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Abstract—This paper considers locating a static source on
Earth using the time difference of arrival (TDOA) and frequency
difference of arrival (FDOA) measurements obtained by a dual-
satellite geolocation system. The TDOA and FDOA from the
source are subject to unknown time and frequency offsets because
the two satellites are imperfectly time-synchronized or frequency-
locked. The satellite locations are not known accurately as
well. To make the source position identifiable and mitigate the
effect of satellite location errors, calibration stations at known
positions are used. Achieving the maximum likelihood (ML)
geolocation performance usually requires jointly estimating the
source position and extra variables (i.e., time and frequency
offsets as well as satellite locations), which is computationally
intensive. In this paper, a novel closed-form geolocation algorithm
is proposed. It first fuses the TDOA and FDOA measurements
from the source and calibration stations to produce a single pair
of TDOA and FDOA for source geolocation. This measurement
fusion step eliminates the time and frequency offsets while taking
into account the presence of satellite location errors. The source
position is then found via standard TDOA-FDOA geolocation.
The developed algorithm has low complexity and performance
analysis shows that it attains the Cramér-Rao lower bound
(CRLB) under Gaussian noises and mild conditions. Simulations
using a challenging scenario with a short-baseline dual-satellite
system verify the theoretical developments and demonstrate the
good performance of the proposed algorithm.

I. INTRODUCTION

Source geolocation refers to identifying the spatial position

of a source on Earth using signal measurements such as the

received signal strength (RSS), time of flight (TOF), time

of arrival (TOA) and time difference of arrival (TDOA) [1],

[2]. When the source is static, its position can be uniquely

determined using a dual-satellite geolocation system with two

satellites that are moving relatively to the source. First, the

TDOA and frequency difference of arrival (FDOA) of the

source signal received at the two satellites are estimated. The

obtained TDOA and FDOA measurements are then exploited
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together with the source altitude information to achieve source

geolocation using e.g., the algebraic algorithm in [3], or in

reverse, determine the satellite orbits [4], [5]. Dual-satellite

geolocation systems have found civilian and military applica-

tions including locating the ground interference to commercial

satellites [6], [7] and space electronic reconnaissance [8].

The estimation of the source TDOA and FDOA requires

joint processing of the source signals received at the two

satellites for e.g., computing the cross ambiguity function

(CAF) [9]–[11]. Therefore, precise time synchronization and

frequency locking between the two satellites are needed for

measuring TDOA and FDOA with high accuracy. However,

in practice, time and frequency alignment could be difficult to

attain. Consider the geolocation scenario shown in Fig. 1 for

example, where satellite 1 transfers its received signal using a

bent pipe transponder [12]. The TDOA and FDOA is estimated

via cross-correlating the downlink signal from satellite 1 and

the uplink signal from satellite 2. The obtained TDOA and

FDOA may be subject to unknown time and frequency offsets,

due to inaccurate knowledge on the group delay and local

frequency of the satellite 1 transponder.

If the time and frequency offsets are small, they can be

neglected in source geolocation and this would generally lead

to biased source position estimates (see e.g., the analysis in

[13]). When they have large absolute values, existing TDOA-

FDOA geolocation algorithms such as those developed in [3],

[8], [14] generally fail to produce a reasonable solution. This

is because with only a pair of source TDOA and FDOA, it

is not sufficient to geolocate the source while simultaneously

estimating the time and frequency offsets. In other words, in

the absence of time synchronization and frequency locking,

the source position may become unidentifiable.

Precise knowledge on the satellite location information1 is

also essential for achieving satisfactory geolocation perfor-

mance. It is well known that the presence of satellite location

errors can significantly degrade the TDOA-FDOA geolocation

1For simplicity, we use satellite location in this paper to represent satellite
position and velocity.



Fig. 1. Short-baseline dual-satellite geolocation scenario. Satellite 2 estimates
the source and calibration TDOAs and FDOAs for source geolocation via
cross-correlating the received downlink signal from satellite 1 and its own
uplink signal.

accuracy [14]–[16]. However, the satellite location errors are

almost inevitable because the satellites are moving and/or they

are in orbits distant from Earth, making obtaining accurate

satellite locations difficult.

In this paper, we investigate the use of calibration stations

at known positions to improve the geolocation performance of

the dual-satellite system when the two satellites have imperfect

time and frequency alignment as well as erroneous locations. It

is assumed that the source and calibration TDOAs and FDOAs

are obtained within a short interval such that they are subject

to the same time and frequency offsets and the same satellite

location errors [17]–[19]. A new closed-form source geoloca-

tion algorithm is proposed for the above problem. In particular,

it first fuses the measurements from the unknown source

and calibration stations using a best linear unbiased estimator

(BLUE) [20]. The time and frequency offsets are eliminated

in the fusion process and the presence of satellite location

errors is appropriately taken into account in the weighting

matrix. The measurement fusion step only produces a single

pair of source TDOA and FDOA, which is then utilized by an

existing algebraic technique for source geolocation. The devel-

oped algorithm has low computational complexity, and more

importantly, theoretical performance analysis shows that it can

attain the Cramér-Rao lower bound (CRLB) under Gaussian

noise and mild conditions. We illustrate the performance of the

proposed algorithm via simulations based on the dual-satellite

geolocation scenario shown in Fig. 1, which is challenging due

to the short baseline between the two satellites. The obtained

simulation results corroborate the theoretical developments.

Our work is different from [21] where precise sensor

locations were assumed and source localization was achieved

using a sequence of source TDOAs and FDOAs received

during a short interval. A maximum likelihood (ML) estimator

that jointly identifies the source position as well as time and

frequency offsets was used in [21]. It is iterative and com-

putationally intensive. In [13], [22]–[25], several techniques

were proposed to deal with the problem of node localization

in the presence of unknown clock offset in sensor networks.

However, they all involved joint time synchronization and node

localization based on iterative convex optimization [22] or

closed-form methods [13], [23], [24]. Moreover, except for

[24], they assumed accurate sensor locations.

Our work is more closely related to [26]–[29]. In [26], [27],

the clock offset was removed by forming differential TDOAs

(D-TDOAs) for node localization. They did not consider

sensor position errors and an iterative ML location estimator

was used. The algorithm developed in [28] eliminated the

clock bias via the use of asymmetric trip ranging (ATR). This

protocol required the node to be located to be cooperative,

which may not be fulfilled in the dual-satellite geolocation

problem considered in this paper. In [29], the sensors used

for TDOA localization were partitioned into groups. Each

group had a different clock offset, which was canceled out by

taking differences between the TDOA measurements within

each group. In contrast, the algorithm proposed in this paper

eliminates the time and frequency offsets in all the measure-

ments and fuses them using a BLUE to generate only a pair

of source TDOA and FDOA for source geolocation.

The rest of this paper is organized as follows. We formulate

the geolocation problem in consideration in Section II. The

geolocation CRLB is derived in Section III. The proposed

geolocation algorithm together with its performance analysis

is presented in IV. Simulation results are given in Section V.

Conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

We consider locating a static source on Earth whose un-

known position is denoted by uo = [uo
x, u

o
y, u

o
z]

T . Under the

oblate spheroidal Earth model specified in World Geodetic

System 1984 (WGS84), uo is related to the source geodetic

latitude φ and longitude ϕ via [30]

uo
x = (r + h)cos(φ)cos(ϕ) (1a)

uo
y = (r + h)cos(φ)sin(ϕ) (1b)

uo
z = (r(1− e2) + h)sin(φ) (1c)

where r = re√
1−e2sin2φ

, re = 6378.137 km is the equatorial

radius, e = 0.081819190842 is the eccentricity, and h is the

source altitude which is assumed to be known.

The dual-satellite system receives the source signal and

computes the TDOA and FDOA between the two satellites. Let

soi = [sox,i, s
o
y,i, s

o
z,i]

T and ṡoi = [ṡox,i, ṡ
o
y,i, ṡ

o
z,i]

T be the true

geocentric position and velocity of satellite i, i = 1, 2. Without

time synchronization and frequency locking, the estimated

source TDOA and FDOA can be expressed as [21], after being

multiplied respectively with the signal propagation speed and

the source signal wavelength,

yu = dou + τ +∆yu (2a)

ẏu = ḋou + δ +∆ẏu. (2b)



τ and δ are the unknown time and frequency offsets between

the two satellites. dou and ḋou are the true source TDOA and

FDOA, and they are equal to

dou = ||uo − so1|| − ||uo − so2|| (3a)

ḋou =
−(uo − so1)

T ṡo1
||uo − so1||

− −(uo − so2)
T ṡo2

||uo − so2||
(3b)

where ||·|| represents the Euclidean distance. For notation sim-

plicity, we collect yu and ẏu to form the source measurement

vector yu = [yu, ẏu]
T . Moreover, we introduce

αo = [τ, δ]T (4)

to collect the time and frequency offsets. Note that with only

yu, the source position is unidentifiable, due to the presence

of the additional unknown αo.

The true satellite location information is not available. The

geolocation algorithm only has access to noisy observations

of soi and ṡoi , which are denoted as

si = soi +∆si (5a)

ṡi = ṡoi +∆ṡi. (5b)

Collecting the known satellite locations yields β =
[sT1 , ṡ

T
1 , s

T
2 , ṡ

T
2 ]

T . Its true value is βo = [soT1 , ṡoT1 , soT2 , ṡoT2 ]T .

The satellite location error vector is denoted by ∆β = β −
βo = [∆sT1 ,∆ṡT1 ,∆sT2 ,∆ṡT2 ]

T , which is assumed to be zero-

mean Gaussian distributed with covariance matrix Qβ [14],

[17]–[19], [24], [29].

There are N ground calibration stations at known positions

cn = [cx,n, cy,n, cz,n]
T , n = 1, 2, ..., N , deployed to improve

the geolocation accuracy in the absence of time and frequency

alignment between satellites and precise satellite locations.

When the measurements from the unknown source and calibra-

tion stations are obtained during a short interval, they would

be subject to the same time and frequency offsets. As a result,

the calibration TDOAs and FDOAs can be modeled similar to

(2) as

yc,n = doc,n + τ +∆yc,n (6a)

ẏc,n = ḋoc,n + δ +∆ẏc,n. (6b)

doc,n and ḋoc,n are the true TDOA and FDOA from the n-th

calibration station, which are equal to

doc,n = ||cn − so1|| − ||cn − so2|| (7a)

ḋoc,n =
−(cn − so1)

T ṡo1
||cn − so1||

− −(cn − so2)
T ṡo2

||cn − so2||
. (7b)

It can be seen from (6) that with calibration stations, the source

position becomes identifiable because there are (N + 1) ≥ 2
pairs of measurements, which are sufficient to determine the

source position and time and frequency offsets.

Collecting yc,n and ẏc,n, and stacking the results

over n yield the calibration measurement vector yc =
[yT

c,1,y
T
c,2, ...,y

T
c,N ]T , where yc,n = [yc,n, ẏc,n]

T . Combining

the source measurement vector yu with yc yields the compos-

ite measurement vector y = [yT
u ,y

T
c ]

T . According to (2) and

(6), the true value of y can be expressed as

yo = [doT
u ,doT

c,1,d
oT
c,2, ...,d

oT
c,N ]T +Gαo. (8)

The coefficient matrix G is equal to

G = 1(N+1)×1 ⊗ I2×2 (9)

where ⊗ denotes the Kronecker product, 1(N+1)×1 denotes a

(N+1)×1 column vector of ones and I2×2 represents a 2×2
identity matrix. The vectors do

u and do
c,n are defined as

do
u = [dou, ḋ

o
u]

T (10a)

do
c,n = [doc,n, ḋ

o
c,n]

T . (10b)

The measurement noise in y can be shown to be ∆y =
y − yo = [∆yu,∆ẏu,∆yc,1,∆ẏc,1, ...,∆yc,N ,∆ẏc,N ]T . As

in [17]–[19], it is assumed that ∆y is a zero-mean Gaussian

random vector with covariance matrix Qy and ∆y is also

independent of the satellite location error ∆β.

We are interested in estimating at a low computational cost

the source position uo using the source and calibration TDOAs

and FDOAs in y as well as the noisy satellite locations in β.

III. CRLB

This section derives the CRLB of uo, denoted by

CRLB(uo). For this purpose, note that according to the

previous section, besides the source position uo, the time and

frequency offsets in αo and true satellite location vector βo are

also unknown. As the source altitude h is known, the CRLB of

[uoT ,αoT ,βoT ]T would be an equality-constrained one [31].

To simplify the derivation, we follow the re-parameterization

approach [32] and establish CRLB(uo) via relating it to the

CRLB of θo = [φ, ϕ]T , where φ and ϕ are the source geodetic

latitude and longitude (see (1)). Specifically, we have [20]

CRLB(uo) =

(

∂uo

∂θo

)

· CRLB(θo) ·
(

∂uo

∂θo

)T

. (11)

To find CRLB(θo), we need to derive the CRLB of the com-

posite unknown vector ηo = [θoT ,αoT ,βo]T first. Express

ηo as ηo = [γoT ,βo]T , where γo = [θoT ,αoT ]T contains

the source position as well as time and frequency offsets.

Note from Section II that the composite TDOA and FDOA

measurement vector y and the known satellite locations β

are jointly Gaussian distributed. Taking logarithm of this

joint distribution, differentiating it twice with respect to ηo,

negating the sign and taking expectation yields the Fisher

information matrix (FIM) of ηo [20]. The partitioned matrix

form of FIM(ηo) is

FIM(ηo) =

[

X Y

YT Z

]

. (12)



The matrix partitions are defined as

X =

(

∂yo

∂γo

)T

Q−1
y

(

∂yo

∂γo

)

(13a)

Y =

(

∂yo

∂γo

)T

Q−1
y

(

∂yo

∂βo

)

(13b)

Z = Q−1
β +

(

∂yo

∂βo

)T

Q−1
y

(

∂yo

∂βo

)

. (13c)

X is the FIM of γo when the satellite location errors are

absent. Inversing FIM(ηo) gives CRLB(ηo), and its upper-

left 2× 2 block is the desired CRLB(θo).
We shall derive a detailed expression for CRLB(θo) to gain

insights. First, taking the inverse of FIM(ηo) and retaining

only the upper-left 4× 4 block yield the CRLB of γo, which

is given by

CRLB(γo) =
(

X−YZ−1YT
)−1

. (14)

Putting the definitions of X, Y and Z and applying the matrix

inversion Lemma [20], we arrive at

CRLB(γo) =

(

(

∂yo

∂γo

)T

Q̃−1
y

(

∂yo

∂γo

)

)−1

(15)

where

Q̃y = Qy +

(

∂yo

∂βo

)

Qβ

(

∂yo

∂βo

)T

. (16)

It is easy to show that Q̃y − Qy is positive semi-definite.

Moreover, Q̃y is generally not block diagonal, even if the

TDOA and FDOA measurements from the source and cali-

bration stations are independent to one another and Qy has a

block diagonal structure. As a result, by taking the inverse of

CRLB(γo) in (15) and comparing the result with (13a), we

have that FIM(γo) = CRLB(γo)−1 can be considered as the

FIM of γo when accurate satellite locations are known but

the measurements have an increased covariance matrix Q̃y .

In other words, satellite location errors affect the estimation

of the source position and time and frequency offsets via

degrading and introducing extra correlation into the source

and calibration measurements.

According to the definition γo = [θoT ,αoT ]T , CRLB(θo)
is given by the upper-left 2×2 block of CRLB(γo). To evaluate

(15), we put (8) and express the partial derivative ( ∂y
o

∂γo ) as

(

∂yo

∂γo

)

=

[

H

(

∂do
u

∂θo

)

,G

]

(17)

where G is defined in (9), the matrix H is defined as

H =

[

I2×2

ON×2

]

(18)

and N is the number of calibration stations. Substituting (17)

into (15) and applying the partitioned matrix inversion formula

[20] yield

CRLB(θo) =

(

(

∂do
u

∂θo

)T
(

HTPyH
)

(

∂do
u

∂θo

)

)−1

. (19)

which is the desired form for CRLB(θo). The matrix Py is

equal to

Py = Q̃−1
y − Q̃−1

y G
(

GT Q̃−1
y G

)−1

GT Q̃−1
y . (20)

Py is in fact a singular matrix, which can be verified as

follows. Applying the Cholesky decomposition Q̃y = L̃yL̃
T
y

to (20), we obtain Py = L̃−T
y PL̃−1

y , where

P = I(N+1)×2 − L̃−1
y G

(

GT L̃−T
y L̃−1

y G
)−1

GT L̃−T
y . (21)

P is clearly a projection matrix, which is singular and renders

Py non-invertible.

Note that the three terms on the right-hand side of (19) are

all 2×2 matrices. For CRLB(θo) to be existent, they must be

non-singular. Hence, substituting (19) back to (11) gives

CRLB(uo)

=

(

∂uo

∂θo

)(

∂do
u

∂θo

)−1
(

HTPyH
)−1

(

∂do
u

∂θo

)−T (
∂uo

∂θo

)T

.

(22)

This is the CRLB of the source position uo under the consid-

ered dual-satellite geolocation scenario where unknown time

and frequency offsets between satellites and satellite location

errors are present. It lower-bounds the error covariance matrix

of any unbiased estimator of uo. The required partial deriva-

tives,
(

∂uo

∂θo

)

,
(

∂do

u

∂θo

)

and
(

∂yo

∂βo

)

, are given in the Appendix.

Carefully examining (22) reveals that the source position

CRLB does not depend on the actual values of the time and

frequency offsets. More importantly, it has the same functional

form as the geolocation CRLB with precise time-frequency

alignment between satellites, accurate satellite locations and

a source TDOA-FDOA covariance matrix (HTPyH)−1 (see

e.g., [3]). The measurements from calibration stations affects

the source geolocation performance only through the term

(HTPyH)−1. These observations are essential for the low-

complexity geolocation algorithm development in the follow-

ing section.

IV. ALGORITHM

The geolocation algorithm development begins with noting

from (6) and (7) that the TDOA and FDOA measurements

from calibration stations are not dependent on the source

position uo. According to the CRLB analysis in Section III,

they contribute to the source geolocation accuracy indirectly

through providing information on the time and frequency

offsets αo and true satellite locations.

In this paper, we shall develop a novel two-step algorithm

that avoids the estimation of any extra variables (i.e., the

true satellite locations βo as well as the time and frequency

offsets αo). Step-1 of the proposed algorithm fuses the TDOA

and FDOA measurements from the unknown source and

calibration stations using a BLUE. It eliminates αo and takes

into account the presence of satellite location errors in the

weighting matrix. The output of Step-1, which is an estimate



of the source TDOA and FDOA dou and ḋou (see (3)), is utilized

in Step-2 of the proposed algorithm for geolocating the source.

Step-1: We start with considering the composite measure-

ment vector y = yo + ∆y that contains the TDOAs and

FDOAs from the source and calibration stations. Note from

(3) and (7) that the true value of y, yo, depends on the

true satellite locations βo, which is unknown. We therefore

approximate yo, after applying the first-order Taylor-Series

expansion around the known satellite locations β, as

yo ≈ ŷo −D∆β (23)

where

ŷo =
[

d̂oT
u , d̂T

c,1, ..., d̂
T
c,N

]T

+Gαo. (24)

d̂o
u = [d̂ou,

ˆ̇
dou]

T and d̂c,n = [d̂c,n.
ˆ̇
dc,n]

T have the same

functional forms as do
u in (3) and do

c,n in (7) except that the

true satellite locations βo are replaced with their known but

noisy version β. Mathematically, we have

d̂ou = ||uo − s1|| − ||uo − s2|| (25a)

ˆ̇
dou =

−(uo − s1)
T ṡ1

||uo − s1||
− −(uo − s2)

T ṡ2

||uo − s2||
(25b)

d̂c,n = ||cn − s1|| − ||cn − s2|| (25c)

ˆ̇
dc.n =

−(cn − s1)
T ṡ1

||cn − s1||
− −(cn − s2)

T ṡ2

||cn − s2||
(25d)

where n = 1, 2, ..., N . The coefficient matrix D for the

satellite location error ∆β can be shown to be

D =

(

∂ŷo

∂β

)

. (26)

Putting (24) and (25) into (26) and comparing the result with

(40) indicate that D is equal to the partial derivative
(

∂yo

∂βo

)

evaluated at the noisy satellite locations β.

Note from (25) that d̂c,n are indeed a known quantity be-

cause the calibration station positions cn and satellite locations

β are both available. Exploring the above fact and putting (24)

transform the composite measurement vector y into

ŷ ≈ Hd̂o
u +Gαo + (∆y −D∆β) (27)

where G and H are defined in (9) and (18). Besides,

ŷ = y − [0T , d̂T
c,1, ..., d̂

T
c,N ]T . (28)

We shall estimate the source TDOA and FDOA d̂o
u from

ŷ to accomplish the desired measurement fusion. For this

purpose, note that in (27), the noise term (∆y − D∆β) is

zero-mean Gaussian distributed with covariance matrix

Q̂y = Qy +DQβD
T (29)

because ∆y and ∆β are independent zero-mean Gaussian

random vectors with covariance matrices Qy and Qβ (see

Section II). We eliminate the time and frequency offsets αo

in (27) by first pre-whitening the noise in ŷ using L̂−1
y and

then multiplying both sides of (27) by the projection matrix

P̂ = I(N+1)×2 − L̂−1
y G

(

GT L̂−T
y L̂−1

y G
)−1

GT L̂−T
y . (30)

Here, Q̂y = L̂yL̂
T
y is the Cholesky decomposition of Q̂y .

After these manipulations, (27) becomes

P̂L̂−1
y ŷ = P̂L̂−1

y Hd̂o
u + P̂L̂−1

y (∆y −D∆β) (31)

where P̂G = 0 has been applied. The BLUE of d̂o
u is [20],

[33]

d̂u = [d̂u,
ˆ̇
du]

T =
(

HT P̂yH
)−1

HT P̂yŷ (32)

where the fact that Q̂−1
y = L̂−T

y L̂−1
y and P̂ is idempotent (i.e.,

P̂2 = P̂) has been applied, and

P̂y = Q̂−1
y − Q̂−1

y G
(

GT Q̂−1
y G

)−1

GT Q̂−1
y . (33)

This completes the Step-1 processing of the proposed algo-

rithm that fuses the source and calibration measurements.

It is worthwhile to point out that the approach used to cancel

αo in (27) is referred to as orthogonal subspace projection

(OSP) in some literature [33]–[35]. Recent study [33] showed

that results identical to the fusion output in (32) can be

obtained via jointly estimating d̂o
u and αo, or “differential

signal processing”, where measurement differencing is used

to eliminate αo. In this work, we adopt the OSP approach to

facilitate the performance analysis of the proposed algorithm.

Step-2: With the source TDOA and FDOA estimates in

(32), the source position uo can be estimated using e.g., the

algebraic TDOA-FDOA geolocation technique developed in

[3]2 that jointly utilizes d̂u,
ˆ̇
du, the source altitude h and

known satellite locations β. The obtained source position

estimate, denoted by u, is the algorithm output.

A. Implementation Aspect

Realizing the proposed algorithm requires the evaluation of

Q̂y defined in (29). However, it depends on the unknown

source position uo through the matrix D define in (26). To

address this difficulty, we set Q̂y = Qy to obtain an initial

estimate of uo and then plug the result back to (26) and (29)

so that improved estimates of Q̂y and uo can be obtained.

In the algorithm implementation, we do not iterate the above

process and simulations show that this approximation does not

lead to observable performance degradation.

B. Performance Analysis

We derive the covariance matrix of the source position esti-

mate u, denoted by cov(u), and compare it with CRLB(uo).
Note that the proposed algorithm finds u from d̂u in (32),

which is the estimate of the source TDOA and FDOA d̂o
u =

[d̂ou,
ˆ̇
dou]

T (see (25)). Following the same approach adopted in

[3], we can show that cov(u) is approximately equal to

cov(u) ≈
(

∂uo

∂θo

)

(

∂d̂o
u

∂θo

)−1

cov(d̂u)

(

∂d̂o
u

∂θo

)−T
(

∂uo

∂θo

)T

(34)

2This algorithm was indeed used to generate the simulation results pre-
sented in Section V.



where cov(d̂u) is the covariance matrix of d̂u. It can be

derived by putting (27) into (32) and subtracting d̂o
u from both

sides to obtain the estimation error in d̂u. Post-multiplying the

estimation error with its transpose and taking expectation yield

cov(d̂u) =
(

HT P̂yH
)−1

. (35)

Putting (35) and comparing (34) with (22) indicate that

cov(u) ≈ CRLB(uo) (36)

if
(

∂d̂o

u

∂θo

)

≈
(

∂do

u

∂θo

)

and Py ≈ P̂y (i.e., Q̃y ≈ Q̂y or equiva-

lently D ≈
(

∂yo

∂β

)

). It can be verified that the above approx-

imations are valid under the conditions ∆si/||uo − soi || ≈ 0
and ∆ṡi/||uo − soi || ≈ 0 for i = 1, 2. In other words, when

the satellite location errors are negligible with respect to the

source-satellite range, the proposed algorithm can attain the

CRLB accuracy under Gaussian noise model.

The above analysis implicitly assumes that the matrix D is

evaluated using the true source position. Similar assumption

was also utilized in [17]–[19], [24], [29]. However, as pointed

out in the previous subsection, the algorithm implementation

uses the estimated source position instead to produce D. The

amount of error introduced is dependent on the TDOA and

FDOA noise as well as satellite location errors. As a result,

the estimation performance of the proposed technique would

eventually deviate from CRLB when the noise level becomes

sufficiently large and the thresholding effect [20] occurs.

V. SIMULATIONS

We study the performance of the proposed two-step source

geolocation algorithm via simulations. The performance met-

rics used are the geolocation root mean square error (RMSE),

RMSE(u) =
√

1
K

∑K
k=1‖uk − uo‖2, and the estimation bias,

Bias(u) = || 1
K

∑K
k=1 uk − uo||. Here, K = 20000 is the

number of Monte Carlo runs and uk denotes the geolocation

result in the k-th ensemble run.

The geolocation performance of the proposed algorithm is

compared with the CRLB and that of two benchmark methods,

namely an iterative ML estimator and a differential calibration

(DC)-based estimator [15], [17]. The maximum likelihood

(ML) algorithm estimates the source latitude and longitude

θo together with the time and frequency offsets αo and true

satellite locations βo. The estimate of the geocentric position

of the source is then found by plugging the result into (1).

We initialize the ML algorithm via adding to the true values

zero-mean Gaussian noise with covariance matrix equal to

4·FIM(ηo)−1, where FIM(ηo) is given in (12). The DC-based

method cancels αo by subtracting from the calibration mea-

surements the source TDOA and FDOA and performing source

geolocation using the transformed calibration measurements.

Note that the satellite location errors are not explicitly taken

into account in the DC-based method.

Fig. 2. Geolocation RMSE as a function of the TDOA noise standard
deviation σt.

A. Setup

The simulated dual-satellite geolocation scenario is depicted

in Fig. 1. The source is located at [124oE, 25oN] with

known altitude h = 100m. There are three ground calibration

stations and they are located at [116.3oE, 39.9oN], [119oE,

39oN] and [121oE, 31.5oN]. Two satellites are located at

[86.71oE, 0.029oS] and [86.78oE, 0.042oS] with altitudes

35792km and 35742km. They are moving with velocities ṡo1 =
[3.76,−0.67, 126.5]T m/s and ṡo2 = [1.27, 0.15, 133.7]T m/s.

This simulation scenario is challenging mainly because the

baseline (i.e., the distance between two satellites) is around

72km, which is much smaller than the source-satellite distance

of more than 37778km. Hence, is a short-baseline geolocation

geometry.

The source carrier frequency is fc = 14.5GHz. To simplify

the simulation, the carrier frequencies of the calibration sta-

tions are all set to be fc as well, although in practice, they

could be different from but close to fc. The transponder at

satellite 1 is assumed to have a group delay of 0.06µs and a

local oscillator of 2.5GHz, both of which are unknown. We set

that the covariance matrix for the source and calibration mea-

surements Qy is a diagonal matrix. Unless stated otherwise,

the standard deviations of the TDOA and FDOA noises are σt

= 0.1µs and σf = 10mHz, while the standard deviations of

the satellite position and velocity errors are σs = 1000m and

σṡ = 0.01m/s.

B. Results

Fig. 2 plots as a function of the TDOA noise standard

deviation σt the geolocation RMSE of the proposed two-

step algorithm. It can be seen that the two-step method can

provide geolocation accuracy very close to the CRLB when

σt ≤ 0.25µs, which is consistent with the performance anal-

ysis in Section III.B. The ML estimator is also able to attain

the CRLB accuracy but at the cost of higher computational

complexity due to iteratively estimating the source position

and extra variables in a joint manner. In terms of running

time, the proposed algorithm is at least 2 times faster than the

ML method on our desktop with Intel Core i5-4590 3.30GHz



Fig. 3. Geolocation RMSE as a function of the FDOA noise standard deviation
σf .

Fig. 4. Geolocation RMSE as a function of the satellite position error standard
deviation σs.

CPU and 12GB RAM. The DC-based technique, on the other

hand, is unable to offer the CRLB performance under small

TDOA noise, because it does not take into consideration the

statistical information on the satellite location errors when per-

forming measurement differencing. Note that as σt increases

over 0.2µs, the performance of the DC-based approaches

the CRLB. This is possibly because the TDOA noise now

dominates the equivalent error covariance matrix Q̂y (see (29))

and the effect of the satellite location errors is less influential

Notice that the estimation bias of the proposed algorithm is

always less than 3km, which is negligible compared with the

geolocation RMSE. It indicates that the proposed algorithm is

approximately unbiased in this simulation.

Fig. 3 shows the results as a function of the FDOA noise

standard deviation σf . The obtained observations are similar to

those from Fig. 2. Again, as expected, the proposed two-step

algorithm attains the CRLB accuracy.

Fig. 4 compares the geolocation performance as a function

of the satellite position error standard deviation σs. When

σs is smaller than 2500m, the geolocation RMSEs of both

the proposed two-step method and ML estimator remain

very close to the CRLB. However, the performance of the

proposed algorithm starts to deviate from the CRLB and

Fig. 5. Geolocation RMSE as a function of the z-axis velocity of satellite 2.

Fig. 6. Geolocation RMSE as a function of the assumed source altitude.

become inferior to that of the ML estimator, as the satellite

position error further increases. This is because the proposed

algorithm does not refine the noisy satellite locations, in

contrast to the ML estimator that estimates all the unknowns

simultaneously.This is also the reason why the bias of the

proposed algorithm increases apparently when σs is larger than

2500m. The geolocation performance of the DC-based method

is very sensitive to the satellite position error and it degrades

significantly as σs has larger values. We also investigated the

geolocation performance as a function of the satellite velocity

error standard deviation σṡ. The observations are very similar

and hence, the obtained results are omitted here.

Inspired by [36], we consider in Fig. 5 the impact of

different satellite velocity configurations on the geolocation

performance of the three algorithms simulated. In particular,

the velocity of satellite 2 is artificially varied using ṡo2 + k ·
[0, 0, 5]T . It can be seen that the geolocation performance

changes greatly under different satellite velocity configura-

tions, mainly because they affect the amount of information

provided by the FDOA measurements on the source position

(see (3)).

Fig. 6 shows the geolocation performance as a function

of the assumed source altitude. Specifically, the true source

altitude is unknown (which is 100m) and practically some



certain values of h are adopted in geolocation instead. As

shown, the proposed algorithm and ML algorithm remain very

close to the CRLB, while the DC-based produces obviously

larger location errors. In a whole, the proposed algorithm, as

well as the other two approaches, is insensitive to the error in

the source altitude.

VI. CONCLUSIONS

We investigated the problem of dual-satellite source ge-

olocation when time and frequency offsets between satellites

and satellite location errors are present. The source position

CRLB was derived. The insights from the CRLB analysis

motivated the development of a closed-form two-step geolo-

cation algorithm. In its Step-1 processing, the new method

fuses using a BLUE the TDOAs and FDOAs from the source

and calibration stations to produce as the output a single

pair of source TDOA and FDOA. The time and frequency

offsets are eliminated and the satellite location errors are

taken into account in the weighting matrix of the BLUE.

The second step of the proposed algorithm geolocates the

source using the Step-1 output and the noisy satellite locations

using an existing algebraic solution. Simulations using a short-

baseline dual-satellite geolocation scenario verified the theo-

retical performance analysis result that the proposed algorithm

can attain the CRLB performance under Gaussian noise and

mild conditions.

In the future work, we plan to verify the proposed algorithm

with practical satellites data. Furthermore, we plan to extend

the proposed geolocation framework to the more general case

with multiple satellites and satellite location refinement for

further performance enhancement.

APPENDIX

Expressions for the partial derivatives
(

∂uo

∂θo

)

,
(

∂do

u

∂θo

)

and
(

∂yo

∂βo

)

are provided here to complete the derivation of the

source geolocation CRLB in (22).

From the definition θo = [φ, ϕ]T , the partial derivative
(

∂uo

∂θo

)

can be easily shown to be equal to
(

∂uo

∂θo

)

=

[(

∂uo

∂φ

)

,

(

∂uo

∂ϕ

)]

. (37)

The detailed expression can be easily found using (1) and will

be omitted here.

In the following derivation, we need the following defini-

tions. Specifically, ρa,b = (a−b)
||a−b|| denotes a unit vector from

b to a and ga,b = − ḃ
||a−b|| +

(a−b)T ḃ

||a−b||2 ρa,b.

By Chain Rule,
(

∂do

u

∂θo

)

can be expressed as

(

∂do
u

∂θo

)

=

(

∂do
u

∂uo

)(

∂uo

∂θo

)

(38)

where
(

∂uo

∂θo

)

is given in (37) and
(

∂do

u

∂uo

)

is equal to, from (3),

(

∂do
u

∂uo

)

=

[

ρT
uo,so

1

− ρT
uo,so

2

gT
uo,so

1

− gT
uo,so

2

]

. (39)

Using (8), we have that

(

∂yo

∂βo

)

=

[

(

∂do
u

∂βo

)T

,

(

∂do
c,1

∂βo

)T

, ...,

(

∂do
c,N

∂βo

)T
]T

.

(40)

From (3) and (7), it can be shown that

(

∂do
u

∂βo

)

=

[−ρT
uo,so

1

0T ρT
uo,so

2

0T

−gT
uo,so

1

−ρT
uo,so

1

gT
uo,so

2

ρT
uo,so

2

]

(41a)

(

∂do
c,n

∂βo

)

=

[−ρT
cn,s

o

1

0T ρT
cn,s

o

2

0T

−gT
cn,s

o

1

−ρT
cn,s

o

1

gT
cn,s

o

2

ρT
cn,s

o

2

]

(41b)

where n = 1, 2, ..., N . This completes the derivation of the

partial derivatives required in the CRLB result in Section III.
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