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ABSTRACT

As the number and variety of devices being used to access theWorld

Wide Web grows exponentially, ensuring the correct presentation

of a web page, regardless of the device used to browse it, is an

important and challenging task. When developers adopt responsive

web design (RWD) techniques, web pages modify their appearance

to accommodate a device’s display constraints. However, a cur-

rent lack of automated support means that presentation failures

may go undetected in a page’s layout when rendered for different

viewport sizes. A central problem is the difficulty in providing

an automated “oracle” to validate RWD layouts against, meaning

that checking for failures is largely a manual process in practice,

which results in layout failures in many live responsive web sites.

�is paper presents an automated failure detection technique that

checks the consistency of a responsive page’s layout across a range

of viewport widths, obviating the need for an explicit oracle. In an

empirical study, this method found failures in 16 of 26 real-world

production pages studied, detecting 33 distinct failures in total.
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1 INTRODUCTION

�e last decade has seen an explosion in the number and variety

of devices being used to access the web [1]. As mobile-readiness

increasingly drives site profitability [22] — and since web pages de-

signed for large desktop displays are not, in general, easy to view or

use on smaller screens — it is crucial for web developers to accom-

modate all available devices. Due to the plethora of screen sizes,

from small to large phones, “phablets” and “mini” and “pro” tablets,

maintaining only a single “mobile version” of a web site alongside

an existing desktop version is no longer a satisfactory option [34].

Responsive web design (RWD) is a recent design and imple-

mentation approach enabling developers to build web pages that

provide an equivalent user experience regardless of device size [32].

RWD enables a web page to dynamically modify its layout to adapt

or “respond” to the size of a device’s display, rather than requiring
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users to pan around pages that are too wide to fit on a smaller

screen, or zoom portions that, while legible on a desktop display,

are too small to read on a mobile phone. If there is more content

than available space, the user should only need to scroll the page

vertically [7]. �us, in the context of RWD, browser viewport width

is the key determinant as to how web page layout should adjust [2].

Given the clear benefits of RWD, the problem of automatically

checking for presentation failures — visual discrepancies in the ren-

dering of a web page that cause it to deviate from its intended

appearance — is an important one. Since the aesthetics and layout

of a web site have been shown to affect its perceived usability [26]

and accessibility [33], boost its credibility [37], and engender user

loyalty [23], it is of li�le surprise that visible failures in an organi-

zation’s web site can lead to lost revenue [27].

However, the process of developing a responsive layout that

adapts to varying display constraints introduces new possibilities

for presentation problems. As viewport space tightens in unantici-

pated ways, web page elements may start to overlap, overspill their

containers, or wrap incongruously, leading to ugly visual effects or

inaccessible content. Defects in layout rules may cause elements

to appear in the wrong position, be displayed when they should

not be, or not be visible at all. To compound the problem, these

failures can occur intermi�ently at different viewport widths. �e

fact that a responsive layout failure (RLF) may occur at only a single

width effectively explodes the number of presentational states of

a web page that must be checked — as it may be viewed on small

smartphone displays that are as narrow as 320 pixels wide up to

larger laptop or desktop displays of 1024 pixels wide or more.

Despite these problems there has been almost no previous re-

search on automatic RLF detection. Our previous work [40] is

limited to detecting differences between one responsive web page

and a previous development version, presenting a technique that

extracts a “responsive layout graph” (RLG) of a page that models its

layout over a range of viewport widths. �is approach derives an

RLG for each page, reporting differences between the two graphs.

However, a developer must then decide which reported differences

are intended changes and which are unintended layout failures. By

nature, the approach is limited to only detecting regression issues

— it is not useful when a previous version of the web page is not

available, nor is it easily applied if the previous version of the page

is so far removed from the current one that an overwhelming num-

ber of differences are reported. Furthermore, it will not report any

failures that are present in both versions of the web page and as

such do not represent differences between the two.

While other methods for detecting presentation failures also

rely on graph comparison approaches, they do so for orthogonal

problems. For instance, work on detecting cross-browser issues

(XBIs) [38] involves extracting a model of web page layout (i.e.,

an “alignment graph”) of a page in two different browsers. Any
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difference in the graph extracted from the two different browser

renderings is reported as an XBI. Work on detecting international

presentation failures (IPFs) aims to find differences in the layout of

a page when its text is presented in two distinct languages [17]. A

graph modeling page layout is extracted for the two different lan-

guages and compared with the intent of finding layout differences.

�ese approaches cannot handle responsive designs, since their

graphs only model layout at a single viewport width. Nor can these

graphs be compared for different viewport widths, since layout at

these widths may vary intentionally, as per RWD principles.

A central problem in checking responsive web pages for layout

failures, therefore, is the difficulty in providing a mechanism for

distinguishing true failures from intended aesthetics and layouts —

also known as an oracle. All of the previously discussed approaches

use an alternative version of the page as an oracle — represented

as a graph — but are not designed to find RLFs (in the case of XBI

and IPF detection [17, 38]) or pinpoint RLFs as opposed to general

changes (in the case of RWD regression checking [40]). Like current

work on XBI and IPF detection, other methods for detecting presen-

tation failures in web pages also only handle the non-responsive

case, assuming a fixed viewport size and static layout. �ese in-

clude approaches that require a designer-provided mockup image

of a web page to compare against (e.g., [30]), or the specification of

layout constraints (e.g., [24]). Adapting these approaches to handle

responsive designs would require many mockup images to be pro-

vided. Or, it would require new ways to express layout constraints

so that they can be applied to responsive web layouts — along with

the effort needed to specify them for each new page to be checked.

Given this situation, current RWD development practice relies on

the human functioning as the oracle, in a manual spotchecking

process that may lead to RLFs being overlooked.

Addressing these concerns, we present an automated technique

that can detect five types of responsive layout failure found to be

prevalent in real-world production pages, without the need of an

explicit oracle, such as a series of mockup images, complex layout

specifications, or a graph model of the page to compare against. Our

approach instead relies on implicit oracle knowledge [18] of com-

mon responsive failure types, automatically checking the layout of

a responsive web page against itself and comparing the positioning

of elements relative to one another at different viewport widths.

For example, two web page elements may overlap because of

an intended graphical effect, or, because they have “collided” as

horizontal screen space has decreased. Our approach differenti-

ates the two by checking their layout behavior across consecutive

viewport widths. If the elements always overlap, the effect is likely

intended and/or easily noticed by a developer in amanual spotcheck.

If the elements overlap infrequently, however, a subtle RLF is likely

to be occurring. Our approach applies similar principles to detect

inconsistent element wrapping; layouts that only exist for only one

or two viewport widths; and intermi�ent protrusions of content

into other elements, or out of the viewport entirely. Overall, we

define four algorithms that detect these five types of RLF.

We applied our automated technique to 26 real-world production

web pages. Experiments show that our approach can find failures in

16 web pages, detecting 33 distinct failures in total. Our evaluation

further revealed that applying a manual spotchecking process with

the assistance of currently-available tools missed between 19% and

34% of the RLFs that our technique can automatically detect.

In summary, the important contributions of this paper are:

(1) A categorization of five different types of responsive layout

failures (RLFs) discoverable without the need of explicit oracles.

(2) Four algorithms that can automatically detect the five types of

layout failures in responsively designed web pages.

(3) An empirical study that incorporates 26 randomly selected

production web pages, showing that the RLF types identified

are prevalent in live sites and that our algorithms are capable

of detecting them, with 33 distinct failures found in total.

2 BACKGROUND
Fluid grids, flexible media, and media queries are all core concepts

of RWD that support the design of web pages that accommodate all

devices and viewport widths [32], and can be implemented using

HTML and cascading style sheet (CSS) code or imported through the

use of an RWD framework, such as Bootstrap [6] or Foundation [9].

Fluid grids allow HTML elements to be arranged in layouts that

smoothly adjust according to the viewport width, while flexible

media refer to, for instance, images that stretch or shrink in size,

depending on the available space. Media queries allow developers

to activate specific CSS rules whenever a set of conditions regarding

the user’s device or browser are met [32]. For example, any CSS

rules contained within the media query @media(max-width:767px)

would activate if a user’s device had a narrow screen width, while

@media(min-width:1200px) would trigger CSS rules when the page

is viewed on the wide-screen display of a desktop computer.

One well-known practice for testing responsive web sites in-

volves the display and manual checking of a page’s content on

an array of physical devices with different viewport widths [36].

As testing using individual devices is a time consuming process,

and a developer may not have access to all devices currently in

popular use, a common strategy is to perform as much testing

as possible through “spotchecking”. �is is a manual process in

which a developer checks a web page at a few common viewport

widths, o�en using a desktop browser. Spotchecking is supported

by several tools capable of displaying a page within a customized

viewport of a configurable size. Examples of such utilities include

Responsinator [12], Responsive Design Checker [13], and Viewport

Resizer [15]. Yet, the complexity of the HTML and CSS code needed

to create a web page with a correct responsive design [19] — and

the error-prone and time-consuming nature of the aforementioned

approaches — still result in RLFs appearing on production web sites.

For instance, Figure 1 gives screenshots of five responsively

designed web pages that contain RLFs that are emblematic of the

challenges inherent in RWD, each of which was detected by the

prototype tool that we present in this paper. Parts 1a and 1b of this

figure highlight a responsive layout failure that was confirmed by

the support staff for the ConsumerReports site [16]. At the wider

viewport width (part 1b), the titles of the featured articles are visible.

Yet, as the viewport becomes narrower, only a portion of the titles

are visible (part 1a), thus limiting access to the featured reports.
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(a) ConsumerReports ✗ (b) ConsumerReports ✓

(c) MidwayMeetup ✗ (d) MidwayMeetup ✓

(e) PDFescape ✗ (f) PDFescape ✓

(g) Cloudconvert ✗ (h) Cloudconvert ✓

(i) BugMeNot ✗ (j) BugMeNot ✓

Figure 1: Web pages with responsive layout failures (RLFs)

3 AUTOMATIC FAILURE DETECTION FOR
RESPONSIVE WEB DESIGNS

�is section defines five distinct types of responsive layout failure

(RLF) that are both problematic for RWD and can be identified

automatically through algorithms that do not require an explicit

oracle, such as an alternative reference version of the web page,

mockup images, or a complex specification of layout constraints.

Instead, our approach works by automatically extracting a model

of a web page’s responsive layout, and then analyzing this model

for potential failures by cross-checking its layout at different view-

port widths. We present the web page model first (Section 3.1). We

then introduce five types of RLF prevalent in responsive web pages,

along with the definition of four algorithms that can be used to

detect them with the web page model (Section 3.2).

3.1 Basic Concept: �e rRLG

�e basis of our RLF detection process is a model of a page’s re-

sponsive layout that is a refinement of the Responsive Layout

Graph (RLG) [40]. �e RLG differs from other layout graph models

of a web page (e.g., the “alignment graph” of Choudhary et al. [38]

and the “layout graph” of Alameer et al. [17]) in that it models the

layout of a web page over a range of viewport widths — rather than

a single, static width — in order to capture its responsive design.

An RLG is automatically obtained by querying the Document

Object Model (DOM) of a web page to find the HTML elements

involved in the page, and their co-ordinates, at different view-

port widths. �e RLG organizes this information to track the dy-

namic visibility and relative alignment of these HTML elements as

the layout of the page adjusts in relation to viewport width, in accor-

dance with its responsive design. �e “refined RLG” (rRLG) differs

from our original RLG [40] in that it does not model the width of

web page elements through “width constraints”. While designed

to trap regression issues in pages [40], width constraints do not

contribute to detecting the five common types of RLF introduced

in this paper; as such the rRLG does not model them.

An example rRLG is furnished by Figure 2 for the web page de-

picted, by wireframes, at two different viewport widths. �e page

involves the HTML elements div[1]–div[3], which are stacked on

top of each other for narrow viewports, requiring the user to scroll

to bring each into view. For wider viewports, they are aligned

side-by-side, and are accompanied by a banner image, img.

An rRLG models the presentational HTML elements of a web

page (i.e., the body tag and HTML tags nested within it) using a set

E. Each element e ∈ E forms a node in the graph. Edges in the

graph model relationships between elements, and are represented

by the set R, where R ⊆ E × E. For each given width, HTML

elements are arranged into a hierarchy on the basis of the position

and size of their minimum bounding rectangles as they are rendered

in two-dimensional space, found by querying the DOM of the web

page. An element e2 is said to be containedwithin e1 if the bounding

rectangle of e2 is inside that of e1. An element e2 is a child of e1
if there is no other element eo containing e2 also contained by e1.

Conversely, e1 is the parent of e2. Two elements e1 and e2 are siblings

(e.g., div[1] and div[2]) if they are both children of some common

parent element ep . A directed edge, (e1, e2) ∈ R, is formed in the

rRLG from e1 to e2 if there is at least one viewport width where e1
is the parent of e2, or, they are siblings.

To model variations in the layout of HTML elements across dif-

ferent viewport widths, each rRLG edge is associated with a set of

alignment constraints. An alignment constraint models whether the

nodes of an edge (e1, e2) are in a parent-child or sibling relationship

for a specific range of viewport widths, along with the nature of the

relative alignment of e1 with respect to e2 when rendered on the

page. A set of a�ributes is used to describe this relative alignment.

For example, “L” describes e1 as aligned to the le� of e2; “R” to the

right, “CJ” center-justified, and “LJ” le�-justified. Formally, an align-

ment constraint is defined by the tuple (amin, amax, t, P ), where

amin–amax is an inclusive range of viewport widths for which two

elements (e1, e2) ∈ R have the relationship denoted by t ∈ {pc, s}

(parent-child or sibling, respectively) and whose alignment is de-

scribed by the set P of alignment a�ributes. �ere are two alignment
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body

div[1]

div[2]

body

img

div[1] div[2] div[3]

(320, 1400)
body

(320, 1400)
div[2]

(320, 1400)
div[1]

(320, 1400)
div[3]

(768, 1400)
img

(320, 767,
pc, {CJ})

(768, 1400,
pc, {LJ})

(320, 1400,
pc, {CJ})

(320, 767,
pc, {CJ})

(768, 1400,
pc, {RJ})

(768, 1400,
pc, {CJ})

(320, 767, s, {A})
(768, 1400, s, {L})

(320, 767, s, {A})
(768, 1400, s, {L})

(320, 767, s, {A})
(768, 1400, s, {L})

Figure 2: A wireframe example web page at two viewport

widths (top and bottom le�) and fragment of its rRLG (right)

constraints for the pair of elements div[1] and div[2], which label

their rRLG edge in Figure 2. �e initial constraint, (320, 767, s, {A})

holds between the widths 320–767 pixels as indicated by its first

two values. �e third value indicates that the two elements are

siblings (“s”), while the final value — the set of alignment a�ributes

— signals that div[1] is aligned above div[2], as it contains the “A”

a�ribute. �e second alignment constraint, (768, 1400, s, {L}), in-

dicates the relative layout of the elements changes for viewport

widths of 768–1400 pixels in that div[1] is now to the le� of div[2].

To accommodate changing space constraints, a web page de-

signer may choose to display HTML elements for some viewport

widths while hiding them for others. To account for this, each

rRLG node e ∈ E is associated with a set of visibility constraints. A

visibility constraint is a pair (vmin, vmax) where vmin–vmax is an

inclusive range of viewport widths for which an HTML element

is displayed (i.e., defined as present in the DOM, with visibility

property set to “true” and an opacity greater than zero). For the

example, the img element of Figure 2 is only visible at viewport

widths of 768 pixels and greater, and so its rRLG node is labeled

with the visibility constraint (768, 1400). All other elements are

visible throughout the entire range of viewport widths modeled by

this rRLG, and as such they have the constraint (320, 1400).

Given VC and AC, the respective sets of visibility and alignment

constraints for a web page, an rRLG is a tuple (E,R,FVC ,FAC )

where FVC : E → 2VC is a function mapping an element to a set

of visibility constraints, and FAC :R→2AC is a function mapping

edges to individual sets of alignment constraints. Each element

e ∈ E must be visible for at least one viewport width, and, for a

particular viewport width, there is at most one alignment constraint

that applies for each pair of web page elements (e1, e2) ∈ R.

3.2 Common Types of Responsive Layout
Failure and Algorithms for their Detection

Once an rRLG has been created for a responsive web page it can be

checked for each of the five types of RLF that we introduce next

along with the algorithms that can be used to detect them. �e aim

of each algorithm is to identify not only that a failure exists, but

also which HTML elements were involved and at which particular

viewport widths, to help developers diagnose the fault.

RLF 1: Element Collision. When the viewport of a responsively

designed page becomes narrower, one design strategy to account

for the loss of width is to move horizontally-aligned page elements

closer together. As the viewport contracts, however, elements may

collide into one another, causing their contents to overlap. �is

can result in unintended effects such as overlaid text or images, or

hidden content or functional elements, thus harming page usability.

Algorithm1: Detection of element collision&protrusion failures

In: An rRLG (E, R, FVC, FAC ) for a responsive web page
Out: A set of failure reports, disseminated by calls to the reportFailure function

1: for all r = (e1, e2 ) ∈ R
2: for all (amin, amax, t, P ) ∈ FAC (r ) where t = s ∧ O ∈ P
3: (. . . , Pwider ) ← alignmentConstraintAt(e1, e2, t, amax+1)
4: if (. . . , Pwider ) , ⊥ ∧ O < Pwider
5: reportFailure(element-collision, {e1, e2 }, {(amin, amax) })
6: else
7: a1 ← getAncestorsAt(e1, amax + 1)
8: a2 ← getAncestorsAt(e2, amax + 1)
9: if (e1 ∈ a2 ) ∨ (e2 ∈ a1 )
10: reportFailure(element-protrusion, {e1, e2 }, {(amin, amax) })

An example is shown by Figure 1 and the MidwayMeetup page.

At wider viewports (part 1d) space exists for the input boxes and but-

tons to exist side by side. Yet, when the viewport becomes too nar-

row, the elements collide, obscuring the le�-most bu�on (part 1c).

Algorithm: Element collisions can be detected through the rRLG

by tracing pairs of elements that have the overlap alignment at-

tribute (“O”) set for one particular viewport width, but not the next.

Algorithm 1 can detect such failures. It begins by iterating through

all alignment constraints in the rRLG, until it finds one for a pair of

elements (e1, e2) in a sibling relationship, and with the overlap at-

tribute (“O”) set (steps 1–2). If an alignment constraint, obtained in

step 3, exists for the two elements at the wider, adjacent, viewport

width to the original alignment constraint involving the overlap —

and this constraint does not describe an overlap itself (step 4) — the

issue is reported as an element-collision failure (step 5).

RLF 2: Element Protrusion. When implementing a responsive

design, one concern is ensuring that, as the viewport becomes nar-

rower, HTML elements also adapt in size so that they are still big

enough to contain their contents. When elements do not resize cor-

rectly, their contents may no longer “fit” and consequently protrude

into surrounding parts of the page. An example of this is shown

by the PDFescape example of Figure 1, and its block of navigation

links, displayed on the top right of the page (part 1f). As the view-

port becomes narrower, the horizontal space is no longer sufficient

to fit the block of links next to the logo. �e links protrude out of

the containing HTML element, invisibly to the user (part 1e), as the

container has the CSS property “overflow: hidden” set. �e links

therefore become unclickable and the page is unusable on devices

of a certain size and where viewport dimensions are fixed.

Algorithm: Element protrusion can be detected using the rRLG

by checking for the changing relationship between two HTML el-

ements across adjacent viewport widths. Normally, the elements

will be in a parent-child relationship, indicating one element is con-

tained in the other. If at narrower widths, this changes to a sibling

relationship, because the elements are now overlapping (due to the

protrusion), the original “child” element has overflown its parent.

Algorithm 1 detects such failures, continuing from step 6 — where it

has identified the pair of elements (e1, e2) as overlapping — but not

as a result of an element collision RLF. If an element-protrusion fail-

ure has occurred, one of the elements (e1 or e2) will be a parent (or

contained within some ancestor) of the other at the adjacent, wider,

viewport width to the alignment constraint previously identified.

�e algorithm therefore retrieves the respective set of ancestors

for each element at this wider viewport (steps 7 and 8). If e1 is

an ancestor of e2 or vice versa at the wider viewport (step 9), an

element-protrusion failure is reported (step 10).



Automated Layout Failure Detection for Responsive Web Pages without an Explicit Oracle ISSTA 2017, July 10–14, 2017, California, USA

Algorithm2: Detection of viewport protrusion failures

In: An rRLG (E, R, FVC, FAC ) for a responsive web page in the viewport width range
wmin–wmax; the rRLG node representing the body element, body

Out: A set of failure reports, disseminated by calls to the reportFailure function

1: for all e ∈ E where e , body
2: S ← ∅
3: for all r = (e1, e2 ) ∈ R where e2 = e
4: for all (amin, amax, t, P ) ∈ FAC (r ) where t = pc
5: S ← S ∪ {(amin, amax, t, P ) }
6: if S , ∅
7: L ← sortByAscendingMinimumRangeValues(S )
8: gmin← wmin
9: while hasNext(L)
10: (amin, amax, t, P ) ← next(L)
11: gmax ← amin − 1
12: VR ← visibleRanges(e, (gmin, gmax))
13: if VR , ∅ then reportFailure(viewport-protrusion, {e }, VR)
14: gmin← amax + 1
15: gmax ← wmax
16: VR ← visibleRanges(e, (gmin, gmax))
17: if VR , ∅ then reportFailure(viewport-protrusion, {e }, VR)

RLF 3: Viewport Protrusion. As viewport space is squeezed, el-

ements may not only start to overflow their containers, but also

start to protrude out of the page’s root presentational HTML ele-

ment (i.e., the body tag), thus appearing outside of the horizontally

viewable portion of the page. �e ConsumerReports web page of

Figure 1, as introduced in Section 2, exhibits this failure type.

Algorithm: Even though viewport protrusion failures are essen-

tially element protrusions of the body element, their detection using

the rRLG is different than Algorithm 1. In an rRLG, every node has

a parent, except the root node corresponding to the HTML body tag.

�e exception to this rule is when a web page element overflows

the viewport window. At the viewport widths where this occurs,

the element has no parent in the rRLG, as it is no longer contained

within the rectangle defined by the body element. Elements over-

flowing the viewport are neither classed as siblings with the body

element, since there is no containing, common parent.

Algorithm 2, for detecting viewport protrusion failures, works

by traversing each HTML element in the rRLG and checking that,

for all viewport widths at which it is visible, it is the child of some

other node in the rRLG. �is is determined by analyzing both the

element’s visibility constraints and relevant alignment constraints.

�e algorithm begins by taking each element e and extracting

alignment constraints for which e is a child (steps 1–5). �ese con-

straints are then sorted into a list through a function call (step 7)

that orders alignment constraints by their minimum range value

(i.e., amin for an alignment constraint (amin, amax, t, P )). �is en-

sures that constraints appear in consecutive viewport order, and

therefore, if the HTML element is displayed for all viewport widths,

the end of the range of one alignment constraint is one pixel less

than the start of the range for the next. If there are “gaps” between

the sorted order of alignment constraints — that is, viewport ranges

where the element has no parent — and the element is visible in

these gaps (as discovered by analyzing the visibility constraints for

that node) the element must have protruded out of the viewport.

�e loop of the algorithm (steps 9–14) finds gaps by iteratively

forming a range (дmin,дmax ) to represent viewport widths be-

tween consecutive alignment constraints. �is range is derived

by adding one to the upper bound of the viewport range for the

previous alignment constraint under consideration to form дmin

(step 14, initially set to the minimum viewport width considered

by the rRLG,wmin, in step 8), and one less than the lower bound

of the current alignment constraint to form дmax (step 11). If the

Algorithm3: Detection of small-range layout failures

In: An rRLG (E, R, FVC, FAC ) for a responsive web page; a small-range threshold thres
Out: A set of failure reports, disseminated by calls to the reportFailure function

1: for all r = (e1, e2 ) ∈ R
2: for all (amin, amax, t, P ) ∈ FAC (r )
3: if amax − amin ≤ thres
4: existsNarrower←existsAt(e1,e2,t,amin−1)
5: existsWider←existsAt(e1,e2,t,amax+1)
6: if existsNarrower ∧ existsWider
7: reportFailure(small-range-layout, {e1, e2 }, {(amin, amax) })

range represents a gap (i.e., дmax is greater than дmin, since if an

alignment constraint finishes at 767 pixels and the next starts at 768

pixels, for instance, there is no gap, and дmax =767 < дmin=768),

the function visibleRangeswill return the ranges within the gap at

which the element is visible (by examining its visibility constraints)

and a failure is reported if at least one such range exists (step 13).

�e final steps check for a gap before the end of the maximum

viewport width modeled by the rRLG (denoted by wmax).

RLF 4: Small-Range Layouts. Responsively designed web sites

tend to use many CSS rules, which are activated and deactivated

by different media queries. More than one media query in the CSS

rules may evaluate to true at the same time for a given viewport

width. For instance, two rules, one activated when the viewport

is over 768 pixels wide, and another activated when the viewport

is below 1024 pixels, will both be activated in the range 769–1023

pixels. �e logic that governs when a series of rules are “on” or

“off” for a given sets of elements and viewport sizes can quickly

become complex, to the point at which developers can frequently

make mistakes that result in CSS rules being applied at viewport

widths unintentionally. A common fault of this type occurs when

developers mix the use of the min-width and max-width qualifiers

to define changes in layout. For instance, a developer may encode

a media query “@media (max-width: 768px) {. . . }”, and another as

“@media (min-width: 768px) {. . . }”. Since the viewport ranges de-

fined by both of these expressions are inclusive, both will be acti-

vated at the 768 pixel viewport width. �is clash of media queries

can lead to strange layout effects, as two sets of rules will be ac-

tivated when only one set was intended. �ese types of failures

are difficult for developers to spot, since they occur only in small

sub-ranges of the entire range of viewport widths in which the page

may be viewed. �e Cloudconvert example of Figure 1 is an example

of a small-range RLF. At a single viewport width, the page’s top

menu obscures the company’s logo and slogan (part 1g).

Algorithm: Detection of small-range layouts, by Algorithm 3, in-

volves inspecting the viewport ranges for each alignment constraint

of an rRLG, and checking whether it is below a small threshold thres

in steps 1–3 (thres= 5 for experiments in this paper). On finding

a small-range constraint, the algorithm checks whether the same

constraint exists for viewports immediately narrower and wider but

with different alignment a�ributes (steps 4–5) — thereby revealing

a brief shi� in the position of elements relative to one another that

may indicate a problem like a media query clash in the CSS rules.

RLF 5: Wrapping Elements. If a containing element on a web

page is not wide enough to contain its children, but is still “tall”

enough, or has a flexible height, horizontally-aligned elements con-

tained within it will “wrap” to form an additional, yet undesirable,

row of elements — and an unwanted presentational effect. An ex-

ample of incorrect wrapping is shown in Figure 1 and the BugMeNot
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Algorithm4: Detection of wrapping failures

In: An rRLG (E, R, FVC, FAC ) for a responsive web page
Out: A set of failure reports, disseminated by calls to the reportFailure function

1: for all e ∈ E
2: C ← ∅
3: for all r = (e1, e2 ) ∈ R where e1 = e
4: for all (amin, amax, t, P ) ∈ FAC (r )
5: if t = pc thenC ← C ∪ {e2 }
6: S ← ∅
7: for all r = (e1, e2 ) ∈ R where e1 ∈ C ∧ e2 ∈ C
8: for all (amin, amax, t, P ) ∈ FAC (r ) where t = s
9: S ← S ∪ (amin, amax, t, P )
10: L ← getChildRangesSortedByAscendingMinimumRangeValues(S )
11: i ← 0; len← length(L)
12: while i < len − 1
13: (rminc , rmaxc ) ← L[i]
14: (rminn, rmaxn ) ← L[i + 1]
15: Cc ← getChildrenInRange(e, C, (rminc , rmaxc ))
16: Cn ← getChildrenInRange(e, C, (rminn, rmaxn ))
17: IRc ← getChildrenInRows(Cc , (rminc , rmaxc ))
18: IRn ← getChildrenInRows(Cn, (rminn, rmaxn ))
19: for all c ∈ Cc
20: if |IRc | ≥ 2 ∧ c < IRc ∧ c ∈ IRn
21: reportFailure(wrapping, {e, c }, (rminc , rmaxc ))
22: i ← i + 1

23: procedure getChildrenInRows(Cr , (rmin, rmax))
24: IR ← ∅
25: for all r = (e1, e2 ) ∈ R where e1 ∈ Cr ∧ e2 ∈ Cr
26: for all (amin, amax, t, P ) ∈ FAC (r ) where t = s
27: if amin ≤ rmin ∧ amax ≥ rmax
28: if L ∈ P ∨ R ∈ P ∧ A < P ∧ B < P
29: IR ← IR ∪ {e1, e2 }
30: return IR

web page. At the wider viewport (part 1j), the magnifying glass

bu�on appears next to the search box. Yet, as the viewport becomes

narrower, the bu�on wraps to the next line (part 1i).

Algorithm: �e algorithm for detecting wrapping failures infers

the elements that appear to be in rows for a particular viewport

range, by analyzing alignment constraints in the rRLG. With the

BugMeNot example, the “Domain/URL” label, search box, and but-

ton elements at the wider viewport range will have alignment

constraints with “L” a�ributes, indicating one element is to the le�

of the other. When the bu�on wraps, its alignment constraint with

the text box changes, with the “L” a�ribute replaced with the “A”

(i.e., “above”) label instead. More generally, if an element e appears

in a row for one viewport range, and the same row exists in an

adjacent, narrower range — but without e as a member, as it now

appears below the row — a wrapping failure has likely occurred.

Algorithm 4 takes each element e in the rRLG, finds all of its

children and extracts the “sibling” alignment constraints that exist

between them (steps 1–9). �e function call in step 10 takes these

constraints and returns a list of viewport ranges, in ascending order.

�ese ranges correspond to the individual ranges of each alignment

constraint, unless they intersect, in which case ranges are spliced

to form new successive pairs of ranges so that only one range is

included in the list for each discrete viewport width. �e algorithm

then iterates through pairs of ranges in this list (steps 11–22). For

each range, the algorithm identifies the set of elements that are

children of e between the relevant viewport widths (steps 15–16),

and finds which of these children are in rows (steps 17–18) through

a call to the getChildrenInRows procedure.

In this procedure (steps 23–30), if an alignment constraint for

two child elements e1 and e2 has the alignment a�ributes “L” or “R”

(i.e., e1 is to the le� of or to the right of e2), and does not also have

the a�ributes “A” or “B” (i.e., e1 is above or below e2, and therefore

despite being oriented to the le� of e2 is not horizontally aligned

with it in a row), the two elements are added to a set of elements,

denoted IR, that are deemed to constitute a row (step 28). If a certain

viewport range containsmore than two elements considered to be in

a row (identified by getChildrenInRows), and one of the elements

in this set is not in the corresponding set for the previous adjacent

viewport range, a wrapping failure is reported (steps 20–21).

4 EMPIRICAL EVALUATION
To evaluate the effectiveness and efficiency of our technique we

applied it to 26 real-world web pages in production use, with the

ultimate aim of answering the following three research questions:

RQ1: How effective are our algorithms at detecting failures?

How effective are our algorithms at detecting common types of

responsive layout failures in responsively designed pages?

RQ2: Howmany failuresmaybe detected using a “spotcheck-

ing” tool? Aided by viewport resizing tools, how effective would

a “spotchecking” process be in comparison to our approach?

RQ3: How long do our techniques take to run when applied

to responsively designed web pages? Is the time taken to de-

tect layout failures reasonable for developers who will apply the

technique during real-world RWD web page development?

4.1 Experimental Subjects
To answer the RQs, we collected a set of 25 real-world and active

responsively designed web pages using the third-party URL selector

randomusefulwebsites.com, which randomly selects a web site from

its database of “useful” sites and presents it to the user. As not

all web sites in this database are responsively designed, a manual

step was necessary to determine if each recommended page was

in the scope of our study. We loaded each page into a browser

and resized the viewport window to observe any changes in its

layout. If the web page was designed according to RWD principles,

fluidly rearranging and resizing content to adapt to a changing

viewport width, we saved it for later input into our tool. Note

that the import of a popular RWD framework in the page’s code

was not enough to warrant inclusion in the study: an import does

not imply proper usage, while the absence of an import does not

mean the developers did not program their page’s responsive design

themselves, unaided by a framework. We repeated these steps until

we had obtained a set of 25 subject web pages, towhichwe added the

headline motivating example, ConsumerReports, shown in Figure 1,

making 26 in total. �e details of each of the web pages, which were

live and operational as of January 2017, are shown by Table 1a.

4.2 Experimental Methodology
We implemented the rRLG and our algorithms into our proto-

type RWD checking tool called “ReDeCheck” (Responsive Design

Checker, pronounced “Ready Check”) [39]. ReDeCheck takes the

address of a web page and derives an rRLG for the page by render-

ing it at a series of viewport widths and extracting the page’s DOM

within a viewport range of 320–1400 pixels, thus ensuring that con-

sideration was given to viewport width sizes encompassing a wide

variety of devices, from small mobile phones to widescreen laptops

and desktops [3]. ReDeCheck samples the page at a step size of

60 pixels within this range as well as at explicit breakpoint widths

programmed by its developer, extracted by parsing the page’s CSS

rules. If the layout changes between two adjacent sample widths,

ReDeCheck performs a binary search between the two to localize

the point at which the change occurred. ReDeCheck extracts the
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page’s DOM at each viewport width sampled, using the final set

of DOMs to extract the properties of each HTML element at each

viewport width needed to create an overall rRLG. It then applies

each of the algorithms detailed in the previous section.

ReDeCheck uses Selenium [14] to drive and interact with an

instance of the Firefox browser [11]. We ran all experiments on an

iMac with 8GB RAM and OS X 10.12 as the operating system.

To answer RQ1, we classified each failure report produced by

ReDeCheck, consisting of a set of HTML elements for one or more

viewport ranges, as belonging to one of three categories: true posi-

tives (TPs), false positives (FPs), and “non-observable issues” (NOIs).

TPs correctly reveal RLFs that are evident from viewing the web

page at one of the reported viewport widths. �at is, TPs find

content erroneously overlaid on other content, content incorrectly

rendered outside the viewport, or incongruous arrangements of

HTML elements for specific viewport widths, indicating faults in

the page’s CSS rules and its accommodation of the reported view-

port widths. In contrast, FPs are failure reports that are, following

manual analysis, found to not reveal RLFs or any other issues with

the page. FPs are scenarios where a failure has been flagged by

ReDeCheck, but there is no actual identifiable problem — either

visually in the design of the web page, or at the level of the DOM.

We further define a third category of result, NOIs, which do

not manifest observable problems with a page, yet further analysis

with diagnostic tools, such as Firebug [10], reveal potential issues at

the level of the DOM. NOIs include elements that have collided or

protruded their containers or the viewport at the co-ordinate level —

yet since their edges are transparent or invisible, no observable issue

is apparent when actually viewing the page. While NOIs do not

represent serious problems, theymay be useful to web developers as

they can highlight potentially unknown issues with the application

of the page’s CSS rules. In the same way that linting tools point

out program source code that might be the root of potential issues

during maintenance or execution on different platforms, NOIs can

point to structural issues or other factors related to CSS code that

may negatively affect ease-of-modification or the ways in which

pages may be rendered by different web browsers. �erefore, we

report these NOIs in a category distinct from FPs.

Classifying presentation failures in web pages is necessarily a

manual procedure (c.f. [17, 21, 35, 38]). �us, the initial categoriza-

tion was performed by the first author. To mitigate any potential

subjectivity, decisions were reviewed by the third author. As space

constraints prohibit us from discussing each individual categoriza-

tion, more analysis details are available in our results archive [4].

When applied together, our detection algorithms might report a

failure more than once for different RLF categories (e.g., an element

collision in a small-range), or, report related failures involving

common HTML elements that are likely to emanate from a single

defect. To summarize ReDeCheck’s ability to reveal distinct RLFs,

we therefore manually analyzed the set of TPs for each page to

determine the number of discrete, observable failures involved.

Furthermore, multiple failure reports may be produced for the same

viewport range. In practice, a developer would not need to examine

each report individually, but rather view the web page within each

distinct viewport range to check for RLFs. We therefore also record

the number of distinct viewport ranges for all of the failure reports

produced by ReDeCheck for each page in our study.

To answer RQ2, we followed a manual “spotchecking” process

by analyzing each web page at the viewport width presets sug-

gested by five popular responsive design testing tools designed to

be used with a desktop browser. �e first four tools — namely Kers-

ley’s [25], Responsinator [12], Responsive Design Checker [13], and

Viewport Resizer [15] — were ranked at the top of a Google search

for “responsive web testing tool”, while the fi�h is the popular

“Responsive Design View” utility built into the Firefox browser’s

developer tools [5]. �ese tools incorporate 4, 10, 7, 12, and 11

preset viewport widths in the 320–1400 pixel range respectively,

and 21 different widths overall — each corresponding to the portrait

or landscape viewport width of a device in popular use. To comple-

ment the device-oriented presets, we selected and analyzed each

page using a further 21 widths chosen at random from the same

320–1400 pixel range. �e first author performed the spotchecking

process using the Firefox browser, recording the viewport widths

for which RLFs were found and especially noting if an RLF was pre-

viously discovered by ReDeCheck in our answer to RQ1. Ensuring

correctness, the last author then checked the first author’s findings.

To answer RQ3, we ran our tool 30 times to produce failure

reports and execution timings for each subject, computing summary

statistics (e.g., the median and inter-quartile range) of these values.

4.3 �reats to Validity

One validity threat for this paper’s results is the extent to which

they generalize to other web pages, which we mitigated by using a

random URL generator to select the subjects. As Table 1a shows,

the subjects vary considerably in complexity from 41 to 1469 HTML

elements and from 50 to 16929 CSS declarations. �e functionality

and responsive layout of the chosen web pages also differ substan-

tially, with, for instance, Days Old providing calendar features and

Airbnb supporting an international e-commerce corporation.

Our methodology for answering RQ1 and RQ2 involved the

manual analysis and classification of both the individual failures

reported by our tool and the spotchecking screenshots. As with

other empirical studies of presentation failures in web sites (e.g., [17,

21, 35, 38]), this task must necessarily be manual. To mitigate

subjectivity affecting our results, each categorization made by the

first author was verified by the last. We have put the failure reports,

their classifications, screenshots, and ReDeCheck’s code in an

archive [4], thus allowing for their inspection by others.

�e methodology for answering RQ2 requires comparing our

tool with a spotchecking process that involved looking for RLFs at

both random viewport widths and the widths advocated by popu-

lar responsive design testing tools. Since this step did not involve

humans — who may overlook failures during manual inspection

and/or pick different viewport widths at which to spotcheck — these

results may not be realistic. With that said, we judge that RQ2’s

methodology gives a replicable insight into the number of layout

failures that manual checking would detect in practice. Moreover,

since the timing results for RQ3 are subject to the interference of

background operating system processes, we ran all of the experi-

ments 30 times to minimize the possibility of bias in our results.

�e use of the Firefox web browser to answer all of the research

questions is another validity threat. Firefox is a popular browser

that is frequently used for RWD testing and thus a good option

for ensuring that the results are representative. Although other
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Table 1: Experimental subject web pages and results from using the presented approach

(a) Details of the studied web pages (b) Failure detection results

Element Element Viewport Distinct

Viewport

Ranges
# HTML # CSS Collision Protrusion Protrusion Small-Range Wrapping Distinct

RLFsWeb Site Name URL Elements Declarations TP FP NOI TP FP NOI TP FP NOI TP FP NOI TP FP NOI

3-Minute Journal www.3minutejournal.com 79 3354 - - 1 - - 2 8 - - - 1 - - - - 12 2

Accountkiller www.accountkiller.com/en 343 559 - - - - - - - - - 147 5 - 2 - - 4 3

Airbnb www.airbnb.com 1469 5638 - - 1 - - 4 - - 4 - 2 - 2 - - 9 2

BugMeNot bugmenot.com 41 237 - - - 1 - 3 2 - - - - - 1 - - 7 4

Cloudconvert cloudconvert.com 907 2831 1 - - - - - - - - 1 - - - - - 1 1

ConsumerReports www.consumerreports.org 1037 6295 - - 7 1 - 3 9 - 3 - 1 - - - - 16 4

CoveredCalendar www.coveredcalendar.com 147 5131 - - - - - - - - 3 - - - 2 - - 3 2

Days Old www.daysold.com 65 1033 - - - - - - - - 1 - - - - - - 1 0

Dictation dictation.io 194 166 - - - - - - - - 1 - - - - - - 1 0

Duolingo www.duolingo.com 816 16929 - - 1 - - - 2 - 2 - 1 - - 2 - 7 1

Honey www.joinhoney.com/install 460 3249 - - - - - 8 - - 2 - 3 - - - - 8 0

Hotel WiFi Test www.hotelwifitest.com 358 4258 - - - - - - 1 - - - 2 - - - - 3 1

Mailinator www.mailinator.com 279 5086 - - 1 - - - - - - - 2 - - - - 2 0

MidwayMeetup www.midwaymeetup.com 85 2942 1 - - - - 1 - - 1 - - - - - - 3 1

Ninite ninite.com 640 2721 - - - - - - - - - - - - 1 1 - 2 1

PDFescape www.pdfescape.com 176 794 - - - 1 - 5 1 - 3 - - - - - - 8 2

PepFeed www.pepfeed.com 342 4563 4 - 3 - - 2 1 - 1 2 14 - 1 - - 20 6

Pocket getpocket.com 663 5203 - - 2 - - 3 - - - - 3 - - - - 5 0

Rainy Mood rainymood.com 88 50 - - - - - - - - - - - - - - - 0 0

RunPee runpee.com 437 7273 - - - - - - - - - - 5 - - 1 - 6 0

StumbleUpon www.stumbleupon.com 283 8530 1 - - - - - - - - - - - - 1 - 2 1

Top Documentary Films topdocumentaryfilms.com 410 702 - - 7 - - 4 - - - - 2 - - - - 10 0

Usersearch usersearch.org 865 1495 - - 1 - - - - - - - - - 1 - - 2 1

What Should I Read Next www.whatshouldireadnext.com/search 111 852 - - - - - - - - 2 - - - - - - 1 0

Will My Phone Work willmyphonework.net 781 2022 1 - - - - 1 - - - 2 - - - - - 2 1

Zero Dollar Movies zerodollarmovies.com 246 1802 - - - - - - - - - - 2 - - - - 2 0

Total 11322 93715 8 0 24 3 0 36 24 0 23 152 43 0 10 5 0 137 33

browsers could lead to different results, we manually confirmed,

with the latest versions of both Safari and Chrome running on Mac

OS X, the existence of all the distinct RLFs found for the subject

web pages during the course of this paper’s study. It is also worth

noting that we did not compare ReDeCheck to other approaches

that require oracles. �is decision is justifiable for two reasons.

First, the 26 subjects used in the experiments did not come with,

for instance, design mockups or layout constraint specifications.

Second, as we do not know the intentions of the designers of the

chosen web pages, creating oracles without their advice is, in itself,

a validity threat. Finally, it is important to mitigate the threats that

might arise from errors in the implementation of our approach.

We achieved this through automated unit and manual testing of

ReDeCheck, and throughmanually verifying results produced with

web pages that we did not include in the experimental study.

4.4 Answers to the Research �estions
RQ1: Table 1b breaks down our categorization of failure reports

produced by ReDeCheck for each web page using each detection

algorithm. TPs (i.e., actual RLFs) were found by each of our algo-

rithms, with at least one TP for 16 of the 26 subjects. Given that

the subjects are live and operational sites that include established

commercial operations such as Duolingo and StumbleUpon, this is a

compelling result, since, we surmise, such sites would have under-

gone an in-house testing process that missed the failures revealed

by ReDeCheck. Five of the failures reported by our algorithms

are the ones we used for the motivating examples. �ese failures

were examples of content protruding off-screen for ConsumerRe-

ports (Figure 1a, detected by Algorithm 2); form elements obscuring

one another, degrading functionality for MidwayMeetup (Figure 1c,

detected by Algorithm 1); navigation links disappearing due to

protrusion of their parent element for PDFescape (Figure 1e, also de-

tected by Algorithm 1); clashing media queries and obscured layout

for Cloudconvert (Figure 1g, detected by Algorithm 3), and wrapping

elements for BugMeNot (Figure 1i, detected by Algorithm 4).

Further analysis of the TPs revealed that these reports conflated

to 33 distinct failures in total, as reported by the “Distinct RLFs”

column of Table 1b, thereby unveiling degrees of repetition in

ReDeCheck’s results. An extreme example is Accountkiller. Here,

147 small-range reports produced by Algorithm 3 are TPs, yet

closer analysis revealed that all corresponded to a single distinct

failure. �is page involves a grid of icons, each corresponding to

an rRLG node with alignment constraints connecting each pair.

For one small viewport range, ReDeCheck detects elements in

the grid that are not arranged consistently, leading to changes in

relative alignment and some small-range constraints that cause

the algorithm to trigger several individual failure reports for each.

Additionally, the same distinct failure may be detected by different

algorithms. For example, with Cloudconvert, elements collide for a

small range only, triggering reports from both Algorithms 1 and 3.

Not all reports were TPs: Algorithm 3 produced small-range FPs

that, in general, were the result of coincidental alignment a�ributes

being assigned to edges in the rRLG. For example, an element might

not have any particular horizontal alignment within its parent, yet

for a small-range appear to be center justified, due to chance co-

ordinate values of the child within its parent for a one-off or small

series of viewport widths. In addition, Algorithm 4 produced five

wrapping FPs. �ese were characterized by scenarios in which a

set of three elements had been misclassified as a “row”, for which a

shi� in alignment of one of the elements was identified as a failure.

�e element collision and element/viewport protrusion detectors

also discovered several NOIs for a number of web pages. Although

non-observable, the extent to which elements had “collided” was of-

ten significant in the DOM, due to high degrees of invisible padding

in the page’s CSS. Element protrusion failures were o�en non-

observable due to HTML elements having the “overflow: hidden”

CSS property set. Subsequent changes to the page’s content may

result in these NOIs turning into observable RLFs — thereby repre-

senting aspects of the web page’s design that the developer may

want to address so as to avoid future layout failures.
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Table 2: Results of the spotchecking process

Tool/Method Total Distinct RLFs Detected

Kersley’s 22 (66%)

Responsinator 22 (66%)

Responsive Design Checker 23 (69%)

Viewport Resizer 26 (78%)

Firefox Responsive Design View 27 (81%)

Random 24 (72%)

Detected using at least one tool/method 28 (85%)

Although, as Table 1b shows, ReDeCheck produces a large num-

ber of reports for some of the web pages studied, not all of which

reveal distinct failures, we found that a significant number of the

reports produced by the algorithms repeated the same viewport

range (as reported by the “Distinct Viewport Ranges” column in

the table). �is is especially true when the same layout issue is

reported by different algorithms, or, different but related elements

are reported multiple times for the same issue at the same viewport

width. In practice, a developer would not need to inspect each

report individually, but rather visit the web page for each distinct

viewport width range reported to confirm any failures therein. �at

is, the amount of effort the developer needs to invest in using Re-

DeCheck is not a function of the number of reports produced, nor

the time potentially wasted proportional to the raw number of FPs,

but instead the number of unique viewport ranges reported. As

the table shows, ReDeCheck reported 137 distinct ranges for all

subjects, with a total of 33 distinct RLFs actually present. �erefore,

a developer would need to view a web page at no more than an

average of 4.2 different viewport widths to find each actual RLF.

Finally, Table 1 does not appear to indicate a relationship be-

tween detected failures and the complexity of the web pages studied.

While some pages consisting of relatively few HTML elements (e.g.,

Rainy Mood and Days Old) do not exhibit failures, there are others

of similar low complexity (e.g., BugMeNot and 3-Minute Journal)

that do. Furthermore, the page involving the most failures — six for

PepFeed — did not involve the most HTML elements. Airbnb and

ConsumerReports have over 1000 HTML elements, and fewer dis-

tinct failures were detected for these pages. It is probable, however,

that being created by developers at a large corporation or organiza-

tion, these sites would have undergone more thorough testing.

RQ2: �e spotcheck analysis revealed RLFs already discovered

by our approach as part of RQ1, but no new additional failures.

Table 2 reports the numbers of these distinct RLFs that were re-

vealed at one of the viewport widths suggested by each tool, or

by selecting viewport widths at random. As the table shows, 66 to

81% of these failures were revealed by the tools, depending on the

set of viewport widths they suggest to check. Since these preset

widths correspond to devices in popular usage, this result shows

ReDeCheck is capable of revealing failures that would be displayed

on these devices for users to see. Although the spotchecking tools

suggest the viewport widths at which to check the web pages,

the failures still need to be identified manually — in contrast, Re-

DeCheck relieves developers of some of this effort. �e results also

show that 19 to 34% of failures identified by our technique would

be missed. Even if all spotchecking tools were used, complemented

by a degree of further random spotchecking, five of the distinct

RLFs originally identified by our approach would not be found.

RQ3: Figure 3 shows ReDeCheck’s median execution times for

each web page across the 30 trials. Almost all of the pages (25 of the

26) were processed by our tool within approximately three minutes
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Figure 3: Execution times for ReDeCheck
When not obscured due to a small inter-quartile range (IQR), a small circle denotes the median
of the timings across the 30 trials and the upper and lower hinges of the error bars respectively
designate the median value added to and subtracted from the IQR of the executing timing data.

on median, with 15 pages requiring 60 seconds or less. Airbnb took

almost 4.5 minutes — but, it is one of the most complex subject

pages, as shown by Table 1a. Generally, the graph reveals that the

subjects taking the most time were either some of the most complex

(i.e., Airbnb in terms of HTML elements and Duolingo in terms of

CSS declarations) or, yielded the most issues (i.e., Accountkiller and

PepFeed), thereby incurring an additional time cost in capturing the

failure screenshots and generating the annotated graphical reports

(for the TPs, FPs, and NOIs), or a mixture of both web page com-

plexity and the number of issues reported (i.e., ConsumerReports).

4.5 RQ Conclusions and Results Discussion

Our technique can find RLFs in live and actively maintained web

pages. While it does report issues that do not correspond to observ-

able layout problems, these tend to conflate to a smaller number

of viewport ranges that a developer would need to inspect. Our

results for RQ1 show that, by using the reports of our tool, only

4.2 visual checks are required per failure for the web pages studied.

However, we judge this to be a relatively low investment compared

to the potential gains of discovering presentation problems with

a web page that may hinder its functionality, affect a user’s ex-

perience of the site, reduce users’ opinion of the professionalism

of the service offered by a web page, or, a combination of these

factors. Nevertheless, future work will seek to reduce this figure

further by exploiting potential overlap between the ranges reported

to optimize the number of checks required, thereby reducing the

number of FPs our algorithms produce, while also automatically

distinguishing observable from non-observable issues. �ese steps

will be�er enable developers to prioritize visible problems.

�e results forRQ2 show that the popular, yet manual, approach

of “spotchecking” detects only between 66 and 81% of the RLFs de-

tected by ReDeCheck, providing empirical support for the benefits

of our automated technique that does not require an oracle.

�e results for RQ3 show that our current prototype is fast,

completing its analysis in less than 60 seconds for the majority of

the pages and at most 4.5 minutes for the most complex. Given that

the tool does not need to be frequently re-run, we judge that its

performance would be acceptable to practicing web developers.

Our appraisal of the prototype tool does not include the possi-

bility of false negatives: We do not know if, for the pages studied,

ReDeCheck missed failures. Anecdotally, our analysis of the cho-

sen subjects did not discover further failures that ReDeCheck had

not reported. Yet, our algorithms specialize in finding subtle failures,

as evidenced by the detection of 33 on active web pages.
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5 RELATED WORK

To our knowledge, there has been no research on automated check-

ing of responsive web pages for presentation failures, except our

own work on identifying differences between two versions of a

responsive page [40]. �is work introduced the RLG, of which the

rRLG (c.f. Section 3.1) is a simplified version. With our prior tech-

nique, the RLG of a previous developmental version of a responsive

page is compared with the RLG of the current version, in order to

fully identify all changes to the page. While this comparison will

likely identify intentional changes to the page’s layout, uninten-

tional side-effects of these changes are also highlighted. �is is

useful as responsive designs are hard to maintain, and changes to

one part of the design specific to one viewport width can easily have

unexpected knock-on effects on page layout at other widths. Yet,

the technique requires a prior version of the page in order to func-

tion — and it must be one that is not so far removed from the current

version that an overwhelming number of differences are identified,

thus requiring manual inspection. Furthermore, the technique, im-

plemented into an earlier version of ReDeCheck, does not preclude

the possibility that an RLF could be present in both versions of the

page, and as such not included in the list of differences.

Other techniques also use graphs modelling web page layout

to identify different types of presentation failures. �e “alignment

graph” (AG) of Choudhary et al. [38] models layout with the aim of

detecting cross-browser issues (XBIs) — differences in layout of a

page when rendered in different browsers. �e technique computes

two graphs: an AG of page layout when rendered in a reference

browser that represents the page’s “correct” layout, and anAG of the

same page when rendered in an alternative browser. �e technique

compares the two AGs, reporting any differences between the two

as XBIs. �e “layout graph” (LG) of Alameer et al. [17] models

the layout of a page with the aim of discovering international

presentation failures (IPFs), or differences in layout when a page

is presented in another language. IPFs occur due to differences in

space needed to render textual content in different languages: if a

segment of text is longer than expected it may overspill its container,

causing unwanted visual effects. �e technique takes the LG of a

page in a reference language, again representing “correct” layout,

and automatically compares it with an LG of the page presented

in an alternative language. Any differences are reported as IPFs.

Unlike the RLG/rRLG, both the AG and the LGmodel the layout of a

web page at a single viewport width — that is, they do not capture a

page’s potentially different layout over a range of viewport widths,

thus making them unsuitable for detecting RLFs.

One aspect that all prior methods have in common with each

other is the modelling of a “correct” or reference layout with a

graph that is then compared to another graph for an alternative

version of a page. With these methods, differences between two

graphs correspond to likely presentation failures. �at is, there is

a reference layout that functions as an “oracle” for the technique

concerned. �is is different from this paper’s method that does not

require an explicit “oracle” or comparison layout. Instead, it checks

a graph for internal consistency, using four different algorithms

that aim to detect five different types of RLF that frequently occur

in RWD and on web pages in production use. In other words, this

paper is connected to prior work leveraging implicit oracles [18].

�e use of an explicit oracle — that is not another graph but

instead a reference image or specification — is also common in

other works for detecting presentation failures. For example, the

work of Mahajan and Halfond compares the rendering of a page

with an oracle image using image comparison techniques [29].

�is concept was later implemented in theWebSee tool [30]. Other

tools, such as FieryEye, build onWebSee to both detect and localize

presentation failures in a web page [28, 31]. All of these tools are

similar to this paper’s method since they find failures in a web

page’s presentation. However, both WebSee and FieryEye analyze

a graphical mockup of the page under test at a specific viewport

width — a strategy requiring an explicit oracle for all of the viewport

widths if used to check a responsive web page. Alternatively, the

Cornipickle tool requires the tester to specify a web page’s layout

properties before testing commences [24]. �at is, the “oracle” is a

formal specification. �e Cornipickle approach also defines some

common types of layout failures — but, in contrast to this paper’s

five different types of responsive layout failures, Cornipickle’s

are static in nature and thus do not require the cross-checking of

a page at different viewport widths. Unlike tools such asWebSee,

FieryEye, and Cornipickle, this paper’s technique does not need

a mockup or an intended layout specification to detect RLFs.

Finally, there are many tools that support manual developer

checking of responsive pages, such as those introduced in Section 4.

For instance, multi-screenshot tools (e.g., [12, 13, 25]) showcase

a web page at a few common viewport widths, while others (e.g.,

[5, 15]) allow the tester to resize the viewport to a custom size. As

shown in Section 4, these methods overlook layout failures that

the presented method can detect. Also, in contrast to this paper’s

automated checkers that create annotated graphical failure reports,

all of these tools have another limitation: the tester must inspect

each screenshot, a process that is manual and error-prone. While

Fighting LayoutBugs detects some types of layout failures [8], it

only checks static layout properties and thus, unlike this paper’s

method, is not applicable to the testing of responsive pages.

6 CONCLUSIONS AND FUTUREWORK

Responsive web design (RWD) advocates for the creation of web

pages with an enhanced user experience across many viewport

widths [32]. Since it is challenging to implement a web page in

accordance with RWD principles [20], our prior work presented a

regression checking technique that compared two models of a page

and presented any differences [40]. Focused on handling problems

that are orthogonal to that of checking responsive web pages, other

prior works (e.g., [17, 38]) did not employ oracles designed for

checking multiple viewports. In contrast, this paper’s automated

method leverages implicit oracle information to detect responsive

layout failures. Experiments show that it is effective: along with

finding 2 or more failures in 8 pages, it discovered 6 failures in one

web page, detecting a total of 33 different failures across 26 subjects.

In future work, wewill enable our method to exploit the potential

overlap between viewport ranges, thereby reducing the number

of checks and false positives. We will also enhance the tool to

handle dynamic pages that use JavaScript. Finally, we will extend

the experiments by including more subjects and having external

developers inspect the failure reports and spotchecking screenshots.



Automated Layout Failure Detection for Responsive Web Pages without an Explicit Oracle ISSTA 2017, July 10–14, 2017, California, USA

REFERENCES
[1] Android device fragmentation.

h�p://opensignal.com/reports/2015/08/android-fragmentation/.
[2] Responsive web design — �e viewport

h�ps://www.w3schools.com/css/css rwd viewport.asp.
[3] Know your mobile device (pixel-ratio, CSS width, features).

h�p://mydevice.io/devices.
[4] ReDeCheck tool and ISSTA results archive. h�p://redecheck.org/issta17/.
[5] Firefox developer tools: Responsive design mode.

h�ps://developer.mozilla.org/en-US/docs/Tools/Responsive Design Mode.
[6] Bootstrap: Responsive front-end framework. h�p://getbootstrap.com/.
[7] Creative bloq: Web design trends 2015-16: the long scroll

h�p://www.creativebloq.com/web-design/web-design-trends-2015-16-long-
scroll-81516343.

[8] Fighting layout bugs. h�ps://code.google.com/archive/p/fighting-layout-bugs/.
[9] Foundation: Responsive front-end framework. h�p://foundation.zurb.com/.
[10] Mozilla Firebug. h�p://getfirebug.com.
[11] Mozilla Firefox web browser. h�p://getfirefox.com.
[12] Responsinator. h�ps://www.responsinator.com/.
[13] Responsive design checker. h�p://responsivedesignchecker.com.
[14] Selenium: Web browser automation. h�p://www.seleniumhq.org/.
[15] Viewport resizer. h�p://lab.maltewassermann.com/viewport-resizer/.
[16] Personal communication: Confirmation of responsive layout fault in the home

page of Consumer Reports, January 2017.
[17] A. Alameer, S. Mahajan, and W. G. J. Halfond. Detecting and localizing interna-

tionalization presentation failures in web applications. In Proceedings of the 9th
International Conference on So�ware Testing, Verification, and Validation, 2016.

[18] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. �e oracle problem
in so�ware testing: A survey. Transactions on So�ware Engineering, 41(5), 2015.

[19] Z. D. Blog. Five reasons not to use Twi�er Bootstrap
h�p://www.zingdesign.com/5-reasons-not-to-use-twi�er-bootstrap/.

[20] C. Bloq. 8 RWD problems (and how to avoid them)
h�p://www.creativebloq.com/rwd/responsive-design-problems-12142790.

[21] S. R. Choudhary, H. Versee, and A. Orso. WebDiff: Automated identification of
cross-browser issues in web applications. In Proceedings of the 26th International
Conference on So�ware Maintenance, 2010.

[22] R. Contartesi. Eight reasons why responsive web design will increase profit
for your business. h�p://www.business2community.com/web-design/8-reasons-
responsive-web-design-will-increase-profit-business-01488386.

[23] D. Cyr, M. Head, and A. Ivanov. Design aesthetics leading to M-loyalty in mobile
commerce. Information & Management, 43(8), 2006.
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