately satisfied when the magnetic scale height is smaller than
the density scale height. The analysis carried out by Smith et al.
(2007) for short waves using the WKB approximation showed
that the effect of density variation in the equilibrium with the ex-
ponentially divergent magnetic fields can be neglected when the
density scale height is only two times larger than the magnetic
scale height.

The Klein-Gordon with the coefficients not varying along
the magnetic field lines and an additional term describing the
viscous dissipation was studied in various equilibria. First we
considered equilibia with the straight magnetic field lines. We
started with the equilibrium where the density does not vary
along the magnetic field lines and reproduced the result first ob-
tained by Heyvaerts & Priest (1983) that the wave amplitude is
proportional to the exponent of the distance along the magnetic
field lines cubed. Then we studied the wave damping in the case
when the Alfvén speed increases either linearly or quadratically
with the height. We found that the Alfvén wave increase decel-
erates the wave damping. In particular, in the case of the Alfvén
speed quadratically depending on the height the wave amplitude
tends to a constant non-zero limit at infinity.

We then proceeded to the wave damping in the equi-
librium with the divergent magnetic field lines. Previously
Ruderman et al. (1998) and Smith et al. (2007) considered this
problem under the assumption that the wavelength is much
smaller than the characteristic scale of the equilibrium quantity
variation H. They found that the magnetic field divergence re-
sults in the enhanced Alfvén wave damping with the logarithm
of the wave amplitude proportional to −exp(3z/H). We obtained
a similar result for waves with the wavelength comparable with
H. We applied the obtained results to the damping of Alfvén
waves propagating in coronal plumes. We found that the effi-
ciency of damping depends on three dimensionless parameters:
the ratio of the plume size at its base to the magnetic field scale
height, ξb; the ratio of the densities at the plume centre to that far
from the plume, ς + 1; and χ = Re/$2, where Re is the viscous
Reynolds number and $ the dimensionless wave frequency.

In our calculations we took ς = 4, H = 30 Mm, and
ξb = 1/10, which corresponds to the plume size at its base equal
to 6 Mm. We found that for typical values of the magnetic field
and plasma parameters, the shear viscosity ν ≈ 1 m2 s−1. Our
numerical results showed that to have waves with periods of
the order of 60 s damped within 6 magnetic field scale heights,
i.e. at a height approximately equal to 200 Mm, it is neces-
sary to increase ν by about 6 orders of magnitude, i.e. to take
ν ' 106 m2 s−1. This increase can be caused by the plasma turbu-
lence. It seems quite possible that the motion in an Alfvén wave
undergoing phase mixing becomes turbulent because it is shear
motion with the variation of the shear velocity on a very small
spatial scale. Usually such a motion is subject to the Kelvin-
Helmholtz instability. As concerns the estimate of the turbulent
viscosity magnitude, it looks like a very difficult problem. The
starting point in solving this problem should be the calculation
of the instability threshold for oscillatory shear motion. To our
knowledge this problem has not been solved yet.
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Appendix A: Evaluation of decrement in the short
wavelength approximation

We obtain the expression for the decrement in the equilibrium
with exponentially diverging magnetic field lines under the con-
dition that the wavelength is much smaller than the characteristic
scale of the magnetic field variation H.

In Sect. 7 we assumed that the density is independent of
φ. However, for the comparison with the results obtained by
Smith et al. (2007) it is more convenient to consider the den-
sity that is independent of z. In that case σ , 0. Let us compare
the two terms on the right-hand side of Eq. (27). It follows from
Eq. (15) that σ/(µ0B2

0) is of the order of V2
A/H

2. On the other
hand, ω is much larger than V0/H. Hence, the ratio of the sec-
ond term to the first is much larger than V2

A/V
2
0 ∼ 1. This implies

that the second term can be neglected and we can take λ ≈ ω.
Now we can no longer use Eq. (59), and must directly use

Eq. (13) instead. Differentiating this equation with respect to ψ
we obtain

∂h
∂ψ

= B0V0
√
µ0

∫ φ

φ1

∂

∂ψ

( √
ρ

B2

)
dφ′. (A.1)

Smith et al. (2007) assumed that the region where the wave prop-
agates is narrow implying that |x| � H. Then it follows that
|ψ/φ| � 1. Using Eqs. (54) and (55) yields

B2 =
B2

0

H2

(
φ2 + ψ2

)
= B2

0e−2z/H . (A.2)

Now we obtain

∂

∂ψ

( √
ρ

B2

)
=

1
2
√
ρB2

∂ρ
∂x

∂x
∂ψ
−

4ρψB2
0

H2B2

 · (A.3)

Using Eq. (54) we express x in terms of φ and ψ, and then obtain
with the aid of Eq. (A.2)

∂x
∂ψ

= −
φB2

0

HB2 · (A.4)

Substituting Eqs. (A.2) and (A.4) in Eq. (A.3) yields

∂

∂ψ

( √
ρ

B2

)
= −

φ
√
ρB2

0

2HB4

(
1
ρ

∂ρ

∂x
+

4ψ
Hφ

)
· (A.5)

Since |ψ/φ| � 1 we can neglect the second term in the brackets.
In addition, since |x| � H we can take φ ≈ −He−z/H . Then, using
these results and Eq. (A.2), we eventually obtain

∂

∂ψ

( √
ρ

B2

)
=

e3z/H

2
√
ρB2

0

∂ρ

∂x
· (A.6)

It is convenient to make the variable substituting in the integral
in Eq. (A.1) and integrate with respect to z instead of φ. When
φ = φ1 we have

z = −
H
2

ln
1 +

ψ2 − ψ2
b

H2

 ≈ 0.

Then, using dφ ≈ e−z/H dz and substituting Eq. (A.6) in Eq. (A.1)
we obtain

∂h
∂ψ

=
V0

2VA0ρ

∂ρ

∂x

∫ z

0
e2z′/H dz′ =

V0

4VA0ρ

∂ρ

∂x
(
e2z/H − 1

)
.

(A.7)

Substituting this result in Eq. (61) and using Eq. (62) we eventu-
ally arrive at

Λ =
νω2H3

96V3
A0ρ

2

(
∂ρ

∂x

)2 (
ez/H − 1

)3(3e−z/H + 1
)
. (A.8)

This expression coincides with the expression for the decrement
obtained by Smith et al. (2007) if we take Hρ → ∞ in the latter,
which corresponds to the density independent of z.
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