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A novel dynamic resource allocation model is introduced for efficient sharing of services 

provided by ad hoc assemblies of heterogeneous autonomous vehicles. A key contribution is the 

provision of capability to dynamically select sensors and platforms within constraints imposed 

by time dependencies, refueling, and transportation services. The problem is modeled as a 

connected network of nodes and formulated as an Integer Linear Program (ILP). Solution 

fitness is prioritized over computation time. Simulation results of an illustrative scenario are 

used to demonstrate the ability of the model to plan for sensor selection, refueling, collaboration 

and cooperation between heterogeneous resources. Prioritization of operational cost leads to 

missions that use cheaper resources but take longer to complete. Prioritization of completion 

time leads to shorter missions at the expense of increased overall resource cost. Missions can be 

successfully re-planned through dynamic reallocation of new requests during a mission. Monte 

Carlo studies on systems of increasing complexity show that good solutions can be obtained 

using low time resolutions, with small time windows at a relatively low computational cost. In 

comparison with other approaches, the developed ILP model provides best solutions at the 

expense of longer computation time. 

Nomenclature 

�    = summation of difference between gain and maintenance cost, £ 

�   = summation of landing cost of all resources, £ 

�   = summation of take-off cost of all resources, £ 

�   = summation of traveling time of all resources, time slices 

�   = summation of finishing time of all resources, time slices 

�   = weighted mission completion time, time slices 

�   = summation of remaining fuel time in all resources, time slices 

�   = summation of resources carried payloads 

�   = summation of number of time slices allocated for loiter tasks 

���−,/  = additional operational cost of operating resource r from base b, £ 

�−   = set of bases that can be visited by resource r 

����� = set of all bases 

���−  = payload capacity of resource r 

��������= overall completion time of the mission, time slices 

�   = very small number(<0.01) 

�;   = weight of effectiveness 

�<   = weight of operations cost 

�=   = weight of take-off and landing costs 

�>   = weight of individual completion time 

�?   = weight of mission completion time 
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�Α    = binary decision variable, used to indicate if the payload to be delivered at j has been picked up 

��Α,Β  = binary decision variable used to store the pickup time of the payload to be delivered at j 

������� = delivery subtask of a transport task 

����−,Α  = set of all nodes from which resource r can travel to node j 

�������− = integer variable representing the finishing time slice of each resource r 

�Α   = gain obtained from performing task j, £ 

�������− = set of initial positions for resource r 

�������− = set of initial sensor combination onboard resource r 

����� = set of intersection tasks 

�Α =  number of time slices required to complete task j 

���Α = lag time between preceded task j and its preceding task, time slices 

��−,/  = cost of landing resource r at base b 

������ = set of all loiter tasks  

��−   = maintenance cost per time slice of operation of resource r, £/time slices 

����  = set of non-preemptive nodes 

��   = number of resources used in the simulation studies 

��   = number of tasks used in the simulation studies 

����  = number of task sets that need to be completed together 

���  = number of time slices used for planning 

��−,Α  = platform effectiveness of resource r in performing task j 

����Α = pickup subtask associated with deliver task j  

�������� = tasks that can potentially have an Intersection task 

���  = set of preemptive nodes 

��������= set of tasks that cannot start execution before at least one preceding tasks have been completed 

���������Α= set containing the tasks that precede task j 

��Α = payload weight of deliver task j 

��Α = binary decision variable used to indicate if any preceding task j has been allocated 

���Α,Β  = binary decision variable used to store the time t at which the preceding task of j has been allocated 

�   = maximum fuel capacity of all resources, time slices 

�−   = maximum fuel capacity of resource r, time slices 

�Α   =  set of resources that have the capability to attend node j 

��������� = set of all vehicles 

�−   = set of sensor combinations that can be installed on resource � ∈ ��������� 

��Ψ,Α  = effectiveness of sensor s in performing task j 

�������= set of all sensor combinations 

��−,Ψ  = number of time slices reduced due to the installation of sensor s onboard resource r 

���Ψ  = cost per time slice of operating sensor s, £/time slices 

�/ = set of time slices when base b is available 

�Α =  set of time slices when task j can be executed 

����� = set of all tasks 

��−   =  set of all nodes to which resource r can travel 

���−,/  = cost of takeoff of resource r from base b, £ 

�����ℎ��∴= set of tasks that must be completed together with index � ∈ {1. . ����} 
��0−  = initial value of the time slice at which resource r will run out of fuel 

��−,Α   = the time slice at which resource r will run out of fuel  

���−  = set of tasks that can be attended by resource r 

��−,Α,∴  = number of time slices required by resource r to travel from node i to node j 

����  = set of time slices 

��   = time window size used in the simulation studies 

���0− = fraction of the payload capacity that is used in resource r 

���−,Α  = positive integer decision variable storing the fraction of payload capacity that is used in resource r at 

the time it arrives at node j 

�����  = set of all visit tasks  
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�Α,Β   = binary decision variable used to store the starting time for preemptive tasks 

���Α,χ   = binary decision variable used to indicate if at least one of the tasks with XOR relationship has been 

performed 

�−,Α,∴
Β,Ψ

   = primary binary decision variable 

���Α  = set of tasks that have XOR relationship between each other 

 

I.! Introduction 

HE use of Unmanned Aerial Vehicles (UAV) for civilian applications is increasing rapidly, driven by both 

improvements in platform technology and the development in computational capabilities and communication 

technologies. Earlier work in UAV resource allocation has been largely focused on military operations, with 

comparatively less attention focused on civilian applications [1]. Platform autonomy continues to grow and systems 

are becoming gradually more reliable, however, commercial UAV operational models for applications such as 

disaster relief, commercial aerial photography, crop health monitoring and emergency response are inclined towards 

one user flying one UAV. The scope of current UAV civilian applications is driven by national regulatory 

requirements which typically restrict operations to small-size short-range vehicles within visual range of a safety 

pilot. Larger classes of UAV typically require more than one operator to perform a mission. A current research trend 

is the move from multiple operators managing one UAV to one operator managing multiple UAVs [1]. In the 

present work we develop a resource allocation system that offers multiple unmanned autonomous vehicle services to 

multiple users. This work is focused on multi heterogeneous UAVs complemented with ground and surface based 

autonomous vehicles. 

 The resource allocation system proposed in this article offers dynamically reconfigurable vehicle teams, which 

are temporarily formed to perform a mission or part of it. Teams get dismantled once the mission is serviced so that 

the team members can join various other teams attending different missions. The majority of current UAV resource 

allocation systems tend to be problem specific, focusing on, for example, wide-area search, sense and react, or data 

gathering missions. Each of these missions has a set of UAVs associated with it that can only perform that particular 

mission. The use of a problem specific approach is a domain bound exercise that simplifies the problem at the 

expense of universality. Problem specific planning solutions generally do not accommodate the operational 

constraints imposed by multiple mission scenarios. For instance Murray et al. [2] considered a fuel quantity 

constraint and constraints on time windows for tasks, however, refuel scheduling and sensor selection options are 

not included. Mufalli et al. [3] considered sensor selection, finite fuel resources and prescribed time windows, 

however refuel scheduling, dynamic sensor selection, heterogeneous task types and cooperation between UAVs are 

not included. A multi-user system requires the ability to accommodate multiple mission types that may be requested 

in parallel. During the planning phase, the proposed system must be able to generate an efficient action plan for each 

available resource, a refueling schedule and a sensor selection schedule that permits change of sensors during 

execution. System operators have different perspective on efficiency, while some may prefer reducing cost other 

may prefer reducing mission time. 

 The resource allocation system introduced in this paper incorporates the ability to plan point to point 

transportation missions with a single transshipment node in conjunction with sensing and data gathering missions. 

The efficiency of the solution is controllable by the operator through varying the importance of time versus 

operational cost to suit the overall goals of the operation. The resource allocation system has the ability to replace 

active resources with more effective ones once they become available. It also enables automation of the interaction 

between the user and the vehicle fleet and offers an automated asset management solution for the system operator.  

 We recognize that whilst there are benefits in producing a generic resource allocation solution, there are some 

instances where pre-configured solutions may be more appropriate. For example surveillance problems requiring 

search and tracking of moving targets may benefit from fast distributed systems such as those presented in [4][5][6]. 

Plume source problems can benefit from multi UAV coordination systems based on swarm intelligence similar to 

the one presented in [7]. Specialized transportation missions requiring more than one transshipment node or aiming 

to cover very large area can use network models similar to the one presented in [8]. Other applications that use 

UAVs for cooperative slung load transportation may benefit more from solutions such as the distributed system 

developed as part of the AWARE project [9].  

 It is understood that the emphasis of the proposed resource allocation system is on production of an efficient plan 

without particular regard to the computational cost of developing the plan. Furthermore, in order to enable dynamic 

T 



 

American Institute of Aeronautics and Astronautics 

 

4 

resource allocation, it is necessary that the computing resource undertaking the planning has full and continuous 

access to bidirectional communication with all the vehicle assets involved. 

 Section II provides reviews of multi-UAV systems and use of ILP for resource allocation. The problem 

definition and description of the proposed allocation system is presented in section III. The ILP formulation of the 

resource allocation problem is presented in section IV. Section V presents simulation results and provides a 

discussion of the performance and capabilities of the developed system. Finally, the main outcomes of the article are 

summarized in the conclusion in section VI. 

II.! Literature Review 

 Research into operations models for multi UAV systems in military scenarios has been active since the 1970’s 

as described by Aume et al. [10]. The reader is referred to Maza et al. [11] who presents some main advantages of 

using multiple UAVs in comparison to a single powerful one, with a good classification of multi-UAV systems 

based on the coupling between UAVs. Design consideration for multi-UAV planning architectures are covered in 

details by Ponda et al. in [12] with a review on Linear Programming (LP), Markov Decision Process (MDP) and 

Game Theory approaches presented in the context of solving cooperative mission planning for multi-UAV teams.  

In civilian operations, we find many multi-UAV applications typically focused on acquisition, processing and 

distribution of sensor data. Applications include surveillance and patrolling [13] [14], live image capture [15], 

environment monitoring [16], area exploration [17] [18] and radiation mapping [19]. Dynamism in sensing 

applications comes from new requests and task modifications issued by the end user or from fault conditions in any 

of the UAVs [17].  

Dynamic resource allocation systems have the ability to reallocate tasks and resources during mission execution. 

The ability to reallocate tasks can lead to the potential problem of repeated reassignment known as ‘churning’. This 

decision cycling wastes time and may lead to infeasible solutions as shown in [20]. Different strategies have been 

developed to address the problem of churning such as use of a filter that limits the rate of change of the task 

assignment [20] or use of an additional weighing that favors the current plan over new plan as described in [1]. 

All linear programming approaches, whether centralized or not, may suffer from the curse of dimensionality. In 

our case, the number of decision variables grows linearly with the number of vehicles and the number of time slices 

keeping the problem theoretically tractable. However, processing time typically increases exponentially with the 

increasing number of UAVs and tasks [21]. Nonetheless, the use of a ground based central computing point means 

that the cost of computational power is reduced. Whilst some studies consider a centralized system to be a single 

point of failure causing reduced robustness as in [22] [23], this is mitigated by the fact that a system on the ground 

affords high equipment quality with redundancy in hardware, servers and operators [12]. Cummings [22] claims that 

decentralized systems are much harder to certify as safe compared to centralized ones, making a centralized system 

more appealing for use in a civilian airspace. Decentralized systems are preferred for missions with communication 

constraints, e.g. [24] [25] [26] . Decentralization is also beneficial when there is little or no input required from the 

ground operator [7]. Nevertheless, if the operator is an integral part of the mission, there is always a need to send 

important information back to ground. The coupling presented in some scenarios, especially time coupling and 

assignment-path coupling render decentralized systems very complex to design, hence making the centralized 

system more suitable in such cases [2] [27]. Communicating UAV situational awareness has been the motivation for 

many algorithms such as [28]  [29] due to its critical importance in the military battlespace. For civil applications, 

sharing the situational awareness is important but less critical. 

For the type of problems this paper is addressing, linear programming offers a convenient mathematical 

modeling method that can express the resource allocation problem as an optimization problem with linear 

constraints [12]. UAV LP formulations such as [30][31] attempted to solve task allocation and trajectory planning as 

a coupled problem. Current practice tends to decouple the problem, focusing primarily on task allocation. Trajectory 

planning is then undertaken based on simple Euclidean paths (in most cases) [32]. This allows the incorporation of 

specialized path planning algorithms into the planning system such as ground tracking paths [33], obstacle 

avoidance paths [34] and paths for area coverage [18], which may be more important than trying to find integrated 

solutions. 

The work presented by Shima et al. [1] shows use of MILP models to solve problems which are quite dynamic in 

nature. To account for this dynamism, solution methods need to respond in real-time and therefore speed prioritized 

solution methods such as a Genetic Algorithm solver and Tree Search approach were used. However, the 

formulations in [1] only considered a limited number of available UAVs (with their associated payload capacity and 

dynamic constraints), while refueling and other operational constraints were not considered. The study by Faied et 

al. [35] formulates the question of multi-UAV task allocation as an instance of the classical Vehicle Routing 
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Problem (VRP). A Receding Horizon approach is used by Bethke et al. [36] to solve an ILP sequence over the 

period of its execution (planning horizon) and also executes them over a shorter action horizon, allowing the planner 

to incorporate refueling tasks into the operation. This approach was also used by Nigam et al. [37] to perform 

persistent surveillance operations and by Kim et al. [14] to manage UAV visits to service stations while performing 

persistent monitoring missions. The work in [14] uses a branch and bound technique to solve the MILP formulation 

in real-time. This work was extended in [38] to allow the UAVs to start from arbitrary initial conditions, and a new 

solution approach called Sequential Task Assignment Heuristic (STAH) is proposed in order to obtain faster 

response that is near optimal. 

Another approach, by Mufalli et al. [3], focuses on selecting the most appropriate sensor combination to have on 

UAVs prior to the mission execution. Its main emphasis is on efficient planning of surveillance missions. The 

problem presented in [3] was solved using different types of column generation heuristics in order to rapidly obtain 

a near optimal solution. 

The framework presented by Murray et al. [2] provides a universal model for military operations. Although the 

authors considered fuel capacity constraints, they did not consider refueling the UAVs on low fuel allowing the 

UAVs in special cases to crash on low fuel as long as the mission succeeds. Murray et al. later developed a branch 

and bound solver for his model [39] which reduces the processing time and allow for real time responses.  

The transportation problem for UAVs is not tackled in the literature at the same depth as the sensing applications 

have been for military missions. This is in part due to the high resemblance to current ground based transportation 

problems which have existing solutions; many of the available VRP solutions apply to UAVs in the presence of an 

appropriate path planner and path estimator[40]. A great deal of work has been done in cooperative sling load 

transportation such as the work of Michael et al. in [41] or the work of Maza et al. in [42]. The major challenge in 

this type of application is the routing problem in the presence of different vehicle capabilities. Different logistics 

paradigms can be implemented based on representing the problem as VRP with Pickup and Delivery (VRPPD) [35], 

multi depot Traveling Salesman Problem (mTSP)[43], Capacitated Pickup and Delivery Problem [44] and many 

more. Alternatively, other methods exist such as a novel approach inspired by communication network routing 

solutions recently proposed by Raptopoulos [8]. The problem of cooperating on a heavy load poses many challenges 

in multi UAV systems which are beginning to be approached [9]. The system proposed in this paper learns from 

VRPPD [35] and the work in [8] in order to create a complete solution capable of dealing with sensing and 

transportation mission types together. 

Finally, many algorithms are addressing a specific aspect of the problem like time dependency [31], 

communication constraints and failure [25][13], heterogeneous capabilities [29], distribution [45] and scalability 

[46]. In the present work, we use a combination of different approaches presented in various references [3] [2][43] 

[47] in order to answer the problems posed earlier. The framework presented by Murray et al in [2] provides a very 

good starting point for this formulation since it includes all the basic notions and definitions that we are proposing. 

Although the modifications we add to the framework in [2] are substantial, it can still be referred to for 

understanding of concepts. The sensor selection problem has been addressed in isolation in [3] which was only 

focusing on ISR operation within the endurance of the UAVs. As for the refueling constraints, a truck delivery 

system have been considered and described in [47], however the formulation does not include any of the problems 

faced by allocating resources for multiple heterogeneous UAVs.  

III.! System Overview 

In this section, we describe the main requirements of the resource allocation system and how it relates to other 

components of a civilian heterogeneous vehicle system with multiple users. In order to ensure safety and control 

over the vehicle fleet, there must be a ground control center that has continuous ability to monitor and control all 

vehicles at all times. This requires information about all UAVs to be channeled to the ground to provide full 

situational awareness of the UAV fleet. Figure 1 presents a proposed architecture where Global and Local decision 

making systems are fused into a hybrid Resources Management System (RMS) for a fleet of unmanned {x:Aerial, 

Ground or Surface} vehicles. The centralized global decision making system is used to generate efficient schedules 

for all resources while the local distributed decision making system takes over the coordination decisions that are 

crucial for the success of the mission. The “Operation Manager” module allows identification of vehicle health and 

associated mission risks. The vehicle fleet information can be combined with information from air traffic controllers 

to ensure a safe and smooth operation between airspaces.  
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Fig. 1: Resource management system architecture. 

 

The “Global Decision Maker” module consists of three different interconnected sub-modules shown in Fig. 2: 

Pre-planner, Resource Allocator and Trajectory Planner. The pre-planner takes user requests and provides elemental 

tasks and traveling time estimates to the resource allocator. The trajectory planner is responsible for planning a 

collision free efficient path for each vehicle in order to fulfill the mission requirements and follow the schedule 

planned by the resource allocator. The focus of this article is on the design of the Resource Allocator sub-module. 

The presented resource allocation model incorporates the most important constraints that need to be considered for 

planning an effective, efficient and robust multi-vehicle operation serving multiple users simultaneously. 

The resource allocator is required to map on the following principal performance attributes: 

•! Effectiveness: The solution should meet the user mission outcome requirements (independent of cost) 

by allocating resources that maximize the quality of service. To be effective the resource allocator must 

be able to handle heterogeneity in vehicles and sensors, and must be dynamic in that it is able to 

accommodate modification and removal of user requests and re-plan in case of vehicle faults. 

•! Efficiency: The solution cost is minimized based on the mission cost model defined by the operator. 

•! Robustness: Solution plans remain feasible under real world variations in the mission model. 

The resource allocator must account for vehicle fuel capacity, ensuring vehicles are refueled at optimal points in 

time and ensuring all UAVs safely land before running out of fuel. It must accommodate multiple take-off and 

landing sites with availability limitations. The resource allocator must also permit system operations beyond 

individual vehicle endurance limits by ensuring smooth transition between depleted resources and fresh ones.  

We choose to use a task-focused model rather than a vehicle focused model to allow a task to be served by any 

capable set of available vehicles. The problem under consideration incorporates the presence of multiple users 

attempting to use the system in real time, together with the optimization of multiple competing objective functions 

imposed by the business implication of the vehicle sharing system and the operational requirements of the system. 

Pre-planner
Resource	

Allocator

Trajectory	

Planner

Elemental	Tasks	and	

Estimated	Travel	Time	

Matrix
Mission	

schedule

Global	Decision	Maker

User	Requests

Updated	Statuses	and	

Re-planning	requests
Allocation	and	Data	

Collection	Schedule

Trajectories	and	

Action	Plan Operations	

Plan

 
Fig. 2: Internal architecture of the Global Decision Maker block. 

 

A user request is a composition of single or multiple tasks, with the assumption that requests are independent 

from each other. Each request is decomposed into simple elemental tasks that constitute the basis of the input to the 

resource allocator. Request tasks are processed by the pre-planner sub-module to exploit self-evident synergies such 

as grouping geographically adjacent sensing activities into a single sensing activity. In this environment, vehicle 

resources are shared amongst unrelated requests while ensuring the success of each. 

The pre-planner sub-module calculates travelling time between all possible tasks, taking into account the starting 

and finishing point of each task. The pre-planner can employ any implementation of a quick path planning technique 

capable of estimating time required for a vehicle to travel between two points. All possible sensor combinations are 

evaluated taking into account their effectiveness over each task, and their suitability for each platform. The pre-
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planner calculates remaining endurance of each vehicle, take-off and landing energy consumptions and endurance 

reduction due to extra payload weight. The pre-planner design and suitable task processing algorithms are not 

covered in this article. 

The resource allocator answers the questions of “Which vehicle resources are needed to perform each of the 

tasks? When should those resources attend each task? When should the vehicles go to their bases?” The types of 

tasks included in our formulation are Visit, Loiter, Transport, Intersection and Preceded tasks. Visit tasks are tasks 

requiring a resource to perform a single operation starting at a certain waypoint and ending at another, e.g. scanning 

a section of a river border. In cases where a single instantaneous operation is required such as taking an image, the 

start and end points for Visit are the same. Visit tasks that are constrained by the completion of other tasks are 

referred to as Preceded tasks. Loiter tasks require a resource to perform an action continuously over a certain 

specified site. The site can be defined as a geometric area with an entry and exit waypoints. This is convenient for 

applications such as persistent surveillance. Alternatively, the site can be defined as a single point of interest through 

specifying a central waypoint and a loiter radius around it. When the physical solution space of two tasks intersects, 

there exists a geographical location that can be visited once in order to complete both tasks in a single operation. 

Such tasks are defined as Intersection tasks. Apart from sensing tasks, we also include Transport tasks that offer a 

point to point delivery service with the ability to use a base as a transshipment node. Finally, Visit, Transport, 

Intersection and Preceded tasks are non-preemptive tasks hence they cannot be paused, and must be completed in 

full using the resource they are first allocated to. Loiter tasks are preemptive tasks which allow exchange of 

resources as long as at least one resource is allocated to the task during the execution of the task. 

In the formulation in section IV, a base offers a number of services to the vehicles. It allows them to refuel, 

exchange cargo and change sensors. The formulation allows the allocation system to plan for sensor change at bases 

depending on the needs of the mission; sensors can be installed as a suite or individually. The sensor selection 

decision takes into account the weight of the sensors and the subsequent effect on the vehicle endurance, the 

capacity and capability of the UAV to carry the sensors, the cost of installing and operating them and the 

compatibility between sensors installed together. 

The presented task definitions reduce the number of tasks needed to describe user requests and therefore reduce 

the size of the problems considered; this reduction makes it possible to include more constraints for the same 

solution time particularly refueling at bases and payload selection constraints. This permits the Global Decision 

Maker module to plan for a period of time beyond individual vehicle endurance without being limited by the type of 

sensors on-board. The bases are considered to have the ability to accommodate as many vehicles as required, 

however the structure of the formulation allows for managing congestion in the future by varying base availability 

time windows in which vehicles are allowed to land, refuel and be maintained.  

IV.! Model Formulation 

In keeping with previous work on Vehicle Routing Problems, the resource allocation problem is modeled as a 

connected network of nodes in which each node represents a position and a characteristic related to that position 

whether it is a task, base or initial position. Figure 3 presents an example of a network formed by two bases, two 

non-base initial positions, four tasks and four resources. The resources travel amongst the connected nodes receiving 

benefits from tasks achieved at certain nodes and expending cost due to travelling, maintenance and sensor 

operation. Nodes have different requirements and constraints, and will affect the resources in different ways.  
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Fig. 3: Example of a connected network of nodes with 4 vehicles positioned at different nodes. 

 

For the present model we use a discretized time approach which divides time into equal time slice durations. 

This offers the planner the ability to change the planning time resolution by varying the real world duration of the 

time slices. High resolution plans will have a very large number of variables to calculate and will only be feasible to 

compute for short time horizons. Alternatively, an indicative plan for longer time horizon can be obtained using 

coarser time slices. The effect of varying the time resolution is discussed in section V.  

A.!Time Definition 

The number of time slices used for planning is defined in the variable ��� which is used to generate an ordered 

integer set of time slices {0…���} defined as the set ����. 

B.! Node Definition 

Nodes model the following three categories: Bases, Initial Positions and Tasks.  

1.! Bases 

Nodes in the set ����� can accept vehicles for servicing, refueling and cargo transshipment. This provides an 

extension to the type of bases presented in [2]. Base nodes are only available to accept vehicles during specified 

periods of time represented by �/ ⊆ ����. 

 

2.! Initial Positions 

We define the nodes for the initial position of each resource � in the set �������−. �������− may contain bases 

nodes if the resource is starting from a base. If the resource is not starting from a base, a new node is defined 

representing the current position of the resource as its initial position. 

 

3.! Tasks 

We define ����� as the set of all requested tasks. Nodes represented in  �����  can be part of one of the 

following subsets. 

a.! Visit 

The basic most versatile task type is defined in the set  �����. Two subtypes are considered:  
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i. A single almost instantaneous operation such as taking a single reading or a snapshot at a certain waypoint 

within a window of time specified in �Α ⊆ ���� and � ∈ �����. 

ii. A one-time acquisition operation along a predefined path set by a starting and ending waypoint that must start 

within a window of time specified in �Α.  

A non-preemtable task causes a vehicle resource to be exclusively engaged on a task until the task is completed. The 

visit task has a duration of execution �Α (� ∈ �����) that accommodates both subtypes using the same format: In (i) �Α 

is set to one time slice, while in (ii) it is set to the estimated number of time slices required to follow the required 

path.  

b.! Loiter 

Loiter tasks are defined in the ������ set. Loiter tasks require a vehicle resource to perform a continuous action 

at a given loiter radius at a given waypoint. The duration of execution �Α with � ∈ ������ specifies the number of 

time slices the operation should last for. This type of task is preemptable to allow other vehicles to take over the task 

where the duration of the current vehicle is exhausted, or to swap with a capable vehicle so that the current vehicle 

performs a higher priority task.  

c.! Transport 

Transport tasks are used to deliver a cargo to a delivery point defined as a task in  �������  after it has been 

picked up from a point defined as a task in the set ����Α ⊆ �����	 ∪ ����� with � ∈ �������. The cargo weight 

is specified in ��Α. When reallocating during execution, ����Αcontains the initial position �������− of the resource 

� that already picked up the cargo. 

d.! Intersection 

The pre-planner processes all user requests to find any correlations between sensing activities. Geographically 

grouped sensing activities can be combined into a single sub-mission hence creating a single task that is sufficient to 

attend instead of attending the grouped tasks individually. For example, receiving two requests from two different 

users for monitoring two very close points within the same period of time can be combined into one request that 

serves both users. The resource allocator has the option to either perform each request individually or perform the 

combined request that serves both users together. The resource allocator cannot choose to perform the combined 

request and one of the individual requests. A special type of tasks is defined to describe this relationship. 

 ����� tasks that can potentially have an Intersection task are defined in ��������. The Intersection tasks are 

those tasks that if attended obviate the need to attend two or more of the �������� tasks. Intersection tasks are 

defined in the set �����. Furthermore, the resource allocator must decide between doing either the original task in 

�������� or the corresponding Intersection task in �����, therefore tasks in these two sets have a xor 

relationship.  

 Define ���Α as the set of tasks that have XOR relationship between each other with � ∈ �������� and ���Α ⊆

�����	⋃	��������. In order to perform task � the resource allocator has to choose only one of the tasks in ���Α. 

For example, take task	A	 ∈ ��������		 and task	B	 ∈ �������� and define the task combining task A and task B 

to be the Intersection task denoted task	A	 ∩ 	B	 ∈ �����. The xor relationships between the original tasks and their 

intersection task are then captured in the sets ���ρ = �, � ∩ �  and ���τ = �, � ∩ �  

e.! Preceded 

Some tasks may have dependencies on preceding tasks hence we define �������� as the set of tasks that 

cannot start execution before at least one preceding task has been completed. ���������Α is the set containing 

the tasks that precede task � ∈ 	�������� with ���������Α ⊆ �����	 ∪ ������ ∪ �������	 ∪ ��������	 ∪

�����	 ∪ �������� while � is treated as a ����� task. A lag time can be set from the time the preceding task is 

completed to the time the preceded task starts through ���Α. 

We therefore have the set ����� = �����	 ∪ ������ ∪ �������	 ∪ ��������	 ∪ �����	 ∪ ��������. 

We can state that for all nodes � ∈ ����� ∪ �����, �Α ⊆ ���� is the set of time slices in which � can be attended. 

Moreover for all � ∈ �����, �Α is the gain or benefit of performing task � and �Α is the number of time slices 

required to complete task �. Furthermore, we define the set of non-preemptive nodes ���� = �����	 ∪ ����� ∪
�������	 ∪ ��������	 ∪ �����	 ∪ �������� and the set of preemptive nodes ��� = ������. 
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Finally, in order to explicitly enforce heterogeneous resources cooperation we define the set �����ℎ��∴  being a 

subset of ���� and containing tasks that must be completed together hence �����ℎ��∴ ⊆ ���� and � ∈ {1. . ����} 
with ����  being the number of task sets that need to be completed together. 

C.!Resources 

Vehicles are grouped in the set	���������. Resources are allowed to carry different types of sensors and 

transport cargo. They have different platform configurations such as fixed wing, rotary wing or ground vehicle 

allowing each to do certain jobs with better efficacy. We define �Α as the set of resources that have the capability to 

attend node � ∈ ����� ∪ ����� with �Α ⊆ ���������, and define �− the set of bases that can be visited by 

resource � ∈ ��������� with �− ⊆ �����. We also define ���− ⊆ ����� to be the set tasks that can be 

attended by resource �. Using these definitions we define ��− = �− ∪ ���− as the set of nodes to which resource � 

can travel. Finally, the nodes from which resource � can travel to node �	 ∈ ��− are grouped in ����−,Α = ��	�	 ∈

	���	�ℎ��	 �������− 	∪ 	�− ∪ ���− 	����	 �������− 	∪ 	�− ∪ ���− 	 − � .  

Each resource has a limited amount of fuel encoded as the available duration in number of time slices. Fuel can 

be replenished whilst the vehicle is at a base. The maximum fuel capacity of each resource is �− and � = max	(�−) 
while the payload capacity is ���−. Each resource also has a platform effectiveness value taken between 0 and 1 

defined in ��−,Α for � ∈ ��������� performing task � ∈ �����. If a platform is not suited for a certain task, 

��−,Α will be set to -1. The value of ��−,Α for unsuitable resources has no effect of the ILP model since only capable 

resources are considered for allocation, however the -1 value helps identify capable resources in the preplanning 

phase when �Α and ���− are generated. The effectiveness of a platform for a given task affects the value of the 

benefit acquired from that resource attending that task. 

The effectiveness of a resource is the measure of how good this particular platform is at performing a particular 

task. For example, monitoring a road junction can be done more effectively using a multi rotor. Even though a fixed 

wing aircraft can perform the monitoring task, the changing orientation of the view point is a disadvantage. This 

may or may not be acceptable and therefore the effectiveness measure is there to capture this preference on a 

continuous scale between 0 and 1. 

Vehicle operation incurs costs that are quantified in a way to represent real costs. All the costs are encoded as 

depreciation costs proportional to the operation time, and are set using the value of maintenance cost per time slice 

for operating resource �, ��−. Take-off and landing may account for a large portion of the vehicle operating cost, 

which may include cost of operating from a given base, the ground crew cost for the operation, and various fees. For 

resource � ∈ ��������� from base � ∈ �− define ���−,/ and ��−,/ as the cost of take-off and landing of resource 

�  from/at base � respectively. Any additional operational cost that is platform or base specific is included in the 

additional operational cost, ���−,/. 

Time taken to travel between nodes is the main parameter the resource allocator uses for scheduling. The 

estimated travel time computed by the pre-planner is then taken by the resource allocator as a matrix of time slices 

��−,Α,∴ containing the number of time slices required by � ∈ ���������  to travel to node  � ∈ ��− from node � ∈

����−,Α. To simplify the formulation, take-off and landing times are included in ��−,Α,∴ so that allocation need only 

considers airborne time. Additionally, in the case of ���� tasks, the requested execution time �Α is added to ��−,Α,∴ 

for all possible � ∈ ��−. In this case, the resource allocator assumes an execution time of 1 time slice. 

Starting conditions are defined in ��0−, the number of time slices available for allocation based on the 

remaining fuel in the resource, and ���0− representing the fraction of the payload capacity that is used in resource 

� ∈ ���������  at the beginning of the planning. ���0− must be carefully calculated in case � has picked up a 

cargo in previous plans since failure to use the correct weight may lead to incorrect allocation. 

D.! Sensors 

The overall capability of a vehicle resource is dependent on the vehicle capability combined with the capability 

of the sensors on-board. The set ������� contains all sensor combinations that are possible considering the 

available sensors, platform payload limitations and constraints regarding which sensors can be installed together on 

the same platform. An empty payload bay is taken as a type of sensor combination to reduce formulation 

complexity. Each individual resource � has a limited set of sensor combination �− that can be installed on it. The 

initial sensor combination installed on-board resource � at the beginning of the planning is �������− 	⊆ �−. 

The weight and power consumption of each sensor will affect the platform endurance, therefore we use ��−,Ψ to 

represent the reduction in number of time slices available to a platform due to the installation of sensor � ∈ �− 



 

American Institute of Aeronautics and Astronautics 

 

11 

onboard resource � ∈ ���������. The cost of operating a sensor is captured by the sensor usage cost ���Ψ which 

represents the cost per time slice of operating sensor � ∈ �������. 

Finally, some sensors are more suitable for certain tasks than others hence we include a sensor effectiveness 

parameter ��Ψ,Α representing the effectiveness of sensor � in performing task � ∈ �����. This value is coupled with 

��−,Α in order to denote an overall resource effectiveness when performing a particular task. When attending task �, 

��Ψ,Α takes values between 0 and 1 for appropriate sensors or a large negative number if the sensor is not fit for the 

task. 

E.! Variables 

Define �−,Α,∴
Β,Ψ

 to be the primary binary decision variable of the proposed model. A value of 1 indicates that a 

resource � ∈ ��������� is assigned to travel from node � ∈ ����−,Α to node � ∈ ��− servicing node � at time � ∈

�Α equipped with sensor combination � ∈ �−.  Hence we can write 

 

 �−,Α,∴
Β,Ψ 	 ∈ 	 0,1 		∀	� ∈ ���������, � ∈ ��− , � ∈ ����−,Α , � ∈ �Α , � ∈ �−  (1) 

 

Define ��−,Α to be a positive integer representing the time slice at which fuel will run out from resource � ∈

��������� measured at the time it arrives at node � ∈ (��− 	∪ 	 �������−) − 	�����, i.e. the last time which the 

resource can be allocated to tasks. This value is carried on from one node to the other until a base is reached at 

which point a new value is calculated and carried forwards. Note that the time taken to land and take-off during a 

fueling stop are accounted for in the value of	��−,Α. 

 

 ��−,Α 	≥ 0		∀	� ∈ ���������, �	 ∈ (��− 	∪ 	 �������−) − �����	  (2) 

 

Define �Α,Β as a binary decision variable used to store the starting time for preemptive tasks. This variable is used 

to ensure loiter tasks are performed in consecutive time steps. A value of 1 indicates that task, i.e. node � ∈ ��� is 

visited at time � ∈ �Α. 

 

 �Α,Β 	 ∈ 	 0,1 		∀	� ∈ ���, � ∈ �Α (3) 

 

Define �Α as a binary decision variable, used to indicate if the payload to be delivered at � ∈ ������� has been 

picked up from ����Α (delivery precedence constraint). 

 

 �Α 	 ∈ 	 0,1 		∀	� ∈ ������� (4) 

 

Define ��Α,Βas a binary decision variable used to store the pickup time of the payload to be delivered at � ∈

������� (delivery time precedence constraint). A value of 1 indicate that task � ∈ ����Α  was completed at time 

� ∈ �Α. 

 

 ��Α,Β 	 ∈ 	 0,1 		∀	� ∈ �������, � ∈ �Α (5) 

 

Define ���−,Α as a positive integer decision variable storing the fraction of payload capacity that is used in 

resource � ∈ ��������� measured at the time it arrives at node � ∈ (��− 	∪ 	 �������−) − 	�����. This value is 

carried on from one node to the other until a base is reached or a delivery point is attained whereupon a new value is 

calculated and carried forwards. 

 

 ���−,Α 	 ∈ 	 ℤ
�		∀	� ∈ ���������, �	 ∈ (��− 	∪ 	 �������−) − ����� (6) 

 

Define ���Α,χ as a binary decision variable used to indicate if at least one of the tasks with XOR relationship has 

been performed. A value of 1 indicate that for task � ∈ �������� task � ∈ ���Α has been allocated hence � doesn’t 

need to be allocated. 

 

 ���Α,χ 	 ∈ 	 0,1 		∀	� ∈ ��������, � ∈ ���Α (7) 
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Define ��Α as a binary decision variable used to indicate if any preceding task of � ∈ �������� has been 

allocated. 

 

 ��Α 	 ∈ 	 0,1 		∀	� ∈ �������� (8) 

 

Define ���Α,Β as a binary decision variable used to store the time � ∈ �Α at which the preceding task of � ∈

�������� has been allocated. 

 

 ���Α,Β 	 ∈ 	 0,1 		∀	� ∈ ��������, � ∈ �Α (9) 

 

Define �������− as an integer variable representing the finishing time slice of each resource � ∈ ���������. 

This is used to reduce waiting and traveling time of individual resources. 

 

 0 ≤ �������− ≤ �������		∀	� ∈ ��������� (10) 

 

Define �������� to be a positive integer variable representing the overall completion time of the mission. 

 

 �������� ≥ 0 (11) 

F.! Task Constraints 

1.! Visit 

 �−,Α,∴
Β,Ψ

Ψ∈��∴∈�−���,�Β∈��−∈��

= 1			∀	� ∈ ����� 

(12) 

 

Equation (12) ensures that each visit task must be attended once by a capable resource. 

2.! Loiter 

Equations (13) and (14) state that a Loiter task must be attended by no more than two resources and no less than 

one resource at any time slice during the execution of the task. This allows resources to change over when servicing 

a Loiter task while ensuring there is at least one resource attending the task at any time slice. Thus, loitering beyond 

the endurance of a single resource becomes possible.  

 

 �−,Α,∴
Β,Ψ

Ψ∈��∴∈�−���,�−∈��

≤ 2�Α,Β			∀	� ∈ ������	, � ∈ �Α 

(13) 

   

 �−,Α,∴
Β,Ψ

Ψ∈��∴∈�−���,�−∈��

≥ 1�Α,Β			∀	� ∈ ������	, � ∈ �Α 

(14) 

 

Equations (15) and (16) make sure a Loiter task can only be visited �� consecutive times in total by all allocated 

resources. This ensures all the resources cooperating on the Loiter task will be allocated in one continuous time 

window. 

 

 �Α,Β
Β∈��	

= �Α 	∀	� ∈ ������ 
(15) 

   

 �Α,Β�
Β�∈��:Β�	∉[Β����;,Β����;]	

≤ 1 − �Α,Β �Α 		∀	� ∈ ������, � ∈ �Α 

(16) 

  
 

3.! Transport 

Inspired by [35], [48] and [47], the following constraints for the transportation tasks were developed. Equation 

(17) sets �� to 1 when the cargo pickup task is completed, then Eq. (18) allows the cargo to be delivered once it has 
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been picked up. The delivery task must be completed if and only if the pickup task is completed. If the cargo has 

already been delivered to a transshipment base, Eq. (19) makes sure the delivery is initiated from this base. On the 

other hand, if the cargo is already with resource	�, Eq. (20) allows the delivery to take place knowing that the cargo 

is at �������− at the beginning of the planning. Eq. (21) and (22) ensure the pickup happens at least 1 time slice 

before the allocated delivery time. Since the delivery must be done by the same resource as pick up, traveling time 

from pick up to delivery point is automatically added.  

 

 �−,χ,∴
Β,Ψ

Β∈��Ψ∈��∴∈�−���,�−∈��χ∈�∴�χ�∩�����

= �Α 			∀� ∈ �������: ����Α ⊆ ����� 

(17) 

   

 �−,Α,∴
Β,Ψ

Β∈��Ψ∈��∴∈�−���,�−∈��

= �Α 			∀� ∈ ������� ∶ ����Α ⊆ ����� 

(18) 

   

 �−,Α,∴
Β,Ψ

Β∈��Ψ∈��∴∈(τ�∩�∴�χ�)−∈��

= 1			∀� ∈ ������� ∶ ����Α ⊆ ����� 

(19) 

   

 �−,Α,∴
Β,Ψ

Β∈��Ψ∈��∴∈(��∴Β��Ψ�∩�∴�χ�)∪τρ���−∈��

= 1			∀� ∈ ������� ∶ ����Α ⊈ ����� ∪ ����� 

(20) 

   

 �−,Α,∴
Β,Ψ

Ψ∈��∴∈�−���,�−∈��

= ��Α,Β			∀� ∈ �������, � ∈ �Α ∶ ����Α ⊆ ����� 

(21) 

   

 �−,χ,∴
Βχ,Ψ

Βχ∈��:Βχ�Β�;Ψ∈��∴∈�−���,�−∈��

≤ 1 − ��Α,Β 	∀� ∈ �������, �	 ∈ ����Α ∩ �����, � ∈ �Α

∶ ����Α ⊆ ����� (22) 

   

The presented model allows one transshipment at a Base node, therefore we introduce Eq. (23) to ensure that 

cargo has been picked up before a transshipment at the base and Eq. (24) to ensure that the resource carrying the 

cargo in a previous plan is the one transshipping at the base. Finally, Eq. (25) allows delivery from either the pickup 

point or the transshipment base.  

 

 �−�,Α,∴
ΒΑ,Ψ

Ψ∈��ΒΑ∈��:ΒΑ����,�,��Βχ−�∈��:Α∈τ��∴∈�∴�χ�∩�����

≥ �−,χ,Α
Βχ,Ψ

Ψ∈��

	∀� ∈ �������, �	 ∈ �χ , �

∈ �− , �� ∈ �χ ∶ ����Α ⊆ ����� (23) 

   

 �−�,Α,∴
ΒΑ,Ψ

Ψ∈��∴Β����ΒΑ∈��:ΒΑ����,�,��Βχ−�∈����€�ϒ��:Α∈τ��,��∴Β��Ψ�⊆�∴�χ�∴∈�∴�χ�������

≥ �−,χ,Α
Βχ,Ψ

Ψ∈��

	∀�

∈ �������, �	 ∈ �χ , � ∈ �− , �� ∈ �χ ∶ ����Α ⊈ ����� ∪ ����� (24) 

   

 �−,χ,∴
Β,Ψ

Β∈��Ψ∈��∴∈�−���,��(�∴�χ�∪τρ���)−∈��

= 0			∀� ∈ ������� 

(25) 

   

Each resource has a payload capacity that must not be exceeded. When a cargo is picked up, the capacity is 

reduced, then when the cargo is delivered to a base or a delivery point, the capacity is increased. Eq. (26) updates the 

used capacity of each resource as soon as it attains a node �. 
 

 ���−,∴ + �−,Α,∴
Β,Ψ ×��χ ≤ ���−,Α 	∀	�	 ∈ �������, �	 ∈ ����χ ∩ �����, � ∈ �Α ,

� ∈ ����−,Α − ����� ∶ � ≠ �, � ∈ �Α , � ∈ �− (26) 
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Equation (27) and (28) consider a transportation resource picking up a cargo from a base. Eq. (27) resets the 

fraction of the payload capacity used to the weight of the cargo being transported while Eq. (28) enforces the 

resource capacity limit on the cargo carried. 

 

 �−,Α,∴
Β,Ψ ×��χ ≤ ���−,Α 	∀	�	 ∈ �������, �	 ∈ ����χ ∩ �����, � ∈ �Α ,

� ∈ ����−,Α ∩ ����� ∶ � ≠ �, � ∈ �Α , � ∈ �− (27) 

 

 �−,Α,∴
Β,Ψ ×��Α ≤ ���− − ���−,Α 		∀	�	 ∈ �������, � ∈ �Α , � ∈ ����−,Α ∩ ����� ∶ � ≠ �,

� ∈ �Α , � ∈ �− (28) 

   

Equation (29) reduces the used capacity once the cargo has been delivered. 

 

 ���−,∴ − �−,Α,∴
Β,Ψ ×��Α ≥ ���−,Α 	∀	�	 ∈ �������, � ∈ �Α ,

� ∈ ����−,Α − ����� ∶ � ≠ �, � ∈ �Α , � ∈ �− (29) 

   

Equation (30) ensures the capacity limit is not violated at all times. Eq. (31) defines the initial payload weight at 

the beginning of the planning. 

 

 ���−,Α ≤ ���− 	∀	� ∈ ���������, � ∈ ��− 	∪ �������− − ����� (30) 

   

 ���−,Α = ���0− 	∀	� ∈ ���������, � ∈ �������− − ����� (31) 

   

4.! Intersection 

Novel constraints were developed to accommodate the Intersection tasks. Equation (32) sets up the value of 

����,� indicating if at least one of the tasks � with XOR relationship related to task � has been allocated. � ∈

�������� and � ∈ ���χ. Equation (33) ensures that for every task in ��������, no more than one related XOR 

task must be completed to avoid duplicate allocation. 

 

 �−,Α,∴
Β,Ψ

Β∈��Ψ∈��∴∈�−���,�−∈��

= ���χ,Α 	∀	� ∈ ��������, � ∈ ���χ 

(32) 

   

 ���Α,χ
χ∈∞���

= 1	∀	� ∈ �������� 

(33) 

   

5.! Preceded 

Similar to the approach in [2], Eqs. (34), (35) and (36) are used to guarantee that Preceded tasks are allocated if 

and only if one of the preceding tasks is allocated. 

 

 �−,χ,∴
Β,Ψ

Β∈��Ψ∈��∴∈�−���,�−∈��χ∈���ϒ�ƒ�♣♦�

≥ ��Α 			∀� ∈ �������� 

(34) 

   

�−,χ,∴
Β,Ψ

Β∈��Ψ∈��∴∈�−���,�−∈��χ∈���ϒ�ƒ�♣♦�

≤ �′χ×��Α
χ∈���ϒ�ƒ�♣♦�

			∀� ∈ �������� 

(35) 

  

 �−,Α,∴
Β,Ψ

Β∈��Ψ∈��∴∈�−���,�−∈��

= ��Α 			∀� ∈ �������� 

(36) 

   

Equations (37) and (38) ensures task � ∈ �������� is completed ���
�
 time slices after the preceding tasks 
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 �−,Α,∴
Β,Ψ

Ψ∈��∴∈�−���,�−∈��

= ���Α,Β			∀� ∈ ��������, � ∈ �Α 

(37) 

   

 �−,Α,∴
Β,Ψ

Β∈��:Βχ�Β���♠��;Ψ∈��∴∈�−���,�−∈��

≤ 1 − ���Α,Β 		∀� ∈ ��������, � ∈ ���������Α , �

∈ �Α (38) 

   

G.!Base Constraints 

Due to the required versatility of Bases nodes in the current formulation, novel constraints had to be developed 

to incorporate the specific role played by the base in any mission. The constraints required significant testing and 

modification before satisfactory operation was achieved. Bases are nodes, which must be visited by all resources at 

least once. Within a given plan, the planner needs to ensure all available resources have safely landed or were kept 

grounded at appropriate bases. Eq. (39) and (40) enforce resources landing during �� time slices in which base � is 

available to accept vehicles. 

 

 �−,Α,∴
Β,Ψ

Ψ∈��∴∈�−���,�−∈��

≤ ����(���������)			∀	� ∈ �����	, � ∈ �Α 	 

(39) 

   

�−,Α,∴
Β,Ψ

Ψ∈��∴∈�−���,�Β∈��Α∈τρ���

≥ 1			∀	� ∈ ���������: �������− ⊈ ����� 

(40) 

  

Resources must land before their fuel has been depleted hence Eq. (41) states that if a resource � is allocated to 

go from node � to a ����� node � carrying sensor option � arriving at time � , it must arrive before running out of 

fuel at time ���,�. 

 

 �	�−,Α,∴
Β,Ψ ≤ 	��−,∴ 	∀	� ∈ ���������, � ∈ ��− , � ∈ ����−,Α − �����, � ∈ �Α , � ∈ �−  (41) 

   

In each planning instance the resource must terminate in a safe landing at an acceptable landing site. If resource r 

is allocated to any task (not a base) at time �� then it must be allocated to a base later on at time �� ≥ ��. The use of 

≥ in the Eq. (42) is to allow for vehicles to land as many times as they need during a certain mission to refuel or 

change sensor options. 

 

 �−,/,∴/
Β/,Ψ

Β/∈�↔:Β/←ΒΑ∴/	∈	�−���,↔	/∈τ�

≥ �−,Α,∴
ΒΑ,Ψ
	∀	� ∈ ���������, � ∈ ��− − �����,

� ∈ ����−,Α , � ∈ �− , �� ∈ �Α: � ≠ � (42) 

   

H.!Network Constraints 

The number of time slices required to complete a certain task (�Α) are added to the travelling time in order to 

simplify the allocation. Equation (43) guarantees that at each time slice a resource can be allocated to at most one 

task. 

 

 �−,Α,∴
Β,Ψ

Ψ∈��∴∈�−���,�Α∈���:Β∈��

≤ 1			∀	� ∈ ���������, � ∈ ����		 

(43) 

   

Equation (44) ensures that each resource departs from its initial position (assuming it is not a base) carrying the 

initial sensor combination defined by the operator. 

 



 

American Institute of Aeronautics and Astronautics 

 

16 

 �−,Α,∴
Β,Ψ

Β∈��Α∈���

= 1			∀	� ∈ ���������, � ∈ �������− − �����, � ∈ �������− 

(44) 

   

The first allocation must be physically feasible hence it cannot be before the time required for traveling from the 

initial position to the first task. Equation (45) prevents unfeasible first allocations. 

 

 �−,Α,∴
Β,Ψ

Ψ∈��Β∈��:Β↑���,�,�

= 0			∀	� ∈ ���������, � ∈ �������− , � ∈ ��−: � ≠ � 

(45) 

   

If a resource at � came from node � then it must have come from a certain node � to node � beforehand. 

Therefore, unless it is coming from an initial starting position, it must have a predecessor. If the intermediate node is 

not a base Eq. (46) ensures the sensor on-board the resource is retained. If the intermediate node is a base, then Eq. 

(47) allows the sensor on-board the resource to be changed. 

 

�−,Α,∴
ΒΑ,Ψ

ΒΑ∈��:	ΒΑ����,�,��Βχ∴∈�−���,�:	∴→	χ∉	�−���,�⋃τ�	Β↓��	∴°χ		

≥ �−,χ,Α
Βχ,Ψ 			∀	� ∈ ���������, � ∈ ��− ,

� ∈ ����−,χ − (�������− ∪ �����), �� ∈ �χ , � ∈ �− (46) 

  

�−,Α,∴
ΒΑ,Ψ�

Ψ�∈��ΒΑ∈��:	ΒΑ����,�,��Βχ∴∈�−���,�:	∴→	χ∉	�−���,�⋃τ�	Β↓��	∴°χ		

≥ �−,χ,Α
Βχ,Ψ 			∀	� ∈ ���������, � ∈ ��− ,

� ∈ ����−,χ ∩ �− − �������− , �� ∈ �χ , � ∈ �− 	 (47) 

  

For a non-preemptive task, if a resource is at �, it can only go to one successor task � as assured by Eq. (48) 

 

 �−,Α,∴
Β,Ψ

Ψ∈��Β∈��Α∈���∶	∴∈	�−���,�		

≤ 1			∀	� ∈ ���������,

� ∈ ��− ∩ ����	 ∪ 	 �������− − ����� (48) 

   

However, if the task is preemptive, the resource must not split between two tasks and hence the number of 

resources entering node � must be greater than or equal to the number of resources leaving as shown in Eq. (49).  

 

�−,Α,∴
ΒΑ,Ψ

ΒΑ∈��∶	ΒΑ�Β��±	∴∈	�−���,�		

≥ 	 �−,χ,Α
Βχ,Ψ

Βχ∈��:	Βχ�Β��±����,�,�χ∈���		

		∀	� ∈ ���������,

� ∈ ��− ∩ ��� , ����	 ∈ ����, � ∈ �− (49) 

  

Similarly, at a base node �, if the resource is not starting from a base, we need to avoid the resource splitting at 

the base using Eq. (50). Nonetheless, if the resource is starting initially from the same base �, then Eq. (51) is used to 

avoid resource splitting at that base. The +1 in the left hand side of the inequality accounts for the initial position at 

that base. Finally, if the resource is initially starting from a base that is different from �, Eq. (52) is used to avoid 

resource splitting. Typical network constraints found in [48], [49],[14],[39] and [47] had to be modified to reflect the 

option of starting from different initial positions and accommodate the relationship with the Bases nodes. 

 

 �−,Α,∴
ΒΑ,Ψ

Ψ∈��ΒΑ∈��:ΒΑ�Β��±	∴∈	�−���,�		

≥ 	 �−,χ,Α
Βχ,Ψ

Ψ∈��Βχ∈��:Βχ�Β��±����,�,�χ∈���:χ°Α		

		∀	� ∈ ���������,

� ∈ �− , ����	 ∈ ���� ∶ ���� �������− 	∩ ����� = 0 (50) 

   

�−,Α,∴
ΒΑ,Ψ

Ψ∈��ΒΑ∈��∶	ΒΑ�Β��±	∴∈	�−���,�		

+ 1 ≥ 	 �−,χ,Α
Βχ,Ψ

Ψ∈��Βχ∈��:	Βχ�Β��±����,�,�χ∈���∶	χ°Α		

	∀	� ∈ ���������,

� ∈ �− ∩	�������− , ����	 ∈ ����	 (51) 
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�−,Α,∴
ΒΑ,Ψ

Ψ∈��ΒΑ∈��∶	ΒΑ�Β��±	∴∈	�−���,�		

≥ 	 �−,χ,Α
Βχ,Ψ

Ψ∈��Βχ∈��:	Βχ�Β��±����,�,�χ∈���∶	χ°Α		

		∀	� ∈ ���������,

� ∈ �− − �������−: ���� �������− 	∩ ����� ≠ 0, ����	 ∈ ����	 (52) 

  

I.! Fuel Constraints 

Inspired by the work in [47], novel fuel constraints were developed. TR×,∝  is the time at which fuel runs out for 

resource r when measured at task j . This value is carried forward from one non-base node to the other. When a 

resource visits a base the value gets updated based on current time, fuel time, take off time and any reduction in 

range due to payload options. Equation (53) ensures the value of the last allocable time slice TR×,∝ is carried 

correctly from one non base node to the other while Eq. (54) calculates a new value for the latest allocable time slice 

��−,Α when � is at a base. To incorporate resources that are already airborne, the initial remaining fuel capacity is 

taken into account using Eq. (55) where the remaining fuel at the initial position is set to ��0− provided that � is not 

starting from a base. 

 

 ��−,Α ≤ ��−,∴ + 1 − �−,Α,∴
Β,Ψ × � + ������� 	∀	� ∈ ���������,

� ∈ ��− − �����, � ∈ ����−,Α − ����� ∶ � ≠ �, � ∈ �Α , � ∈ �− (53) 

   

 ��−,Α ≤ �−,Α,∴
Β,Ψ × � + �− − ��−,Α,∴ − ��−,Ψ + 1 − �−,Α,∴

Β,Ψ × � + ������� 		

∀	� ∈ ���������, � ∈ ��− − �����, � ∈ ����−,Α ∩ ����� ∶ � ≠ �, � ∈ �Α , � ∈ �− (54) 

   

 ��−,Α = ��0− 		∀	� ∈ ���������, � ∈ �������− − ����� (55) 

   

J.! Sensor Selection 

Mufalli et al. [3] use an optimization system that decides on the best combination of sensors to have on-board 

before starting any mission. In the present formulation, we extend that concept to allow the planner to plan a sensor 

selection schedule therefore allowing the resources to modify the installed sensor suite after the execution starts. The 

planner will choose the best sensor combination on each vehicle that fits individual phases of the generated plan.  

Eq. (56) ensures only one sensor combination is allowed to be carried by a given resource. A sensor combination 

can consist of many sensors as long as they do not exceed the resource sensor payload capacity which is determined 

by the pre-planner. 

 

 �−,Α,∴
Β,Ψ

Ψ∈��

	≤ 1		∀	� ∈ ���������, � ∈ ��− , � ∈ ����−,Α , � ∈ �Α 
(56) 

   

K.!Finishing time 

The finishing time of each resource � is calculated in Eq. (57) and the completion time of the entire mission plan 

calculated in Eq. (58). These times are multiplied by different weightings in the cost function to adjust the 

importance of individual finishing time in contrast to the importance of the overall mission completion time. 

Favoring individual finishing time will tend to reduce the number of resources used at the expense of overall 

finishing time. On the other hand, favoring completion time leads to shorter mission at the expense of greater use of 

a greater number of resources, which may have cost implications. Therefore the operator has the ability to change 

these settings according to his strategic goals. 

 

 �������− 	≥ �×�−,Α,∴
Β,Ψ

Ψ∈��Β∈��

			∀	� ∈ ���������, � ∈ ��− , � ∈ ����−,Α: � ≠ � 

(57) 

   

 �������� ≥ �������− 			∀	� ∈ ��������� (58) 
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L.! Cooperation 

To ensure cooperation between different task types requiring different resource capabilities, Eq. (59) is used to 

enforce the allocation of cooperative tasks to be done at the same time slice. 

 

 �−,Α�,∴
Β,Ψ

Ψ∈��∴∈�−���,��−∈���

= �−,Α/,∴
Β,Ψ

Ψ∈��∴∈�−���,�↔−∈��↔

	∀	� ∈ 1. . ���� , �� ∈ �����ℎ��χ , ��

∈ �����ℎ��χ: �� ≠ ��, � ∈ �Α� ∩	�Α/ (59) 

   

M.!Cost Function 

The main objective is to identify a mission plan that meets all requirements at minimum overall cost. Since each 

platform and sensor combination offer different effectiveness in performing a certain task, then the importance of 

the effectiveness is dependent on the value (gain) of a certain task. To achieve this, each sub task must have a 

weighting assigned to it that relates the completion of the task (or part thereof) to the value accrued. 

 

� = �−,Α,∴
Β,Ψ ×(�;× ��−,Α 	×	��Ψ,Α �Α − (�<×(���Ψ +��−))

Ψ∈��Β∈��∴∈�−���,�	−∈��Α∈�ρ�÷�

	 

 

The weighting �; and �< are used to vary the importance of effectiveness versus cost. Increasing �; would place 

more emphasis on selecting the most effective resource for each task. Increasing �< would increase the effect of the 

cost in the objective function. 

Secondary objectives include reducing take-off, landing and additional operational cost. This allows the resource 

allocator to, whenever possible, chose a base with low fees for the vehicle. The weighting �= is used to amplify the 

Take-Off and Landing cost in order to reduce unnecessary landings during mission execution. � represents the 

weighted sum of the landing costs and � represents the weighted sum of the take-off costs and the additional 

operational costs. � and � should be minimized. 

 

� = �−,Α,∴
Β,Ψ ×�=×��−,Α

Ψ∈��Β∈��∴∈�−���,�	Α∈τ�−∈����€�ϒ��

 

 

� = �−,Α,∴
Β,Ψ ×�=×(���−,Α + ���−)

Ψ∈��Β∈��Α∈���∶	∴°Α	∴∈τ�−∈����€�ϒ��

 

 

The variable � represents the weighted traveling time between nodes that should be minimized. 

 

� = �−,Α,∴
Β,Ψ ×�<×��−,Α,∴×

Ψ∈��Β∈��∴∈�−���,�	Α∈���−∈����€�ϒ��

��− 

 

The variable � represents the weighted sum of the finishing time of each resource. � should be minimized. This 

will also reduce the waiting time before each task. �< is included in � in order to reduce the cost incurred due to 

waiting before tasks. 

 

� = �<×�>×�������−
−∈����€�ϒ��

 

 

The variable �  represents the weighted value of the total mission time that should also be minimized. 

 

� = �?×�������� 

 

The weightings �> and �? are used to vary the relative importance of reducing individual completion time versus 

overall completion time. 

The weighted sum of the remaining fuel represented by � should be maximized.  
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� = �×��−,Α
Α	∈(���	∪	��∴Β��Ψ�)�τρ���−∈����€�ϒ��

 

The weight � is a very small number(<0.01) that reduces the contribution of the fuel value into the cost function 

while ensuring the remaining fuel is maximized. 

The weighted sum of the payloads carried represented by � should be minimized. 

 

� = �×���−,Α
Α	∈(���	∪	��∴Β��Ψ�)�τρ���−∈����€�ϒ��

 

 

The variable � is used to minimize the number of �Α,Β . Minimizing � ensures the correct number of time slices is 

allocated for Loiter tasks.  

 

� = �×�Α,Β
Β∈��Α∈≠�����

 

 

The final cost function is: 

 

 ���:			� − 	� − � − � − � − � + � − � − � (60) 

 

The operator can rank preference of utility by giving the coefficients �;, �<, �=, �>, �? a value between 1 and 

100. The ranking and the differences between the values of the coefficient describes the relative importance of time, 

cost and effectiveness to the operators. 

The ILP formulation of the resource allocation model, was solved using the commercially available solver IBM 

ILOG CPLEX 12.6.1[50]. All the simulations were carried out on a desktop computer running Windows7 with a 

3.20GHz Intel Core i7 3930K processor and 32 GB of RAM. The formulation can be solved using alternative 

solution methods, e.g. Genetic Algorithms or used as a basis for the development of near optimal heuristics 

algorithms that may reach solutions more quickly than CPLEX at the expense of solution optimality. 

N.!Main Features 

The proposed ILP model offers a number of standard features such as planning with time windows, planning for 

heterogeneous tasks and heterogeneous resources, accommodation of inter task dependencies and restriction of fuel 

capacities. The contribution of the model resides in the holistic approach to the resource allocation problem, 

allowing the model to be used in diverse civilian applications. Transportation and Intersection tasks are two new 

capabilities not considered in [2] [27]. Transportation is very common and crucial for a civilian UAV sharing system 

and constitutes one of the main services that needs to be present. The implementation of transportation services is 

also novel in that it allows the UAVs to exchange cargo at bases. Cargo transshipment allows heterogeneous 

resources to collaborate on transportation requests. Intersection tasks offer the ability to combine multiple requests 

coming from unrelated users into one request therefore reducing the cost and time of servicing those requests. 

Moreover, the sensor selection feature is a major contribution allowing the model to also select appropriate sensors 

for each resource similar to [3]. The ILP model also offers an additional feature that allows it to plan sensor changes 

during execution by landing at a base and taking off afterwards to continue the mission. 

The base in this model is not just a location node where resource can travel to; it offers logistics services to those 

resources such as transshipment, sensor change and refueling together with the typical landing and take-off service. 

The base also acts as a waiting node where the resources do not incur any cost over time. 

In order to accommodate all the new features with all the standard features in one system the formulation used a 

different approach to represent remaining fuel and refueling constraints. It also had to use an approach to payload 

capacity similar to the one used in delivery truck problems in order to allow the capacity to increase and decrease 

according to the transported cargo. 

Our main application space is a multi-UAV services sharing system, therefore the design of the objective 

function was very important to capture the possible operator needs and preferences. Combining objectives from 

different categories such as time, cost and reward into a meaningful value is achieved through converting all the 

objectives into a unified currency before being used in the optimization. It includes cost of sensor change, take-off, 

landing, travel time and a gain of each task weighted by a resource effectiveness factor for performing the task. In 
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addition, the operator can use the coefficients �;, �<, �=, �>, �? to define a preference for the optimization goals 

between mission cost, mission completion time and mission effectiveness. 

V.! Results 

A.!Overview 

The results section is divided into two main sections. Subsection B presents the evaluation of results from a set 

of detailed numerical experiments on a single scenario that explores the effect of optimization choices on mission 

outcomes for this single scenario. Subsection C presents results from experiments on multiple different scenarios 

that explores the performance of the approach in different scenarios of increasing complexity. 

 

B.! Baseline Scenario 

1.! Scenario description 

To illustrate the resource allocation system behavior in a real context, we first take a single scenario with 4 

resources and 7 requests shown in Fig. 4: A vehicle service provider is offering users the use of its fleet of 

autonomous vehicles. Users send their requests to the centralized vehicle management center where the allocation 

process takes place. Once a plan is generated, resources are autonomously allocated to the appropriate user and the 

service begins. Upon receipt of any new requests, the resource allocation model is solved using the current states of 

resources in order to generate an up to date plan. This scenario incorporates a sample of each type of task requests 

and uses a combination of heterogeneous vehicles to service the requests in an efficient way. We will refer to this 

scenario as the baseline scenario. 

 
Fig. 4: Illustration of the baseline scenario with relative location between tasks, bases and resources. 

An emergency medical team requires a specialist medical kit. They contact the nearest hospital who send a 

request through the local vehicle services center for a point to point pick-up and delivery service. Due to an earlier 

truck accident, the medical team on the ground is only accessible by air hence the final delivery must be done by a 

UAV. The accident management team dealing with the truck accident has already sent a request for an aerial 

assessment of the area. On the other side of the town, the local tram operator is performing maintenance on a line 
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and is requesting an aerial inspection of the tracks while a nearby construction manager is asking for his daily site 

inspection to monitor the progress of his work.  

Finally, a fire is developing in a warehouse downtown and the fire department requires simultaneous Visual and 

IR scans to make sure the fire is being appropriately contained. The fire department is also asking for a second IR 

scan 5 minutes after the first one to monitor the progress of the fire. 

Table 1 shows the description of the resources available with their current status. We notice that all resources are 

grounded at different bases except the fixed wing aircraft which was already airborne and is currently at R2WP. 

Table 1 shows the sensor options available and the requests sent by various users in the local area. The time 

windows are intentionally chosen to be wide in order to give the resource allocation some freedom in moving tasks 

around. For narrow time windows, the solution space is very constrained and there is little benefit in optimizing the 

mission. We thus choose a planning horizon of 25 minutes based on the latest possible servicing time requested. The 

planning horizon is divided into 25 time slices hence each time slice in the plan is equivalent to 1 minute in real life. 

Note that the planning time resolution can be adjusted depending on the density of tasks in the planning horizon and 

the available time for planning. High time resolution increases the size of the ILP model and hence increases 

solution time. 

2.! Results with default allocation parameters 

The schedule presented in Fig. 5 shows the changes in states of each resource with the passage of time. The first 

graph (Fig. 5a) shows the schedule of each vehicle. The x axis represents time slice number, while each block 

represents the state which the vehicle is in for that period of time. The light grey blocks represent the time spent 

traveling between nodes, including the time taken to take off and refuel if the vehicle is leaving a Base node and the 

time it takes to land if the vehicle is arriving at a Base node. Empty spaces between blocks in the schedule represent 

free allocable time. The model coding is such that if the vehicle was at a base before being allocated free time, it 

remains there until it is required to move, otherwise if it was airborne it loiters while waiting to continue its mission. 

The colors denote different tasks and relate the illustration to the schedule. The second graph (Fig. 5b) shows the 

sensor combinations used to perform each task. The exchange of sensor options at bases can be correlated with the 

schedule in Fig. 5b.  

 
Fig. 5: Sample schedule results for the baseline scenario. 
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Table 1: Resources, Sensor Combinations and Tasks used in the baseline scenario. 

 

Sensor Combinations 

Sen Combo # Type Weight Usage cost (£/Time Slice) 

1 Visual Sensor (Vis) 1 2 

2 Infrared Sensor (IR) 3 5 

3 Transportation Bay (Tran) 0 0 

4 Visual Sensor + Infrared Sensor 4 7 

 

Resources 

Res 

# 
Type 

Speed 

(m/s) 

Sensors 

Compatible 

Sensor 

onboard 

Sensor 

Capacity 

(no off) 

Payload 

Capacity 

(Kg) 

Maintenance 

Cost(£/Time 

Slice) 

Initial 

Position 

Remaining 

Flight 

Time 

1 MultiRotor 15 Vis,IR,Tran Vis 1 5 3 Base 1 20 

2 FixedWing 10 Vis, IR Vis 2 10 5 R2WP
a 

8 

3 Rover 5 Vis, Tran Tran 1 15 2 Base 2 20 

4 Helicopter 15 IR,Tran IR 1 5 10 Base 1 20 

 

Task details 

Description Symbol Type Sensor Platform 
Time 

Window 

Execution 

Time 

Gain 

£ 

Pick up emergency equipment  

weighing 1Kg from the hospital 
P Visit Tran UGV [0-6] 1 20 

Deliver emergency equipment to first 

responders 
D Deliver Tran VTOL [3-20] 1 20 

Provide aerial view of tanker spill 

accident to crew on the ground 
M Loiter Vis Airborne [10-15] 2 100 

Aerial inspection of construction site C PotInter Vis Airborne [2-18] 1 40 

Aerial inspection of tramline TI PotInter Vis Airborne [5-20] 1 100 

Intersection of TI and C TC Inter Vis Airborne [5-18] 1 140 

Visual Fire Inspection F1 Visit Vis Airborne [1-8] 1 100 

IR Fire  F2 Visit IR Airborne
b 

[1-8] 1 100 

Fire progress inspection Pr Preceded IR Airborne [2-14] 1 100 
a
 RxWP is used to indicate the airborne initial waypoint position of resource x. 

b 
Platform Effectiveness in performing TaskF2 is: Vehicle1 (0.1) , Vehicle2 (0.1), Vehicle3 (-1) and Vehicle4 (1). 

Platform Effectiveness for all other tasks is (1) for capable platforms and (-1) for incapable platforms. 

 

In the presented scenario, the resource allocator uses equal weights between mission cost, mission completion 

time and mission effectiveness. The coefficients in the cost function are �; = �< = �= = �> = �? = 1. The resource 

allocator decided to use three resources only, since there is a cost for utilizing more resources than needed. Vehicle1 

is tasked to perform TaskTC at t=7, instead of performing TaskTI and TaskC individually. In this case, it is cheaper 

to perform the Intersection task by saving the cost of traveling between the individual tasks while retaining the same 

service quality. Once TaskTC is completed, Vehicle1 flies to TaskF1 at t=9 in order to collaborate with Vehicle2 to 

perform both TaskF1 and TaskF2 simultaneously, each with a different sensor. This collaboration is then followed 

by cooperation between Vehicle1 and Vehicle2 to performing TaskM from t=11 till t=13. Having two resources 

serving TaskM provides an added value to the quality of the service which, in this scenario, is providing information 

for accident and spillage assessment. Vehicle1 lands at Base1 at t=14 in order to switch its payload, pick-up the 
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emergency medical kit that was brought to Base1 by Vehicle3 and deliver it to TaskD at t=18. Finally, Vehicle1 

lands at Base1 marking the end of its schedule. The time it takes to take off and service Vehicle1 is accounted for in 

the traveling time after each base. 

 

The resource allocator found it efficient to land Vehicle2 at Base2 on t=3 in order to change its sensor, refuel and 

then take off at t=5. Note that the optimal identified solution uses Vehicle2 to carry both Visual and IR sensors, 

leading to a higher operations cost, in order to serve TaskF2, TaskM and TaskPr at t=9, t=11 and t=14 respectively.  

Since the pick-up task from the hospital (TaskP) can only be completed by a ground vehicle, it is automatically 

allocated to the only available option Vehicle3. Vehicle3 leaves Base2, where it was located, to pick up the 

emergency kit and deliver it to Base1 where it will later be taken by Vehicle1 to the medical team on the ground. 

The model found it more efficient (less costly) to utilize Vehicle1 for the delivery task TaskD than to use Vehicle4. 

This is in spite of the need to perform the landing of Vehicle1 and exchange payloads before it can be used for the 

delivery. 

The resulting solution utilized an average of 59% of the available resources. This percentage is calculated based 

on the ratio of flight time to the potential flight time of each resource. The potential flight time of each resource is 

given by 
≡�±∴�≈�	���−♠…	����∴Β…�

���−♠…	���Ψ≈�Β∴��	�−	≈�∴Β	�→	Β∴���
− ���������	����− 	×	������	��	�����	������− with 

���������	����− = 	 ���−,/ + ��−,/ρ��	/�Ψ�	ℵ∴Ψ∴ΒΨ  ∀	� ∈ ���������. Approximately 30% of the flight time was 

used to execute tasks while the rest is distributed between traveling and waiting. Finally, the benefit to cost ratio is 

2.34:1 which indicates a positive profit under the cost assumptions taken. The benefit to cost ratio of the mission is 

the total gain obtained by all resources divided by the total cost incurred by all resources. Mission benefit to cost 

ratio is given by 
	��Β��	♦�∴��∀	�	∈ℑℜ℘⊗⊕ℑ∅ℜ℘

��Β��	ϒ�ΨΒ�∀	�	∈ℑℜ℘⊗⊕ℑ∅ℜ℘
 . 

3.! Results for the variation of allocation parameters to achieve different operational goals 

Taking the same scenario, we change some of the main parameters in the allocation model to assess its ability to 

accommodate different operational goals. Figure 6 presents four solutions to the baseline scenario. Figure 6a is the 

same as the solution in Fig. 5 where the weightings between the three main operational goals are equal. This is 

referred to as “solution 1”.  

The solution in Fig. 6b, referred to as “solution2”, considers maximizing effectiveness to be more important. We 

use the following coefficient set in the cost function: �; = 100, �< = �= = �> = �? = 1. The main difference from 

solution1 is the allocation of TaskF2 to Vehicle4, which is the most effective in performing that task. All other tasks 

are rescheduled accordingly. Hence, TaskF1 is performed before TaskTC in order to ensure collaboration between 

Vehicle1 and Vehicle4 during the same time slice on TaskF1 and TaskF2. The remainder of the plan is the same as 

solution1. 

The solution in Fig. 6c, referred to as “solution3”, considers minimizing operations cost to be more important. 

We use the following coefficient set in the cost function: �< = 100, �; = �= = �> = �? = 1. The resource allocator 

attempts to reduce the operations cost by utilizing the plan in solution1 and eliminating the cooperation on TaskM. It 

is cheaper for the allocation to use the less effective Vehicle2 in performing TaskF2. It is also cheaper not to 

dispatch two resources to attend one task. 

The solution in Fig. 6d, referred to as “solution4”, considers completion time to be more important. We use the 

following coefficient set in the cost function: �? = 100, �; = �< = �= = �> = 1. We can immediately identify one 

main difference which is the use of Vehicle4 in performing TaskD and the use of Base2 for transshipment instead of 

Base1. For Vehicle1, TaskTC was moved from the beginning of the plan allowing TaskF1 and TaskF2 to be 

completed at an earlier time. Vehicle4 collaborated with Vehicle1 on TaskF1 and TaskF2, so that Vehicle2 can 

subsequently attend TaskPr after the lag of 4 time slices between TaskF1 and TaskPr.  TaskM was attended by 

Vehicle1 alone in order to allow for the reduction in the schedule timeline. 
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Fig. 6: Effect of changing optimization goals on mission solutions for the baseline scenario. 

 

Figure 7, 8 shows a comparison between the four different solutions presented in Fig. 6. The StdDev is the 

standard deviation of the resource loading in each solution. A higher value for this metric, indicates a more unfair 

(unequal) resource loading.  

In solution2, the increase in effectiveness was based on the mobilizing of an additional, more effective resource 

which leads to an increase in cost and a reduction in benefit to cost ratio in comparison with solution1. Solution 2 

has the worst load distribution because Vehicle3 and Vehicle4 are lightly loaded compared to Vehicle1 and 

Vehicle2. This is also reflected in the low percentage of resource utilization (50%). 

In solution3, the resource allocator reduced the operations cost by reducing a collaboration on a task that 

deprived the mission from extra benefit. The resulting benefit to cost ratio is low (1.82:1) compared to solution1 

(2.34:1) and solution2 (1.97:1). The resource allocator ended up with a relatively fair load distribution amongst 

mobilized resources and has the second best percentage of resource utilization (57%). However, the mission plan 

also is disadvantaged by long waiting times indicated by the lowest percentage of flight time used for execution 

amongst all four solutions (24%). 
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In solution4, the allocation model utilized a greater number of different resources to reduce the mission 

completion time by 25%. This lead to the fairest distribution of load between all four solutions but at a lower benefit 

to cost ratio. The overall benefit (720) was less than solution1 (866) and solution3 (920) however the overall cost 

was also the highest amongst all four solutions (479). This is a clear trade-off between time and cost.  

The benefit to cost ratio dropped in solution2 to 1.97:1 compared to solution1 (2.34:1) due to the extra cost 

associated with operating Vehicle4. The drop was not high since the gain obtained from the tasks partially 

compensates for the extra cost added by Vehicle4 operation. The ratio in solution3 dropped to 1.82:1 due to a larger 

drop in overall benefit versus overall cost in comparison to values of solution1. The benefit to cost ratio dropped 

significantly in solution4 to 1.5:1 indicating severe losses in terms of profit compared to the advantage of finishing 

25% earlier than the other three solutions. 

Finally, the time it took to calculate solution2 is 9 seconds, which is less than the 10 seconds taken by solution3, 

the 24 seconds taken by solution1, and much less than the 64 seconds taken by solution4. Figure 7 shows the 

comparison between computation times. This indicates that when more constraints are present the less feasible 

options the allocation system has to consider and the quicker it can produce an optimal solution.  

 

  
Fig. 7: Effect of varying mission goal on solution computation time, baseline scenario. 

 

 
Fig. 8: Effect of mission objective on mission performance metrics, baseline scenario. 
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4.! Demonstration of dynamism 

The presented model has the capability to dynamically accommodate new requests during execution. Resources 

are able to start from their current states defined by their current locations, remaining fuel capacity and the currently 

installed sensor combination. This allows the model to be re-solved at any point during execution for the remaining 

tasks. The reallocation is triggered by specific events such as the addition, removal and modification of tasks, and 

the unexpected loss of resources. Limiting the events that can invoke a reallocation greatly reduces the possibility of 

churning cases. Churning is usually an issue in dynamic real time multi-agent systems where the ability to reallocate 

tasks can lead to repeated reassignment. However, this is not an issue in the present model due to the limited causes 

of reallocation and their low frequency of occurrence. On the other hand, plans may get modified after every 

allocation cycle, leading to a weak load distribution in certain very dynamic scenarios. However, the produced plan 

in each allocation cycle would still be the best outcome based on the situation at that moment in time. 

To demonstrate dynamism, we use the baseline scenario presented in Fig. 4 and the mission parameters that 

resulted in the plan in Fig. 5, with the exception of the time at which the requests are received. The resource 

allocation system receives two sets of requests one at time t=0 and the other at time t=10 into the execution. We take 

the requests sent by the fire department to be the delayed requests hence the first set of requests include Tasks P, D, 

M, TI and C detailed in Table 1 while the second set arriving at t=10 includes Tasks F1, F2 and Pr.  

Fig. 9 shows the plan for the first set of requests in the new scenario which looks very similar to the one in Fig. 5 

but without the fire department requests. The time taken to generate this plan was 5 seconds. The plan utilizes 49% 

of available resources at the time, 26% of the flight time is being used to execute tasks and the benefit to cost ratio is 

1.97:1.  

The plan starts execution at t=0 and by t=10 TaskTC and TaskP have been completed, Vehicle1 and Vehicle2 

are flying towards TaskM, the emergency cargo in Vehicle3 is on its way to be delivered to Base1 and Vehicle4 is 

still at Base1. At t=10 the second set of requests is obtained, and the resource allocation system loads all pending 

tasks together with the newly received requests into the allocation model. The current positions of Vehicle1, 

Vehicle2 and Vehicle3 are loaded into the allocation model as R1WP, R2WP and R3WP. 

Fig. 10 shows the plan for the second set of requests combined with the pending tasks from previous set. It took 

10 seconds to generate this plan. The initial time t=0 in this plan is equivalent to t=10 in the first plan. The plan 

utilizes 50% of available resources at the time, 26% of the flight time is being used to execute tasks and the benefit 

to cost ratio is 1.85:1. With the receipt of TaskF2 requiring a flying vehicle equipped with IR, the allocation system 

decided to mobilize Vehicle4 to attend TaskF2 and collaboration with Vehicle2 attending TaskF1. Vehicle1 

continued its plan as scheduled. Vehicle4 has the IR sensor on-board and is tasked to attend TaskPr which due to the 

precedence constraint with lag time forced Vehicle4 to wait in the air for 3 time slices. Vehicle3 continued its plan, 

without any change, delivering the emergency medical kit to Base1 for where it will later be picked up by Vehicle1 

for final delivery.  

Comparing the result of the dynamic scenario presented in Fig. 9 and Fig. 10 to the optimal result that used prior 

knowledge of all tasks presented in Fig. 5, we can notice a reduction in the plan quality. When the tasks arrived in 

two sets, it took longer overall to execute them: 23 time slices in the dynamic scenario vs 20 time slices in the 

optimal case. More time was wasted in waiting and more cost incurred due to increase in resource utilization. The 

total mission benefit to cost ratio decreased to 2.08 in the dynamic scenario compared to 2.34 in the optimal case. 

This is an 11% reduction from optimal. While the same gain was achieved (866) in both cases, the cost in the 

dynamic scenario increased to (416) from (370). It is expected that a more efficient and more cost effective plan will 

be generated if all requests are known prior to the allocation. However, in reality and due to the nature of service this 

system is intended to provide, it is evident that requests are going to be submitted at unpredictable times, and 

therefore it is crucial that the allocation model is able to successfully cope with the dynamism imposed by user 

request. 
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Fig. 9: Schedule of the requests received at t=0. 

 
Fig. 10: Schedule of the additional requests received at t=10. 

C.! Performance Study 

1.! Simulation description 

This section presents the evaluation of the performance of the resource allocation system as the scope and size of 

the mission scenario is varied. These sets of missions will be referred to as the performance study sets. Three 

performance studies were carried out all sharing the same environment described in Table 2. The studies considered 

the effect of both the time window size and the number of time slices used in a simulation, the relative performance 

compared to other allocation methods and the relative performance at limited computation time. Random tasks were 
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generated in random locations within a 6.3 Km
2
 area. Five task parameters are randomly generated from the list of 

options shown in Table 2: location, type, starting time, required platform and required sensor.  

Table 2: Simulation environment setup for the performance study sets.!

 

Sensor Combinations 

Sen Combo # Type Weight (Kg) Usage cost (£/Time Slice) 

1 Visual Sensor (Vis) 2 0.2 

2 Infrared Sensor (IR) 2 0.2 

3 Transportation Bay (Tran) 0 0 

 

Resources 

Res 

# 
Type 

Speed 

(m/s) 

Sensors 

Compatible 

Sensor 

on-

board 

Sensor 

Capacity 

Payload 

Capacity 

(Kg) 

Maintenance 

Cost (£/Time 

Slice) 

Initial 

Position 

Remain-

ing 

Flight 

Time 

(min) 

1 

Multi-

Rotor 
10 

Vis, IR, 

Tran 
Vis 1 3 0.2 Base 1 24 

2 

Fixed 

Wing 
15 

Vis, IR, 

Tran 
Vis 1 10 0.5 Base 1

 
24 

3 
Hybrid 

VTOL 
10 

Vis, IR, 

Tran 
Vis 1 3 0.2 Base 1 24 

 

Randomized task parameters 

Parameter Range 

Location Latitude ∈ [53.462226, 53.484978]  

Longitude ∈ [-2.257769, -2.219175]  

Altitude ∈ [10m,120m] 

Starting time [0, (Planning horizon – Time window size)] 

Required platform Uniformly randomly distributed amongst all available types 

shown in Table 3 

Required sensor Uniformly randomly distributed amongst all available types 

shown in Table 3 

Task type Randomly chosen with a predefined percentage of occurrence 

from [Visit, Loiter, Transport, Precedence, XOR] 

 

A number of random tasks are grouped to form a mission. Each performance study contains a number of mission 

sets. Table 3 presents the simulation parameters and characteristics that are fixed amongst all sets and parameters 

that vary between those sets. Each set contains 14 randomly generated missions based on a combination of the 

variable parameters. Limits on parameter value ranges were set based on experience of what typically produced 

operationally meaningful results. 
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Table 3: Options for the parameters varied to generate simulation case studies for performance study sets.!

 

Simulation characteristics that vary between each performance study set 

Parameter Effect of TW and NTS Comparison of allocation 

methods 

Effect of limiting 

computation time to 120 

seconds 

Allocation 

Method 

[ ILP ] [ ILP CBBA Greedy ] [ ILP ] 

NT/NR [3 5] [ 4 ] [3 5] 

NR [2 3] [2 3 4] [2 3] 

Time window size 

in minutes (TW) 

[4 6 8 10]  [ 5 ] [4 6 8 10]  

Number of time 

slices (NTS) 

[20 40 60 80 100] [ 50 ] [20 40 60 80 100] 

 

Simulation characteristics fixed over all performance study sets 

Parameter Effect of TW and NTS Comparison of allocation 

methods 

Effect of limiting 

computation time to 120 

seconds 

Percentage of task 

types in all 

mission sets 

Visit: 30, Loiter: 30, 

Transport: 15, 

Precedence:15, XOR: 10 

Visit: 50, Loiter: 50 Visit: 30, Loiter: 30, 

Transport: 15, 

Precedence:15, XOR: 10 

Number of 

missions per set 

14 10 14 

Planning horizon 

in minutes 

40 25 40 

Optimization 

coefficients 

Equal weights Equal weights Equal weights 

Task reward £100  £100  £100  

Platform types NR=2: Res1 x1, Res2 x1 

NR=3: Res1 x1, Res2 x1, 

Res3 x1 

NR=4: Res1 x2, Res2 x2 

NR=2: Res1 x1, Res2 x1 

NR=3: Res1 x1, Res2 x1, 

Res3 x1 

NR=4: Res1 x2, Res2 x2 

NR=2: Res1 x1, Res2 x1 

NR=3: Res1 x1, Res2 x1, 

Res3 x1 

NR=4: Res1 x2, Res2 x2 

Sensor types Vis,  IR, Tran Vis Vis,  IR, Tran 

Computation time 

limit in sec 

7200 (2hrs) 7200 (2hrs) 120 (2min) 

 

2.! Study of the effect of task time window size (TW) and number of time slices (NTS) 

In order to study the effect of varying the time window size and the time resolution for different numbers of 

resources, we considered 80 different sets, each comprised of 14 random missions. A summary of the results is 

presented in Fig. 11 and Fig. 12. Note that each data point is obtained from taking an average from the 14 missions 

in each set for each parameter combination. The results are organized such that a given row of plots in a figure 

corresponds to a test case with a specific Number of Resources (NR) and task to resource ratio. The different lines in 

each plot are for different number of time slices (increasing number means increasing time resolution). The x axis in 

each plot is the time window for the tasks, where increasing time window corresponds to a less restrictive 

scheduling requirement. 
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Fig. 11: Effect of varying time window (TW) size and number of time slices (NTS) on mission performance 

metrics for two vehicle resources (NR=2). 

For the cases where the number of time slices was 20 (NTS=20) no feasible solutions were generated and these 

cases are not included in the benefit to cost ratio graphs (a) and (d) in Fig. 11 and Fig. 12. Additional analysis 

revealed that 90% of the cases with NTS=60 were physically feasible but failed due to insufficient time resolution 

for pre task sensor installation. This part of the study validates the formulation of the sensor selection constraints 

(section IV). Where there is a mission failure due to sensor installation constraints, the operator may decide to relax 

the sensor requirements and obtain a very quick response with low time resolution. From the results in Fig. 11 and 

Fig. 12 we can deduce that with larger time windows and higher time resolutions the quality of the solution, 

measured by the benefit to cost ratio, increases. The increase in the solution quality comes at the expense of 

computation time. Increasing the time resolution does not always lead to a better solution, it does however lead to 

more computation time. Reduction of the time resolution and time window size both reduce the percentage of 

feasible solutions (Fig. 11aiii, Fig. 11biii, Fig.12aiii and Fig. 12biii). The most significant effect is from reduction of 

time window size. The larger the task to resources ratio (
∩∪

∩⊃
) the more time resolution is required to obtain a good 

solution. With a large enough time window most missions can be solved. 

In the case of 
∩∪

∩⊃
= 3 (Fig. 11a and Fig. 12a) the best option that gives 100% feasible solutions with low 

computation time and reasonable benefit to cost ratio for both NR=2 and NR=3 is at NTS=40 and TW=600. The 

smallest time window that results in a reasonable solution quality at a low computational cost is 360 seconds. This 

allows 93% of problems to be solved with NR=2 and 100% with NR=3. 

In the case of 
∩∪

∩⊃
= 5 (Fig. 11b and Fig. 12b) there are more tasks to be allocated hence there are more variables 

in the allocation model. There is a big jump in the computation time from 
∩∪

∩⊃
= 3. The operator may decide to 

sacrifice the quality of the solution to achieve a good computation time by taking NTS=40 and TW=600 which can 

perform 85% of the missions with NR=2 and 100% with NR=3. However, if the operator is interested in a high 

solution quality, computation time can be traded with benefit to cost ratio by taking NTS=60 and TW=600. This will 
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result in the best benefit to cost ratio with the lowest computation time, solving 85% of the problems with NR=2 and 

100% with NR=3.  

 

 
Fig. 12: Effect of varying time window (TW) size and number of time slices (NTS) on mission performance 

metrics for three vehicle resources (NR=3).!

In general, the cases where the solutions are infeasible are the ones where time windows for multiple tasks are 

overlapping, requiring limited resources to perform many tasks in a very short period of time. Another class of 

infeasible solutions is due to vehicle resources having insufficient time to land and change their sensors. Increasing 

the time window size may eventually produce a feasible solution, but at a computation cost. For the purposes of this 

study, the computation time limit for the simulation of each mission was set at 7200 sec (2hrs). Some larger 

problems were identified as unfeasible due to computation time exceeding this limit (Fig. 11biii). Some of these 

missions are feasible with a smaller NTS. This is seen with NTS=80 and NTS=100 at TW=600 (Fig. 11biii). In Fig. 

12bii and Fig. 12biii, we notice that for NTS=60, 80 and 100 the trends are counter intuitive. The percentage of 

feasible solutions dropped while the average computational time increased for NTS=60. This is due to reaching the 2 

hrs time limit before finding a feasible solution for some complex missions. The percentage of feasible solutions 

dropped together with a large drop in the average computation time for NTS=80 and 100. This is due to missions 

being sufficiently large that there was insufficient memory in the simulation computer to store the variables before 

starting the simulation. The memory issue was detected within few seconds hence the simulation time is recorded as 

being very short. 

Many factors affect the choice of an appropriate time window such as resource endurance, cruising speed and 

mission complexity. The system operator has to consider the type of missions expected and find a reasonable 

minimum time window that allows the resources to perform all tasks within their required time windows. Based on 

the simulation results summarized in Fig. 11 and Fig. 12, we can estimate a minimum time window value using the 

following heuristic equation. TW⊆∈∉ =
;

=
×
∩∪

∩⊃
×(Longest	Travel	Time + Average	Execution	Time) 

The Longest	Travel	Time is the travel time taken by the slowest resource to travel between the most distant two 

points in the operation area. In the cases considered, the longest travel time is 258 seconds, and the longest 
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execution time is 60 seconds. The minimum time window recommended is thus 318 seconds for 
∩∪

∩⊃
= 3 and 530 

seconds for 
∩∪

∩⊃
= 5.  

The results presented in Fig. 5-10 for the baseline scenario (
∩∪

∩⊃
= 2.25, NR=4, NTS=25 and a maximum 

TW=900 seconds) can be compared with the results presented in Fig. 11 and Fig. 12 for the performance evaluation 

scenario sets. The evaluation sets considered more complex cases (
∩∪

∩⊃
= 3, NR=3, NTS=40 and TW=360 seconds) 

that were computed with an average computation time of 12.64 seconds which is similar to the results obtained for 

the baseline scenario. 

 

3.! Comparison of the effect of limiting the computation time to 120 seconds 

 

 
Fig. 13: Results of limiting the CPLEX computation time to 120 seconds.!

The simulations conducted as part of the study of TW and NTS effects on the performance scenarios were 

repeated with a time limit of 120 seconds (2 min) instead of 7200 seconds (2 hrs). The average benefit to cost ratio 

of the solutions that are obtained with 120 seconds time limits are compared to their counterpart under the 7200 

seconds time limit, Fig. 13a. The results in Fig. 13 show that in the case 
∩∪

∩⊃
= 3 the average benefit to cost ratio is 

reduced by 0.3% for NR=2 and by 0% for NR=3. For the more complex cases with 
∩∪

∩⊃
= 5 the average benefit to 

cost ratio dropped by 3.1% for NR=2 and by 8.5% for NR=3. The quality of the solution seems to remain very 

similar with the change of time limits; however, the time limit will prevent the solver from finding feasible solutions 

to feasible problems that simply require more computational time. This is evident in the large drop of percentage of 

feasible solutions with 
∩∪

∩⊃
= 5 :73% for NR=2, 15% for NR=3. For the less complex problems with 

∩∪

∩⊃
= 3, the 

percentage of feasible solutions obtained in 120 seconds computational window was 99.5% for NR=2 and 91.6% for 

NR=3. This is still a decent percentage considering the size of the problems and their complexities. We can deduce 

that for medium size problems, limiting the CPLEX computation time to 120 seconds will yield very good results 

however for larger problems this limitation is too constraining.  

 

4.! Comparison of allocation methods 

The literature is full of task allocation methods that tackle different subsets or combinations of problems; 

however, we were unable to find heuristics or other allocation methods that take all the constraints that we presented 

into account. In light of this, we compare the performance of the ILP model with a well-known distributed system 

instead, the Consensus Based Bundle Algorithm (CBBA) developed by Choi et al in [28]. We also developed a 

greedy algorithm that simply allocates the task that provides the highest reward in the shortest amount of time to the 

available resources. The greedy algorithm is there to show the comparison to a simplistic approach. Three sets with 

10 random missions each were generated and solved using three distinct allocation methods. The results of the 90 

runs are shown in Fig. 14. 
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Fig. 14: Comparison of performance of ILP,CBBA and Greedy allocation methods.!

Three performance metrics were used for the comparison: average benefit to cost ratio over the 10 missions in 

each set, the average of the total gain obtained and the average computation time. The average total gain also shows 

the number of tasks that were allocated since the reward for all tasks is equal to £100. Figure 14 (a) shows that the 

ILP model provides a solution that is 50% better than CBBA and 40% better than the greedy algorithm. Figure 14 

(b) shows that in some cases, CBBA and the Greedy algorithm cannot allocate all the required tasks however the 

ILP model was able to find a feasible allocation for all the tasks. The main drawback of the ILP model comes from 

the computation time which is an expected issue. The CPLEX solver we are using is an optimal solver that requires 

a considerable amount of time to produce an optimal solution. Unlike the CBBA or the Greedy algorithms that took 

milliseconds to find an allocation, the CPLEX solver required minutes to find the optimal solution. The quality of 

the solution and the high benefit to cost ratio delivered comes at increased computational cost. This is mitigated 

against the novel features offered by the ILP model that enable an effective and efficient universal multi UAV 

resource allocation system.  

 Note that the ILP model developed in this paper can be used with a commercial solver like CPLEX to solve 

medium size problems with 
∩∪

∩⊃
= 3, NR=[2, 3], NTS=60 and TW=360 within 30 seconds.  In a civilian multi UAV 

sharing system, 30 seconds is an acceptable computation time. The operator can also make use of the 120 seconds 

computation time limit and increase the time resolution of the solution or the time window allowance. CPLEX is not 

the only solver for ILP models, and larger problems will require faster solving methods. The ILP model developed is 

a stepping stone in the development of a quick holistic dynamic resource allocation system. The use of commercial 

solvers like CPLEX is to study the behavior and performance of the allocation model without focusing too much on 

the cost of computation time.  

VI.! Conclusions 

A novel ILP formulation for autonomous vehicle resource allocation has been developed and validated that is 

able to produce an optimal resource schedule, within the set limitations, exploiting the ability of the resources to 

land, refuel and change their sensor suite in response to realistic multiple vehicles service provision scenarios. The 

simulation scenarios demonstrated the novel capabilities of the model to dynamically select sensor options, transport 

cargo with transshipment, choose Intersection tasks, plan for operational logistics including take off, landing and 

refueling at multiple bases. In addition, the simulations showed the adaptability of the model to different operational 

goals and its accommodation to interdependencies between heterogeneous tasks. 

The presented model can be re-solved dynamically to accommodate new requests during execution. The ability 

to trade the resolution of the solution with computation time allows the user to adjust the time resolution of the 

solution based on real-time needs. The implementation can be extended to include additional environmental or 

operational constraints that may arise in the future. The effect of the coefficients in the cost function was prominent, 

particularly the coefficient of importance of finishing time and completion time. The more importance given to the 

completion time, the greater the trade with operational cost. Over-constraining a problem may render it unfeasible 

very easily especially when using narrow time windows. The implementation of this ILP model in a real time 

scenario requires the development of a faster solver that allows the system to produce a timely dynamic response.  

The current model is designed to work with deterministic mission scenarios where all the inputs are certain. 

Future work must consider cases where there is uncertainty in the input data and how the model can be robust 

against those uncertainties. Uncertainty can be accommodated by allowing the model to find feasible solutions using 

a subset of the requested tasks when the full set of tasks is infeasible. 
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