
This is a repository copy of The effects of restoring logged tropical forests on avian 
phylogenetic and functional diversity..

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117037/

Version: Accepted Version

Article:

Cosset, C.C.P. and Edwards, D.P. (2017) The effects of restoring logged tropical forests on
avian phylogenetic and functional diversity. Ecological Applications, 27 (6). pp. 1932-1945. 
ISSN 1051-0761 

https://doi.org/10.1002/eap.1578

Copyright by the Ecological Society of America, Cosset, C. C.P. and Edwards, D. P., The 
Effects of Restoring Logged Tropical Forests on Avian Phylogenetic and Functional 
Diversity. Ecol Appl., doi:10.1002/eap.1578.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1002/eap.1578 
This article is protected by copyright. All rights reserved. 

Article type      : Articles 

 

 

Running head: Bird diversity in restored logged forest 

 

The Effects of Restoring Logged Tropical Forests on 

Avian Phylogenetic and Functional Diversity 

 

Cindy C.P. Cosset1*, David P. Edwards1 

 
1
Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK 

 

*Corresponding author. 

Email address: ccpcosset@gmail.com  

 

Abstract  

Selective logging is the most prevalent land-use change in the tropics. Despite the resulting 

degradation of forest structure, selectively logged forests still harbour a substantial amount of 

biodiversity leading to suggestions that their protection is the next best alternative to 

conserving primary, old-growth forests. Restoring carbon stocks under Reducing Emissions 

from Deforestation and Forest Degradation (REDD+) schemes is a potential method for 

obtaining funding to protect logged forests, via enrichment planting and liberation cutting of 

vines. This study investigates the impacts of restoring logged forests in Borneo on avian 

phylogenetic diversity—the total evolutionary history shared across all species within a 

community—and on functional diversity, with important implications for the protection of 
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evolutionarily unique species and the provision of many ecosystem services. Overall and 

understorey avifaunal communities were studied using point count and mist-netting surveys, 

respectively. Restoration caused a significant loss in phylogenetic diversity and MPD (mean 

pairwise distance) leaving an overall bird community of less total evolutionary history and 

more closely related species compared to unlogged forests, while the understorey bird 

community had MNTD (mean nearest taxon distance) that returned towards the lower levels 

found in a primary forest, indicating more closely related species pairs. The overall bird 

community experienced a significant loss of functional strategies and species with more 

specialized traits in restored forests compared to that of unlogged forests, which led to 

functional clustering in the community. Restoration also led to a reduction in functional 

richness and thus niches occupied in the understorey bird community compared to unlogged 

forests. While there are additional benefits of restoration for forest regeneration, carbon 

sequestration, future timber harvests, and potentially reduced threat of forest conversion, this 

must be weighed against the apparent loss of phylogenetic and functional diversity from 

unlogged forest levels, making the biodiversity-friendliness of carbon sequestration schemes 

questionable under future REDD+ agreements. To reduce perverse biodiversity outcomes, it 

is important to focus restoration only on the most degraded areas or at reduced intensity 

where breaks between regimes are incorporated. 

 

Keywords: Biodiversity, Birds, Liana cutting, Payments for Ecosystem Services, REDD+, 

Restoration, Selective logging, Silviculture, Southeast Asia, Sustainable forest management 
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INTRODUCTION 

Selective logging is the most extensive land-use change in tropical ecosystems 

(Edwards et al. 2014b, Asner et al. 2009), causing structural damage and short-term changes 

in climatic conditions (Holdsworth and Uhl 1997, Laporte et al. 2007). Climbing vines and 

bamboos often over run the forest following logging, which impedes the ability of trees to 

regenerate (Putz et al. 2008, Osazuwa-Peters et al. 2015) and reduces the survival of 

disturbance sensitive-species that require dark, humid understorey conditions (Baraloto et al. 

2012, Edwards et al. 2014b). Because tropical forests harbour the highest amounts of 

biodiversity globally, the expansion of selectively logged forest to dominate forest cover 

instead of primary old-growth forest is a major conservation concern.  

Selective logging activities degraded 20% of tropical forests worldwide from 2000 – 

2005 and, presently, more than 400 million hectares of forests in the tropics are in permanent 

timber estates and are expected to remain under forest cover (Asner et al. 2009, Blaser et al. 

2011). Forests that have been degraded by selective logging activities are more prone to 

hunting, invasion by alien species and fires, and those that fall outside of permanent 

concessions are threatened by conversion to agriculture (Sheil and Meijaard 2005, Peres et al. 

2006, Padmanaba and Sheil 2014, Abood et al. 2015) – with agricultural conversion up to 

400% more likely than primary forests in the Brazilian Amazon (Asner et al. 2006). In 

combination, habitat degradation causes biodiversity to drastically decline (Wilcove et al. 

2013), with losses to degradation in the Brazilian Amazon as large as conservation losses 

from deforestation and particularly detrimental to species that are functionally valuable 

(Barlow et al. 2016).   

Protecting logged forests from conversion to agriculture and other risks associated with 

selective logging has been proposed as the next best alternative to protecting primary forests 

for biodiversity conservation (Meijaard and Sheil 2007, Chazdon et al. 2009, Edwards et al. 
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2011). This is because: (1) despite the altered conditions in the forest, selectively logged 

forests can retain high biodiversity levels, with the degree of retention in part dependent upon 

the logging regime used (Edwards et al. 2011, Putz et al. 2012, Bicknell et al. 2014, Martin et 

al. 2015); (2) it can be more cost-effective to protect logged forests than primary forests due 

to the reduced opportunity costs of foregone timber revenues (Fisher et al. 2011b); and (3) 

these logged forests could be used to connect or enlarge current protected areas (Edwards et 

al. 2014b). Obtaining funding and political will to protect these logged forests from 

conversion to agriculture is thus a critical issue. Enhancing carbon stocks via restoring 

degraded forests under payment for ecosystem service schemes such as the Reducing 

Emissions from Deforestation and Forest Degradation (REDD+) program is a potential 

mechanism to acquire such funding (Chazdon 2008). In the context of logging, restoration 

activities would enhance the background rate of carbon sequestration to yield carbon 

payments (Edwards et al. 2010). 

Some suggest that restoring logged forests has potential benefits to reverse biodiversity 

loss, accelerate forest regeneration, and improve timber harvests (Kobayashi 2007, Bekessy 

and Wintle 2008, Edwards et al. 2010, Gourlet-Fleury et al. 2013). However, others suggest 

there is a danger that these techniques cause further damage to logged-over forests, and are 

destructive carbon-farming that will erode biological value (Putz and Redford 2009, Sasaki 

and Putz 2009). There are two key types of restoration methods, which can be applied 

individually or together:  (1) enrichment planting of native trees, and (2) liberation cutting of 

competing vines, bamboos, herbaceous plants, or early successional trees (Putz et al. 2001a, 

Kobayashi 2007). Previous studies have shown that these two methods make logged forests 

better carbon sinks and encourage more rapid forest regeneration (Gourlet-Fleury et al. 2013, 

Wheeler et al. 2016). Research also suggests some positive effects on the diversity and 

community composition of tree (Wheeler et al. 2016), understorey avian (Edwards et al. 
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2009, Ansell et al. 2011) and invertebrate (Edwards et al. 2012) communities. However, 

before restoration can be accepted as an effective conservation strategy, we need to 

understand its impacts on species that are evolutionarily distinct or functionally important and 

which are vital for ecosystem processes.   

Species that are locally evolutionarily distinct are important for local ecosystem 

functions as they possess unique traits and occupy unique niches (Jetz et al. 2014). 

Evolutionary distinctiveness metrics – the amount of unique evolutionary history a species 

represents – can be included into biodiversity conservation strategies to preserve these unique 

traits and resulting ecosystem functions (Redding and Mooers 2006, Jetz et al. 2014). 

Phylogenetic diversity metrics (measures of evolutionary history and patterns of evolutionary 

relationships in a community) and functional diversity metrics (measures of species or 

community functional uniqueness and patterns of functional trait distribution in communities) 

are also important for conservation planning (Cadotte et al. 2011, Rolland et al. 2012, 

Gossner et al. 2013). These metrics can inform us on community assembly processes 

(Pavoine and Bonsall 2011), ecosystem functioning (Petchey et al. 2004, Cadotte, et al. 2009, 

2011, Bässler et al. 2014), intrinsic conservation value (Mace et al. 2003, Winter et al. 2013) 

and community resilience (Díaz et al. 2007, Cadotte et al. 2012).  

 Incorporating phylogenetic and functional diversity metrics provides us with important 

insights into community responses to environmental change. Phylogenetic diversity metrics 

are less affected by taxonomic revisions and more sensitive to inclusions of non-native 

species to an ecological community compared to species richness (Isaac et al. 2004, Meiri 

and Mace 2009). Functional diversity assessments can better reveal the state and resilience of 

a community’s functioning than does species richness or community composition (Petchey et 

al. 2004, Cadotte et al. 2009, Mouillot et al. 2013).  
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This study investigates the effects of restoring logged forests in the global biodiversity 

hotspot of Borneo (Myers et al. 2000), where extensive habitat degradation from selective 

logging has been responsible for many local species extinctions (Wilcove et al. 2013). We 

examine whether restoration management to improve forest structure and carbon stocks in 

selectively logged forests that are unhunted and unburned can also aid the recovery of 

biodiversity towards primary forest levels. This study focuses on phylogenetic and functional 

diversity impacts for both the entire (overall) and understorey avian communities. Birds are 

well-known taxonomically, have a global phylogeny (Jetz et al. 2012), are good indicators of 

responses to logging in other taxa (Edwards et al. 2014a) and play important roles for 

ecosystem functioning (Sekercioglu 2006). Restored logged forests were enrichment planted 

with native tree species and liberation cutting was performed on vines and climbing bamboos. 

The impacts of restoring logged forests were then compared to unlogged primary forests and 

naturally regenerating logged forests as controls. The aims were thus to: (1) determine how 

logged forest restoration affects the phylogenetic diversity of avian communities; and (2) 

determine how logged forest restoration affects the functional diversity of avian communities. 

Given the emerging forest restoration agenda globally (Pistorius and Freiberg 2014), the 

results will help to determine if restoration can aid biodiversity conservation and, if so, would 

lend further support for using carbon enhancement funding to protect selectively logged 

forests. 

 

MATERIALS AND METHODS 

STUDY SITE 

The study was conducted in the global biodiversity hotspot of the island of Borneo 

(Myers et al. 2000). Three habitat types (unlogged primary forests, naturally regenerating 

logged forests and restored forests that were previously logged at the same time as sampled 
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naturally regenerating logged forests) were surveyed in the lowland dry dipterocarp forests of 

the one million hectare Yayasan Sabah (YS) logging concession in Sabah, Malaysian Borneo. 

Within the YS concession is 45,200 ha of unlogged primary forests in the Danum Valley 

Conservation Area and adjacent Palum Tambun Watershed reserves, which are dominated by 

large dipterocarp trees (Dipterocarpaceae) valuable for timber (Fisher et al. 2011a) and 

represented our unlogged primary forests, and 238,000 ha naturally regenerating and restored 

logged forest in the adjacent Ulu Segama-Malua Forest Reserve (US-MFR).  

The US-MFR was selectively logged between 1976 and 1991 using a modified uniform 

system in which all commercially valuable trees of more than 60 cm diameter at breast height 

(DBH) were harvested using high lead cable extraction and tractor techniques, with ~113 m3 

of timber removed per hectare (Fisher et al. 2011b). Although some areas of the US-MFR 

were re-logged between 2001 and 2007 (Edwards et al. 2011), we focus on the once-logged 

forests. As a result of selective logging, the structure of logged forests is very different to that 

of unlogged forests. For instance, logged forest canopies have more gaps, a higher density of 

understorey vegetation and climbing bamboos (Berry et al. 2008, Ansell et al. 2011), as well 

as roads, logging dumps and skid trails that fragment the forest landscape (Pinard et al. 2000, 

Laporte et al. 2007). 

About 11,000 hectares of once-logged forests in the US-MFR were restored between 

1993 and 2011 by the Innoprise-FACE Foundation Rainforest Rehabilitation Project 

(INFAPRO), with another 14,000 hectares designated for future restoration (Ansell et al. 

2011). Restoration involved enrichment planting with a variety of native dipterocarp (95%) 

and wild fruit (5%) species along planting lines at densities of 200 seedlings per ha or lower 

and liberation cutting of all climbing bamboos and vines, 6 months before and 3 years after 

enrichment planting. Non-commercial understorey plants were also removed along the 

planting lines immediately before and 3 months after enrichment planting (see Ansell et al. 
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2011 for further details). Additionally, 500 ha of once-logged forest in the US-MFR were 

restored between 2002 and 2003 in the Sabah Biodiversity Experiment (SBE; Hector et al. 

2011), with liberation cutting and enrichment planting at densities of about 60 seedlings per 

ha.   

AVIFAUNAL SAMPLING 

Two avian communities were sampled during the drier seasons (Walsh and Newberry 

1999):  the overall (i.e. whole) bird community and the understorey bird community. Data for 

both communities were extracted from Ansell et al. (2011) and Edwards et al. (2013, 2014a). 

Sampled logged forests (naturally regenerating logged forests and restored forests that were 

previously logged) were harvested between 1987 and 1991, with restored forests enrichment 

planted between 1993 and 1995 (2002 and 2003 in SBE), and thus sampled 16-22 years post 

logging, with restored forests sampled 14-16 years (5-6 years in SBE) post restoration 

treatment.  

Overall bird community: Point count surveys with unlimited-radius were conducted 

from May – September 2008 and May – June 2009. At sites created within each habitat type, 

we sampled 12 point-count stations per site with each station separated by 250 m (48 point-

count stations in unlogged forests, 24 in naturally regenerating forests, and 36 (24 INFAPRO; 

12 SBE) in restored forests) (Appendix S1: Fig S1a). Studies in tropical forests have shown 

that bird census points or mist-net transects separated by more than 200 m are statistically 

independent (Hill and Hamer 2004). Point-count surveys occurred for 15 minutes on three 

consecutive days from 0545 – 1000 h. Each site was only sampled in one year, and any 

temporal effects (within or between years) were minimized by rotating sampling between the 

different habitat types. The highest number of individual birds recorded for a certain species 

on any of the three days was taken as our estimate of maximum abundance but not the 

species’ true abundance, which is unknown. All point counts were conducted by a single 
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experienced observer (D. P. Edwards) to minimise the potential for observer bias. The point 

count surveys resulted in 167 species across all habitat types. 

Understorey bird community:  Mist netting was conducted from June – October 2007, 

May – September 2008 and May – July 2009 to survey the cryptic lower-storey birds that can 

be undersampled using point counts (Blake and Loiselle 2001). Fifty-four transects were 

created (18 transects in unlogged primary forests, 18 in naturally regenerating logged forests 

and 18 (16 INFAPRO; 2 SBE) in restored logged forests) with transects within each habitat 

placed at least 500 m apart to ensure statistical independence (Appendix S1: Fig S1b). Each 

transect contained 15 mist nets (12 x 2.7 m; mesh size 25 mm) placed end to end. Sampling 

occurred for three consecutive days from 0600 – 1200 h. Each site was only sampled in one 

year, and any temporal effects (i.e., within or between years) were minimized by rotating 

sampling between the different habitat types. To ensure that individual birds were sampled 

only once, each bird was marked with a uniquely numbered metal leg ring. Totalling the 

unique individuals of each species across the three sampling days gave an estimate of 

maximum abundance, but not a species’ true abundance, which is unknown. A total of 100 

species were recorded in the mist net surveys across all habitat types. 

 

PHYLOGENETIC DIVERSITY & EVOLUTIONARY DISTINCTIVENESS 

MEASURES 

The following methods were conducted for the overall and understorey bird datasets. 

For each dataset, five hundred phylogenetic trees were downloaded from http://birdtree.org/ 

(Jetz et al. 2012) of which 250 trees were based on the Hackett et al. (2008) backbone and 

250 trees on the Ericson et al. (2006) backbone. Each phylogenetic tree represents a 

hypothesis of species evolutionary relationships that is different from the other. Six 
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abundance-weighted phylogenetic diversity metrics and one metric of local evolutionary 

distinctiveness were calculated for each of the 500 phylogenetic trees. These were: 

1. Phylogenetic Diversity (PD) – the total amount of evolutionary history in a community; 

2. Standard effect size of PD (sesPD) – PD taking into account species richness, as PD is 

correlated with species richness (Swenson 2014, Li et al. 2015). SesPD is calculated by 

comparing the PD of the observed community with the PD of null communities of equal 

species richness, which are created by drawing species at random from the regional 

species pool. Positive values of sesPD suggest that communities have higher PD values 

than expected for that given species richness and the opposite is true for negative values; 

3. Mean Pairwise Distance (MPD) – the average distance on a phylogenetic tree between all 

individuals of a community. High MPD values indicate that species are widely distributed 

across clades, while low MPD values indicate that species are phylogenetically clustered; 

4. Standard effect size of MPD (sesMPD) – MPD taking into account species richness. 

Positive values of sesMPD imply that communities have higher MPD than expected for 

that given species richness and the opposite is true for negative sesMPD values; 

5. Mean Nearest Taxon Distance (MNTD) – the average distance on a phylogenetic tree 

between individuals and their closest non-conspecific relative. High MNTD values suggest 

that individuals that are closely related do not co-occur in the community, while low 

MNTD values suggest that they occur in the community; 

6. Standard effect size of MNTD (sesMNTD) – MNTD taking into account species richness. 

Positive values of sesMNTD imply that communities have higher MNTD than expected 

for that given species richness and the opposite is true for negative sesMNTD values; 

7. Evolutionary Distinctiveness (ED) – the amount of unique evolutionary history 

represented by a species in a phylogenetic tree. A species with a high ED value indicates 

that it has no extant close relatives and vice versa. 
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A full description and equations of the phylogenetic metrics are given in the 

Supplementary Materials (see Appendix S1: Section S1). All seven metrics were calculated 

using the picante package (Kembel et al. 2010) in R (R Core Team 2016). To calculate the 

standard effect size (ses) for PD, MPD and MNTD, the observed community was compared 

against 999 null communities. These null communities were generated using null models 

with an independent swap algorithm which draws species at random from the regional 

species pool whilst maintaining species richness (Gotelli 2000). Local ED was used instead 

of global ED because species that are locally evolutionarily distinct are important for 

maintaining local ecosystem function (Crozier 1997, Hidasi-Neto et al. 2015). ED was 

calculated using the fair proportions method (Isaac et al. 2007) (Appendix S1: Table S3). To 

account for phylogenetic uncertainty, the mean values of each of the six phylogenetic 

diversity metrics and the median ED value were calculated from all 500 trees for each point 

count sample and each mist-net transect.  

 

FUNCTIONAL DIVERSITY MEASURES 

The following methods were conducted for the overall and understorey bird datasets. 

Functional diversity was evaluated using resource-use traits, which studies have shown to be 

functionally important (Flynn et al. 2009). Traits from four categories (Diet, Foraging 

substrate, Foraging strategy, Morphological) were used – the diet category determined the 

types of food eaten (e.g. fruit); foraging substrate determined where foraging takes place (e.g. 

ground); foraging strategy determined how the food item was obtained (e.g. sallying); and the 

morphological category determined the physical attributes of the species (e.g. body size) (see 

Appendix S1: Table S2 for more information on traits used). Data for the trait matrix was 

extracted from Smythies (1960) and Handbook of the Birds of the World Alive 

(http://www.hbw.com/), following Edwards et al. (2013).  
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Using the trait data, five complementary measures of functional diversity were 

measured: 

1. Functional Diversity (FD) – the total length of branches on a functional dendrogram 

(Petchey and Gaston 2002); 

2. Functional Richness (FRic) – the amount of functional space occupied by species in a 

community. High FRic values suggest that lots of niches are occupied by species in the 

community while the opposite is true for low values; 

3. Functional Evenness (FEve) – describes the distribution of species abundances in a 

community across functional space. High FEve values indicate that niches are evenly 

occupied and utilised, while low FEve values indicate that niches may be under-occupied 

and under-utilised; 

4. Functional Divergence (FDiv) – describes patterns of niche differentiation in a 

community. High FDiv implies that there is high niche differentiation within a 

community; low FDiv that there is low niche differentiation; 

5. Functional Specialization (FSpe) – measures the functional uniqueness of a community 

compared to the regional species pool. High FSpe values indicate that a community is 

more specialized, while communities with low FSpe values are less specialized. 

A full description and equations of the functional metrics are given in the 

Supplementary Materials (see Appendix S1: Section S1). FD was calculated starting with a 

trait matrix converted into a distance matrix and then into a functional dendrogram. The 

functional dendrogram was created using the extended Gower distance measure (Pavoine et 

al. 2009) using the vegan package (Oksanen et al. 2016) and an unweighted pair-group 

arithmetic average (UPGMA) clustering (Blackburn et al. 2005). The extended Gower 

distance measure is suitable for measuring a combination of variable types including binary, 

categorical, continuous and multi-choice nominal variables (Podani and Schmera 2006). The 
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UPGMA clustering method produced the highest cophenetic coefficient (overall bird 

community: 0.77; understorey bird community: 0.81), which suggests that the dendrogram 

accurately preserves the pairwise distances of the original data points (Petchey and Gaston 

2006). The functional dendrogram was then used to calculate FD using the picante package 

in R (Kembel et al. 2010) for each point count sample and each mist-net transect. 

FRic, FEve, FDiv and FSpe were calculated using Villéger et al.’s (2008, 2010) 

formulae and convex hull methodology (FD package in R: Laliberté et al. 2014). Using this 

method, traits are coordinates in multidimensional functional niche space which determines a 

species’ functional niche. Traits were weighted equally and species abundance was taken into 

account when calculating these metrics. The trait matrix was first converted to a distance 

matrix using the extended Gower distance measure (Pavoine et al. 2009) and then a principal 

coordinate analysis (PCoA) was carried out to produce a matrix of transformed coordinates 

(Villéger et al. 2008). The PCoA axes (overall bird community: n=6; understorey bird 

community: n=8) were then used to calculate the functional metrics for each point count 

sample and each mist-net transect. 

STATISTICAL ANALYSES 

All analyses were conducted separately for the overall bird and understorey bird 

communities. To study the effects of habitat type (unlogged, naturally regenerating logged, 

restored logged forests) on phylogenetic and functional diversity metrics for the overall bird 

community, we used linear mixed-effects models (LMMs). Analysis is at the point count 

level, which is unaffected by the imbalanced total number of point counts between habitats. 

Habitat type was included in the model as a fixed effect, while sampling site and the year 

sampled were included as random effects. LMMs were estimated using maximum likelihood 

from the lme4 package in R (Bates et al. 2015). Model residuals were checked for 

homoscedasticity and normality. FRic was the only metric that was log-transformed. Model 
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fit was compared using Akaike Information Criterion (AIC) (Anderson 2008) where the best 

models had the lowest AIC values. The amount of variation explained by each model’s fixed 

and random effects was calculated using Nagakawa and Schielzeth’s R2 (Nakagawa and 

Schielzeth 2013) from the MuMIn package in R (Barton 2016). Pairwise comparisons were 

conducted using Tukey post hoc tests in the multcomp package in R (Hothorn et al. 2008). 

Inclusion of data from SBE did not affect our results, and so we present only the full analysis.  

To study the effects of habitat type on phylogenetic and functional diversity metrics for 

the understorey community, ANOVA models were used; since mist-net transects were not 

aggregated into sites, no nested random effects were included. The ANOVA models were 

built using the lm function in R (R Core Team 2016). Model residuals were checked for 

homoscedasticity and normality. FRic was the only metric that was log-transformed. Model 

fit was tested using the AICcmodavg package in R (Mazerolle 2016). The best models were 

selected based on their AIC values of which the lowest values indicated the best models. 

Pairwise comparisons were then conducted using Tukey post hoc tests in the multcomp 

package (Hothorn et al. 2008). Inclusion of data from SBE did not affect our results, and so 

we present only the full analysis. 

Correlation plots between the different phylogenetic metrics and between the different 

functional metrics for both the overall bird and understorey bird community are included in 

the Supplementary Materials (Appendix S1: Fig S2). To check whether spatial 

autocorrelation influenced any results at the point or transect levels, the Moran’s I statistic 

was used from the spdep package in R (Bivand and Piras 2015) using model residuals with 

1000 repetitions. All analyses were done on RStudio (R Core Team 2016). 
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RESULTS 

A total of 87 species were shared between the point count and mist net datasets, with 

both datasets sampling unique components of the avian community (point counts = 80 

species; mist nets = 13 species) (Appendix S1: Table S1).  

 

PHYLOGENETIC DIVERSITY & EVOLUTIONARY DISTINCTIVENESS 

The phylogenetic metrics of both the overall bird and the understorey bird community 

tended to be significantly correlated (Appendix S1: Fig S2). Spatial autocorrelation was not 

detected for any of the residuals for phylogenetic diversity and evolutionary distinctiveness 

models (Moran’s I test: all p>0.4). 

Overall Bird Community 

Including habitat type as a fixed effect improved model fit for all metrics except 

MNTD (Table 1). Pairwise comparisons showed that restored forests had significantly lower 

PD than unlogged (p=0.003) and naturally regenerating forests (p=0.020), which did not 

differ significantly (p=0.989, Fig 1a). Restored forests had significantly lower sesPD than 

unlogged forests (p=0.014, Fig 1b), while naturally regenerating forests did not significantly 

differ with restored (p=0.394) or unlogged forests (p=0.518). MPD and sesMPD in restored 

forests was significantly lower compared to naturally regenerating (MPD: p=0.003; sesMPD: 

p=0.012) and unlogged forests (MPD: p<0.001; sesMPD: p<0.001) (MPD: Fig 1c; sesMPD: 

Fig 1d), which did not differ significantly (MPD: p=0.178; sesMPD: p=0.111). There was no 

significant difference between habitat pairs for MNTD (p>0.3, Appendix S1: Fig S3a), 

sesMNTD (p>0.054, Appendix S1: Fig S3b) and ED (p>0.1, Appendix S1: Fig S4a).  
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Understorey Bird Community 

Including habitat type as a fixed effect improved model fit for PD, MPD, MNTD and 

sesMNTD, but not for sesPD, sesMPD and ED (Table 2). Naturally regenerating forests had 

significantly higher MNTD and sesMNTD than restored (MNTD: p=0.0436; sesMNTD: 

p=0.008) and unlogged forests (MNTD: p=0.011; sesMNTD: p=0.036) (MNTD: Fig 1e; 

sesMNTD: Fig 1f), which did not differ significantly (MNTD: p=0.844; sesMNTD: p=0.841. 

Pairwise comparisons revealed that all habitat pairs were not significantly different for PD 

(p>0.08, Appendix S1: Fig S3c), sesPD (p>0.4, Appendix S1: Fig S3d), MPD (p>0.08, 

Appendix S1: Fig S3e), sesMPD (p>0.1, Appendix S1: Fig S3f) and ED (p>0.8, Appendix 

S1: Fig S4b).  

 

FUNCTIONAL DIVERSITY 

The functional metrics of both the overall bird and the understorey bird community 

were less strongly correlated than the phylogenetic metrics (Appendix S1: Fig S2), with no or 

only weak correlations between FD and FRic versus FEve and FDiv. Spatial autocorrelation 

was not detected for any of the residuals for functional diversity models (Moran’s I test: all 

p>0.09). 

 

Overall Bird Community 

Models with habitat type included as a fixed effect improved model fit for all metrics 

(Table 1). Pairwise comparisons reveal that FD was significantly lower in restored forests 

than in naturally regenerating (p=0.023) and unlogged (p<0.001) forests, which did not differ 

significantly (p=0.880; Fig 2a). Restored forests had significantly lower FRic (p<0.001, Fig 

2b) and FEve (p=0.043, Fig 2c) than unlogged forests, while naturally regenerating forests 
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did not significantly differ with restored (FRic: p=0.147; FEve: p=0.743) or unlogged forests 

(FRic: p=0.441; FEve: p=0.369). Logging significantly reduced FDiv (p=0.039; Appendix 

S1: Fig S5a) and FSpe (p<0.001; Appendix S1: Fig S5b), which were unaffected by 

restoration (FDiv: p=0.964; FSpe: p=0.432).  

 

Understorey Bird Community 

Including habitat type as a fixed effect improved model fit for FD and FRic, but not for 

FEve and FDiv (Table 2). FRic in restored forests was significantly lower than in naturally 

regenerating (p=0.031) and unlogged forests (p=0.018) (Fig 2d), which did not differ 

significantly (p=0.975, Fig 2d). Pairwise comparisons showed no significant differences for 

FD (p>0.07), FEve (p>0.4), FDiv (p>0.9) and FSpe (p>0.1) (Appendix S1: Fig S5c-f).  

 

DISCUSSION 

It has become increasingly urgent to find ways of ensuring the retention of conservation 

values within selectively logged forests, and to protect these forests from conversion to 

agricultural lands. Funding via carbon enhancements under REDD+ could increase the 

economic value of these degraded forests (Edwards et al. 2010). Here we investigated the 

impacts of forest restoration on the phylogenetic and functional diversity of birds where 

restoration is a management technique applied to selectively logged forests that have not been 

burned. The interpretation of these metrics only applies to our sampled communities and we 

thus caution against extrapolating these inferences to species occurring in our sample areas 

that we did not detect or to communities living in ecosystems with different habitat 

structures. We found that restoration caused a loss in evolutionary history, functional 

strategies and species with more specialized traits in our sampled overall bird community 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

compared to those of unlogged and naturally regenerating forests, leaving behind a 

community with more closely related species and more functional clustering. For most 

metrics, our sampled understorey bird community was robust to restoration, with restoration 

returning MNTD (mean nearest taxon distance) levels towards unlogged forest levels, 

perhaps indicating the return of forest specialist species, but with reduced functional 

strategies (FRic). On balance, therefore, the biodiversity-friendliness of carbon sequestration 

schemes under future REDD+ agreements is questionable. 

 

PHYLOGENETIC DIVERSITY 

Restoration significantly decreased PD, MPD and sesMPD of the overall bird 

community compared to that of unlogged forests and naturally regenerating forests, and 

restoration resulted in lower sesPD compared to unlogged forest, which did not differ to 

naturally regenerating forest. These reductions suggest a loss of evolutionary history which 

leaves behind a community with more closely related species as different environmental 

conditions would alter the likeliness of different clades to survive in that environment (i.e. 

environmental filtering) (Webb et al. 2002). Other studies have shown decreases in PD and 

MPD with land-use change, especially those that involve more drastic habitat change such as 

forest conversion to agriculture (Frishkoff et al. 2014, Prescott et al. 2016).  

The loss of phylogenetic diversity could result from restoration altering the structure of 

the forest understorey, with a more open understorey with fewer shrubs and lianas (Ansell et 

al. 2011). Many generalists and understorey frugivores depend on the fruits produced by 

these understorey shrubs and vines while insectivores rely on vine tangles which trap leaf-

litter to provide them with a foraging substrate. The vines are also an important nesting site 

and refuge for many bird species (Putz et al. 2001a). Furthermore, birds that forage by 
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sallying prefer undisturbed forests with clear understorey (Thiollay 1992, Ansell et al. 2011). 

A decrease in MPD and the maintenance of MNTD in the overall bird community after 

restoration suggests that species that replaced those lost after restoration were similarly 

closely related to those that were lost. 

The phylogenetic diversity (PD, sesPD, MPD, sesMPD) of the understorey bird 

community was largely unaffected by logging and subsequent restoration. Restoration 

returned MNTD and sesMNTD of the understorey bird community from elevated levels in 

naturally regenerating forest to those found in unlogged forest. This implies that there is a 

coexistence of closely related species, most likely returning forest specialists (Ansell et al. 

2011, Prescott et al. 2016), in restored and unlogged forests compared to that of naturally 

regenerating forests. ED of both the overall bird and understorey bird community did not 

differ between habitats indicating a similar amount of unique genes and traits across the 

habitat types. This is not surprising considering that these habitat types would tend to harbour 

species that have been adapted to forested lands. In the context of understorey birds and all 

evolutionary distinct species, these results represent positives or at least no negative impacts 

of restoration.  

 

FUNCTIONAL DIVERSITY 

The functional diversity of the overall bird community experienced some negative 

effects from restoration, with a decline in FD relative to unlogged and naturally regenerating 

forest, and restoration resulted in lower FRic and FEve compared to unlogged forest, which 

did not differ to naturally regenerating forest. These suggest a loss of species and functional 

strategies (Duffy 2002, Laliberté et al. 2010), which could be attributable to environmental 

filtering effects. Changes in the resources, structure and microclimate of restored forests 
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(Ansell et al. 2011, Berry et al. 2008) could reduce the ability of sensitive species to inhabit 

these forests (Belmaker et al. 2012, Edwards et al. 2014b). Loss of FD after habitat change 

also occurs in anurans (Ernst et al. 2006), birds (Devictor et al. 2008, Edwards et al. 2013), 

mammals (Flynn et al. 2009), and dung beetles (Edwards et al. 2014c). The loss of functional 

groups from ecosystems has the potential to have negative implications on food web stability, 

invasion resistance and ultimately ecosystem functioning (Mason et al. 2005, Flynn et al. 

2009, Cadotte et al. 2011), with some available resources in the habitat likely unused. 

Lower FEve implies that there is a less even distribution of abundance of functionally 

different species and their distances in functional space are less regular (Villéger et al. 2008). 

This indicates functional clustering, where several species with similar traits occupy the same 

resource-use niches (Edwards et al. 2013), which could increase the functional redundancy of 

species niches, making the community more robust to future disturbances (Schleuning et al. 

2012).  

Restoration had very few impacts on the functional diversity of the understorey bird 

community, although FRic declined below both unlogged and naturally regenerating forest 

levels. This indicates lower resource-use efficiency in the community, as some niches remain 

unoccupied (Mason et al. 2005). This is to be expected since dense vegetation species would 

tend to be most affected by the removal of vines and understorey shrubs (Putz et al. 2001a). 

The maintenance of FEve, FDiv and FSpe in the understorey bird community across habitats 

implies that any loss of FD from logging is offset by species with similar functional traits 

occupying the vacant niches and that resource utilisation is robust to logging and restoration 

activities (Edwards et al. 2013, 2014c). 
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SAMPLING LIMITATIONS 

Our study only observed the impacts of restoration on one taxa; however, birds have 

been shown to be a good indicator group for biodiversity responses as a whole (Edwards et 

al. 2014a, Barlow et al. 2007). Previous studies on restoration impacts have also used birds 

(Edwards et al. 2009, Ansell et al. 2011) and invertebrates (Edwards et al. 2012), suggesting 

that studying impacts on trees and plants—some of which are directly subjected to cutting or 

planting—is an important research direction. This study was also only conducted in one 

region and there is a need to assess restoration impacts in other regions where logging 

intensities are frequently lower (Putz et al. 2001b). 

Detection biases can result from numerous sources such as the cryptic nature of species, 

the observer’s ability to detect species, and variation in vegetation densities between habitats, 

and failure to account for these biases in detection can lead to erroneous conclusions (Banks-

Leite et al. 2014). Because we focused on spatial replication, we did not have enough repeats 

at each point count or mist-net transect to statistically partition habitat-specific occupancy 

and detection probabilities in an occupancy modelling framework (Welsh et al. 2013). If 

some species are in fact easier to detect in one forest type, apparent diversity metrics in our 

analyses might therefore be biased relative to other habitats (but see Banks-Leite et al. 2014 

who show that using unadjusted data gave similar results on the impacts of tropical land-use 

change in the Brazilian Atlantic Forest to detection adjusted data). However, all surveyed 

habitat types were in dense forest with similar vegetative structure, and we controlled for 

potential temporal variation in detection by rotating sampling amongst habitat types within 

and between years and by including the year sampled as a random term in our analyses. Our 

broadly similar results using two very different sample methods (point counts and mist-nets) 

provide strong support for the validity of our conclusions (Barlow et al. 2007).  
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Nevertheless, we recommend that future studies use more robust methods of estimating 

species abundance that account for detection probability, which is important when deriving 

measures of functional and phylogenetic diversity (Jarzyna and Jetz 2016). Methods to 

account for detection probability in point count data include distance sampling (Buckland et 

al. 2001), multiple observer methods (Nichols et al. 2000) and N-mixture models (Royle 

2004). Another method by Clement et al. (2015) utilises the assumption that populations have 

a fission-fusion grouping, where a population is made up of individual groups that change 

composition and size depending on individual movements around groups. Finally, for mist-

net sampled data, estimates of abundance that have accounted for detection biases can be 

obtained from closed population capture-mark-recapture models (Otis et al. 1978), provided 

that enough recaptures are acquired within years. It is also possible to obtain these abundance 

estimates for studies across years using Jolly-Seber models (Jolly 1965, Seber 1965, Schwarz 

and Arnason 1996) or Robust Design methods (Pollock 1982). 

 

CONSERVATION AND MANAGEMENT IMPLICATIONS 

There are both positives and negatives of these results for conservation, which must be 

considered within the context of restoration of logged over forests offering forest 

regeneration, carbon sequestration, and improved future timber harvests benefits, plus 

potentially reduced threat of forest conversion to agriculture (which if true is an enormous 

benefit). On the positive side, phylogenetic and most functional diversity metrics of the 

understorey bird community were not adversely affected by restoration, while MNTD 

returned to pre-logging levels after restoration. Thus, restoration management of logged 

forests evidently retains important evolutionary history, evolutionarily distinct species, and 

ecosystem functions within the understorey. On the negative side, however, phylogenetic and 
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functional diversity of the overall bird community was lower in restored forests than in 

unlogged forests, probably indicating that the main drivers of change are those species living 

above understorey level. These reductions likely underscore losses of evolutionary history, 

evolutionarily distinct species, and ecosystem functions. Future research should also 

determine whether other taxa respond in a same way to the avian communities.  

Since liberation cutting in logged forests reduces the abundance of species dependent 

on dense vegetation, it has been proposed that breaks be incorporated into the liberation 

cutting regime so as to retain critical dense tangle microhabitats similar to those of unlogged 

forests (Ansell et al. 2011), which could benefit biodiversity (Levey 1988, Schnitzer and 

Carson 2001). However, these breaks could cause a decline in the rate of tree recovery and 

thus carbon sequestration, which could reduce the overall ecosystem service benefits of 

restoration. Research is urgently needed into the precise impacts of liberation cutting as the 

most economically viable tool for forest restoration, given that seedlings are expensive to 

cultivate. 

The use of restoration as a tool for obtaining carbon enhancement funding under 

REDD+ should only be conducted on logged-over forests that will not be subjected to future 

logging activities. Restoring logged forests under REDD+ when a core aim is to increase 

future timber yields is unlikely to provide long-term benefits for carbon stocking, and may 

instead be detrimental to long-term biodiversity and carbon sequestration potential. 

Furthermore, restoring degraded forests should depend on the state of the forest since less 

degraded forests would not benefit much in terms of carbon sequestration (Kobayashi 2007) 

and our results suggest would likely suffer negative impacts on phylogenetic and functional 

diversity. On the flip side, in heavily degraded areas, the added ecosystem service benefits of 

restoration may well outweigh any biodiversity costs, especially if a less intensive liberation-

cutting regime is used. This trade-off in forest management strategy has been demonstrated in 
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temperate and boreal ecosystems, which highlights the need for new procedures to reconcile 

this paradox (Thom and Seidl 2016). Enhancing carbon via restoring degraded forests still 

represents an important aspect in the future REDD+ agreement, but this must be applied with 

care to ensure that these are biodiversity-friendly schemes. 
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TABLE 1. Model selection of linear mixed-effects models for the overall bird community. Models 

were selected for all phylogenetic diversity, evolutionary distinctiveness and functional diversity 

metrics in relation to habitat type based on their AIC values. The null models include only point and 

site as nested random effects. Best models are highlighted in bold. AIC = Akaike Information 

Criterion; ΔAIC = the AIC difference between the best model and the stated model; Marginal R2 = 

variation explained by fixed effects (Habitat); Conditional R2 = variation explained by the model.  

 

Phylogenetic Diversity & Evolutionary Distinctiveness 

Response 

variable 

Model AIC 
∆AIC Marginal R

2 
Conditional 

R
2 

PD Habitat 1453.60 0.00 0.16 0.25 
 Null 1459.30 5.70 0.00 0.32 
sesPD Habitat 241.90 0.00 0.07 0.07 
 Null 244.83 2.93 0.00 0.06 
MPD Habitat 841.63 0.00 0.25 0.25 
 Null 855.88 14.25 0.00 0.24 
sesMPD Habitat 252.75 0.00 0.25 0.33 
 Null 262.32 9.57 0.00 0.24 
MNTD Null 760.83 0.00 0.00 2.59e-15 
 Habitat 761.94 1.11 0.03 0.03 
sesMNTD Habitat 256.44 0.00 0.05 0.05 
 Null 257.88 1.44 0.00 0.02 
ED Habitat 459.49 0.00 0.04 0.04 
 Null 460.24 0.75 0.00 2.75e-20 

Functional Diversity 

Response 

variable 

Model AIC 
∆AIC Marginal R

2 
Conditional 

R
2 

FD Habitat 16.72 0.00 0.14 0.27 
 Null 25.27 8.55 0.00 0.36 
FRic Habitat 219.84 0.00 0.15 0.33 
 Null 226.30 6.46 0.00 0.42 
FEve Habitat -297.22 0.00 0.05 0.05 
 Null -295.47 1.75 0.00 0.03 
FDiv Habitat -404.39 0.00 0.07 0.07 
 Null -399.93 4.46 0.00 0.02 
FSpe Habitat 114.79 0.00 0.22 0.27 
 Null 126.18 11.39 0.00 0.30 
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TABLE 2. Model selection of ANOVA models for the understorey bird community. Models were 

selected for all phylogenetic diversity, evolutionary distinctiveness and functional diversity metrics in 

relation to habitat type based on their AIC values. Best models are highlighted in bold. K = number of 

parameters; AIC = Akaike Information Criterion; ΔAIC = the AIC difference between the best model 

and the stated model; AICWt = AIC weights; Cum.Wt = Cumulative Akaike weights; LL = maximum 

likelihood. 

 

Phylogenetic Diversity & Evolutionary Distinctiveness 

Response 

variable 

Model K AIC 
∆AIC AICWt Cum.Wt

 
LL

 

PD Habitat 4 702.43 0.00 0.68 0.68 -347.22 
 Null 2 703.90 1.47 0.32 1.00 -349.95 
sesPD Null 2  151.39      0.00   0.76    0.76 -73.70 
 Habitat 4  153.73      2.34   0.24    1.00 -72.87 
MPD Habitat 4  398.06      0.00   0.61    0.61 -195.03 
 Null 2  398.91      0.86   0.39    1.00 -197.46 
sesMPD Null 2  129.64      0.00   0.55    0.55 -62.82 
 Habitat 4  130.07      0.43   0.45    1.00 -61.03 
MNTD Habitat 4  368.37      0.00  0.95   0.95 -180.18
 Null 2  374.38      6.02   0.05    1.00 -185.19 
sesMNTD Habitat 4  127.40      0.00   0.96    0.96 -59.70 

 Null 2  133.95      6.55  0.04   1.00 -64.98 
ED Null 2  264.92      0.00   0.86    0.86 -130.46 

 Habitat 4  268.60      3.69   0.14    1.00 -130.30 

Functional Diversity 

Response 

variable 

Model K AIC 
∆AIC AICWt Cum.Wt

 
LL

 

FD Habitat 4   -23.38      0.00   0.7     0.7 15.69 
 Null 2  -21.66      1.72   0.3     1.0 12.83 
FRic Habitat 4  244.10      0.00   0.94    0.94 -118.05 
 Null 2  249.73      5.64   0.06    1.00 -122.87 
FEve Null 2  -152.86      0.00   0.79    0.79 78.43 
 Habitat 4  -150.25      2.61   0.21    1.00 79.12 
FDiv Null 2  -185.65      0.00  0.87   0.87 94.82 
 Habitat 4  -181.82      3.82   0.13    1.00 94.91 
FSpe Null 4  33.23      0.00   0.56    0.56 -12.62 
 Habitat 2  33.67      0.44  0.44   1.00 -14.84 
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FIG 1. Habitat effects on the phylogenetic diversity of the overall bird (a – d) and 

understorey bird (e, f) communities. (a) Phylogenetic diversity (PD); (b) Standard effect size 

of PD (sesPD); (c) Mean pairwise distance (MPD); (d) Standard effect size of MPD 

(sesMPD); (e) Mean nearest taxon distance (MNTD); (f) Standard effect size of MNTD 

(sesMNTD). The bottom and top of the boxplots represent the first and third quartiles, 

respectively, the bold line represents the median, and the points represent outliers. Different 

symbols indicate that there is a significant difference between the habitat types (p<0.05); 

similar symbols indicate no significant difference.  

FIG 2. Habitat effects on the functional diversity of the overall bird (a – c) and understorey 

bird (d) communities. (a) Functional diversity (FD); (b) Functional richness (FRic); (c) 

Functional evenness (FEve); (d) Functional richness, understorey (FRic). FRic is logarithmic 

for visual clarity. The bottom and top of the boxplots represent the first and third quartiles, 

respectively, the bold line represents the median, and the points represent outliers. Different 

symbols indicate that there is a significant difference between the habitat types (p<0.05); 

similar symbols indicate no significant difference. 
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