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We investigate the asymptotic security of one-way continuous variable quantum key distribution against

Gaussian two-mode coherent attacks. The one-way protocol is implemented by arranging the channel uses in

two-mode blocks. By applying symmetric random permutations over these blocks, the security analysis is in fact

reduced to study two-mode coherent attacks and, in particular, Gaussian ones, due to the extremality of Gaussian

states. We explicitly show that the use of two-mode Gaussian correlations by an eavesdropper leads to asymptotic

secret key rates which are strictly larger than the rate obtained under standard single-mode Gaussian attacks.

DOI: 10.1103/PhysRevA.95.052310

I. INTRODUCTION

Quantum technologies are becoming reality, with huge

efforts being devoted to developing scalable quantum com-

puters and robust quantum communications, e.g., for building

a future quantum internet [1–5] . In this global scenario,

quantum key distribution (QKD) [6–8] is certainly one of

the most advanced areas, with intense research activities

directed towards practical implementations. QKD represents

a set of strategies that, integrating both quantum and classical

communication, allow two authorized remote users (Alice and

Bob) to generate a random sequence of bits; this is then used

as an encryption key in a one-time pad protocol [9], therefore

providing an unconditionally secure (information-theoretic

[10]) private communication between the remote users.

The effectiveness of QKD relies on the ground rule of

encoding classical information in nonorthogonal quantum

states [11], that are then transmitted through a noisy quantum

channel controlled by the eavesdropper (Eve). This is also

equivalent to sending the “nonorthogonal part” of discordant

quantum states [12]. In this way, Eve’s attack is bounded by

fundamental laws of quantum physics [13]: any information

gained by Eve creates loss and noise on the quantum channel.

Thanks to this trade-off, Alice and Bob can accurately

quantify the amount of classical error correction and privacy

amplification needed to reduce Eve’s stolen information to a

negligible amount [6].

Since the first proposals to implement quantum infor-

mation and computational tasks, continuous variable (CV)

systems have attracted increasing attention [14,15]. The fact

of using quantum systems with continuous spectra (infinite-

dimensional Hilbert spaces) has several advantages with

respect to the traditional approach based on discrete variables

(qubits). In particular, one can implement QKD at high rates

by using highly modulated coherent states and homodyne

detections, not only in one-way schemes [16–21], but also

in two-way protocols [22–26] and CV strategies based on

measurement-device independence (MDI) [27–30].

Ideal implementations of CV-QKD provide the highest

key rates, not so far from the ultimate repeaterless bound

*carlo.ottaviani@york.ac.uk

recently established in Ref. [31] . For a lossy channel with

transmissivity τ , the maximum rate achievable by any QKD

protocol (secret-key capacity) is equal to [31] K = − log2(1 −
τ ), with a fundamental rate-loss scaling of τ/ ln 2 ≃ 1.44τ bits

per channel use for long distances, i.e., at high loss τ ≃ 0. The

most practical one-way CV-QKD protocols, i.e., the switching

[16] and no-switching [17] protocols, can potentially reach an

asymptotic long-distance rate of τ/ ln 4 bits per use, which is

half the secret key capacity. Similar performance occurs for

CV-MDI-QKD in the most asymmetric configuration [32].

In this work we deepen the study of the secret key rates

of the most known one-way CV-QKD protocols [16,17]. In

particular, we explicitly study their security in the presence of

Gaussian two-mode attacks, representing the residual eaves-

dropping strategy after the de Finetti symmetrization [33,34]

over two-mode blocks. Under these attacks, we derive the

analytical expressions of the asymptotic key rates [35]. With

these in hand, we show that eavesdropping strategies based

on correlated ancillas turn out to be strictly less effective than

Gaussian attacks based on uncorrelated ancillas (single-mode

attacks). In other words, any two-mode Gaussian attack with

strictly nonzero correlations improves Alice and Bob’s key

rate.

II. PROTOCOL AND GENERAL CONSIDERATIONS

Let us consider the communication scheme of Fig. 1(a).

Alice sends to Bob N ≫ 1 coherent states |αk〉. The amplitudes

αk , for k = 1, . . . ,N , are independently and identically modu-

lated by a bivariate zero mean Gaussian distribution of variance

μ. The communication channel is under Eve’s control, and the

output detections provide Bob with classical outcomes βk .

After N uses of the channel, the parties share two correlated

random sequences of symbols given by the sets {αk} and {βk}.
For the sake of clarity, we consider reverse reconciliation

(RR), so that the key is obtained by Alice inferring Bob’s

variables. Now, when Bob applies homodyne detections,

randomly switching between measurements on quadrature q̂k

and p̂k , we have the switching protocol [16]. By contrast, when

Bob measures both quadratures (heterodyne detection), we

have the no-switching protocol [17]. Here we discuss the latter

case, while we leave the analysis of the switching protocol in

Appendix B.

2469-9926/2017/95(5)/052310(9) 052310-1 ©2017 American Physical Society
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FIG. 1. Reduction to Gaussian two-mode attacks. (a) Alice

Gaussianly modulates N coherent states |αk〉 in an independent and

identical fashion. These are sent through a quantum channel (Eve) and

received by Bob, whose measurements provide the classical variables

βk for k = 1, . . . ,N . Eve’s general eavesdropping is based on a global

unitary operation, U , applied to the N instances of the one-way

communication. (b) After random permutations, the coherence of the

general attack is confined within each two-mode block. (c) Within

an arbitrary block, we show a Gaussian two-mode attack against

the protocol (in EB representation). A realistic Gaussian attack is

simulated by two beam splitters, with transmissivity τ , mixing Alice’s

signals, A and A′, with Eve’s ancillary modes, e and E, belonging

to a larger set of modes {e,E,E′′} in her hands. The reduced state

of modes e and E is Gaussian with thermal noise ω and correlation

matrix G as in Eq. (4).

In a general attack, Eve applies a global unitary operation

U , which coherently processes her ancillary modes with all the

N signals exchanged by the parties, with the ancillary outputs

stored in a quantum memory. One has that the Bob-Eve joint

system is described by a quantum state in the following form:

ρ = U

(

N
⊗

k=1

|αk〉〈αk| ⊗ |�〉Eve〈�|

)

U †, (1)

where |�〉Eve is Eve’s total input state. The security analysis

considering this general scenario is not a practically solvable

problem but, in the limit of N → ∞, it has been proved

[33,34] that one can get rid of the cross correlations between

different uses of the channel. More specifically, with no loss of

generality, the security analysis can be simplified by applying

symmetric random permutations on the input ({αk}) and output

({βk}) classical data sets.

Note that Alice and Bob may arrange the signals into two-

mode blocks cj , with j = 1, . . . ,N/2. Then, they can apply

random permutations over the blocks cj rather than over the

single uses of the channel. After such a symmetrization, the

quantum state given in Eq. (1) can be rewritten as the following

tensor product:

ρ ≃
M

⊗

j=1

ρblock, (2)

where M = N/2 is large. After this symmetrization, the initial

global coherence of quantum state of Eq. (1) is reduced to that

one enclosed within each two-mode state ρblock, associated

with the arbitrary block cj , as also depicted in Fig. 1(b). Thus

the only effective coherence to consider is two mode and this

scenario can be further simplified using the extremality of

Gaussian states [36].

In other words, the previous assumptions allow us to

reduce the general eavesdropping strategy to a Gaussian

two-mode attack within each block. In particular, we may

consider the most realistic form of such an attack, where

Eve exploits two beam splitters to combine Alice’s signals

with correlated ancillas prepared in an arbitrary Gaussian

state. See Fig. 1(c). Note that this is a reduction which is

often considered in practice. The security analysis of one-way

CV-QKD protocols under collective (single-mode) Gaussian

attacks [37] is typically restricted to the most practical case of

entangling-cloner attacks, resulting in thermal-loss channels

between Alice and Bob. The optimal key rate achievable over

this channel has been recently upper bounded in Ref. [31] and

lower bounded in Ref. [38].

III. ENTANGLEMENT-BASED REPRESENTATION

AND GAUSSIAN TWO-MODE ATTACKS

The security analysis is performed in the entanglement

based (EB) representation [15,39], as also shown in Fig. 1(c).

Alice owns a source of two-mode squeezed vacuum (TMSV)

states. These are zero-mean Gaussian states with covariance

matrix (CM) of the form

VEPR =
(

μI
√

μ2 − 1Z
√

μ2 − 1Z μI

)

, (3)

where μ � 1, I = diag(1,1) and Z = diag(1,−1). In each

block, Alice’s input state is Gaussian of the form ρaA ⊗ ρa′A′

and CM VEPR ⊕ VEPR . The signal coherent states |α〉 and

|α′〉 are remotely projected on modes, A and A′, by applying

052310-2
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heterodyne detections on local modes a and a′. In this way,

Alice modulates the amplitudes α and α′ according to a

zero-mean Gaussian distribution with variance μ − 1 (which

is typically large).

As previously mentioned, we assume a realistic Gaussian

two-mode attack where Eve employs two identical beam

splitters with transmissivity τ . These are used to mix Alice’s

input modes, A and A′, with Eve’s ancillary modes, e and E,

respectively. The latter belong to a larger set of ancillary states

{e,E,E′′} owned by the eavesdropper. The reduced Gaussian

state σeE is completely determined by the following CM [40]:

VeE =
(

ωI G

G ωI

)

, for G :=
(

g 0

0 g′

)

, (4)

where ω = 2n̄ + 1 quantifies Eve’s thermal noise, with n̄ mean

number of thermal photons. The correlations between modes

e and E are described by the parameters g and g′ in the matrix

G. Their values are bounded by the constraints

|g| < ω, |g′| < ω, ω|g + g′| � ω2 + gg′ − 1, (5)

which are imposed by the the uncertainty principle [27,40].

Note that from the CM of Eq. (4), one can recover the standard

collective attack scenario (single-mode attack) for g = g′ = 0.

In the ideal case of perfect RR efficiency, the key rate (bit

per channel use) is defined as

R =
IAB − IE

2
, (6)

where IAB is the mutual information between variables {α,β}
and {α′,β ′} and IE is Eve’s accessible information on Bob’s

variables (factor 2 accounts for the double use of the channel

within each block). For many uses of the channel N ≫ 1, IE

is bounded by the Holevo information

χ = SE − SE|ββ ′ = SAB − SA|ββ ′ . (7)

Here SE is the entropy of Eve’s output state, ρEve = ρe′E′ , and

is then equal to the entropy SAB of Alice and Bob’s joint state

ρAB = ρaa′BB ′ (because the global state of Alice, Bob, and

Eve is pure). Then, SE|ββ ′ is the entropy of Eve’s state ρe′E′|ββ ′

conditioned on Bob variables β and β ′; because these are

the outcomes of a rank-1 measurement, we have that Alice’s

conditional state ρA|ββ ′ has entropy SA|ββ ′ = SE|ββ ′ .

Note that, for Gaussian states, the von Neumann entropy

S(.) can be computed via the formula

S :=
∑

xh(x), (8)

where x are symplectic eigenvalues [15] and

h(x) :=
x + 1

2
log2

x + 1

2
−

x − 1

2
log2

x − 1

2
. (9)

By replacing IE in Eq. (6) with the Holevo function of Eq. (7),

one obtains the following ideal key rate (in RR):

R :=
IAB − χ

2
. (10)

IV. SECURITY ANALYSIS

A. Mutual information

As a consequence of the two-mode reduction strategy, Alice

and Bob’s mutual information is given by

IAB = I + I ′, (11)

where I := I (α,β) is the contribution from the first channel

use, and I ′ := I (α′,β ′) from the second use. Each contribution

is given by the following expression:

I = log2

VB + 1

VB|α + 1
,

I ′ = log2

VB + 1

VB|α′ + 1
, (12)

where VB = τμ + (1 − τ )ω describes the quadrature variance

of the average thermal state arriving at Bob’s side, while

VB|α = VB|α′ = τ + (1 − τ )ω is the quadrature variance of

Bob’s state after Alice’s heterodyne detection. Using these

relations in Eqs. (11) and (12), and working in the limit of

μ ≫ 1, one easily obtains

IAB = 2 log2

τμ

1 + τ + (1 − τ )ω
. (13)

We note that, as one would expect, this expression does not

depend on the correlation parameters g and g′.

B. Holevo bound

We now describe the general steps to obtain the Holevo

bound χ (more details are in Appendix A). Working in the EB

representation, Alice and Bob’s joint state ρaa′BB ′ is described

by the following CM:

V =

⎛

⎜

⎝

(μ + 1)I �Z

(μ + 1)I �Z

�Z 
I (1 − τ )G

�Z (1 − τ )G 
I

⎞

⎟

⎠
,

(14)

where we have set


 := τ (μ + 1) + (1 − τ )ω, (15)

� :=
√

τ [(μ + 1)2 − 1]. (16)

The symplectic spectrum is obtained from the ordinary

eigenvalues of matrix |i�V| [15] with

� =
4

⊕

j

ωj , ω =
(

0 1

−1 0

)

. (17)

In the limit of large μ, and after some simple algebra, we

find the following symplectic eigenvalues:

ν+ =
√

(ω + g)(ω + g′), (18)

ν− =
√

(ω − g)(ω − g′), (19)

ν1 = ν2 = (1 − τ )μ. (20)
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Using these eigenvalues and the expansion

h(x) ≃ log2

e

2
x + O

(

x−1
)

, (21)

we find the following expression for Alice and Bob’s von

Neumann entropy:

SAB = h(ν+) + h(ν−) + 2 log2

e

2
(1 − τ )μ. (22)

The next step is to apply two sequential heterodyne

detections on modes B and B ′, to obtain the conditional

CM VC describing the conditional quantum state ρaa′|ββ ′ . The

corresponding CM has a complicated expression that can be

found in Eq. (A11) of Appendix A. Computing its symplectic

eigenvalues in the limit of μ ≫ 1, we find the following

conditional spectrum:

{ν̄+,ν̄−} =
{

√

λ+λ′
+

τ
,

√

λ−λ′
−

τ

}

, (23)

where we have defined

λ± := 1 + (1 − τ )(ω ± g), (24)

λ′
± := 1 + (1 − τ )(ω ± g′). (25)

The conditional entropy just reads

SA|ββ ′ = h(ν̄+) + h(ν̄−). (26)

Finally, using Eqs. (22) and (26) in Eq. (7), we can write Eve’s

Holevo bound as

χ = 2 log2

e

2
(1 − τ )μ +

∑

i=±

[h(νi) − h(ν̄i)]. (27)

It is easy to check that Eq. (27) recovers the expression of the

Holevo bound of standard collective (single-mode) Gaussian

attacks for g = g′ = 0.

C. Secret-key rate and its analysis

It is easy to compute the secret-key rate using Eqs. (13) and

(27) in Eq. (10). After some algebra, we obtain the following

expression for the rate of the no-switching protocol under

realistic Gaussian two-mode attacks:

R = log2

2

e

τ

(1 − τ )[1 + τ + (1 − τ )ω]

+
1

2

∑

i=±

[h(ν̄i) − h(νi)]. (28)

In order to prove that Gaussian two-mode attacks with nonzero

correlations are strictly less effective than single-mode attacks,

we study the derivatives of this rate. We find the following strict

inequality:

R(τ,ω,g,g′) > R(τ,ω,0,0), ∀g,g′ �= 0. (29)

The details of the proof are in Appendix A, while here we

limit the discussion to the general ideas. To show Eq. (29),

we first seek for critical points of the function R(τ,ω,g,g′).
Solving the equation ∇R = 0 on the (g,g′) plane, one finds

that only the origin P0 := (0,0) is critical. To determine the

nature of P0, we then compute the second-order derivatives

with respect to the correlation parameters g and g′. This allows

us to compute the expression of the Hessian matrix H and study

FIG. 2. We analyze the key rate of Eq. (28) over the plane of the

correlation parameters, g and g′. Any two-mode attack corresponds

to a point in the colored surface. Boundary attacks, verifying the

condition ω|g + g′| = ω2 + gg′ − 1, are represented by the blue

points. The rate of the single-mode attack g = g′ = 0 is the red spot.

Here we fix τ ≃ 0.44 and ω = 1.2. For these values, the single-mode

attack provides zero key rate. On the other hand, we see that the key

rate is positive for any two-mode attack with nonzero correlations.

its positive definiteness. We therefore find that P0 corresponds

to the absolute minimum of the rate in Eq. (28) within the

domain defined by Eq. (5).

Finally we check that the attacks over the boundary, given

by the condition ω|g + g′| = ω2 + gg′ − 1, also provide key

rates which are strictly larger than that under the single-mode

attack. In Fig. 2 we show a numerical example, which is

obtained by fixing the transmissivity τ ≃ 0.44, the thermal

noise ω = 1.2, and plotting the rate as a function of g and

g′. We see that the secret-key rate under single-mode attack

(red dot) is always strictly less than that of the rate which is

obtained by any physically permitted two-mode attack (which

is a point in the colored surface). The key rates for the attacks

on the boundary of this region are the blue dots. The origin

P0 is therefore always an absolute minimum for R. As a

consequence, any correlation injected into the channels by the

eavesdropper to implement the coherent attack automatically

increases the key rate.

V. CONCLUSION

In this work we have explicitly studied the security of one-

way CV-QKD protocols against Gaussian two-mode attacks.

The approach is based on an attack-reduction strategy where

the parties pack the uses of the quantum channel in two-mode

blocks. Then, they apply random permutations over these

blocks. This allows them to get rid of any cross correlation

engineered by the eavesdropper between different blocks. We

solved this problem analytically, and we obtained the secret-

key rates under Gaussian two-mode attacks, in particular,

those more realistic and based on a suitable combination of

entangling cloners.

We have then showed that any nonzero correlation used

by the eavesdropper leads to a strictly higher key rate than

the rate obtained under Gaussian single-mode attacks. This is

achieved under the condition that infinite signals are exchanged

(asymptotic rate), therefore not considering composable or

finite-size analyses [41]. We conjecture that the use of
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correlations is not effective even when the size of the blocks

is greater than two modes. It would be interesting to check if

this is still true if Alice adopted correlated encoding between

different uses of the channel [42].
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APPENDIX A: COMPUTATIONS FOR THE

NO-SWITCHING PROTOCOL

Here we provide the calculations to prove Eq. (29) for the

no-switching protocol.

1. Total covariance matrix

Let X = (q̂X,p̂X) be the vectorial quadrature operator

describing a general mode X. The impact of the attenuation

and noise on Alice’s modes, A and A′, through two identical

beam splitters of transmissivity τ are given by the following

expressions:

B =
√

τA +
√

1 − τe, (A1)

B′ =
√

τA′ +
√

1 − τE, (A2)

where e and E are the vectorial quadrature operators describing

Eve’s ancillary modes, e and E, mixed at the beam splitters

with modes A and A′, respectively. Eve’s reduced state σeE is

zero-mean Gaussian with CM as in Eq. (4), with local thermal

noise ω and correlation parameters G := diag(g,g′) fulfilling

the constraints of Eq. (5). We order Alice and Bob’s output

modes as follows: a,a′,B,B ′; then, we use Eqs. (A1) and (A2)

to compute the CM describing Alice and Bob’s total state

ρaa′BB ′ . It is simple to derive the following expression:

V =

⎛

⎜

⎝

(μ + 1)I �Z

(μ + 1)I �Z

�Z 
I (1 − τ )G

�Z (1 − τ )G 
I

⎞

⎟

⎠
,

(A3)

where μ − 1 is the classical Gaussian modulation, while 


and � are defined in Eqs. (15) and (16).

2. Alice and Bob’s mutual information

In the no-switching protocol, Bob performs heterodyne

detections measuring both quadratures q̂ and p̂. From the

form of the attack, we have that the variances in q̂ and p̂,

relative to both Bob’s modes B and B ′, are identical and given

by VB = 
, with 
 specified in Eq. (15). The conditional

variances, after Alice’s heterodyne detections, are given by

VB|α,α′ = τ + (1 − τ )ω. (A4)

Accounting for the double use of the channel within the block,

we derive the mutual information

IAB = 2 log2

VB + 1

VB|α,α′ + 1
. (A5)

Taking the limit of large modulation (μ ≫ 1), one gets the

asymptotic expression of the mutual information, given in

Eq. (13) of the main text; i.e.,

IAB = 2 log2

τ (μ + 1) + (1 − τ )ω + 1

1 + τ + (1 − τ )ω

μ→∞→ 2 log2

τμ

1 + τ + (1 − τ )ω
. (A6)

3. Computation of the Holevo bound

The EB representation and dilation of the two-mode chan-

nel allows us to describe the joint Alice-Bob-Eve output state

as pure. Noting that this quantum state is always processed by

rank-1 measurements, one has that the purity is also preserved

on the conditional state after detection. The eavesdropper is

assumed to control the quantum memory storing her ancillary

modes; she is computationally unbounded, but the parties

exchange an infinite number of signals, N ≫ 1. In this regime

Eve’s accessible information IE on Bob’s variables is bounded

by the Holevo quantity χ . It can be obtained from the von

Neumann entropy of the Alice-Bob total state S(ρaa′BB ′), and

the conditional von Neumann entropy S(ρaa′|ββ ′). The Holevo

bound is then given by

χ = S(ρaa′BB ′ ) − S(ρaa′|ββ ′). (A7)

We need to derive the function χ in terms of the relevant

parameters of the protocol τ, ω, g, and g′. We then compute

the symplectic spectrum of the total CM given by Eq. (A3),

from the absolute value of the eigenvalues of the matrix M =
i�V, where � = ⊕4

k=1ω is the 8 × 8 (four modes) symplectic

form [15]. For large μ, one obtains the following expressions:

ν+ =
√

(ω + g)(ω + g′), (A8)

ν− =
√

(ω − g)(ω − g′), (A9)

ν1 = ν2 = (1 − τ )μ, (A10)

which, together with Eq. (8) and Eq. (21), are used to calculate

the total von Neumann entropy S(ρaa′BB ′ ) = SAB given in

Eq. (22).

Now, the conditional CM VC , providing the conditional von

Neumann entropy, is obtained via heterodyning Bob’s modes

B and B ′. We apply the formula for heterodyne detection [43]

to the total CM V. After some algebra, VC can be written in

the following form:

VC =
1

(
 + 1)2 − g2(1 − τ )2

⎛

⎜

⎜

⎝

k k̃

k′ k̃′

k̃ k

k̃′ k′

⎞

⎟

⎟

⎠

, (A11)

with the matrix entries defined as

k := (μ + 1)[g2(1 − τ )2 + (
 + 1)
̃] + (
 + 1)τ, (A12)

k̃ := −g(1 − τ )τμ(μ + 2), (A13)


̃ := 
 − τ, (A14)

k′ = (μ + 1)[g′2(1 − τ 2) + (
 + 1)
̃] + (
 + 1)τ, (A15)

k̃′ = −g′(1 − τ )τμ(μ + 2). (A16)
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For large μ, the symplectic spectrum of the conditional CM

VC is given by Eq. (23). Note that this spectrum does not

depend on the modulation μ, and for g = g′ = 0 we recover

the conditional eigenvalues of Ref. [17].

Now, from Eq. (23), we derive the conditional von Neumann

entropy S(ρaa′|ββ ′) = SA|ββ ′ , given in Eq. (26). Combining the

computed entropies, we obtain the Holevo bound in Eq. (27).

Finally, including the mutual information of Eq. (A6), we

derive the asymptotic key rate

RBlock = log2

4

e2

τ 2

(1 − τ )2[1 + τ + (1 − τ )ω]2

+
∑

k=±

[h(ν̄k) − h(νk)]. (A17)

More precisely, for channel use, we find

R =
RBlock

2
, (A18)

as given in Eq. (28).

4. Study of the critical point

From the first-order derivatives ∂gR and ∂g′R, and solving

the equation ∇R = 0, one finds a single critical point P0 for

any τ and ω; this is given by the origin (g = g′ = 0) of the

correlation plane (g, g′), bounded by the constraints given by

Eq. (5). We then take the second-order derivative ∂2R, with

respect to g and g′, and build the (symmetric) Hessian matrix

H =

(

∂2
gR ∂2

gg′R

∂2
g′gR ∂2

g′R

)

. (A19)

From the positive definiteness of this matrix, evaluated in the

critical point P0, one has that P0 is an absolute minimum. We

then study the sign, in P0, of the determinant of the Hessian

matrix (A19).

After some algebra one can write it in the simplified form

det H =
D1 − D2

τ [λ̄ + τ ]λ̄ω(ω2 − 1)
, (A20)

where we have defined

f (x) :=
1

log2 e
log2

1 + x

1 − x
(> 0 for 0 < x < 1), (A21)

D1 := τ

[

f (ω−1) + 2 log2

λ̄ + τ

(1 − τ )
√

ω2 − 1

]

, (A22)

D2 := ω

[

f (τ λ̄−1) + τ 2 log2

λ̄ + τ

λ̄ + τ − 2

]

, (A23)

λ̄ := 1 + ω(1 − τ ). (A24)

One can check that f (τ λ̄−1) � 0, and D1 > D2 for any

0 � τ � 1 and ω � 1. Indeed, being both quantities τ and

ω positive, as well as λ̄, we have

det H > 0 for any τ and ω. (A25)

We then proceed with the study of the second-order

derivative ∂2
gR at the critical point P0. This is the first principal

minor of the Hessian matrix of Eq. (A19). It is easy to check

the following chain of inequalities:

∂2
gR =

1

(τ + λ̄)(ω2 − 1)
+

f (ω−1)

4ω
+

(1 − τ )2

4τ λ̄
f (τ λ̄−1)

>
1

(τ + λ̄)(ω2 − 1)
+

f (ω−1)

4ω

>
1

(τ + λ̄)(ω2 − 1)
> 0, ∀ω > 1 and 0 � τ � 1.

(A26)

Therefore, the extremal point P0 is an absolute

minimum for the key rate of the no-switching

protocol.

By contrast, we notice that the study described above is

only valid for the pairs (g, g′) for which it is possible to define

the derivatives, i.e., those lying within the domain bounded by

the constraints of Eq. (5). In order to complete our analysis

we check that also the points at the boundary of the domain,

described by Eq. (5), give a key rate which is larger than that

one obtained for g = g′ = 0. We have studied numerically

these cases, computing the rate for the pairs (g,g′) fulfilling

the condition ω|g + g′| = ω2 + gg′ − 1. In Fig. 2 we show

an example of this computation, corresponding to the case

of a transmissivity τ ≃ 0.44 and thermal noise ω = 1.3, in

shot-noise unit (SNU). We see that the rate for single-mode

collective attack (red spot) lies well below the blue points,

which describe the key rate for the boundary two-mode attacks.

The colored region gives the values of the key rate for any

nonzero correlations g,g′.
Clearly, similar results are obtained for any other value

of 0 � τ � 1 and ω � 1, with the area describing two-mode

attacks vanishing into a point as ω → 1. In that case, the only

possible attack is single mode and, according to Eq. (5), we

have g,g′ → 0.

APPENDIX B: SWITCHING PROTOCOL

In this section, we analyze the key rate and its critical point

for the switching protocol. We arrive at the same conclusion

obtained for the no-switching protocol. In this case Bob

performs homodyne detections on the received signals modes,

by randomly switching the quadratures measured. Within

each block cj , Bob can decide to apply the same homodyne

detection on both modes B,B ′, or measure on two distinct

bases (q̂ and p̂). Here we assume the former case. When Bob

detects both his modes in quadrature q̂, we have

V
q

C = μI−
τ (μ2 − 1)


̃[g2(1 − τ )2 − 
̃2]

×

⎛

⎜

⎜

⎝

2g2(1 − τ )2 − 
̃2 g(1 − τ )
̃

1

g(1 − τ )
̃ 
̃2

1

⎞

⎟

⎟

⎠

,

(B1)
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where 
̃ = τμ + (1 − τ )ω = 
 − τ . When Bob detects both

his modes in quadrature p̂, we obtain

V
p

C = μI−
τ (μ2 − 1)


̃[g′2(1 − τ )2 − 
̃2]

×

⎛

⎜

⎜

⎝

1

2g′2(1 − τ )2 − 
̃2 g′(1 − τ )
̃

1

g′(1 − τ )
̃ 
̃2

⎞

⎟

⎟

⎠

.

(B2)

In the first case (q̂ detection), for large μ, we obtain the

following symplectic spectrum

ν̃± =
√

(1 − τ )(ω ± g)μ

τ
, (B3)

which depends on the correlation parameter g. In the second

case (p̂ detection), we have the following symplectic eigen-

values:

ν̃ ′
± =

√

(1 − τ )(ω ± g′)μ

τ
, (B4)

depending on correlation parameter g′. From Eqs. (B3) and

(B4), we compute two distinct conditional von Neumann

entropies,

SE|βqβ ′
q

= h(ν̃+) + h(ν̃−)

μ→∞= log2

e2

4

1 − τ

τ

√

(ω + g)(ω − g)μ

(B5)

and

SE|βpβ ′
p

= h(ν̃ ′
+) + h(ν̃ ′

−)

μ→∞= log2

e2

4

1 − τ

τ

√

(ω + g′)(ω − g′)μ.

(B6)

To the conditional von Neumann entropy, we average over

these two cases, getting the expression

SE|ββ ′ =
SE|βqβ ′

q
+ SE|βpβ ′

p

2

= log2

e2

4

1 − τ

τ

√
ν−ν+μ. (B7)

1. Key rate for the switching protocol

Using the total von Neumann entropy of Eq. (22), the

conditional entropy of Eq. (B7), and the asymptotic expression

of the mutual information for the switching protocol,

IAB → 2 log2

τμ

τ + (1 − τ )ω
, (B8)

we compute the following expression of the key rate against

Gaussian two-mode coherent attacks:

R̃ =
1

2
log2

√
ν−ν+

(1 − τ )[τ + (1 − τ )ω]
−

h(ν+) + h(ν−)

2
,

(B9)

from which we can recover the standard case of single-mode

collective attack setting g = g′ = 0.

For the sake of completeness, here we also discuss the case

where Bob applies different homodyne detections (one in q̂,

the other in p̂), within each two-mode block. In this case one

finds a lower key rate because measurements have the effect

of decorrelating modes B and B ′. As a result, any dependency

on g, g′ is canceled from the conditional CM, and for μ ≫ 1

one finds the following doubly degenerate eigenvalues:

ν̃1,2 =
√

(1 − τ )ωμ

τ
. (B10)

After some algebra we obtain the following nonoptimal key

rate

R̄ =
1

2
log2

ω

(1 − τ )[τ + (1 − τ )ω]
−

h(ν+) + h(ν−)

2
,

(B11)

which is not interesting from a practical point of view, because

the parties can always choose to group instances of the protocol

with the same quadrature homodyned.

2. Study of the critical point for the switching protocol

We then compute the first derivatives of the rate in Eq. (B9),

with respect to the correlations parameters g and g′, obtaining

the following:

∂gR̃ =
ζ

4

[

f (ν−1
− ) +

g

(ω + g)ν−
−

ν+ν−f (ν−1
+ )

(ω + g)(ω − g′)

]

,

(B12)

∂g′R̃ =
ζ ′

4

[

f (ν−1
− ) +

g′

(ω + g′)ν−
−

ν+ν−f (ν−1
+ )

(ω + g′)(ω − g)

]

,

(B13)

where the function f (.) has been defined in Eq. (A21), and the

symplectic eigenvalues ν± are given in Eqs. (A8) and (A9),

while we defined ζ and ζ ′ as follows:

ζ :=
ν−

2(ω − g′)
, ζ ′ :=

ν−

2(ω − g)
. (B14)

Note that these derivatives are properly defined within the

constraints of Eq. (5) that identify a sector of the (g,g′) plane

for which the conditions ν− > 1 and ν+ > 1 must hold. In fact,

the situation for which one has ν± = 1 can only be obtained

in P0, i.e., if the attack is collective. Solving the system of

equations ∇R = 0 one finds that P0 is a critical point, and that

it is also unique for any ω � 1 and g and g′ fulfilling Eq. (5).

3. Positive definiteness of the Hessian matrix

The second-order derivatives with respect to g, evaluated

in P0, is given by

∂2
g R̃ = −

ω2 + g2

4(ω2 − g2)2
+

1

8

[

κ+

ν2
+ − 1

−
κ−

ν2
− − 1

]

+
1

8

[√
κ+f (ν−1

+ )

ω + g
−

√
κ−f (ν−1

− )

ω − g

]

, (B15)
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with the coefficients κ± defined as follows:

κ+ :=
ω + g′

ω + g
, κ− :=

ω − g′

ω − g
. (B16)

The derivative with respect to g′ and the mixed derivatives are

given by the expressions

∂2
g′R̃ = −

ω2 + g′2

4(ω2 − g′2)2
+

1

8

[

κ−1
+

ν2
+ − 1

−
κ−1

−

ν2
− − 1

]

+
1

8

[

f (ν−1
+ )

√
κ+(ω + g′)

−
f (ν−1

− )
√

κ−(ω − g′)

]

, (B17)

∂2
g,g′R̃ = ∂2

g′,gR̃

=
1

8

[

1

ν2
+ − 1

−
1

ν2
− − 1

+
f (ν−1

+ )

ν+
−

f (ν−1
− )

ν−

]

,

(B18)

which, evaluated in P0, give

∂2
g R̃ = ∂2

g′R̃ =
1

4

(

1

ω2(ω2 − 1)
+ ω−1f (ω−1)

)

, (B19)

∂2
g,g′R̃ = ∂2

g′,gR̃ =
1

4

(

1

ω2 − 1
− ω−1f (ω−1)

)

. (B20)

We then compute the determinant of the Hessian in P0,

obtaining the following expression:

det H = ∂2
g R̃ × ∂2

g′R̃ −
(

∂2
g,g′R̃

)2

=
(ω2 + 1)(2ωf (ω−1) − 1)

16ω4(ω2 − 1)
, (B21)

which is always positive because

f (ω−1) >
1

ω
for ω � 1. (B22)

We have also checked that det H > 0 in the limit of ω → 1+.

Finally, we have verified that the second-order derivative of

Eq. (B19) is positive in P0. In fact, for ω > 1, one always has

1

4

(

1

ω2(ω2 − 1)
+ ω−1f (ω−1)

)

> 0. (B23)

Therefore, P0 is a point of absolute minimum for the key rate

of Eq. (B9), so that Eq. (29) is also verified for the switching

protocol.
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